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Abstract—We outline new lower bounds for the smallest sin-
gular value of univariate and multivariate non-harmonic Fourier
matrices. If the node set has sufficiently small local sparsity at an
appropriate scale, then the smallest singular value is primarily
determined by the local multiscale geometry of the node set. This
illustrates an implicit localization phenomenon of the Fourier
transform. We highlight some important conceptual and technical
advancements that lead to these bounds, such as the use of refined
polynomial interpolation methods and sparsity decomposition.

I. INTRODUCTION

For any finite set X = {xk}sk=1 ⊆ T := R/Z, a non-
harmonic Fourier matrix of size m× s is defined as

Φ := Φ(m,X) :=
[
e−2πijxk

]
j=0,1,...,m−1, k=1,2,...,s

.

We call X the node set, which is completely arbitrary. This
definition generalizes the discrete Fourier transform (DFT)
matrix, which consists of orthogonal (harmonic) columns and
corresponds to the case where m = s and X = {k/m}s−1k=0.

Fourier matrices are classical objects that are connected
to various topics, such as polynomial interpolation/regression,
Fourier analysis, and exponential sums. Numerical applica-
tions require good understanding of their extreme singular
values. Two motivational examples include super-resolution
[10], [17] and nonuniform discrete Fourier transforms [11],
[20]

Generally speaking, older papers concentrated on square
matrices, m = s. Aside from special cases like the DFT
matrix, there is a consensus that Fourier and Vandermonde
matrices are oftentimes highly ill-conditioned (e.g., condition
number that grows quickly in s). This is supported by both
empirical and theoretical work, such as [12], [9], [6], [7].

While square Fourier and Vandermonde matrices can be
brittle and numerically difficult to work with, tall Fourier
matrices where m & s are more stable. To understand the
main questions and direction of more recent research on this
topic, it may be helpful to consider the following examples.

For t ∈ T, let |t| := minn∈Z |t−n| and define the minimum
separation of X as

∆(X) := min
j 6=k
|xj − xk|.

For a given number of rows m, we say a set X is well-
separated if ∆(X) > 1/m. It was shown in [1] (a slight
improvement over [18]) that if X is well-separated, then√

m−∆−1 ≤ σmin(Φ) ≤ σmax(Φ) ≤
√
m+ ∆−1. (I.1)

Note inequality (I.1) implicitly assumes that m > s through
the requirement that ∆(X) > 1/m. It tells us that a large
class of tall Fourier matrices has uniformly bounded condition
number, in stark contrast to the square setting.

To bypass the well-separated assumption, some geometric
models were considered. We say X ⊆ T consists of separated
clumps if there are disjoint sets U1, . . . , Ur called clumps, such
that each one has diameter on the order of 1/m and

X = U1 ∪ U2 ∪ · · · ∪ Ur.

It was shown in [17] (see the proceeding [16] for a summary)
that if m ≥ s2, the largest clump has cardinality λ, and the
clumps are at least C

√
sλ5sm−3∆−1 apart from each other,

then

σmin(Φ) &

√
m

λ
(cm∆)

λ−1
. (I.2)

Inequality (I.2) is sharp in m and ∆. It communicates a
localization effect of the Fourier transform: even though Φ
depends on all elements in X , the lower bound is only
determined by on the local properties of X , as captured by λ.
There has been significant research over the past several years
on related problems and there are variations of this inequality,
see [17], [4], [5], [13], [2].

While estimate (I.2) extends the class of X for which there
is an accurate bound for σmin(Φ), it is not entirely satisfactory.
Since σmin(Φ) > 0 for any X ⊆ T and m ≥ |X|, in
principle, one should be able to quantify its extreme singular
values without resorting to special cases. For instance, under
what conditions on X , aside from clumps, do we expect an
inequality like (I.2) to hold?

Having explained the requisite background, we state the
main goals of this proceeding. In Section II, we explain the
main results in [14]. This paper settles the problem of finding
a lower bound for σmin(Φ) that not only holds for arbitrary X ,
but also reduces to (I.1) and (I.2) (modulo quantities that do
not depend on m and ∆) as special cases. In Section III, we
briefly describe the main ideas and new techniques developed
in [14], which are based on polynomial methods and sparsity
decompositions. Finally, in Section IV, we explain the results
in [15], which extends these techniques to higher dimensions
and provides universal lower bounds for the smallest singular
value of multivariate Fourier matrices.



II. A UNIVERSAL ESTIMATE AND MULTISCALE BEHAVIOR

In order to provide a lower bound for σmin(Φ) that is
applicable to all X , we need a general yet natural notion of a
“complexity” of X . This is done through two definitions.

Let τ ∈ (0, 12 ] and I(x, τ) ⊆ T be the closed (periodic)
interval of length 2τ centered at x. The τ local sparsity of X
is defined as

ν := ν(τ,X) := max
k=1,...,s

∣∣X ∩ I(xk, τ)
∣∣.

It is the maximum number of τ -neighbors any xk ∈ X has,
including itself. We say a finite set X ⊆ T satisfies the (m, τ)
density criterion if

3ν(τ,X)

τ
≤ m.

Notice that ν(τ,X)/(2τ) is precisely the maximum density of
X at scale τ , so this requirement roughly states that X is not
too dense at this scale. If m ≥ 6s, then the density criterion is
trivially satisfied for τ = 1/2. For various interesting sets, we
can set τ to be smaller. For example, if ∆(X) > 3/m, then
the density criterion is satisfied for τ = ∆(X).

Let us first state a simplified version of [14, Theorem 1]
where all explicit constants have been suppressed and further
simplified.1

Theorem 1. For any m ≥ 6s and X = {xk}sk=1 ⊆ T. There
are explicit C > 0 and c ∈ (0, 1) such that if X satisfies the
(m, τ) density criterion for some τ , then

σmin(Φ) ≥ C cν
√
m

sν
min

1≤k≤s

{ ∏
0<|xj−xk|≤ τ2

|xj − xk|
τ

}
.

Theorem 1 expresses a localization result whereby if X has
sufficiently low density at scale τ , then σmin(Φ) is controlled
by product term is taken only over 0 < |xj −xk| ≤ τ/2. This
is a localization phenomenon, and the only requirements are
that the density criterion holds and that Φ has at least 6 times
more rows than columns.

Theorem 1 highlights how σmin(Φ) depends on the multi-
scale structure of X . The coarsest scale is τ/2 and interactions
between xj and xk that are further apart than τ/2 only influ-
ence σmin(Φ) through ν. Finer scales are defined as 2−`τ for
` ≥ 2. The theorem shows that interactions between elements
in X at finer scales dominate the behavior of σmin(Φ).

Separated clumps is an example of a low density set. [14,
Corollary 1] shows that if m ≥ 6s and if X consists of
separated clumps that are at least 3λ/m apart, then

σmin(Φ) &

√
m

s
(cm∆)

λ−1
. (II.1)

Compared to the prior result (I.2) derived in [17], inequality
(I.2) also achieves the optimal dependence on m and ∆, but

1To get Theorem 1 from [14, Theorem 1], following the notation in the
reference, we observe that ν(τ,Gk) ≤ ν(τ,X) since Gk ⊆ X , and we have
the inequalities |Jk| ≤ ν, αk ≤ 3ν/(2m) ≤ τ/2, and |Ik| ≤ ν which
follow from their definitions and the density criterion.

with a drastically weaker condition on the clump separation.
Note that the clumps must be separated by at least λ/m
otherwise we are in a scenario where it is possible that m < s.

Let us look at one more example. For a given ε ∈ (0, 1),
consider a sparse spike train X = {εk/m}s−1k=0. It was shown
in [18], and further improved in [2] with explicit constants,
that are c1, c2 > 0 such that if s ≥ c1 logm, then

σmin(Φ) . e−c2εs. (II.2)

This has been a troublesome example to deal with because
the exponential smallness of inequality (II.2) is not due to any
two elements in X being very close together, but rather, due
to constructive interference in the columns of Φ.

The sparse spike train is a high density set whereby X does
not satisfy the (m, τ) density criterion for any τ ≤ ε(s−1)/m.
Invoking Theorem 1 for τ = 1/2 and manipulating the result-
ing expression (see [14, Section 4.4] for details), whenever
m ≥ 6s, there is an explicit c3 > 0 such that

σmin(Φ) & e−c3εs. (II.3)

We discussed three important examples in the literature
(well-separated, clumps, and sparse spike train), and Theo-
rem 1 provides optimal scaling for these examples. This illus-
trates that the density criterion is a natural way of describing
the “complexity” of X .
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Fig. 1: Plot of σmin(Φ) and two different lower bounds.

The full version of Theorem 1, namely [14, Theorem 1],
also contains accurate numerical constants. For example, let

X := X1 ∪X2 ∪X3, X1 := {0, 1
90 ,

2
90 ,

3
90},

X2 := 1
3 + {0, 1

200 ,
2

200}, X3 := 2
3 + {0, 1

500}.

Inequality (I.1) is only applicable when m > 500. For m ≤
500, the only other result that is applicable is a combination
of Gautschi and Bazán [12], [6], which yields the inequality,

σs(Φ) ≥
√

1

s

⌊m
s

⌋
min

1≤k≤s

{∏
j 6=k

|e2πix − e2πixk |
2

}
. (II.4)



The true value of σmin(Φ), lower bound given by [14, Theo-
rem 1], and right side of (II.4) are displayed in Fig. 1. When
m = 400, [14, Theorem 1] underestimates the true value by
a multiplicative factor of ≈ 21 whereas the Gautschi-Bazán
bound is off by a factor of ≈ 1.9 · 105.

III. POLYNOMIALS, DENSITY, AND SPARSITY

In this section, we explain the main ingredients for the proof
of Theorem 1, and provide some intuition for why the density
criterion is natural.

It was already established in [17] that analyzing σmin(Φ)
can be recast as a minimum norm interpolation problem.
Indeed, let Pm denote the space of complex-valued trigono-
metric polynomials whose Fourier coefficients are supported
in {0, . . . ,m−1}, and v is any unit norm right singular vector
of Φ corresponding to σmin(Φ). Then we have the relationship,

σmin(Φ) = max
{
‖f‖−1L2 : f ∈ Pm and f |X = v

}
. (III.1)

Since the right side of (III.1) is a max, to lower bound
σmin(Φ), it suffices to carefully construct an interpolating
polynomial.

Through some basic considerations, we can reduce this
problem down to finding a Lagrange basis for X whose norms
are not too big. Let us pick a reference point xk ∈ X and focus
on finding a fk ∈ Pm such that fk(xj) = δj,k for all xj ∈ X .
We can use (III.1) for the polynomial f =

∑s
k=1 vkfk, which

interpolates the singular vector v on X . We must be careful
with the construction of fk, so that ‖fk‖L2 is not too large,
otherwise use of (III.1) would provide a loose estimate.

Throughout this section, fix an arbitrary τ ∈ (0, 12 ]. We
decompose X into the bad set Bk := X ∩ I(xk, τ) and good
set Gk := X ∩ I(xk, τ)c.

To handle the bad set, we pick an appropriate q ∈ N to be
determined later and use a modified Lagrange interpolant,

bk(x) =
∏

0<|xj−xk|≤τ

e2πiqx − e2πiqxj
e2πiqxk − e2πiqxj

. (III.2)

For appropriate q, we have the interpolation property that
bk(xj) = δj,k for all xj ∈ X ∩ I(xk, τ).

The main innovation behind the proof of Theorem 1 is
a method for dealing with the good set. A simply greedy
argument shows that there exist r ≤ ν(τ,X) many disjoint
and non-empty sets Wk,1, . . . ,Wk,r such that ∆(Wk,`) > τ
for each ` and

Gk = Wk,1 ∪ · · · ∪Wk,r. (III.3)

We call (III.3) the sparsity decomposition of Gk. It is per-
haps counter-intuitive that this decomposition is helpful. For
example, if X consists of clumps separated by at least τ , then
Gk consists of all clumps that do not contain xk, yet (III.3)
completely ignores the clump structure. See Figure Fig. 2 for
an illustration.

The advantage of decomposition (III.3) is apparent once we
translate inequality (I.1) into a statement about interpolating
polynomials. The proof of [14, Proposition 7.2] showed that

U1

U2

U3

(a) Clumps decomposition

W1

W2

W3

(b) Sparsity decomposition

Fig. 2: Clumps versus sparsity decomposition of the same set.

for any integer n > 1/τ , there is a gk,` ∈ Pn such that
gk,`(xk) = 1, gk,`|Wk,`

= 0, and

‖gk,`‖L∞ ≤
√

1 +
1

nτ − 1
. (III.4)

This polynomial has remarkably small norm, e.g., uniformly
bounded by

√
2 whenever n ≥ 2/τ . In contrast, a naive

approach of writing down the standard Lagrange interpolant
of these |Wk,`| + 1 data points and estimating its sup-norm
would yield a loose bound that grows like (Cτ−1)|Wk,`| where
C ≥ 1. Essentially (III.3) decomposes the good set Gk into
pieces such that each piece Wk,` contains significant self-
cancellations, as captured by inequality (III.4). This is the key
insight of the sparsity decomposition.

With these polynomials at hand, a desired Lagrange basis
{fk}sk=1 for X can be defined as

fk = bkgk,1 · · · gk,r.

It satisfies the requisite property that fk(xj) = δj,k for all xj ∈
X . We need to ensure that fk ∈ Pm, which is how the density
criterion is used. The degree of fk is at most (ν−1)q+r(n−1).
If the density criterion holds, then setting q = b1/τc and
n = b2/τc shows that f ∈ Pm. Finally, using Hölder’s and
(III.4), we have

‖fk‖L2 ≤ ‖bk‖L2

r∏
`=1

‖gk,`‖L∞ ≤ cν‖bk‖L2 .

Details for upper bounding ‖bk‖L2 can be found in [14]. This
is roughly how the localization phenomenon in Theorem 1
appears.

Another way of viewing Theorem 1 is that a low density
set can be broken into not too many well-behaved pieces.
This argument via polynomials also establishes a more general
principle. If X satisfies the (m, τ) density criterion, then

σmin(Φ) & cν min
1≤k≤s

σmin

(
Φ
(
bm/νc, Bk

))
.

Essentially, the global problem of analyzing a Fourier matrix
with node set X can be reduced to the local problem of dealing
with just node set Bk, but at the price of introducing a cν term



and cutting the number of rows by a factor of ν.

IV. EXTENSION TO MULTIVARIATE MATRICES

We let d ≥ 2 be the dimension and X = {xk}sk=1 ⊆
T := (R/Z)d be arbitrary. The sampling set {0, . . . ,m − 1}
in one dimension needs to be replaced by a suitable subset
of Zd. There is no canonical choice. For the purposes of this
proceeding, suppose the samples are collected inside Qm, a
closed cube in Rd of side length 2m centered at zero.

Then a non-harmonic multivariate Fourier matrix is

Φ := Φ(Qm, X) =
[
e−2πijxk

]
j∈Qm∩Zd, k=1,2,...,s

.

Let |Qm|∗ be the number of multi-integers contained in Qm.
When m ∈ N, this matrix has |Qm|∗ = (2m+1)d rows. Since
our samples are collected in a cube, we let | · | denote the `∞

norm on Td. The minimum separation of X is defined as

∆(X) := min
j 6=k
|xj − xk|.

Much of the theory in [15] extends to more general sampling
sets such as multi-integers contained in some `p ball of radius
m centered at zero.

Our first question is how large ∆ must be for the condition
number of Φ to be uniformly bounded. Inequality (I.1) was
proved in [1], [18] by using arguments similar to [21], [19],
which all exploited properties of special functions known as
the Beurling-Selberg majorant and minorant. There has been
significant progress on multivariate analogues, but optimal
constructions are not available depending on what function one
wants to majorize and minorize. This includes the indicator
function of Qm, the case that is relevant to our problem, see [8]
and references therein. Nonetheless, using the construction in
[3, Section 2.5], we proved the following theorem, copied from
[15, Theorem 2.3]. For convenience, we let β0 := 1/(2 ln 2) ≈
0.7213 and c(β) := e1/(2β) − 1.

Theorem 2. Let β ≥ β0, X ⊆ Td, and m ≥ 1. If ∆(X) ≥
βd/m, then we have

σmin(Φ) ≥
√(

1− c(β)
)
|Qm|∗,

σmax(Φ) ≤
√(

1 + c(β)
)
|Qm|∗.

The
√
|Qm|∗ term that appears in both bounds is a natural

scaling factor since this is precisely the `2 norm of any
column in Φ. Of course, c(β) ∈ [0, 1] whenever β ≥ β0 and
decreases to zero as β increases. The theorem shows that the
condition number of Φ is uniformly bounded by a constant
that only depends on β and not on the dimension d. While this
conclusion does not suffer from the effects of dimensionality,
the separation condition ∆(X) ≥ βd/m does, but it is unclear
whether linear growth in d is necessary or can be relaxed (or
removed altogether).

It is not difficult to show that the matrix Φ(Qm, X) is
injective whenever |Qm|∗ ≥ |X|d. Provided this condition
holds, it should be possible to lower bound σmin(Φ) without
any restrictions on X .

To this end, we aim to generalize the results of [14] to
higher dimensions. Let Q(x, τ) ⊆ Td be the closed cube of
side length 2τ centered at x. The τ local sparsity of X is
defined as

ν := ν(τ,X) := max
k=1,...,s

∣∣X ∩Q(xk, τ)
∣∣.

The following theorem is [15, Theorem 3.10].

Theorem 3. Let β ≥ β0, X := {xk}sk=1 ⊆ Td, and m ≥ 4s.
If

τ ≤ 1

4d
and

2βd ν(τ,X)

τ
≤ m, (IV.1)

then we have the inequality,

σmin(Φ) ≥ Cm,s,ν,β min
1≤k≤s

{ ∏
0<|xj−xk|1≤ ν

m

m

ν
|xj − xk|1

}
,

where

Cm,s,ν,β :=

√
(c(β))ν

2ν+1s
|Qm/(2ν)|∗

This theorem shows that when (IV.1) holds, the behavior
of σmin(Φ) is predominately determined by the interactions
between pairs in X closer than ν/m. This proves a localization
effect of the Fourier transform. It may be interesting to note
that for the multivariate case, the `1 distance appears even
though the measurements are taken from a cube; this is an
effect of duality since Qm lies in frequency domain, while
X is in space, or vice versa. Notice that there is a d factor
in condition (IV.1) which appears from the assumptions in
Theorem 2.

The primary difference between Theorems 1 and 3 is that
ν(τ,X)/(2τ) is legitimately a density in one dimension, but
it does not have the same interpretation for d ≥ 2. Instead,
it can be viewed as some projected density. This is of course
good, since replacing ν(τ,X)/τ in (IV.1) with ν(τ,X)/(2τ)d

(which is actually a density term) would result in a much
stronger assumption than (IV.1).

The polynomial approach is helpful yet again, as it allows
us to prove Theorem 3 in an analogous way to Theorem 1. In-
deed, the polynomial characterization (III.1) still holds, except
Pm is now the space of multivariate trigonometric polynomials
whose Fourier coefficients are supported in Qm ∩ Zd.

To use (III.1), we can construct a Lagrange basis for X . Fix
a reference point xk ∈ X and we would like to construct fk ∈
Pm such that fk(xj) = δj,k for all xj ∈ X . We decompose
X into a good and bad set again. The bad set is Bk := X ∩
Q(xk, τ), while the good set is Gk := X ∩ Q(xk, τ)c. The
good set is handled using the sparsity decomposition and a
polynomial version of Theorem 2. There are several technical
differences for dealing with bad set in the multivariate case,
but many general ideas carry over.
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