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Abstract
The Two-Stage Learning-to-Defer (L2D) frame-
work has been extensively studied for classifica-
tion and, more recently, regression tasks. How-
ever, many real-world applications require solving
both tasks jointly in a multi-task setting. We in-
troduce a novel Two-Stage L2D framework for
multi-task learning that integrates classification
and regression through a unified deferral mech-
anism. Our method leverages a two-stage sur-
rogate loss family, which we prove to be both
Bayes-consistent and (G,R)-consistent, ensur-
ing convergence to the Bayes-optimal rejector.
We derive explicit consistency bounds tied to
the cross-entropy surrogate and the L1-norm of
agent-specific costs, and extend minimizability
gap analysis to the multi-expert two-stage regime.
We also make explicit how shared representa-
tion learning—commonly used in multi-task mod-
els—affects these consistency guarantees. Exper-
iments on object detection and electronic health
record analysis demonstrate the effectiveness of
our approach and highlight the limitations of ex-
isting L2D methods in multi-task scenarios.

1. Introduction
Learning-to-Defer (L2D) integrates predictive models with
human experts—or, more broadly, decision-makers—to op-
timize systems requiring high reliability (Madras et al.,
2018). This approach benefits from the scalability of ma-
chine learning models and leverages expert knowledge to ad-
dress complex queries (Hemmer et al., 2021). The Learning-
to-Defer approach defers decisions to experts when the
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learning-based model has lower confidence than the most
confident expert. This deference mechanism enhances
safety, which is particularly crucial in high-stakes scenarios
(Mozannar & Sontag, 2020; Mozannar et al., 2023). For
example, in medical diagnostics, the system utilizes patient-
acquired data to deliver an initial diagnosis (Johnson et al.,
2023; 2016). If the model is sufficiently confident, its diag-
nosis is accepted; otherwise, the decision is deferred to a
medical expert who provides the final diagnosis. Such tasks,
which can directly impact human lives, underscore the need
to develop reliable systems (Balagurunathan et al., 2021).

Learning-to-Defer has been extensively studied in classifi-
cation problems (Madras et al., 2018; Verma et al., 2023;
Mozannar & Sontag, 2020; Mozannar et al., 2023; Mao
et al., 2023a) and, more recently, in regression scenarios
(Mao et al., 2024e). However, many modern complex tasks
involve both regression and classification components, re-
quiring deferral to be applied to both components simultane-
ously, as they cannot be treated independently. For instance,
in object detection, a model predicts both the class of an
object and its location using a regressor, with these outputs
being inherently interdependent (Girshick, 2015; Redmon
et al., 2016; Buch et al., 2017). In practice, deferring only
localization or classification is not meaningful, as decision-
makers will treat these two tasks simultaneously. A failure
in either component—such as misclassifying the object or
inaccurately estimating its position—can undermine the en-
tire problem, emphasizing the importance of coordinated
deferral strategies that address both components jointly.

This potential for failure underscores the need for a
Learning-to-Defer approach tailored to multi-task problems
involving both classification and regression. We propose a
novel framework for multi-task environments, incorporating
expertise from multiple experts and the predictor-regressor
model. We focus our work on the two-stage scenario, where
the model is already trained offline. This setting is relevant
when retraining from scratch the predictor-regressor model
is either too costly or not feasible due to diverse constraints
such as non-open models (Mao et al., 2023a; 2024e). We
approximate the true deferral loss using a surrogate deferral
loss family, based on cross-entropy, and tailored for the two-
stage setting, ensuring that the loss effectively approximates
the original discontinuous loss function. Our theoretical
analysis establishes that our surrogate loss is both (G,R)-
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consistent and Bayes-consistent. Furthermore, we study and
generalize results on the minimizability gap for deferral loss
based on cross-entropy, providing deeper insights into its
optimization properties. Our contributions are as follows:

(i) Novelty: We introduce two-stage Learning-to-Defer for
multi-task learning with multiple experts. Unlike previous
L2D methods that focus solely on classification or regres-
sion, our approach addresses situations where a sole optimal
agent has to be selected to jointly handle both tasks in a
unified framework.

(ii) Theoretical Foundation: We prove that our surrogate
family is both Bayes-consistent and (G,R)-consistent for
any cross-entropy-based surrogate. We derive tight consis-
tency bounds that depend on the choice of the surrogate and
the L1-norm of the cost, extending minimizability gap anal-
ysis to the two-stage, multi-expert setting. Additionally, we
establish learning bounds for the true deferral loss, show-
ing that generalization improves as agents become more
accurate.

(iii) Empirical Validation: We evaluate our approach on
two challenging tasks. In object detection, our method
effectively captures the intrinsic interdependence between
classification and regression, overcoming the limitations of
existing L2D approaches. In EHR analysis, we show that
current L2D methods struggle when agents have varying
expertise across classification and regression—whereas our
method achieves superior performance.

2. Related Work
Learning-to-Defer builds upon the foundational ideas
of Learning with Abstention (Chow, 1970; Bartlett &
Wegkamp, 2008; Cortes et al., 2016; Geifman & El-Yaniv,
2017; Ramaswamy et al., 2018; Cao et al., 2022; Mao et al.,
2024a), where a model is permitted to abstain from making
a prediction when its confidence is low. The core insight
of L2D is to extend this framework from rejection to de-
ferral—delegating uncertain decisions to external agents or
experts whose confidence may exceed that of the model.

One-stage Learning-to-Defer. L2D was originally intro-
duced by Madras et al. (2018) for binary classification, using
a pass function inspired by the predictor-rejector framework
of Cortes et al. (2016). In the multiclass setting, Mozan-
nar & Sontag (2020) proposed a score-based formulation
that leverages a log-softmax surrogate to ensure Bayes-
consistency. This formulation has since been extended to a
wide range of classification tasks (Okati et al., 2021; Verma
et al., 2023; Cao et al., 2024; 2022; Keswani et al., 2021; Ker-
rigan et al., 2021; Hemmer et al., 2022; Benz & Rodriguez,
2022; Tailor et al., 2024; Liu et al., 2024; Palomba et al.,
2024; Wei et al., 2024). A pivotal contribution by Mozannar

et al. (2023) challenged the sufficiency of Bayes-consistency,
showing that existing score-based methods may be subop-
timal under realizable distributions—particularly when the
hypothesis class is restricted. They introduced the notion
of hypothesis-consistency, which strengthens theoretical
alignment between the surrogate loss and the constrained
hypothesis space. This work sparked a broader effort to
refine the theoretical foundations of L2D using tools from
surrogate risk analysis (Long & Servedio, 2013; Zhang &
Agarwal, 2020; Awasthi et al., 2022; Mao et al., 2023b). Re-
cent theoretical advances have solidified the status of score-
based L2D. Mao et al. (2024c) established that the general
score-based L2D framework achievesH-consistency, while
Mao et al. (2024d) introduced a novel surrogate loss that
guarantees realizable-consistency—i.e., optimality under
realizable distributions. Beyond classification, the L2D
framework has also been extended to regression (Mao et al.,
2024e), demonstrating its applicability in continuous-output
settings with expert deferral.

Two-stage Learning-to-Defer. The emergence of large-
scale pretrained models has motivated the development of
two-stage L2D frameworks, where both the model and the
expert agents are trained offline. This reflects practical con-
straints: most users lack the computational resources to
fine-tune large models end-to-end. Narasimhan et al. (2022)
were the first to formalize this setting, and Mao et al. (2023a)
introduced a dedicated predictor–rejector architecture tai-
lored for two-stage L2D, with theoretical guarantees includ-
ing both Bayes- and hypothesis-consistency. Charusaie et al.
(2022) offered a comparative analysis of one-stage (joint
training) and two-stage (post hoc) L2D, highlighting trade-
offs between model flexibility and sample efficiency. More
recently, two-stage L2D has been successfully extended
to regression (Mao et al., 2024e) and applied to real-world
tasks such as extractive question answering (Montreuil et al.,
2024) and adversarial robustness (Montreuil et al., 2025).

Despite significant progress, current two-stage L2D re-
search largely addresses classification and regression in-
dependently. However, many contemporary tasks involve
both regression and classification components, necessitating
their joint optimization. In this work, we extend two-stage
L2D to joint classifier-regressor models, addressing this
critical gap.

3. Preliminaries
Multi-task scenario. We consider a multi-task setting
encompassing both classification and regression problems.
Let X denote the input space, Y = {1, . . . , n} represent the
set of n distinct classes, and T ⊆ R denote the space of
real-valued targets for regression. For compactness, each
data point is represented as a triplet z = (x, y, t) ∈ Z ,
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where Z = X × Y × T . We assume the data is sampled
independently and identically distributed (i.i.d.) from a
distribution D over Z (Girshick, 2015; Redmon et al., 2016;
Carion et al., 2020).

We define a backbone w ∈ W , or shared feature extractor,
such that w : X → Q. For example, w can be a deep net-
work that takes an input x ∈ X and produces a latent feature
vector q = w(x) ∈ Q. Next, we define a classifier h ∈ H,
representing all possible classification heads operating onQ.
Formally, h is a score function defined as h : Q× Y → R,
where the predicted class is h(q) = argmaxy∈Y h(q, y).
Likewise, we define a regressor f ∈ F , representing all
regression heads, where f : Q → T . These components are
combined into a single multi-head network g ∈ G, where
G = { g : g(x) = (h ◦ w(x), f ◦ w(x)) | w ∈ W, h ∈
H, f ∈ F}. Hence, g jointly produces classification and
regression outputs, h(q) and f(q), from the same latent
representation q = w(x).

Consistency in classification. In the classification setting,
the goal is to identify a classifier h ∈ H in the specific case
where w(x) = x, such that h(x) = argmaxy∈Y h(x, y).
This classifier should minimize the true error Eℓ01(h), de-
fined as Eℓ01(h) = E(x,y)

[
ℓ01(h(x), y)

]
. The Bayes-

optimal error is given by EBℓ01(H) = infh∈H Eℓ01(h). How-
ever, directly minimizing Eℓ01(h) is challenging due to the
non-differentiability of the true multiclass 0-1 loss (Zhang,
2002; Steinwart, 2007; Awasthi et al., 2022). This motivates
the introduction of the cross-entropy multiclass surrogate
family, denoted by Φν

01 : H×X×Y → R+, which provides
a convex upper bound to the true multiclass loss ℓ01. This
family is parameterized by ν ≥ 0 and encompasses standard
surrogate functions widely adopted in the community such
as the MAE (Ghosh et al., 2017) or the log-softmax (Mohri
et al., 2012).

Φν
01 =


1

1−ν

([∑
y′∈Y e

h(x,y′)−h(x,y)]1−ν − 1
)

ν ̸= 1

log
(∑

y′∈Y e
h(x,y′)−h(x,y)

)
ν = 1.

(1)
The corresponding surrogate error is defined as EΦν

01
(h) =

E(x,y)

[
Φν

01(h(x), y)
]
, with its optimal value given by

E∗Φν
01
(H) = infh∈H EΦν

01
(h). A crucial property of a surro-

gate loss is Bayes-consistency, which guarantees that min-
imizing the surrogate generalization error also minimizes
the true generalization error (Zhang, 2002; Steinwart, 2007;
Bartlett et al., 2006; Tewari & Bartlett, 2007). Formally, Φν

01

is Bayes-consistent with respect to ℓ01 if, for any sequence
{hk}k∈N ⊂ H, the following implication holds:

EΦν
01
(hk)− E∗Φν

01
(H) k→∞−−−−→ 0

=⇒ Eℓ01(hk)− EBℓ01(H)
k→∞−−−−→ 0.

(2)

This property assumes thatH = Hall, a condition that does
not necessarily hold for restricted hypothesis classes such
as Hlin or HReLU (Long & Servedio, 2013; Awasthi et al.,
2022). To address this limitation, Awasthi et al. (2022)
proposedH-consistency bounds. These bounds depend on
a non-decreasing function Γ : R+ → R+ and are expressed
as:

EΦν
01
(h)− E∗Φν

01
(H) + UΦν

01
(H) ≥

Γ
(
Eℓ01(h)− EBℓ01(H) + Uℓ01(H)

)
,

(3)

where the minimizability gap Uℓ01(H) measures the dispar-
ity between the best-in-class generalization error and the
expected pointwise minimum error: Uℓ01(H) = EBℓ01(H)−
Ex

[
infh∈H Ey|x[ℓ01(h(x), y)]

]
. Notably, the minimizabil-

ity gap vanishes whenH = Hall (Steinwart, 2007; Awasthi
et al., 2022). In the asymptotic limit, inequality (3) guaran-
tees the recovery of Bayes-consistency, aligning with the
condition in (2).

4. Two-stage Multi-Task L2D: Theoretical
Analysis

4.1. Formulating the True Deferral Loss

We extend the two-stage predictor–rejector framework, orig-
inally proposed by (Narasimhan et al., 2022; Mao et al.,
2023a), to the multi-task setting described in Section 3.
Specifically, we consider an offline-trained model g ∈ G,
which jointly performs classification and regression. In addi-
tion, we assume access to J offline-trained experts, denoted
Mj for j ∈ {1, . . . , J}. Each expert outputs predictions of
the form mj(x) =

(
mh

j (x),m
f
j (x)

)
, where mh

j (x) ∈ Y
and mf

j (x) ∈ T correspond to the classification and re-
gression components, respectively. Each expert predic-
tion lies in a corresponding space Mj , so that mj(x) ∈
Mj . We denote the aggregated outputs of all experts as
m(x) =

(
m1(x), . . . ,mJ(x)

)
∈ M :=

∏J
j=1Mj . We

write [J ] := {1, . . . , J} to denote the index set of experts,
and define the set of all agents as A := {0} ∪ [J ], where
agent 0 corresponds to the model g. Thus, the system con-
tains |A| = J + 1 agents in total.

To allocate each decision, we introduce a rejector function
r ∈ R, where r : X ×A → R. Given an input x ∈ X , the
rejector selects the agent j ∈ A that maximizes its score:
r(x) = argmaxj∈A r(x, j). This mechanism induces the
deferral loss, a mapping ℓdef : R×G×Z×M→ R+, which
quantifies the cost of allocating a decision to a particular
agent.
Definition 4.1 (True deferral loss). Let an input x ∈ X , for
any r ∈ R, we have the true deferral loss:

ℓdef(r, g,m, z) =

J∑
j=0

cj(g(x),mj(x), z)1r(x)=j ,
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with a bounded cost cj that quantifies the penalty incurred
when allocating the decision to agent j ∈ A. When the
rejector r ∈ R predicts r(x) = 0, the decision is assigned
to the multi-task model g, incurring a base cost c0 defined
as c0(g(x), z) = ρ(g(x), z), where ρ(·, ·) ∈ R+ measures
the discrepancy between the model’s output g(x) and the
ground truth z. Conversely, if the rejector selects r(x) = j
for some j > 0, the decision is deferred to expert j, yielding
a deferral cost cj(mj(x), z) = ρ(mj(x), z) + βj . Here,
βj ≥ 0 denotes the querying cost associated with invok-
ing expert j, which may reflect domain-specific constraints
such as computational overhead, annotation effort, or time
expenditure.

When the classification and regression objectives are sepa-
rable, the total cost can be decomposed as cj = λclaccla +
λregcreg, where λcla, λreg ≥ 0 specify the relative impor-
tance of each task. A neutral setting is recovered when
λcla = λreg = 1, ensuring a task-agnostic trade-off. If
classification performance is prioritized, one can select
λcla > λreg to favor agents with stronger classification ex-
pertise.

Optimal deferral rule. In Definition 4.1, we introduced
the true deferral loss ℓdef, which quantifies the expected cost
incurred when allocating predictions across the model and
experts. Our goal is to minimize this loss by identifying the
Bayes-optimal rejector r ∈ R that minimizes the true risk.
To formalize this objective, we analyze the pointwise Bayes
rejector rB(x), which minimizes the conditional risk Cℓdef .
The corresponding population risk is given by Eℓdef(g, r) =
Ex[Cℓdef(g, r, x)]. The following lemma characterizes the
optimal decision rule at each input x ∈ X .

Lemma 4.2 (Pointwise Bayes Rejector). Given an input
x ∈ X and data distribution D, the rejection rule that
minimizes the conditional risk Cℓdef associated with the true
deferral loss ℓdef is:

rB(x) =

0 if inf
g∈G

Ey,t|x[c0] ≤ min
j∈[J]

Ey,t|x [cj ]

j otherwise,

The proof is provided in Appendix B. Lemma 4.2 shows
that the optimal rejector r ∈ R assigns the decision to the
model g ∈ G whenever its expected cost is lower than that
of any expert. Otherwise, the rejector defers to the expert
with the minimal expected deferral cost.

Although Lemma 4.2 characterizes the Bayes-optimal pol-
icy under the true deferral loss ℓdef, this loss is non-
differentiable and thus intractable for direct optimization in
practice (Zhang, 2002).

4.2. Surrogate Loss for Two-Stage Multi-Task L2D

Introducing the surrogate. To address the optimization
challenges posed by discontinuous losses (Berkson, 1944;
Cortes & Vapnik, 1995), we introduce a family of con-
vex surrogate losses with favorable analytical properties.
Specifically, we adopt the multiclass cross-entropy surro-
gates Φν

01 : R × X × A → R+, which upper-bounds the
true multiclass 0-1 loss ℓ01 and facilitates gradient-based
optimization. This surrogate family is defined in Equation 1.

Building on the framework of Mao et al. (2024e), who
proposed convex surrogates for deferral settings, we extend
their approach to account for the interdependence between
classification and regression tasks. In our setting, this yields
a family of surrogate losses Φν

def : R×G ×M×Z → R+,
which incorporate the full structure of the multi-task cost.
Lemma 4.3 (Surrogate Deferral Surrogates). Let x ∈ X
and let Φν

01 be a multiclass surrogate loss. Then the surro-
gate deferral loss Φν

def for J + 1 agents is given by

Φν
def(r, g,m, z) =

J∑
j=0

τj(g(x),m(x), z) Φν
01(r, x, j),

where the aggregated cost weights are defined as
τj(g(x),m(x), z) =

∑J
i=0 ci(g(x),mi(x), z)1i ̸=j .

The surrogate deferral loss Φν
def combines the individual

surrogate losses Φν
01(r, x, j) for each agent j ∈ A, weighted

by the corresponding aggregated cost τj . Intuitively, τ0
quantifies the total cost of deferring to any expert instead of
using the model, while τj for j > 0 reflects the total cost
incurred by selecting expert j instead of any other agent,
including the model and other experts.

This construction preserves task generality and only requires
that the base surrogate Φν

01 admit anR-consistency bound.
The modular formulation of the cost functions cj allows
this surrogate to flexibly accommodate diverse multi-task
settings.

Consistency of the surrogate losses. In Lemma 4.3, we
established that the proposed surrogate losses form a con-
vex upper bound on the true deferral loss ℓdef. However,
it remains to determine whether this surrogate family pro-
vides a reliable approximation of the true loss in terms of
optimal decision-making. In particular, it is not immediate
that the pointwise minimizer of the surrogate loss, r∗(x),
aligns with the Bayes-optimal rejector rB(x) that minimizes
ℓdef. To address this, we study the relationship between
the surrogate and true risks by analyzing their respective
excess risks. Specifically, we compare the surrogate ex-
cess risk, EΦν

def
(g, r) − E∗Φν

def
(G,R), to the true excess risk,

Eℓdef(g, r)− EBℓdef
(G,R). Understanding this discrepancy is

crucial for establishing the (G,R)-consistency of the surro-
gate loss family, a topic extensively studied in prior work on
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multiclass surrogate theory (Steinwart, 2007; Zhang, 2002;
Bartlett et al., 2006; Awasthi et al., 2022).

Leveraging consistency bounds developed in (Awasthi et al.,
2022; Mao et al., 2024b), we present Theorem 4.4, which
proves that the surrogate deferral loss family Φν

def is indeed
(G,R)-consistent.
Theorem 4.4 ((G,R)-consistency bounds). Let g ∈ G be
a multi-task model. Suppose there exists a non-decreasing
function Γν : R+ → R+, parameterized by ν ≥ 0, such
that theR-consistency bound holds for any distribution D:

EΦν
01
(r)− E∗Φν

01
(R) + UΦν

01
(R) ≥

Γν
(
Eℓ01(r)− EBℓ01(R) + Uℓ01(R)

)
,

then for any (g, r) ∈ G × R, any distribution D, and any
x ∈ X ,

Eℓdef(g, r)− EBℓdef
(G,R) + Uℓdef(G,R) ≤

Γ
ν
(
EΦν

def
(r)− E∗Φν

def
(R) + UΦν

def
(R)

)
+ Ec0(g)− EBc0(G) + Uc0(G),

where the expected aggregated cost vector is given by τ =(
Ey,t|x[τ0], . . . ,Ey,t|x[τJ ]

)
, and

Γ
ν
(u) = ∥τ∥1Γν

(
u

∥τ∥1

)
,

with Γν(u) = T −1,ν(u). In the case of the log-softmax sur-
rogate (ν = 1), the transformation is given by T ν=1(u) =
1+u
2 log(1 + u) + 1−u

2 log(1− u).

The proof of Theorem 4.4, along with generalizations to any
ν ≥ 0, is provided in Appendix C. This result yields refined
consistency guarantees for the surrogate deferral loss, im-
proving upon the bounds established by Mao et al. (2024e).
The bounds are explicitly tailored to the cross-entropy sur-
rogate family and parameterized by ν, allowing for precise
control over the surrogate’s approximation behavior. Cru-
cially, the tightness of the bound depends on the aggregated
deferral costs, and is scaled by the L1-norm ∥τ∥1, which
quantifies the cumulative cost discrepancy across agents.

Moreover, we show that the surrogate deferral losses are
(G,R)-consistent whenever the underlying multiclass sur-
rogate family Φν

01 is R-consistent. Under the assumption
thatR = Rall and G = Gall, the minimizability gaps vanish,
as established by Steinwart (2007). As a result, minimizing
the surrogate deferral excess risk while accounting for the
minimizability gap yields

EΦν
def
(rk)− E∗Φν

def
(Rall) + UΦν

def
(Rall)

k→∞−−−−→ 0.

Since the multi-task model g is trained offline, it is reason-
able to assume that the c0-excess risk also vanishes:

Ec0(gk)− EBc0(Gall) + Uc0(Gall)
k→∞−−−−→ 0.

Combining the two convergence results and invoking the
properties of Γ

ν
, we conclude that

Eℓdef(g, rk)− EBℓdef
(Gall,Rall) + Uℓdef(Gall,Rall)

k→∞−−−−→ 0.

Hence, the following corollary holds:
Corollary 4.5 (Bayes-consistency of the deferral surrogate
losses). Under the conditions of Theorem 4.4, and assuming
(G,R) = (Gall,Rall) and Ec0(gk)− EBc0(Gall)

k→∞−−−−→ 0, the
surrogate deferral loss family Φν

def is Bayes-consistent with
respect to the true deferral loss ℓdef. Specifically, minimiz-
ing the surrogate deferral excess risk ensures convergence
of the true deferral excess risk. Formally, for sequences
{rk}k∈N ⊂ R and {gk}k∈N ⊂ G, we have:

EΦν
def
(rk)− E∗Φν

def
(Rall)

k→∞−−−−→ 0

=⇒ Eℓdef(gk, rk)− EBℓdef
(Gall,Rall)

k→∞−−−−→ 0.

This result confirms that, as k → ∞, the surrogate losses
Φν

def attain asymptotic Bayes optimality for both the rejector
r and the offline-trained multi-task model g. Thus, the
surrogate family faithfully approximates the true deferral
loss in the limit. Moreover, the pointwise surrogate-optimal
rejector r∗(x) converges to a close approximation of the
Bayes-optimal rejector rB(x), thereby inducing deferral
decisions consistent with the characterization in Lemma 4.2
(Bartlett et al., 2006).

Analysis of the minimizability gap. As shown by
Awasthi et al. (2022), the minimizability gap does not van-
ish in general. Understanding the conditions under which it
arises, quantifying its magnitude, and identifying effective
mitigation strategies are crucial for ensuring that surrogate-
based optimization aligns with the true task-specific objec-
tives.

We provide a novel and strong characterization of the mini-
mizability gap in the two-stage setting with multiple experts,
extending the results of Mao et al. (2024f), who analyzed
the gap in the context of learning with abstention (constant
cost) for a single expert and a specific distribution.
Theorem 4.6 (Characterization of Minimizability Gaps).
AssumeR is symmetric and complete. Then, for the cross-
entropy multiclass surrogates Φν

01 and any distribution D,
the following holds for ν ≥ 0:

Cν,∗Φν
def
(R, x) =



∥τ∥1H
(

τ
∥τ∥1

)
for ν = 1

∥τ∥1 − ∥τ∥∞ ν = 2
1

ν−1

[
∥τ∥1 − ∥τ∥ 1

2−ν

]
ν ∈ (1, 2)

1
1−ν

[(∑J
k=0 τ

1
2−ν

k

)2−ν

− ∥τ∥1
]
ν > 2,

where τ = {Ey,t|x[τ0], . . . ,Ey,t|x[τJ ]}, the aggregated
costs are τj =

∑J
k=0 ck1k ̸=j , and H denotes the Shannon
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entropy. The minimizability gap is defined as UΦν
def
(R) =

E∗Φν
def
(R)− Ex

[
Cν,∗Φν

def
(R, x)

]
.

We provide the proof in Appendix D. Theorem 4.6 charac-
terizes the minimizability gap UΦν

def
(R) for cross-entropy

multiclass surrogates over symmetric and complete hypoth-
esis sets R. The gap depends on ν ≥ 0, and its behavior
varies across different surrogates. Specifically, for ν = 1,
the gap is proportional to the Shannon entropy of the nor-
malized expected cost vector τ

∥τ∥1
, which increases with

entropy, reflecting higher uncertainty in the misclassification
distribution. For ν = 2, the gap simplifies to the difference
between the L1-norm and L∞-norm of τ , where a smaller
gap indicates concentrated misclassifications, thus reducing
uncertainty. For ν ∈ (1, 2), the gap balances the entropy-
based sensitivity at ν = 1 and the margin-based sensitivity
at ν = 2. As ν → 1+, the gap emphasizes agents with
higher misclassification counts, while as ν → 2−, it shifts
towards aggregate misclassification counts. For ν < 1,
where p = 1

2−ν ∈ (0, 1), the gap becomes more sensitive
to misclassification distribution, increasing when errors are
dispersed. For ν > 2, with p < 0, reciprocal weighting re-
duces sensitivity to dominant errors, potentially decreasing
the gap but at the risk of underemphasizing critical misclas-
sifications.

In the special case of learning with abstention and a single
expert (J = 1), assigning costs τ0 = 1 and τJ = 1 − c
recovers the minimizability gap introduced by Mao et al.
(2024f). Thus, our formulation generalizes the minimizabil-
ity gap to settings with multiple experts, non-constant costs,
and arbitrary distributions D.

4.3. Encoder–Aware Bounds

In this section, we show that our approach is theoretically
aligned with multi-task learning using shared representa-
tions. Let W denote a class of representation functions
(encoders),H a class of classification heads, and F a class
of regression heads. For any (w, h, f) ∈ W × H × F ,
the multi-task predictor is defined as gw,h,f (x) =

(
h ◦

w(x), f ◦ w(x)
)
, where the shared representation w(x) is

passed to both task-specific heads. The true risk defined
as Ec0(g) = Ez∼D [c0(g(x), (y, t))], where z = (x, y, t) ∈
X × Y × T . The Bayes risk over a class G is given by
EBc0(G) = infg∈G Ec0(g).
Proposition 4.7 (Head and representation gaps.). Fix w ∈
W and let G := {gw′,h′,f ′ : w′ ∈ W, h′ ∈ H, f ′ ∈ F}.
Define

Emin(w) := inf
h′,f ′
Ec0
(
gw,h′,f ′

)
,

∆heads(w, h, f) := Ec0
(
gw,h,f

)
− Emin(w),

∆repr(w) := Emin(w)− EBc0(G).

The quantity ∆heads measures head sub–optimality given
the extracted representation from the encoder fixed at a
particular iteration, while ∆repr captures how far w lies
from a Bayes–optimal shared representation.

Lemma 4.8 (Non–negativity of the gaps). For all
(w, h, f) ∈ W × H × F , we have ∆heads(w, h, f) ≥ 0.
For every w ∈ W , we have ∆repr(w) ≥ 0.

Proof. Fix w. By definition of the infimum, Emin(w) =
infh′,f ′ Ec0

(
gw,h′,f ′

)
≤ Ec0

(
gw,h,f

)
for any heads (h, f),

hence ∆heads(w, h, f) ≥ 0. For the representation gap,
note that EBc0(G) = infw′,h′,f ′ Ec0

(
gw′,h′,f ′

)
≤ Emin(w),

so ∆repr(w) = Emin(w) − EBc0(G) ≥ 0. Both inequalities
hold with equality when (w, h, f) is Bayes–optimal.

Proposition 4.9 (Excess–risk decomposition). For every
(w, h, f),

Ec0
(
gw,h,f

)
− EBc0(G) = ∆heads(w, h, f) + ∆repr(w).

Proof. Add and subtract Emin(w).

Proposition 4.10 (Cost of Enforcing a Shared Encoder).
Suppose two independent heads act directly on the raw
input x: gsep,h,f (x) = (h(x), f(x)). Let EBsep,c0 :=

infh,f Ec0
(
gsep,h,f

)
and define

∆MTL := EBc0(G)− E
B
sep,c0 .

Hence ∆MTL < 0 indicates that forcing a shared encod-
ing is beneficial, whereas ∆MTL > 0 points to a potential
penalty relative to two stand–alone models.

Combining definitions,

Ec0(gw,h,f )−EBc0(G) =
[
Ec0(gw,h,f )−EBsep,c0

]
−∆MTL,

we can link these relationships with the main Theorem 4.4
that states that for any (g, r) ∈ G ×R. Setting g = gw,h,f

and invoking Proposition 4.9 yields the encoder–aware con-
sistency bound:

Corollary 4.11 (Encoder–aware (G,R)–consistency). For
any (w, h, f, r) ∈ W ×H×F ×R,

Eℓdef (gw,h,f , r)− EBℓdef (G,R) + Uℓdef (G,R) ≤
Γ
ν(EΦν

def
(r)− EBΦν

def
(R) + UΦν

def
(R)

)
+ ∆heads(w, h, f) + ∆repr(w) + Uc0(G).

Corollary (4.11) decomposes the end–to–end excess de-
ferral risk into three orthogonal sources: (i) the rejector
optimisation error, (ii) the head sub–optimality, and (iii) the
representation gap.

The bound suggests a two–stage pipeline: (i) learn or select
high–capacity representations to minimise ∆repr as well
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as best heads for this representation, then (ii) optimise the
rejector to tighten the remaining terms. The pipeline exactly
mirrors our proposed L2D solution. Such decoupling is
particularly attractive when |T | is large and feature sharing
is essential for sample efficiency.

4.4. Generalization Bound

We aim to quantify the generalization capability of our
system, considering both the complexity of the hypothe-
sis space and the quality of the participating agents. To
this end, we define the empirical optimal rejector r̂B as the
minimizer of the empirical generalization error:

r̂B = argmin
r∈R

1

K

K∑
k=1

ℓdef(g,m, r, zk), (4)

where ℓdef denotes the true deferral loss function. To char-
acterize the system’s generalization ability, we utilize the
Rademacher complexity, which measures the expressive
richness of a hypothesis class by evaluating its capacity to
fit random noise (Bartlett & Mendelson, 2003; Mohri et al.,
2012). The proof of Lemma 4.12 is provided in Appendix
E.

Lemma 4.12. Let L1 be a family of functions mapping X
to [0, 1], and let L2 be a family of functions mapping X to
{0, 1}. Define L = {l1l2 : l1 ∈ L1, l2 ∈ L2}. Then, the
empirical Rademacher complexity of L for any sample S of
size K is bounded by:

R̂S(L) ≤ R̂S(L1) + R̂S(L2).

For simplicity, we assume costs c0(g(x), z) =
ℓ01(h(x), y) + ℓreg(f(x), t) and cj>0(mj(x), z) =
c0(mj(x), z). We assume the regression loss ℓreg to be
non-negative, bounded by L, and Lipschitz. Furthermore,
we assume that mh

k,j is drawn from the conditional
distribution of the random variable Mh

j givenparameters
{X = xk, Y = yk}, and that mf

k,j is drawn from the
conditional distribution of Mf

j given {X = xk, T = tk}.
We define the family of deferral loss functions as
Ldef = {ℓdef : G × R ×M × Z → R+}. Under these
assumptions, we derive the generalization bounds for the
binary setting as follows:

Theorem 4.13 (Learning bounds of the deferral loss). For
any expert Mj , any distribution D over Z , we have with
probability 1− δ for δ ∈ [0, 1/2], that the following bound
holds at the optimum:

Eℓdef(h, f, r) ≤ Êℓdef(h, f, r) + 2RK(Ldef) +

√
log 1/δ

2K
,

with

RK(Ldef) ≤
1

2
RK(H) +RK(F) +

J∑
j=1

Ω(mh
j , y)

+
( J∑

j=1

max ℓreg(m
f
j , t) + 2

)
RK(R),

with Ω(mh
j , y) = 1

2D(m
h
j ̸= y) exp

(
−K

8 D(m
h
j ̸= y)

)
+

RKD(mh
j ̸=y)/2(R).

We prove Theorem 4.13 in Appendix F. The terms RK(H)
and RK(F) denote the Rademacher complexities of the
hypothesis classH and function class F , respectively, indi-
cating that the generalization bounds depend on the com-
plexity of the pre-trained model. The term Ω(mh

j , y) cap-
tures the impact of each expert’s classification error on
the learning bound. It includes an exponentially decay-

ing factor,
D(mh

j ̸=y)

2 exp

(
−KD(mh

j ̸=y)

8

)
, which decreases

rapidly as the sample size K grows or as the expert’s error
rateD(mh

j ̸= y) declines (Mozannar & Sontag, 2020). This
reflects the intuition that more accurate experts contribute
less to the bound, improving overall generalization. Finally,
the last term suggests that the generalization properties of
our true deferral loss depend on the expert’s regression
performance.

5. Experiments
In this section, we present the performance improvements
achieved by the proposed Learning-to-Defer surrogate in a
multi-task context. Specifically, we demonstrate that our ap-
proach excels in object detection, a task where classification
and regression components are inherently intertwined and
cannot be delegated to separate agents, and where existing
L2D methods encounter significant limitations. Further-
more, we evaluate our approach on an Electronic Health
Record task, jointly predicting mortality (classification) and
length of stay (regression), comparing our results with Mao
et al. (2023a; 2024e).

For each experiment, we report the mean and standard devi-
ation across four independent trials to account for variability
in the results. All training and evaluation were conducted
on an NVIDIA H100 GPU. We give our training algorithm
in Appendix A. Additional figures and details are provided
in Appendix G. To ensure reproducibility, we have made
our implementation publicly available.

5.1. Object Detection Task

We evaluate our approach using the Pascal VOC dataset
(Everingham et al., 2010), a multi-object detection bench-
mark. This is the first time such a multi-task problem has
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been explored within the L2D framework as previous L2D
approaches require the classification and regression compo-
nent to be independent (Mao et al., 2023a; 2024e).

Dataset and Metrics: The PASCAL Visual Object
Classes (VOC) dataset (Everingham et al., 2010) serves
as a widely recognized benchmark in computer vision for
evaluating object detection models. It consists of annotated
images spanning 20 object categories, showcasing diverse
scenes with varying scales, occlusions, and lighting condi-
tions. To assess object detection performance, we report the
mean Average Precision (mAP), a standard metric in the
field. The mAP quantifies the average precision across all
object classes by calculating the area under the precision-
recall curve for each class. Additionally, in the context of
L2D, we report the allocation metric (All.), which represents
the ratio of allocated queries per agent.

Agents setting: We trained three distinct Faster R-CNN
models (Ren et al., 2016) to serve as our agents, differen-
tiated by their computational complexities. The smallest,
characterized by GFLOPS = 12.2, represents our model
g ∈ G with G = { g : g(x) = (h ◦ w(x), f ◦ w(x)) | w ∈
W, h ∈ H, f ∈ F}. The medium-sized, denoted as Expert
1, has a computational cost of GFLOPS = 134.4, while the
largest, Expert 2, operates at GFLOPS = 280.3. To account
for the difference in complexity between Experts 1 and 2,
we define the ratio RG = 280.3/134.4 and set the query
cost for Expert 1 as β1 = β2/RG. This parameterization
reflects the relative computational costs of querying experts.
We define the agent costs as c0(g(x), z) = mAP(g(x), z)
and cj∈[J](mj(x), z) = mAP(mj(x), z). We report the per-
formance metrics of the agents alongside additional training
details in Appendix G.1.

Rejector: The rejector is trained using a smaller version of
the Faster R-CNN model (Ren et al., 2016). Training is per-
formed for 200 epochs using the Adam optimizer (Kingma
& Ba, 2017) with a learning rate of 0.001 and a batch size
of 64. The checkpoint achieving the lowest empirical risk
on the validation set is selected for evaluation.

Results: In Figure 1, we observe that for lower cost val-
ues, specifically when β1 < 0.15, the system consistently
avoids selecting Expert 1. This outcome arises because the
cost difference between β1 and β2 is negligible, making it
more advantageous to defer to Expert 2 (the most accurate
expert), where the modest cost increase is offset by superior
outcomes. When β2 = 0.15, however, it becomes optimal
to defer to both experts and model at the same time. In
particular, there exist instances x ∈ X where both Expert 1
and Expert 2 correctly predict the target (while the model
does not). In such cases, Expert 1 is preferred due to its
lower cost β1 < β2. Conversely, for instances x ∈ X where
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Figure 1. Performance comparison across different cost values β2

on Pascal VOC (Everingham et al., 2010). The table reports the
mean Average Precision (mAP) and the allocation ratio for the
model and two experts with mean and variance. We report these
results in Appendix Table 3.

Expert 2 is accurate and Expert 1 (along with the model)
is incorrect, the system continues to select Expert 2, as β2
remains relatively low. For β2 ≥ 0.2, the increasing cost
differential between the experts shifts the balance in favor of
Expert 1, enabling the system to achieve strong performance
while minimizing overall costs.

This demonstrates that our approach effectively allocates
queries among agents, thereby enhancing the overall per-
formance of the system, even when the classification and
regression tasks are interdependent.

5.2. EHR Task

We compare our novel approach against existing two-stage
L2D methods (Mao et al., 2023a; 2024e). Unlike the first
experiment on object detection (Subsection 5.1), where clas-
sification and regression tasks are interdependent, this eval-
uation focuses on a second scenario where the two tasks can
be treated independently.

Dataset and Metrics: The Medical Information Mart for
Intensive Care IV (MIMIC-IV) dataset (Johnson et al., 2023)
is a comprehensive collection of de-identified health-related
data patients admitted to critical care units. For our analysis,
we focus on two tasks: mortality prediction and length-of-
stay prediction, corresponding to classification and regres-
sion tasks, respectively. To evaluate performance, we report
accuracy (Acc) for the mortality prediction task, which quan-
tifies classification performance, and Smooth L1 loss (sL1)
for the length-of-stay prediction task, which measures the
deviation between the predicted and actual values. Addi-
tionally, we report the allocation metric (All.) for L2D to
capture query allocation behavior.
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Agents setting: We consider two experts, M1 and M2,
acting as specialized agents, aligning with the category al-
location described in (Mozannar & Sontag, 2020; Verma
et al., 2023; Verma & Nalisnick, 2022; Cao et al., 2024).
The dataset is partitioned into Z = 6 clusters using the
K-means algorithm (Lloyd, 1982), where Z is selected via
the Elbow method (Thorndike, 1953). The clusters are de-
noted as {C1, C2, . . . , CZ}. Each cluster represents a sub-
set of data instances grouped by feature similarity, enabling
features-specific specialization by the experts. The experts
are assumed to specialize in distinct subsets of clusters based
on the task. For classification, M1 correctly predicts the out-
comes for clusters CM1

cla = {C1, C2, C4}, while M2 handles
clustersCM2

cla = {C1, C5, C6}. Notably, clusterC1 is shared
between the two experts, reflecting practical scenarios where
domain knowledge overlaps. For regression tasks, M1 is
accurate on clusters CM1

reg = {C1, C3, C5}, while M2 spe-
cializes in clusters CM2

reg = {C1, C4, C6}. Here too, overlap
is modeled, with cluster C1 being common to both experts
and classification-regression task. Note that the category
assignments do not follow any specific rule.

We assume that each expert produces correct predictions for
the clusters they are assigned (Verma et al., 2023; Mozan-
nar & Sontag, 2020). Conversely, for clusters outside their
expertise, predictions are assumed to be incorrect. In such
cases, for length-of-stay predictions, the outcomes are mod-
eled using a uniform probability distribution to reflect uncer-
tainty. The detailed performance evaluation of these agents
is provided in Appendix G.2.

The model utilizes two compact transformer architectures
(Vaswani et al., 2017) for addressing both classification and
regression tasks, formally defined as G = { g : g(x) =
(h(x), f(x)) | h ∈ H, f ∈ F }. The agent’s costs are spec-
ified as c0(g(x), z) = λclaℓ01(h(x), y) + λregℓreg(f(x), t)
and cj∈[J](mj(x), z) = c0(mj(x), z) + βj . Consistent
with prior works (Mozannar & Sontag, 2020; Verma et al.,
2023; Mao et al., 2023a; 2024e), we set βj = 0.

Rejectors: The two-stage L2D rejectors are trained using
a small transformer model (Vaswani et al., 2017) as the en-
coder, following the approach outlined by Yang et al. (2023),
with a classification head for query allocation. Training is
performed over 100 epochs with a learning rate of 0.003,
a warm-up period of 0.1, a cosine learning rate scheduler,
the Adam optimizer (Kingma & Ba, 2017), and a batch size
of 1024 for all baselines. The checkpoint with the lowest
empirical risk on the validation set is selected for evaluation.

Results: Table 1 compares the performance of our pro-
posed Learning-to-Defer (Ours) approach with two exist-
ing methods: a classification-focused rejector (Mao et al.,
2023a) and a regression-focused rejector (Mao et al., 2024e).
The results highlight the limitations of task-specific rejectors

and the advantages of our balanced approach.

Rejector Acc (%) sL1 All. Model All. Expert 1 All. Expert 2

Mao et al. (2023a) 71.3± .1 1.45± .03 .60± .02 .01± .01 .39± .02
Mao et al. (2024e) 50.7± .8 1.18± .05 .38± .01 .37± .02 .25± .01
Ours 70.0± .5 1.28± .02 .66± .01 .12± .02 .22± .01

Table 1. Performance comparison of different two-stage L2D. The
table reports accuracy (Acc), smooth L1 loss (sL1), and allocation
rates (All.) to the model and experts with mean and variance.

The classification-focused rejector achieves the highest clas-
sification accuracy at 71.3% but struggles with regression,
as reflected by its high smooth L1 loss of 1.45. On the
other hand, the regression-focused rejector achieves the best
regression performance with an sL1 loss of 1.18 but per-
forms poorly in classification with an accuracy of 50.7%.
In contrast, our method balances performance across tasks,
achieving a classification accuracy of 70.0% and an sL1
loss of 1.28. Moreover, it significantly reduces reliance on
experts, allocating 66% of queries to the model compared to
60% for Mao et al. (2023a) and 38% for Mao et al. (2024e).
Expert involvement is minimized, with only 12% and 22%
of queries allocated to Experts 1 and 2, respectively.

Since the experts possess distinct knowledge for the two
tasks (CM1

cla and CM1
reg for M1), independently deferring clas-

sification and regression may lead to suboptimal perfor-
mance. In contrast, our approach models deferral decisions
dependently, considering the interplay between the two com-
ponents to achieve better overall results.

6. Conclusion
We introduced a Two-Stage Learning-to-Defer framework
for multi-task problems, extending existing approaches
to jointly handle classification and regression. We pro-
posed a two-stage surrogate loss family that is both (G,R)-
consistent and Bayes-consistent for any cross-entropy-based
surrogate. Additionally, we derived tight consistency
bounds linked to cross-entropy losses and the L1-norm of
aggregated costs. We further established novel minimizabil-
ity gap for the two-stage setting, generalizing prior results
to Learning-to-Defer with multiple experts. Finally, we
showed that our learning bounds improve with a richer hy-
pothesis space and more confident experts.

We validated our framework on two challenging tasks: (i)
object detection, where classification and regression are
inherently interdependent—beyond the scope of existing
L2D methods; and (ii) electronic health record analysis,
where we demonstrated that current L2D approaches can
be suboptimal even when classification and regression tasks
are independent.

9



A Two-Stage Learning-to-Defer Approach for Multi-Task Learning

Acknowledgment
This research is supported by the National Research Founda-
tion, Singapore under its AI Singapore Programme (AISG
Award No: AISG2-PhD-2023-01-041-J) and by A*STAR,
and is part of the programme DesCartes which is supported
by the National Research Foundation, Prime Minister’s Of-
fice, Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme.

Impact Statement
This paper advances the theoretical and practical understand-
ing of machine learning, contributing to the development
of more effective models and methods. While our research
does not present any immediate or significant ethical con-
cerns, we recognize the potential for indirect societal im-
pacts.

References
Awasthi, P., Mao, A., Mohri, M., and Zhong, Y. Multi-class

h-consistency bounds. In Proceedings of the 36th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran
Associates Inc. ISBN 9781713871088.

Balagurunathan, Y., Mitchell, R., and El Naqa, I. Require-
ments and reliability of AI in the medical context. Physica
Medica, 83:72–78, 2021.

Bartlett, P., Jordan, M., and McAuliffe, J. Convexity,
classification, and risk bounds. Journal of the Ameri-
can Statistical Association, 101:138–156, 02 2006. doi:
10.1198/016214505000000907.

Bartlett, P. L. and Mendelson, S. Rademacher and Gaussian
complexities: Risk bounds and structural results. J. Mach.
Learn. Res., 3(null):463–482, March 2003. ISSN 1532-
4435.

Bartlett, P. L. and Wegkamp, M. H. Classification with a
reject option using a hinge loss. The Journal of Machine
Learning Research, 9:1823–1840, June 2008.

Benz, N. L. C. and Rodriguez, M. G. Counterfactual in-
ference of second opinions. In Uncertainty in Artificial
Intelligence, pp. 453–463. PMLR, 2022.

Berkson, J. Application of the logistic function to
bio-assay. Journal of the American Statistical
Association, 39:357–365, 1944. URL https:
//api.semanticscholar.org/CorpusID:
122893121.

Buch, S., Escorcia, V., Shen, C., Ghanem, B., and Car-
los Niebles, J. SST: Single-stream temporal action pro-

posals. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2911–2920,
2017.

Cao, Y., Cai, T., Feng, L., Gu, L., Gu, J., An, B., Niu,
G., and Sugiyama, M. Generalizing consistent multi-
class classification with rejection to be compatible with
arbitrary losses. In Proceedings of the 36th International
Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Cao, Y., Mozannar, H., Feng, L., Wei, H., and An, B. In
defense of softmax parametrization for calibrated and con-
sistent learning to defer. In Proceedings of the 37th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran
Associates Inc.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part I, pp. 213–229, Berlin, Heidelberg,
2020. Springer-Verlag. ISBN 978-3-030-58451-1. doi:
10.1007/978-3-030-58452-8 13. URL https://doi.
org/10.1007/978-3-030-58452-8_13.

Charusaie, M.-A., Mozannar, H., Sontag, D., and Samadi,
S. Sample efficient learning of predictors that comple-
ment humans. In International Conference on Machine
Learning, pp. 2972–3005. PMLR, 2022.

Chow, C. On optimum recognition error and reject tradeoff.
IEEE Transactions on Information Theory, 16(1):41–46,
January 1970. doi: 10.1109/TIT.1970.1054406.

Cortes, C. and Vapnik, V. N. Support-vector networks.
Machine Learning, 20:273–297, 1995. URL https:
//api.semanticscholar.org/CorpusID:
52874011.

Cortes, C., DeSalvo, G., and Mohri, M. Learning with rejec-
tion. In Algorithmic Learning Theory: 27th International
Conference, ALT 2016, Bari, Italy, October 19-21, 2016,
Proceedings 27, pp. 67–82. Springer, 2016.

Everingham, M., Gool, L., Williams, C. K., Winn,
J., and Zisserman, A. The pascal visual object
classes (voc) challenge. Int. J. Comput. Vision, 88(2):
303–338, June 2010. ISSN 0920-5691. doi: 10.1007/
s11263-009-0275-4. URL https://doi.org/10.
1007/s11263-009-0275-4.

Geifman, Y. and El-Yaniv, R. Selective classification for
deep neural networks. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,

10

https://api.semanticscholar.org/CorpusID:122893121
https://api.semanticscholar.org/CorpusID:122893121
https://api.semanticscholar.org/CorpusID:122893121
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
https://api.semanticscholar.org/CorpusID:52874011
https://api.semanticscholar.org/CorpusID:52874011
https://api.semanticscholar.org/CorpusID:52874011
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4


A Two-Stage Learning-to-Defer Approach for Multi-Task Learning

and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
4a8423d5e91fda00bb7e46540e2b0cf1-Paper.
pdf.

Ghosh, A., Kumar, H., and Sastry, P. S. Robust loss
functions under label noise for deep neural networks.
ArXiv, abs/1712.09482, 2017. URL https://api.
semanticscholar.org/CorpusID:6546734.

Girshick, R. Fast R-CNN. arXiv preprint arXiv:1504.08083,
2015.

Hemmer, P., Schemmer, M., Vössing, M., and Kühl, N.
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A. Algorithm

Algorithm 1 Two-Stage Learning-to-Defer for Multi-Task Learning Algorithm
Input: Dataset {(xk, yk, tk)}Kk=1, multi-task model g ∈ G, experts m ∈M, rejector r ∈ R, number of epochs EPOCH,
batch size B, learning rate η.
Initialization: Initialize rejector parameters θ.
for i = 1 to EPOCH do

Shuffle dataset {(xk, yk, tk)}Kk=1.
for each mini-batch B ⊂ {(xk, yk, tk)}Kk=1 of size B do

Extract input-output pairs z = (x, y, t) ∈ B.
Query model g(x) and experts m(x). {Agents are pre-trained and fixed}
Evaluate costs c0(g(x), z) and cj>0(m(x), z). {Compute task-specific costs}
Compute rejector prediction r(x) = argmaxj∈A r(x, j). {Rejector decision}
Compute surrogate deferral empirical risk ÊΦdef :
ÊΦdef =

1
B

∑
z∈B

[
Φdef(g, r,m, z)

]
. {Empirical risk computation}

Update parameters θ using gradient descent:
θ ← θ − η∇θÊΦdef . {Parameter update}

end for
end for
Return: trained rejector model r∗.

We will prove key lemmas and theorems stated in our main paper.

B. Proof of Lemma 4.2
We aim to prove Lemma 4.2, which establishes the optimal deferral decision by minimizing the conditional risk.

By definition, the Bayes-optimal rejector rB(x) minimizes the conditional risk Cℓdef , given by:

Cℓdef(g, r, x) = Ey,t|x[ℓdef(g, r,m, z)]. (5)

Expanding the expectation, we obtain:

Cℓdef(g, r, x) = Ey,t|x

 J∑
j=0

cj(g(x),mj(x), z)1r(x)=j

 . (6)

Using the linearity of expectation, this simplifies to:

Cℓdef(g, r, x) =

J∑
j=0

Ey,t|x [cj(g(x),mj(x), z)] 1r(x)=j . (7)

Since we seek the rejector that minimizes the expected loss, the Bayes-conditional risk is given by:

CBℓdef
(G,R, x) = inf

g∈G,r∈R
Ey,t|x[ℓdef(g, r,m, z)]. (8)

Rewriting this expression, we obtain:

CBℓdef
(G,R, x) = inf

r∈R
Ey,t|x

 inf
g∈G

c0(g(x), z)1r(x)=0 +

J∑
j=1

cj(mj(x), z)1r(x)=j

 . (9)

This leads to the following minimization problem:

CBℓdef
(G,R, x) = min

{
inf
g∈G

Ey,t|x [c0(g(x), z)] , min
j∈[J]

Ey,t|x [cj(mj(x), z)]

}
. (10)
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To simplify notation, we define:

c∗j =

{
infg∈G Ey,t|x[c0(g(x), z)], if j = 0,

Ey,t|x[cj(mj(x), z)], otherwise.
(11)

Thus, the Bayes-conditional risk simplifies to:

CBℓdef
(G,R, x) = min

j∈A
c∗j . (12)

Since the rejector selects the decision with the lowest expected cost, the optimal rejector is given by:

rB(x) =

0, if inf
g∈G

Ey,t|x[c0(g(x), z)] ≤ min
j∈[J]

Ey,t|x[cj(mj(x), z)],

j, otherwise.
(13)

This completes the proof.

C. Proof Theorem 4.4
Before proving the desired Theorem 4.4, we will use the following Lemma C.1 (Awasthi et al., 2022; Mao et al., 2024e):

Lemma C.1 (R-consistency bound). Assume that the followingR-consistency bounds holds for r ∈ R, and any distribution

Eℓ01(r)− E∗ℓ01(R) + Uℓ01(R) ≤ Γν(EΦν
01
(r)− E∗Φν

01
(R) + UΦν

01
(R))

then for p ∈ (p0 . . . pJ) ∈ ∆|A| and x ∈ X , we get

J∑
j=0

pj1r(x) ̸=j − inf
r∈R

J∑
j=0

pj1r(x)̸=j ≤ Γν
( J∑

j=0

pjΦ
ν
01(r, x, j)− inf

r∈R

J∑
j=0

pjΦ
ν
01(r, x, j)

)
Theorem 4.4 ((G,R)-consistency bounds). Let g ∈ G be a multi-task model. Suppose there exists a non-decreasing function
Γν : R+ → R+, parameterized by ν ≥ 0, such that theR-consistency bound holds for any distribution D:

EΦν
01
(r)− E∗Φν

01
(R) + UΦν

01
(R) ≥

Γν
(
Eℓ01(r)− EBℓ01(R) + Uℓ01(R)

)
,

then for any (g, r) ∈ G ×R, any distribution D, and any x ∈ X ,

Eℓdef(g, r)− EBℓdef
(G,R) + Uℓdef(G,R) ≤

Γ
ν
(
EΦν

def
(r)− E∗Φν

def
(R) + UΦν

def
(R)

)
+ Ec0(g)− EBc0(G) + Uc0(G),

where the expected aggregated cost vector is given by τ =
(
Ey,t|x[τ0], . . . ,Ey,t|x[τJ ]

)
, and

Γ
ν
(u) = ∥τ∥1Γν

(
u

∥τ∥1

)
,

with Γν(u) = T −1,ν(u). In the case of the log-softmax surrogate (ν = 1), the transformation is given by T ν=1(u) =
1+u
2 log(1 + u) + 1−u

2 log(1− u).

Proof. Let denote a cost for j ∈ A = {0, . . . , J}:

c∗j =

{
infg∈G Ey,t|x[c0(g(x), z)] if j = 0

Ey,t|x[cj(m(x), z)] otherwise

Using the change of variables and the Bayes-conditional risk introduced in the proof of Lemma 4.2 in Appendix B, we have:
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CBℓdef
(G,R, x) = min

j∈A
c∗j

Cℓdef(g, r, x) =

J∑
j=0

Ey,t|x

[
cj(g(x),mj(x), z)

]
1r(x)=j

(14)

We follow suit for our surrogate Φdef and derive its conditional risk and optimal conditional risk.

CΦdef = Ey,t|x

[ J∑
j=1

cj(m(x), z)Φν
01(r, x, 0) +

J∑
j=1

(
c0(g(x), z) +

J∑
i=1

ci(mi(x), z)1j ̸=i

)
Φν

01(r, x, j)

C∗Φdef
= inf

r∈R
Ey,t|x

[ J∑
j=1

cj(g(x),m(x), z)Φν
01(r, x, 0) +

J∑
j=1

[c0(g(x), z) +

J∑
i=1

ci(mi(x), z)1j ̸=i]Φ
ν
01(r, x, j)

]
Let us define the function v(m(x), z) = minj∈[J] cj(mj(x), z), where mj(x) denotes the model’s output and cj represents
the corresponding cost function. Using this definition, the calibration gap is formulated as ∆Cℓdef := Cℓdef − CBℓdef

, where Cℓdef

represents the original calibration term and CBℓdef
denotes the baseline calibration term. By construction, the calibration gap

satisfies ∆Cℓdef ≥ 0, leveraging the risks derived in the preceding analysis.

∆Cℓdef = Ey,t|x

[
ρ(g(x), z)1r(x)=0 +

J∑
j=1

(
ρ(m(x), z) + βj

)
1r(x)=j

]
− v(m(x), z) +

(
v(m(x), z)−min

j∈A
c∗j (g(x),m(x), z)

)
Let us consider ∆Cℓdef = A1 +A2, such that:

A1 = Ey,t|x

[
1r(x)=0ρ(g(x), z) +

J∑
j=1

1r(x)=j

(
ρ(mj(x), z) + βj

)]
− v(m(x), z)

A2 =
(
v(m(x), z)−min

j∈A
cj(g(x),m(x), z)

) (15)

By considering the properties of min, we also get the following inequality:

v(m(x), z)−min
j∈A

c∗j (g(x),m(x), z) ≤ Ey,t|x[c0(g(x), z)]− inf
g∈G

Ey,t|x[c0(g(x), z)] (16)

implying,
∆Cℓdef ≤ A1 + c0(g(x), z)− c∗0(g(x), z) (17)

We now select a distribution for our rejector. We first define ∀j ∈ A,

p0 =

∑J
j=1 cj(mj(x), z)

J
∑J

j=0 cj(g(x),mj(x), z)

and

pj∈[J] =
c0(g(x), z) +

∑J
j ̸=j′ c

′
j(mj(x), z)

J
∑J

j=0 cj(g(x),mj(x), z)

which can also be written as:
pj =

τ j
∥τ∥1

(18)

Injecting the new distribution, we obtain the following:

∆CΦdef = ∥τ∥1
( J∑

j=0

pjΦ
ν
01(r, x, j)− inf

r∈R

J∑
j=0

pjΦ
ν
01(r, x, j)

)
(19)
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Now consider the first and last term of ∆Cℓdef . Following the intermediate step for Lemma 4.3, we have:

A1 = Ey,t|x[c0(g(x), z)]1r(x)=0 +

J∑
j=1

Ey,t|x[cj(mj(x), z)]1r(x)=j − v(m(x), z)

= Ey,t|x[c0(g(x), z)]1r(x)=0 +

J∑
j=1

Ey,t|x[cj(mj(x), z)]1r(x)=j

− inf
r∈R

[
Ey,t|x[c0(g(x), z)]1r(x)=0 +

J∑
j=1

Ey,t|x[cj(mj(x), z)]1r(x)=j

]

=

J∑
j=1

cj(z,mj)1r(x)̸=0 +

J∑
j=1

(
c0(g(x), z) +

J∑
j ̸=j′

cj′(mj′(x), z)
)
1r(x)̸=j

− inf
r∈R

[ J∑
j=1

cj(mj′(x), z)1r(x)̸=0 +

J∑
j=1

(
c0(g(x), z) +

J∑
j ̸=j′

cj′(mj′(x), z)
)
1r(x)̸=j

]
Then, applying a change of variables to introduce ∥τ∥1, we get:

∥τ∥1p01r(x) ̸=0 + ∥τ∥1
J∑

j=1

pj1r(x) ̸=j − inf
r∈R

[∥τ∥1p01r(x)̸=0 + ∥τ∥1
J∑

j=1

pj1r(x)̸=j ]

= ∥τ∥1
J∑

j=0

pj1r(x)̸=j − inf
r∈R
∥τ∥1

J∑
j=0

pj1r(x) ̸=j

We now apply Lemma C.1 to introduce Γ,

J∑
j=0

pj1r(x)̸=j − inf
r∈R

J∑
j=0

pj1r(x) ̸=j ≤ Γ
( J∑

j=0

pjΦ
ν
01(r, x, j)− inf

r∈R

J∑
j=0

pjΦ
ν
01(r, x, j)

)
1

∥τ∥1

[ J∑
j=0

τ j1r(x)̸=j − inf
r∈R

J∑
j=0

τ j1r(x)̸=j

]
≤ Γ

( 1

∥τ∥1

[ J∑
j=0

τ jΦ
ν
01(r, x, j)− inf

r∈R

J∑
j=0

τ jΦ
ν
01(r, x, j)

])
∆Cℓdef ≤ ∥τ∥1Γ

(∆CΦdef

∥τ∥1

)
(20)

We reintroduce the coefficient A2 such that:

∆Cℓdef ≤ ∥τ∥1Γ
(∆CΦdef

∥τ∥1

)
+A2

∆Cℓdef ≤ ∥τ∥1Γ
(∆CΦdef

∥τ∥1

)
+ Ey,t|x[c0(g(x), z)]− inf

g∈G
Ey,t|x[c0(g(x), z)] (upper bounding with Eq 16)

Mao et al. (2023b) introduced a tight bound for the comp-sum surrogates family. It follows for ν ≥ 0 the inverse
transformation Γν(u) = T −1,ν(u):

T ν(v) =



21−ν

1−ν

[
1−

(
(1+v)

2−ν
2 +(1−v)

2−ν
2

2

)2−ν
]

ν ∈ [0, 1)

1+v
2 log[1 + v] + 1−v

2 log[1− v] ν = 1

1
(ν−1)nν−1

[(
(1+v)

2−ν
2 +(1−v)

2−ν
2

2

)2−ν

− 1

]
ν ∈ (1, 2)

1
(ν−1)nν−1 v ν ∈ [2,+∞).
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We note Γ
ν
(u) = ∥τ∥1Γν( u

∥τ∥1
). By applying Jensen’s Inequality and taking expectation on both sides, we get

Eℓdef(g, r)− EBℓdef
(G,R) + Uℓdef(G,R)

≤ Γ
ν
(EΦdef(r)− E∗Φdef

(R) + UΦdef(R)) + Ec0(g)− EBc0(G) + Uc0(G)

D. Proof Theorem 4.6
Theorem 4.6 (Characterization of Minimizability Gaps). AssumeR is symmetric and complete. Then, for the cross-entropy
multiclass surrogates Φν

01 and any distribution D, the following holds for ν ≥ 0:

Cν,∗Φν
def
(R, x) =



∥τ∥1H
(

τ
∥τ∥1

)
for ν = 1

∥τ∥1 − ∥τ∥∞ ν = 2
1

ν−1

[
∥τ∥1 − ∥τ∥ 1

2−ν

]
ν ∈ (1, 2)

1
1−ν

[(∑J
k=0 τ

1
2−ν

k

)2−ν

− ∥τ∥1
]
ν > 2,

where τ = {Ey,t|x[τ0], . . . ,Ey,t|x[τJ ]}, the aggregated costs are τj =
∑J

k=0 ck1k ̸=j , and H denotes the Shannon entropy.

The minimizability gap is defined as UΦν
def
(R) = E∗Φν

def
(R)− Ex

[
Cν,∗Φν

def
(R, x)

]
.

Proof. We define the softmax distribution as sj = er(x,j)∑
j′∈A er(x,j′) , where sj ∈ [0, 1]. Let τ j = τ j(g(x),m(x), z) with

τj ∈ R+, and denote the expected value as τ = Ey,t|x[τ ]. We now derive the conditional risk for a given ν ≥ 0:

CνΦdef
(r, x) =

J∑
j=0

Ey,t|x[τj ]Φ
ν
01(r, x, j)

=

 1
1−ν

∑J
j=0 τ j

[(∑
j′∈A e

r(x,j′)−r(x,j)
)1−ν

− 1
]

ν ̸= 1∑J
j=0 τ j log

(∑
j′∈A e

r(x,j′)−r(x,j)
)

ν = 1

=

{
1

1−ν

∑J
j=0 τ j

[
sν−1
j − 1

]
ν ̸= 1

−
∑J

j=0 τ j log(sj) ν = 1

(21)

For ν = 1: we can write the following conditional risk:

Cν=1
Φdef

(r, x) = −
J∑

j=0

τ j

[
r(x, j)− log

∑
j′∈A

er(x,j
′)
]

(22)

Then,

∂Cν=1
Φdef

∂r(x, i)
(r, x) = −τ i +

( J∑
j=0

τ j

)
s∗i (23)

At the optimum, we have:

s∗(x, i) =
τ i∑
j=0 τ j

(24)

Then, it follows:

C∗,ν=1
Φdef

(R, x) = −
J∑

j=0

τ j log
( τ j∑

j′=0 τ j′

)
(25)

18



A Two-Stage Learning-to-Defer Approach for Multi-Task Learning

As the softmax parametrization is a distribution s∗ ∈ ∆|A|, we can write this conditional in terms of entropy with
τ = {τ j}j∈A:

C∗,ν=1
Φdef

(R, x) = −
( J∑

k=0

τk

)∑
j=0

s∗j log(s
∗
j )

=
( J∑

k=0

τk

)
H
( τ∑

j′=0 τ j′

)
= ∥τ∥1H

( τ

∥τ∥1

)
(as τj ∈ R+)

(26)

For ν ̸= 1, 2: The softmax parametrization can be written as a constraint
∑J

j=0 sj = 1 and sj ≥ 0. Consider the objective

Φ(s) =
1

1− ν

J∑
j=0

τ j

[
s ν−1
j − 1

]
. (27)

We aim to find s∗ =
(
s∗0, . . . , s

∗
J

)
that minimizes (27) subject to

∑J
j=0 sj = 1. Introduce a Lagrange multiplier λ for the

normalization
∑J

j=0 sj = 1. The Lagrangian is:

L(s, λ) =
1

1− ν

J∑
j=0

τ j
[
s ν−1
j − 1

]
+ λ

(
1−

J∑
j=0

sj

)
. (28)

We take partial derivatives with respect to si:

∂L
∂si

=
1

1− ν
τ i (ν − 1) s ν−2

i − λ = 0. (29)

Since ν−1
1−ν = −1, we get

τ i s
ν−2
i = −λ > 0 =⇒ s ν−2

i =
α

τ i
for some α > 0. (30)

Hence

si =
(

α
τ i

) 1
ν−2

. (31)

Summing si over {i = 0, . . . , J} and setting the total to 1 yields:

J∑
i=0

(
α
τ i

) 1
ν−2

= 1. (32)

Let

α
1

ν−2 =
1∑J

k=0(
1
τk

)
1

ν−2

=⇒ α =
[ J∑
k=0

(
1
τk

) 1
ν−2

]ν−2

. (33)

Therefore, for each i,

s∗i =
(

α
τ i

) 1
ν−2

=
τ

1
2−ν

i
J∑

k=0

τ
1

2−ν
k

. (34)

This {s∗i } is a valid probability distribution. Let

A =

J∑
k=0

τ
1

2−ν
k . (35)
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Then the optimum distribution is

s∗i =
τ

1
2−ν

i

A
. (36)

Recall

Φ(s) =
1

1− ν

J∑
j=0

τ j

[
sν−1
j − 1

]
. (37)

At s∗j , we have

(s∗j )
ν−1 =

( τ 1
2−ν

j

A

)ν−1
=

τ
ν−1
2−ν

j

Aν−1
. (38)

Hence
J∑

j=0

τ j
(
s∗j
)ν−1

=
1

Aν−1

J∑
j=0

τ
1+

ν−1
2−ν

j =
1

Aν−1

J∑
j=0

τ
1

2−ν
j =

A

Aν−1
= A 2−ν . (39)

Substituting back,

C∗,ν ̸=1,2
Φdef

(R, x) = 1

1− ν

[( J∑
k=0

τ
1

2−ν
k

)2−ν

−
J∑

j=0

τ j

]
(40)

We can express this conditional risk with a valid L( 1
2−ν ) norm as long as ν ∈ (1, 2).

C∗,ν ̸=1,2
Φdef

(R, x) = 1

ν − 1

[
∥τ∥1 − ∥τ∥ 1

2−ν

]
(41)

For ν = 2: Since
∑J

j=0 τ j = S, we have

Cν=2
Φdef

(r, x) =

J∑
j=0

τ j
[
1− sj(r)

]
=

J∑
j=0

τ j −
J∑

j=0

τ j sj(r). (42)

Hence

inf
r∈R
Cν=2
Φdef

(r, x) = S − sup
r∈R

J∑
j=0

τ j sj(r). (43)

Therefore, minimizing Cν=2
Φdef

(r, x) is equivalent to maximizing

F (r) =

J∑
j=0

τ j sj(r). (44)

Its partial derivative w.r.t. ri is the standard softmax derivative:

∂sj
∂ri

= sj
(
δij − si

)
=

{
si (1− si), if i = j,

− sj si, otherwise.
(45)

Hence, for each i,
∂F

∂ri
=

J∑
j=0

τ j
∂sj
∂ri

= τ i si (1− si) +

J∑
j=0
j ̸=i

τ j
(
−sj si

)
. (46)

Factor out si:
∂F

∂ri
= si

[
τ i (1− si) −

∑
j ̸=i

τ j sj

]
= si

[
τ i −

( J∑
j=0

τ j sj

)]
, (47)
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because
∑

j ̸=i τ j sj =
∑J

j=0 τ j sj − τ i si. Define F (r) =
∑J

j=0 τ j sj(r). Then:

∂F

∂ri
= si [ τ i − F (r)]. (48)

Setting ∂F
∂ri

= 0 for each i implies
si [ τ i − F (r)] = 0, ∀ i. (49)

Thus, for each index i:
si = 0 or τ i = F (r). (50)

To maximize F (r), notice that:

• If τ i∗ is strictly the largest among all τ i, then the maximum is approached by making si∗ ≈ 1, so F (r) ≈ τ i∗ . In the
softmax parameterization, this occurs in the limit ri∗ → +∞ and rk → −∞ for k ̸= i∗.

• If there is a tie for the largest τ i, we can put mass on those coordinates that share the maximum value. In any case, the
supremum is maxi τ i.

Hence
sup
r∈R

F (r) = max
0≤i≤J

τ i. (51)

Because Cν=2
Φdef

(r, x) = S − F (r),

inf
r∈R
Cν=2
Φdef

(r, x) = S − sup
r∈R

F (r) =

J∑
j=0

τ j − max
i∈A

τ i = ∥τ∥1 − ∥τ∥∞ (52)

Hence the global minimum of Cν=2
Φdef

is ∥τ∥1 − ∥τ∥∞. In the “softmax” parameterization, this is only approached in the
limit as one coordinate ri∗ goes to +∞ and all others go to −∞. No finite r yields an exactly one-hot si(r) = 1, but the
limit is enough to achieve the infimum arbitrarily closely.

It follows for τ = {τ j}j∈A and ν ≥ 0:

inf
r∈R
CνΦdef

(r, x) =



∥τ∥1H
(

τ
∥τ∥1

)
ν = 1

∥τ∥1 − ∥τ∥∞ ν = 2
1

ν−1

[
∥τ∥1 − ∥τ∥ 1

2−ν

]
ν ∈ (1, 2)

1
1−ν

[(∑J
k=0 τ

1
2−ν

k

)2−ν

− ∥τ∥1
]

otherwise

(53)

Building on this, we can infer the minimizability gap:

UΦdef(R) = E∗Φdef
(R)− Ex[ inf

r∈R
CνΦdef

(r, x)] (54)

E. Proof Lemma 4.12
Lemma 4.12. Let L1 be a family of functions mapping X to [0, 1], and let L2 be a family of functions mapping X to {0, 1}.
Define L = {l1l2 : l1 ∈ L1, l2 ∈ L2}. Then, the empirical Rademacher complexity of L for any sample S of size K is
bounded by:

R̂S(L) ≤ R̂S(L1) + R̂S(L2).
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Proof. We define the function ψ as follows:

ψ :
L1 + L2 −→ L1L2

l1 + l2 7−→ (l1 + l2 − 1)+
(55)

Here, l1 ∈ L1 and l2 ∈ L2. The function ψ is 1-Lipschitz as we have t 7→ (t− 1)+ for t = l1 + l2. Furthermore, given that
ψ is surjective and 1-Lipschitz, by Talagrand’s lemma (Mohri et al., 2012), we have:

R̂S(ψ(L1 + L2)) ≤ R̂S(L1 + L2) ≤ R̂S(L1) + R̂S(L2) (56)

This inequality shows that the Rademacher complexity of the sum of the losses is bounded by the sum of their individual
complexities.

F. Proof Theorem 4.13
Theorem 4.13 (Learning bounds of the deferral loss). For any expert Mj , any distribution D over Z , we have with
probability 1− δ for δ ∈ [0, 1/2], that the following bound holds at the optimum:

Eℓdef(h, f, r) ≤ Êℓdef(h, f, r) + 2RK(Ldef) +

√
log 1/δ

2K
,

with

RK(Ldef) ≤
1

2
RK(H) +RK(F) +

J∑
j=1

Ω(mh
j , y)

+
( J∑

j=1

max ℓreg(m
f
j , t) + 2

)
RK(R),

with Ω(mh
j , y) =

1
2D(m

h
j ̸= y) exp

(
−K

8 D(m
h
j ̸= y)

)
+RKD(mh

j ̸=y)/2(R).

Proof. We are interested in finding the generalization of u = (g, r) ∈ L:

RS(L) =
1

K
Eσ[sup

g∈L

K∑
k=1

σkℓdef(g, r, xk, yk, bk,mk)]

=
1

K
Eσ[sup

g∈L

K∑
k=1

σk

( J∑
j=0

cj1r(xk)=j

)
]

≤ 1

K
Eσ

[
sup
g∈L

K∑
k=1

σkc01r(xk)=0

]
+

1

K

J∑
j=1

Eσ

[
sup
r∈R

K∑
k=1

σkcj1r(xk)=j

]
(By the subadditivity of sup)

Let’s consider j = 0:

1

K
Eσ

[
sup
g∈L

K∑
k=1

σkc01r(xk)=0

]
=

1

K
Eσ

[
sup
g∈L

K∑
k=1

σk[1h(xk) ̸=y + ℓreg(f(xk), bk)]1r(xk)=0

]
≤ 1

K
Eσ

[
sup
g∈L

K∑
k=1

σk1h(xk )̸=y1r(xk)=0

]
+

1

K
Eσ

[
sup
g∈L

K∑
k=1

σkℓreg(f(xk), bk)1r(xk)=0]
]

≤
[1
2
RK(H) +RK(R)

]
+
[
RK(F) +RK(R)

]
(using Lemma 4.12)

=
1

2
RK(H) +RK(F) + 2RK(R)

(57)
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Let’s consider j > 0:

1

K

J∑
j=1

Eσ

[
sup
r∈R

K∑
k=1

σkcj1r(xk)=j

]
≤ 1

K

J∑
j=1

Eσ

[
sup
r∈R

K∑
k=1

σk1mh
k,j ̸=y1r(xk)=j

]

+
1

K

J∑
j=1

Eσ

[
sup
r∈R

K∑
k=1

σkℓreg(m
f
k,j , bk)1r(xk)=j

] (58)

Using learning-bounds for single expert in classification (Mozannar & Sontag, 2020), we have:

1

K
Eσ

[
sup
r∈R

K∑
k=1

σk1mh
k ̸=y1r(xk)=1

]
≤ D(m

h ̸= y)

2
exp

(
−KD(m

h ̸= y)

8

)
+RKD(mh ̸=y)/2(R) (59)

Applying it to our case:

1

K

J∑
j=1

Eσ

[
sup
r∈R

K∑
k=1

σk1mh
k,j ̸=y1r(xk)=j

]
≤

J∑
j=1

(D(mh
j ̸= y)

2
exp

(
−
KD(mh

j ̸= y)

8

)
+RKD(mh

j ̸=y)/2(R)
)

(60)

For the last term,

1

K

J∑
j=1

Eσ

[
sup
r∈R

K∑
k=1

σkℓreg(m
f
k,j , bk)1r(xk)=j

]
≤

J∑
j=1

(
max ℓreg(m

f
j , t)RK(R)

)
(61)

Then, it leads to:

RK(Ldef) ≤
1

2
RK(H) +RK(F) +

J∑
j=1

Ω(mh
j , y) +

( J∑
j=1

max ℓreg(m
f
j , t) + 2

)
RK(R)

with Ω(mh
j , y) =

D(mh
j ̸=y)

2 exp

(
−KD(mh

j ̸=y)

8

)
+RKD(mh

j ̸=y)/2(R)

G. Experiments
G.1. PascalVOC Experiment

Since an image may contain multiple objects, our deferral rule is applied at the level of the entire image x ∈ X , ensuring
that the approach remains consistent with real-world scenarios.

Model M1 M2

mAP 39.5 43.3 52.8

Table 2. Agent accuracies on the CIFAR-100 validation set. Since the training and validation sets are pre-determined in this dataset, the
agents’ knowledge remains fixed throughout the evaluation.

Cost β2 mAP (%) Model Allocation (%) Expert 1 Allocation (%) Expert 2 Allocation (%)

0.01 52.8 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0
0.05 52.5 ± 0.1 7.3 ± 0.8 0.0 ± 0.0 92.7 ± 0.3
0.1 49.1 ± 0.6 48.0 ± 0.7 0.0 ± 0.0 52.0 ± 0.2

0.15 44.2 ± 0.4 68.1 ± 0.3 19.7 ± 0.4 12.2 ± 0.1
0.2 42.0 ± 0.2 77.5 ± 0.2 22.5 ± 0.5 0.0 ± 0.0
0.3 40.1 ± 0.2 98.1 ± 0.0 1.9 ± 0.1 0.0 ± 0.0
0.5 39.5 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 3. Detailed results across different cost values β2. Errors represent the standard deviation over multiple runs.
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G.2. MIMIC-IV Experiments

MIMIC-IV (Johnson et al., 2023) is a large collection of de-identified health-related data covering over forty thousand
patients who stayed in critical care units. This dataset includes a wide variety of information, such as demographic details,
vital signs, laboratory test results, medications, and procedures. For our analysis, we focus specifically on features related
to procedures, which correspond to medical procedures performed during hospital visits, and diagnoses received by the
patients.

Using these features, we address two predictive tasks: (1) a classification task to predict whether a patient will die during
their next hospital visit based on clinical information from the current visit, and (2) a regression task to estimate the length
of stay for the current hospital visit based on the same clinical information.

A key challenge in this task is the severe class imbalance, particularly in predicting mortality. To mitigate this issue, we
sub-sample the negative mortality class, retaining a balanced dataset with K = 5995 samples, comprising 48.2% positive
mortality cases and 51.8% negative mortality cases. Our model is trained on 80% of this dataset, while the remaining 20% is
held out for validation. To ensure consistency in the results, we fixed the training and validation partitions.

Model M1 M2

Accuracy 60.0 39.7 46.2
Smooth L1 1.45 2.31 1.92

Table 4. Performance of the agents on the MIMIC-IV dataset, evaluated in terms of accuracy and Smooth L1 loss. We fixed the
training/validation set such that the agents’ knowledge remains fixed throughout the evaluation.
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