
Learned Best-Effort LLM Serving

Siddharth Jha 1 Coleman Hooper 1 Xiaoxuan Liu 1 Sehoon Kim 1 Kurt Keutzer 1

Abstract

Many applications must provide low-latency
LLM service to users or risk unacceptable user ex-
perience. However, over-provisioning resources
to serve fluctuating request patterns is often pro-
hibitively expensive. In this work, we present a
best-effort serving system that employs deep rein-
forcement learning to adjust service quality based
on the task distribution and system load. Our best-
effort system can maintain availability with over
10× higher client request rates, serves above 96%
of peak performance 4.1× more often, and serves
above 98% of peak performance 2.3× more often
than static serving on unpredictable workloads.

1. Introduction
The widespread adoption of large language models (LLMs)
in chat agents and virtual assistants has underscored the im-
portance of low-latency responses for user experience. How-
ever, the unpredictability of online request patterns presents
a challenge for efficient LLM serving. Over-provisioning
GPU resources to serve bursty request windows is not eco-
nomically viable for smaller entities. Furthermore, while
downsizing to smaller models presents a cost-effective alter-
native, it risks compromising output quality if done without
careful consideration.

In response to the challenge of delivering low-latency LLM
services without additional hardware costs, we introduce
a learned best-effort serving framework that dynamically
selects models of varying sizes to match client requests,
guided by a model routing mechanism as illustrated in Fig-
ure 1. Leveraging the lower memory footprint of smaller
models, best-effort serving does not inhibit the ability to run
the largest desired model in the system, similar to specula-
tive inference (Leviathan et al., 2023) methods.

Our system is designed to handle requests across a spectrum

1UC Berkeley. Correspondence to: Siddharth Jha <sid-
jha@berkeley.edu>.

Presented in Efficient Systems for Foundation Models workshop in
the 41 st International Conference on Machine Learning, Vienna,
Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

GPU 1

Large 
Model

Medium 
Model

GPU 2 GPU 3 GPU 4

Small 
Model

Router

Client 1 Client N

Task 4

Task 3

Task 2

Task 1

Batch Sizes
Request Rate
Task Info

Figure 1: Learned best-effort serving consists of multiple
models serving multiple tasks, with a router that keeps track
of system load and task information in order to route re-
quests to models.

of tasks, balancing between model size for accuracy and
meeting deadlines, categorized as hard or soft, to optimize
overall performance. Performance is quantified by accuracy
for hard deadlines, and decreases as soft deadlines are ex-
ceeded. The ultimate objective is to maximize cumulative
performance, with ”peak performance” considered as the
ideal state of meeting all deadlines using the largest model.
We show that effective request routing is influenced by the
distribution and difficulty of tasks, as well as system load.
We employ deep reinforcement learning through the DQN
algorithm to manage these dynamics efficiently.

In summary, learned best-effort serving provides a variety
of benefits over traditional static serving methods for low-
latency LLM applications:

• Performance: It maintains over 96% of peak perfor-
mance 4.1× more frequently, and exceeds 98% of peak
performance 2.3× more frequently than static serving
with a large model on unpredictable workloads.

• Availability: It meets client deadlines at over 10×
higher system load than static serving with a large
model. Compared to statically serving a medium sized
model, it achieves at least 94% of peak performance
28.21× more often, in addition to higher availability.

1



Learned Best-Effort LLM Serving

2. Preliminaries
2.1. Efficient LLM Serving

The use of multiple models to serve LLM requests has been
explored via speculative inference (Leviathan et al., 2023;
Spector & Re, 2023), which uses a small draft model to
generate tokens to be verified by a large model. Big Lit-
tle Decoder (Kim et al., 2023) is a speculative inference
technique that allows clients to adjust quality and latency
by changing hyper-parameters. However, this requires a
hyper-parameter search for every task and does not adjust
under load. Dynamically adjusting serving in response to
load has been explored though autoscalers. Autoscalers
such as Ray (Moritz et al., 2018) dynamically increase GPU
instances under load. However, acquiring on-demand GPU
instances is expensive and not instantaneous. Model switch-
ing has been explored in (Zhang et al., 2020; Eccles et al.,
2024). However, (Zhang et al., 2020) only considers CNN
models running on CPUs and does not consider the task
when selecting a model. Furthermore, (Eccles et al., 2024)
necessitates pruned models and can only have one active
model at a time.

2.2. Deep Reinforcement Learning

Deep RL is a promising technique for learning to control
systems, and it has been successfully applied in a variety of
areas such as continuous controls (Brockman et al., 2016)
and games (Mnih et al., 2013). There are three core com-
ponents in any RL problem: states, actions, and rewards.
The RL policy aims to maximize the total rewards it sees
as it takes actions and transitions between states. Deep Q-
learning methods learn a Q-function, represented as a neural
network, that map state-action pairs to the expected return
of taking the action in the state and then following the pol-
icy. After fitting the Q-function of the optimal policy, the
Q-function may be used to select actions with the highest
expected reward. Popular algorithms in this area include
DQN (Mnih et al., 2013), Double Q-learning (Van Hasselt
et al., 2016), and PER (Schaul et al., 2015).

3. Best-Effort Serving
3.1. Problem Formulation

We envision a system where multiple clients dispatch re-
quests for LLM inference. These requests are aligned with
predefined tasks (e.g. summarization, question answering,
etc.) tailored to the application, each tagged with a desig-
nated latency requirement. Service requirements are deter-
mined at the task granularity, meaning that latency require-
ments are equivalent for requests belonging to the same task.
The system’s infrastructure categorizes deadlines into two
types: hard and soft. For hard deadlines, the utility of a

response is gauged by its accuracy if it meets the request’s
latency requirement. Conversely, for soft deadlines, a re-
sponse’s utility diminishes proportionally with the extent of
delay past the deadline. The overarching objective of the
system is to optimize the cumulative utility across all client
requests.

Suppose the best-effort system is serving T tasks using
M model choices. Let A ∈ RT×M be a matrix so that
Atm denotes the client utility (e.g. accuracy) of serving
a request from task t using model m. Each client request
is tagged with a task and deadline. Given a sequence of
requests (rn)n∈N, let request rn’s task be denoted by a one-
hot encoded vector tn ∈ R1×T and its latency requirement
be denoted as dn ∈ R. If we let mn ∈ R1×M be a one-hot
encoded vector representing the model assigned to request
rn, the goal of the serving system is to optimize

max
m

∑
n≥1

wntnAmT
n subject to ∥mn∥1 = 1,∀n (1)

where wn is dependent on the deadline being satisfied. For
applications with hard deadlines, wn ∈ {0, 1} is binary.
When using soft deadlines, wn ∈ [0, 1] decreases as the
assigned deadline is further violated. The decay function
that governs this may be set by application developers to best
meet their requirements. Optimizing Equation 1 for online
serving is difficult as the system does not have access to the
behavior of future requests when making a model selection
decision for a present request. Static serving methods assign
the same model to each request. In contrast, best-effort
serving employs dynamic routing to various models, aiming
to leverage the latency-quality trade-off most effectively.
This methodology seeks to enhance the system’s ability
to meet diverse client demands while maximizing overall
performance.

3.2. Dynamic Router Agent

To address the challenge of optimizing Equation 1 in online
settings, we employ deep reinforcement learning to learn a
router agent that dynamically dispatches client requests to
models. Since the agent cannot have access to information
about future request patterns when making a routing deci-
sion, it must rely only the present and past. Thus the agent
keeps track of the present batch size at each model and an
approximation of the current arrival rate of the client request
process using past requests. In sum, the state that the agent
conditions on when routing consists of the task (numbered 0
though T − 1), the batch size at each model, and the current
arrival rate. The action space consists of M options, with
each action corresponding to a separate model. The reward
for picking an action in a given state is the exact same as in
Equation 1. Thus the router agent is optimizing a proxy of

2



Learned Best-Effort LLM Serving

Equation 1. To learn an effective policy for our router agent,
we utilize the DQN algorithm with Double Q-learning to
prevent over-estimation of Q-values and represent the pol-
icy as a 2-layer MLP with hidden size 256. As we do not
assume prior information about the production workload,
we train the policy by randomly switching between random
arrival rates with a uniform task distribution. It is possi-
ble for application developers to exploit knowledge about
their workloads to change the training distribution to closely
match deployment, but our experiments in section 4 show
that random training works well in practice. Additionally,
as the policy is a small MLP, it can be run in less than a
millisecond.

4. Evaluation
4.1. Experiment Setup

We use one set of hyper-parameters, further detailed in Ap-
pendix A, for all trained policies. As baselines, we evaluate
against static serving with just one model size. When run-
ning the baselines, we give all the GPU memory to each
model. Models are served with vLLM (Kwon et al., 2023).
Graphs with uncertainty regions represent one standard de-
viation over three trials.

Prior work on model serving (Li et al., 2023; Zhang et al.,
2023; Gujarati et al., 2020) uses Microsoft’s Azure Function
(MAF) traces (Shahrad et al., 2020; Zhang et al., 2021) to
model behavior of clients in a serving system. The MAF1
trace (Shahrad et al., 2020) consists of stable and steady
request periods. On the other hand, the MAF2 trace (Zhang
et al., 2021) has much more unpredictable client behavior
and the arrival rates rapidly change. Based off of these
observations, we evaluate our system on three types of syn-
thetic workloads that capture a wide range of client behav-
ior. One workload is stable, while the other two are unpre-
dictable. The synthetic workloads are generated in similar
ways to (Yu et al., 2022; Zhang et al., 2023), which use Pois-
son processes and Markov-modulated Poisson processes.
We list further details about the three synthetic workloads
and arrival rate estimation in Appendix B.

4.2. System Setup

To evaluate our routing policy, we consider a serving system
with 4 GPUs. Each GPU contains an instance of OPT-125M,
OPT-1.3B, and OPT-6.7B and there are 4 tasks in the serv-
ing system. Thus the serving system is equivalent to the one
shown in Figure 1. Smaller models can fit in device memory
with the large model because the memory required for both
their model parameters, key-value cache, and activations is
significantly smaller than those of the large model. Specif-
ically, we give 5% of GPU memory to OPT-125M, 20%
of GPU memory to OPT-1.3B, and the rest to OPT-6.7B.

When the router chooses a model size for the request, we
automatically load balance by sending to the replica with
the smallest batch size for the model. We set the latency
guarantee to be 40 milliseconds/token. In Appendix D, we
show the results of experiments when assigning different
latency deadlines to tasks. Additionally we use zero-shot
HellaSwag (Zellers et al., 2019), COPA (Roemmele et al.,
2011), PIQA (Bisk et al., 2020), and OpenBookQA (Mi-
haylov et al., 2018) as the four tasks in the system. We use
each model’s average accuracy on each task as a measure of
its quality. For each task we normalize the accuracy of each
model to OPT-6.7B’s accuracy to get the rewards shown in
Table 1. We train the policy for 1.2 million iterations using
hard deadlines.

Table 1: Rewards for tasks served in the system.

TASK OPT-125M OPT-1.3B OPT-6.7B

HELLASWAG 0.45 0.78 1.00
COPA 0.80 0.95 1.00
PIQA 0.82 0.96 1.00
OPENBOOKQA 0.70 0.94 1.00

4.3. Stable Workload

4.3.1. HARD DEADLINES

For the stable workload, we vary the arrival rate of the ar-
rival Poisson process from 0.25 to 48 requests per second
and serve for 40 seconds. We show the results with hard
deadlines in Figure 2. As baselines, we show the perfor-
mance when only serving one of OPT-6.7B, OPT-1.3B, or
OPT-125M.

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0

0.80

0.85

0.90

0.95

1

Re
tu

rn

Return vs Arrival Rate
4x OPT-125M
4x OPT-1.3B
4x OPT-6.7B
Policy

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency vs Arrival Rate (All Tasks)

OPT-125M
OPT-1.3B
OPT-6.7B

Figure 2: The left figure shows the performance with hard
deadlines. The right figure shows the distribution of model
selection from the policy.

As Figure 2 shows, in typical systems that serve all requests
to OPT-6.7B, the performance is near the peak possible per-
formance at low arrival rates. However, once the arrival rate

3



Learned Best-Effort LLM Serving

increases past a threshold (2 requests per second), many
latency deadlines are missed and performance sharply de-
clines. While OPT-1.3B can serve requests at much higher
arrival rates, its quality cannot match OPT-6.7B even when
the arrival rate is low. Additionally, there is also a point at
which OPT-1.3B cannot keep up with client requests. Serv-
ing only with OPT-125M leads to significant performance
degradation at all but extremely high arrival rates.

In contrast, the policy dynamically adjusts which model to
send requests to. When the arrival rate is low, the policy pri-
marily sends to OPT-6.7B and achieves similar performance.
However, as the arrival rate increases, the policy correctly
routes more requests to OPT-1.3B and eventually even OPT-
125M at the extreme end. Therefore the policy allows the
system to remain available for over 10x faster arrival rates
than just using OPT-6.7B while still providing equal quality
to OPT-6.7B at low arrival rates. Furthermore we notice that
there are regions where the policy even performs better than
just taking the maximum of each of the baseline’s curves in
Figure 2 as it is able to multiplex between models at a given
arrival rate.

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (HellaSwag)

OPT-125M
OPT-1.3B
OPT-6.7B

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

Model Frequency (COPA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (PIQA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (OpenBookQA)

Figure 3: Model selection frequency for each individual
task with hard deadlines.

We now examine how the routing varies for different tasks,
as shown in Figure 3. We see that the policy sends Hel-
laSwag requests to OPT-6.7B much more often than the
other three tasks. Taking a look at Table 1, we see that
OPT-125M and OPT-1.3B have a significant quality gap
compared to OPT-6.7B for HellaSwag. This quality gap
is much larger than the gap between models on COPA,
PIQA, and OpenBookQA. Therefore the policy appropri-
ately learns to prioritize sending HellaSwag to the large
model when possible. Furthermore, even when the arrival
rate is higher, HellaSwag is sent to OPT-1.3B more often
than the other three tasks, which are more frequently sent to
OPT-125M. Thus the router learns a complex relationship
not only depending on the task’s quality across models in
isolation, but with respect to the quality of other tasks in the
system and their distribution.

4.3.2. SOFT DEADLINES

We pick a specific soft deadline decay function and fine-tune
the policy from the policy trained with the hard deadlines. It
is also possible to train the soft policy from scratch. When
fine-tuning, we adjust the reward function to be soft and
train for an additional 685,000 iterations. Specifically, this
soft deadline decays the reward by 1% for every millisecond
past the deadline as long as the violation is less than 10% of
the specified deadline. However, once the acceptable latency
is violated by more than 10%, the client does not value the
response and the reward is zero. We show the results in
Figure 4. We see that the policy outperforms the baselines
and sends more requests to larger models when using this
soft deadline than when using hard deadlines. Compared to
the hard policy’s performance in Figure 2, we see that the
soft policy more closely follows OPT-1.3B’s performance
before switching to OPT-125M’s performance. With hard
deadlines, the policy takes a slightly more conservative ap-
proach in this regime and sends a small set of requests to the
small model in order to prevent missing deadlines, creating
a small performance gap between the policy and OPT-1.3B
before the policy switches to OPT-125M’s performance.
With soft deadlines, the policy is less conservative and is
able to almost exactly match the performance of OPT-1.3B
at these arrival rates.

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0

0.80

0.85

0.90

0.95

1

Re
tu

rn

Return vs Arrival Rate
4x OPT-125M
4x OPT-1.3B
4x OPT-6.7B
Policy

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency vs Arrival Rate (All Tasks)

OPT-125M
OPT-1.3B
OPT-6.7B

Figure 4: The left figure shows the performance with soft
deadlines. The right figure shows the distribution of model
selection from the policy.

We show how tasks are routed to models when using this soft
deadline in Figure 5 and observe similar trends to Figure 3.
When measuring the usage of OPT-6.7B via a Riemann
sum of the selection distribution, we see that HellaSwag’s
OPT-6.7B usage increases by 52% with soft deadlines com-
pared to hard deadlines. In contrast, PIQA, COPA, and
OpenBookQA’s OPT-6.7B usage increases by just 9%, 7%,
and 3%, respectively. Thus the policy is able to exploit the
leniency given by the soft deadline to reap the large gains
in quality by sending HellaSwag to OPT-6.7B instead of
OPT-1.3B.

4



Learned Best-Effort LLM Serving

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (HellaSwag)

OPT-125M
OPT-1.3B
OPT-6.7B

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

Model Frequency (COPA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

Model Frequency (PIQA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

Model Frequency (OpenBookQA)

Figure 5: Model selection frequency for each individual
task with soft deadlines.

4.4. Unpredictable Workloads

We evaluate on an unpredictable workload using hard dead-
lines with large bursts. Figure 6 shows the performance of
the routing policy as well as the baselines, in addition to the
changing arrival rate for the unpredictable workload. We
show both the running average of performance across all
served requests and the running average of the performance
across the last 20 requests. The serving system that only
uses OPT-6.7B fails to meet latency deadlines during many
of the bursts and thus its performance is highly variable.
Even though OPT-6.7B has more windowed averages at
peak performance, the policy is able to perform at near-peak
performance significantly more often. We quantify this in
Table 2.

0 2000 4000 6000 8000 10000
Request Number

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn

Running Average

4x OPT-1.3B
4x OPT-6.7B
Policy

0 2000 4000 6000 8000 10000
Request Number

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn
 (L

as
t 2

0) Running Average Over Last 20 Requests

0

10

20

30

40

50

Ar
riv

al
 R

at
e

0

10

20

30

40

50

Ar
riv

al
 R

at
e

Figure 6: Running total and windowed average over the last
20 requests of performance on the unpredictable workload.
The arrival rate at each step is also shown.

As shown in Table 2, Compared to the policy, OPT-6.7B is
able to achieve more windowed averages with peak perfor-
mance. However, when analyzing the number of windows

Table 2: Number of request windows of size 20 that meet
average performance thresholds on the unpredictable work-
load.

THRESHOLD POLICY OPT-6.7B OPT-1.3B

= 1.00 142 307 0
≥ 0.99 470 307 0
≥ 0.98 713 307 0
≥ 0.96 1264 307 0
≥ 0.94 1723 625 154

which meet high performance thresholds such as 0.99, 0.98,
0.96, and 0.94, the policy achieves more such windows
than OPT-6.7B and OPT-1.3B. For example, it achieves
1.53× more windows past 99% performance, 2.32× more
windows past 98% performance, and 4.11× more windows
past 96% performance compared to OPT-6.7B. Addition-
ally, it achieves at least 94% of peak performance 2.75×
more often than OPT-6.7B and 11.18× more often than
OPT-1.3B. This shows that the policy is able to correctly
balance between OPT-6.7B, OPT-1.3B, and OPT-125M,
even while faced with an unpredictable workload. We see
similar results on another unpredictable workload, detailed
in Appendix C.

5. Discussion
Viewed through another lens, learned routing allows higher
quality during low system load than statically serving a
smaller model to handle periods of high loads. There are
also a wide range of environments in which best-effort serv-
ing is applicable. By formulating model serving as a rein-
forcement learning problem, application developers have the
flexibility to adapt the reward function in order to meet their
application requirements. For example, they may choose to
up-weight the reward on prioritized requests coming from
paid users. In Appendix. D, E, and F, we show that our
learned router can support different deadlines per task, be
robust in the face of shifts in the task distribution, and facili-
tate serving with less compute resources.

6. Conclusion
Rather than serving LLMs at a fixed model size, we pro-
pose a best-effort serving paradigm with a learned router
that maximizes holistic performance, which jointly captures
quality and latency. Best-effort serving with dynamic rout-
ing is an efficient approach for developers looking to scale
their latency-sensitive applications. We train our router us-
ing deep reinforcement learning methods and outperform
static serving baselines in a variety of workloads. We imag-
ine best-effort serving with dynamic routing to be a cheap
and efficient paradigm for latency-sensitive applications.

5



Learned Best-Effort LLM Serving

References
Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.

Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Eccles, B. J., Rodgers, P., Kilpatrick, P., Spence, I., and
Varghese, B. Dnnshifter: An efficient dnn pruning sys-
tem for edge computing. Future Generation Computer
Systems, 152:43–54, 2024.

Gujarati, A., Karimi, R., Alzayat, S., Hao, W., Kaufmann,
A., Vigfusson, Y., and Mace, J. Serving {DNNs} like
clockwork: Performance predictability from the bottom
up. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pp. 443–462,
2020.

Kim, S., Mangalam, K., Malik, J., Mahoney, M. W., Gho-
lami, A., and Keutzer, K. Big little transformer decoder.
arXiv preprint arXiv:2302.07863, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin,
X., Huang, Y., Chen, Z., Zhang, H., Gonzalez, J. E.,
et al. Alpaserve: Statistical multiplexing with model
parallelism for deep learning serving. arXiv preprint
arXiv:2302.11665, 2023.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In EMNLP, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I.,
et al. Ray: A distributed framework for emerging {AI}
applications. In 13th USENIX symposium on operating

systems design and implementation (OSDI 18), pp. 561–
577, 2018.

Roemmele, M., Bejan, C. A., and Gordon, A. S. Choice
of plausible alternatives: An evaluation of commonsense
causal reasoning. In 2011 AAAI Spring Symposium Series,
2011.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Shahrad, M., Fonseca, R., Goiri, I., Chaudhry, G., Batum, P.,
Cooke, J., Laureano, E., Tresness, C., Russinovich, M.,
and Bianchini, R. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX annual technical conference
(USENIX ATC 20), pp. 205–218, 2020.

Spector, B. and Re, C. Accelerating llm inference
with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, H., Tang, Y., Khandelwal, A., and Stoica, I.
{SHEPHERD}: Serving {DNNs} in the wild. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pp. 787–808, 2023.

Zhang, J., Elnikety, S., Zarar, S., Gupta, A., and Garg, S.
{Model-Switching}: Dealing with fluctuating workloads
in {Machine-Learning-as-a-Service} systems. In 12th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

Zhang, Y., Goiri, Í., Chaudhry, G. I., Fonseca, R., Elnikety,
S., Delimitrou, C., and Bianchini, R. Faster and cheaper
serverless computing on harvested resources. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pp. 724–739, 2021.

6



Learned Best-Effort LLM Serving

A. Training Details
We use a discount rate of 0.99, a learning rate of 0.0001, and a batch size of 1024. In our Double Q-learning implementation,
the target network is updated every 500 iterations. For exploration, we use an epsilon-greedy strategy. We use an NVIDIA
TITAN RTX for GPUs and an Intel Xeon Gold 6126 processor as our CPU.

B. Workload Details
There are three workloads we use - 1 stable and 2 unpredictable. The first represents a stable workload in which client
requests arrive in the system as a Poisson process with a fixed rate for a set period of time. The second and third workload
represent unpredictable workloads in which the arrival rate of requests rapidly switches due to an underlying stochastic
process that controls the arrival rate and its duration. The difference between the second and third workload is that the
second workload assumes that the system spends the same amount of time (in expectation) in each arrival rate, while the
third workload assumes that the system serves the same amount of requests (in expectation) in each arrival rate before
switching. On the unpredictable workloads, we estimate the arrival rate by taking a running average of the last 5 arrivals.
Since a near-zero variance estimate of the arrival rate may be obtained on the stable workloads, we give the agent the true
arrival rate.

For the first unpredictable workload, we randomly vary the arrival rate and the number of requests served at that arrival rate
before switching to the next arrival rate. With 90% probability, we randomly pick an arrival rate between 0.25 and 2. With
8% probability, we randomly pick an arrival rate between 2 and 40. With the remaining 2% probability, we randomly pick
an arrival rate between 40 and 48. The number of requests served at the arrival rate is a geometric random variable with
mean 20 × arrival rate. There are 10,000 requests in total.

In the second unpredictable workload, the arrival rate randomly fluctuates between 1 request per second and 48 requests per
second. The first unpredictable workload assumed that the expected time spent in each arrival rate is the same. With the new
workload, we assume that the number of expected requests seen in each arrival rate is the same, meaning large arrival rates
occupy less real time in the system than small arrival rates. We use a geometric random variable with mean 500 to determine
the number of requests to serve at an arrival rate before picking the next arrival rate. There are 10,000 requests in total.

C. Additional Unpredictable Workload Experiment

0 2000 4000 6000 8000 10000
Request Number

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

Re
tu

rn

Running Average

4x OPT-1.3B
4x OPT-6.7B
Policy

0 2000 4000 6000 8000 10000
Request Number

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn
 (L

as
t 2

0) Running Average Over Last 20 Requests

0

10

20

30

40

50

Ar
riv

al
 R

at
e

0

10

20

30

40

50

Ar
riv

al
 R

at
e

Figure 7: Running total and windowed average over the
last 20 requests of performance on the second unpredictable
workload. The arrival rate at each step is also shown.

THRESHOLD POLICY OPT-6.7B OPT-1.3B

= 1.00 447 1378 0
≥ 0.99 1977 1378 0
≥ 0.98 3121 1378 0
≥ 0.96 4141 1378 0
≥ 0.94 4740 2810 168

Table 3: Number of request windows of size 20 that meet
average performance thresholds on the second unpredictable
workload.

We also show performance on the second unpredictable workload. The results are shown in Figure 7. As the results in
Figure 7 show, the policy outperforms both baselines of OPT-1.3B and OPT-6.7B and is able to adapt to the large changes in
arrival rate. Additionally, as shown in Table 3, the policy has significantly more windows which meet high performance

7



Learned Best-Effort LLM Serving

thresholds. It achieves 1.43× more windows past 99% performance, 2.26× more windows past 98% performance, and 3×
more windows past 96% performance compared to OPT-6.7B. Additionally, it achieves at least 94% of peak performance
1.68× more often than OPT-6.7B and 28.21× more often than OPT-1.3B.

D. Different Deadlines Experiment
Certain applications may want different deadlines to be associated with different tasks. To see if the policy can handle
this setting, we double the deadline for OpenBookQA and tighten the deadline for COPA by 20%. We train the policy for
800,000 iterations using hard deadlines and show both the performance and model selection in Figure 8 and Figure 9. We see
that the policy is able to learn with different deadlines and outperforms the static serving baselines as before. Additionally,
compared to the task-specific selection distribution in Figure 3, the policy sends significantly more OpenBookQA requests
to OPT-6.7B, as the deadline is now looser. Compared to the other tasks in the system, the policy waits for a higher arrival
rate before it switches sending OpenBookQA requests to OPT-125M instead of OPT-1.3B. Similarly, the policy significantly
reduces OPT-6.7B usage for COPA in favor of OPT-1.3B due to the tighter deadlines.

0 2000 4000 6000 8000 10000
Request Number

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

Re
tu

rn

Running Average

4x OPT-1.3B
4x OPT-6.7B
Policy

0 2000 4000 6000 8000 10000
Request Number

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn
 (L

as
t 2

0) Running Average Over Last 20 Requests

0

10

20

30

40

50

Ar
riv

al
 R

at
e

0

10

20

30

40

50

Ar
riv

al
 R

at
e

Figure 8: Running total and windowed average over the
last 20 requests of performance on the second unpredictable
workload. The arrival rate at each step is also shown.

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

Model Frequency (HellaSwag)

OPT-125M
OPT-1.3B
OPT-6.7B

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (COPA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y

Model Frequency (PIQA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (OpenBookQA)

Figure 9: Model selection frequency for each individual task
with loose OpenBookQA and tight COPA deadlines.

E. Task Distribution Shift Experiment
When training the policy we assume that tasks are picked uniformly at random in the application’s workload. For some
classes of applications, it is possible that the distribution of tasks changes after the policy has been deployed. It is important
that the policy still perform well when the task distribution shifts. We show the performance of our policy in the hard
deadline setting while drastically changing the task distribution and without performing any additional training iterations.
Specifically, we evaluate performance when the serving system is only receiving requests from one class of tasks at a time.
The results on the stable workload are shown in Figure 10. Even though the task distribution is drastically different than the
training distribution, the policy is still able to achieve better performance than OPT-6.7B OPT-1.3B, and OPT-125M.

We notice that when serving only HellaSwag, the policy closely follows OPT-6.7B’s performance at low arrival rates. In
contrast, when only serving COPA, PIQA, or OpenBookQA, the policy is able to outperform OPT-6.7B at these low arrival
rates. When analyzing the policy’s model selection distribution for each of the tasks in Figure 11, we see that this is because
the policy favors OPT-6.7B on HellaSwag more than the other tasks. Although this was optimal when tasks were picked
uniformly at random, it is slightly less optimal now because the policy may benefit from sending some HellaSwag requests
to OPT-1.3B due to randomness in the arrival process. For COPA, PIQA, and OpenBookQA, the policy is able to multiplex
better with OPT-6.7B and OPT-1.3B and thus is able to beat OPT-6.7B at lower arrival rates. The out-of-distribution
performance outperforms the baselines and highlights the policy’s robustness.

We also evaluate the soft policy’s resistance to shifts in the task distribution on an unpredictable workload. The workload

8



Learned Best-Effort LLM Serving

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0

0.80

0.85

0.90

0.95

1

Re
tu

rn

Return vs Arrival Rate (HellaSwag)
4x OPT-125M
4x OPT-1.3B
4x OPT-6.7B
Policy

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0

0.80

0.85

0.90

0.95

1

Re
tu

rn

Return vs Arrival Rate (COPA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0

0.80

0.85

0.90

0.95

1

Re
tu

rn

Return vs Arrival Rate (PIQA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0

0.80

0.85

0.90

0.95

1

Re
tu

rn

Return vs Arrival Rate (OpenBookQA)

Figure 10: Performance for each of the out-of-distribution
workloads, corresponding to sending only one task to the
serving system.

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (HellaSwag)

OPT-125M
OPT-1.3B
OPT-6.7B

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

Model Frequency (COPA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (PIQA)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Model Frequency (OpenBookQA)

Figure 11: Model selection frequency for each of the out-of-
distribution workloads, corresponding to sending only one
task to the serving system.

is the first unpredictable workload but requests are chosen uniformly at random between only HellaSwag and COPA. As
shown in Figure 12, the policy is still able to outperform the baselines.

0 2000 4000 6000 8000 10000
Request Number

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn

Running Average

4x OPT-1.3B
4x OPT-6.7B
Policy

0 2000 4000 6000 8000 10000
Request Number

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn
 (L

as
t 2

0) Running Average Over Last 20 Requests

0

10

20

30

40

50

Ar
riv

al
 R

at
e

0

10

20

30

40

50

Ar
riv

al
 R

at
e

Figure 12: Running total and windowed average over the
last 20 requests of performance on the first unpredictable
workload while only serving HellaSwag and COPA with soft
deadlines. The arrival rate at each step is also shown.

THRESHOLD POLICY OPT-6.7B OPT-1.3B

= 1.00 170 369 0
≥ 0.99 551 696 0
≥ 0.98 812 727 0
≥ 0.96 1163 727 0
≥ 0.94 1497 1302 0

Table 4: Request windows of size 20 that meet average per-
formance thresholds.

F. Hardware Utility Experiment
Our learned router leads to increased performance per hardware unit, which we call hardware utility. To demonstrate this,
we compare the performance of running OPT-6.7B replicated on 8 GPUs against running our policy on 4 GPUs. We show
the results in Figure 13 on the stable workload using both hard and soft deadlines. When showing the performance, we
normalize by the number of GPUs to capture the hardware utility. As Figure 13 shows, the policy running on 4 GPUs
significantly outperforms both the 4 and 8 GPU OPT-6.7B system on a per-GPU basis. Additionally, we compare the
policy’s hardware utility against the 8 GPU system on the first unpredictable workload and show the results in Figure 14.
The policy achieves higher hardware utility than the 8 GPU system 97.03% of the time. On average, the policy’s hardware

9



Learned Best-Effort LLM Serving

utility is 3.94× higher than the 8 GPU system. Additionally, the policy serves past 90% of peak performance 1.51× more
often than the 8 GPU OPT-6.7B system, when running on just 4 GPUs. Since reserving many GPU instances and having the
budget to pay for them are both difficult tasks, these results highlight an important advantage for best-effort serving.

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.00

0.05

0.10

0.15

0.20

0.25

Re
tu

rn
/G

PU

Return/GPU vs Arrival Rate (Hard)

4x OPT-6.7B
8x OPT-6.7B
Policy (4 GPUs)

0.25 0.5 1 2 4 8 16 32
Arrival Rate (Req/Sec)

0.00

0.05

0.10

0.15

0.20

0.25

Re
tu

rn
/G

PU

Return/GPU vs Arrival Rate (Soft)

4x OPT-6.7B
8x OPT-6.7B
Policy (4 GPUs)

Figure 13: Hardware utility of the policy running on 4 GPUs
compared to an OPT-6.7B system running on 8 GPUs. Both
hard deadline (left) and soft deadline (right) performance is
shown.

0 2000 4000 6000 8000 10000
Request Number

0.0

0.1

0.2

Re
tu

rn
/G

PU

Average Return/GPU (Last 20)

0

20

40

Ar
riv

al
 R

at
e

Figure 14: Windowed average over the last 20 requests of the
hardware utility of the policy running on 4 GPUs compared
to an OPT-6.7B system running on 8 GPUs, on the first
unpredictable workload.

10


