Under review as a conference paper at ICLR 2022

STATE-ONLY IMITATION LEARNING BY TRAJECTORY
DISTRIBUTION MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

The best performing state-only imitation learning approaches are based on adver-
sarial imitation learning. The main drawback, however, is that adversarial training
is often unstable and lacks a reliable convergence estimator. When the true en-
vironment reward is unknown and cannot be used to select the best-performing
model, this can result in bad real-world policy performance. We propose a non-
adversarial learning-from-observations approach, with an interpretable conver-
gence and performance metric.

Our training objective minimizes the Kulback-Leibler divergence between the
policy and expert state transition trajectories which can be optimized in a non-
adversarial fashion. For this, additional density models estimate the expert state
transition distribution and the environment’s forward and backward dynamics.
We demonstrate the effectiveness of our approach on well-known continuous
control environments, where our method can generalize to expert performance.
We demonstrate that our method and loss are better suited to select the best-
performing policy compared to objectives from adversarial methods by being
competitive to or outperforming the state-of-the-art learning-from-observation ap-
proach in these environments.

1 INTRODUCTION

Imitation learning (IL) describes methods that learn optimal behavior that is represented by a collec-
tion of expert demonstrations. While in standard reinforcement learning (RL), the agent is trained on
environment feedback, IL can alleviate the problem of designing effective reward functions. Thus
especially useful for tasks where demonstrations are easier to access compared to designing a re-
ward function. One popular example is to train traffic agents in a simulation to mimic real-world
road users (Kuefler et al.| 2017).

Learning from demonstrations (LfD) describes IL approaches that require state-action pairs from
expert demonstrations. Many promising approaches have been proposed which match state-action
distributions of the expert and the learner using an adversarial training setup (Ho & Ermon, 2016;
Fu et al., [2017; | Kostrikov et al., 2019;2020).

While actions can guide policy learning, it might be very costly or even impossible to collect actions
alongside state demonstrations in many real-world setups. For example, when expert demonstrations
are available as video recordings without additional sensor signals. One example of such a setup is
training traffic agents in a simulation, where the expert data contains recordings of traffic in bird’s
eye view (Kuefler et al., 2017)). No direct information on the vehicle physics, throttle, and steering
angle is available. Another example is teaching a robot to pick, move, and place objects based on
human demonstrations (Osa et al., [2018)). In such scenarios, actions have to be estimated based on
sometimes incomplete information to train an agent to imitate the observed behavior.

Alternatively, learning from observation (LfO) performs state-only imitation learning and trains an
agent without actions being available in the expert dataset (Torabi et al.l|2019). While LfO is a more
challenging task than LfD, it can be more practical for tasks with incomplete data sources. To learn a
policy from observations learning an additional environment model may help to infer actions based
on expert observations and the learned environment dynamics (Torabi et al.l [2018a). Similarly to
LfD distribution matching based on an adversarial setup is also used in LfO (Torabi et al.| [2018b;

Under review as a conference paper at ICLR 2022

Environment Replay Buffer (Environment Models Actor Critic
- Nﬂs,s’)
Policy

=
—CB?_
Data -

p(s'la, s)/\
(Expert Model \

Expert ,
States s ;
\ pE(s'ls))

Figure 1: Overview of the proposed method. This setup is using off-policy data to train the policy
and the environment models.

Yang et al.l 2019} Zhu et al.,2020). In adversarial imitation learning (AIL) a policy is trained using
an adversarial discriminator and a reinforcement learning method. The discriminator is used to
estimate a reward which guides policy training. While AIL methods obtain better performing agents
than supervised methods like behavioral cloning (BC) using less data, adversarial training often has
stability issues (Miyato et al.| [2018;|Goodfellow,2017)) and under some conditions is not guaranteed
to converge (Jin et al., [2020). Additionally, estimating the performance of a trained policy without
access to the environment reward can be very challenging. While the duality gap (Grnarova et al.,
2019; |Sidheekh et al.,[2021)) is a convergence metric suited for GAN based methods it is difficult to
use in the AIL setup since it relies on the gradient of the generator for an optimization process. In
the AIL setup the generator consists of the policy and the environment and therefore the gradient
is difficult to estimate with black box environments. As an alternative for AIL setups the predicted
reward (discriminator output) or the policy loss can be used to estimate the performance.

To address the limitations of AIL, we propose a state-only distribution matching method that learns
a policy in a non-adversarial way. We optimize the Kulback Leibler divergence (KLD) between the
actionless policy and expert trajectories by minimizing the KLDs of the conditional state transition
distributions of the policy and the expert for all time steps. We estimate the expert state transition
distribution using normalizing flows, which can be trained offline using the expert dataset. Thus,
stability issues arising from the min-max adversarial optimization in AIL methods can be avoided.

Additionally, to match the transition distributions of the policy and the expert, a forward dynamics
and inverse action model of the environment is learned using normalizing flows. Normalizing flow
models have been demonstrated to perform very well on learning complex probability distributions
(Papamakarios et all 2019). Combining all estimates results in an interpretable reward that can
be used together with standard maximum entropy reinforcement learning methods (Ziebart, 2010;
Haarnoja et al.,|2018a)). The optimization based on the KLD provides a reliable convergence metric
of the training and a good estimator of the policy performance. An overview of our proposed method
is given in Figure

While |Kim et al.|(2021)) also proposed a method that performs imitation learning using density esti-
mates, their optimization is based on the learning from demonstrations objective using state-action
pairs. We therefore compared our method to the recent state-of-the-art learning from observations
approach OPOLO (Zhu et al.,[2020) in complex continuous control environments. We demonstrate
that our method is superior especially if the selection of the best policy cannot be based on the true
environment reward signal. This is a setting which more closely resembles real-world applications
in autonomous driving or robotics where it is difficult to define a reward function (Osa et al.|[2018).

2 BACKGROUND

In this work, we want to train a stochastic policy function 7y(a|s;) in continuous action spaces
with parameters 6 in a sequential decision making task considering finite-horizon environmentsﬂ

! An extension to infinite horizon environments is given in section

Under review as a conference paper at ICLR 2022

The problem is modeled as a Markov Decision Process (MDP), which is described by the tuple
(S, A, p,r) with the continuous state spaces S and action spaces A. The transition probability is
described by p(sy+1]|st, a¢) and the bounded reward function by 7 (s, a;). At every time step ¢ the
agent interacts with its environment by observing a state s, and taking an action a;. This results in a
new state s,y and a reward signal 7,4 ; based on the transition probability and reward function. We
will use p™ (s¢,a) to denote the state-action marginals at time step t of the trajectory distribution
induced by the policy mp(a|st).

2.1 MAXIMUM ENTROPY REINFORCEMENT LEARNING AND SOFT ACTOR CRITIC

The standard objective in reinforcement learning is the expected sum of undiscounted rewards
ZtT=o E(s,,a,)~umo [1(5t,a¢)]. The goal of the agent is to learn a policy 7y (as|s;) which maximises
this objective. The maximum entropy objective (Ziebart, 2010) introduces a modified goal for the
RL agent, where the agent has to maximise the sum of the reward signal and its output entropy
H(mp(-|s)). Resulting in the policy objective

T

J(WO) = ZE(st,at)N/ﬂre [T(Sta a’t) + O[H(’]To(|$))] (l)

t=0

The parameter o controls the the stochasticity of the optimal policy by determining the relative
importance of the entropy term versus the reward.

Soft Actor-Critic (SAC) proposed by Haarnoja et al.|(2018azb)) is an off-policy actor-critic algorithm
based on the maximum entropy RL framework. Since we apply SAC in our imitation learning setup
the main objectives will be briefly explained. SAC combines off-policy Q-Learning with a stable
stochastic actor-critic formulation. For a fixed policy m, the soft Q-value can be computed iteratively,
starting from any function @) : S X A — R and repeatedly applying a modified Bellman backup
operator T™ given by:

T™Q(st, a) = 1(st,a) + VEs y mp(sisalsian [V (5t41)] 2)
The parameter ~ describes the discount factor. In soft policy iteration the soft state value function is
defined by:
V7 (st) :=Eq,n[Q(8t, ar) — alog mo(as|st)] 3)
The soft Q-function parameters W can be trained to minimize the soft Bellman residual:

1
Jo = E(s,,a))~Drs [i(Q\P(Sta as) — (r(se, ae) +vEs,,, [V (se41)]))7] “4)

Where the training data is sampled using a replay buffer Drp containing state-action pairs of pre-
vious policy rollouts. To improve training stability it is common to use a target Q-function with
parameters U that slowly tracks the actual Q-function. Lastly, the policy is optimized by minimiz-
ing the following objective:

Jﬂ' - E(st)NDRB [E(at)w‘n'e [a log 7T9(at|5t) - Q\P(St; at)” (5)
2.2 IMITATION LEARNING

In the imitation learning setup, the agent does not have access to the true environment reward func-
tion r(s¢, a;) and instead has to imitate expert trajectories performed by an expert policy 7g col-
lected in a dataset Dpg.

In the typical Learning from demonstration (LfD) setup the expert demonstrations Déj b=
{sF ak, sk '\1 11, are given by action-state-next-state transitions. Distribution matching has been
a popular choice among different LfD approaches. The policy 7y is learned by minimizing the
discrepancy between the stationary state-action distribution induced by the expert (s, a) and the
policy ™ (s,a). An overview and comparison of different LfD objectives resulting from this dis-
crepancy minimization was done by |(Ghasemipour et al.|(2019). Often the backward KLD is used to
measure this discrepancy (Fu et al.,|2017; |[Kostrikov et al., |[2020):

min Jz,fp(mp) == minDKL(u”(s,a)||,uE(s,a)) (6)

Under review as a conference paper at ICLR 2022

Learning from observation (LfO) considers a more challenging task where expert actions are not
available. Hence, the demonstrations Déf 0= {sk, sk i }Y_| consist of state-next-state transitions.
The policy learns which actions to take based on interactions with the environment and the expert
state transitions. Distribution matching based on state-transition distributions is a popular choice for
state-only imitation learning (Torabi et al.,|2018b; Zhu et al.l 2020):

min Jz, ;o (mg) := min Dgep, (1™ (s, 8')| | (s, 5')) 7

2.3 NORMALIZING FLOWS

Normalizing flows provide a general method to define expressive probability distributions. The
change of variable formula is used to describe more complex distributions using simple ones
(Rezende & Mohamed, [2015). For a detailed overview, we refer to the work by [Papamakarios
et al{(2019). A sample from a base distribution u ~ p(u) is transformed to the target distribution z
by a mapping x = M (u;w). The transformation M with parameter w has to be differentiable and
invertible and is typically implemented using neural networks. Under these conditions the density
of x is well defined and the change of variable formula describes the probability of the resulting
density p,(x) by
P () = p(u)| det Jacps (u; w)|
where det is the determinant. The base distribution p(u) in our work is a standard Gaussian distri-
bution. Jac s (u;w) is the Jacobian of the transformation M. Several of such transformations M can
be composed to construct a complex transformation from multiple simple transformations. A flow
is defined by several changes of the densities by transformations M},. The final sample of a flow is:
g = Mg o Mg_1 -+ o M;(u) with its corresponding log probability:
K
log pu(z k) = log p(u) — Z log | det Jacpy, (ug; w))-
k=1

In this work, we used the setup described by Dinh et al.|(2017) called ReaNVP and expanded it to
the conditional case as done by |Ardizzone et al.[|(2019b). We can then write the conditional density
using normalizing flows as follows:

Pu(St41]8t) = pu(w)| det Jacps (u; 8¢, w)|

Note that M (u; s¢,w) remains invertible in u for fixed s; while its transformation parameters are
now conditioned on the state s;.

3 METHOD

In a finite horizon MDP setting the joint state-only trajectory distributions are defined by the start
state distribution p(sg) and the product of the conditional state transition distributions p(s;41]s;).
For the policy distribution ;™ and the expert distribution ;. this becomes:

W (s, s0) =p(so) [#™(sinalsi), wP(srims0) =plso) [w(sialsi)
i=0..T—1 i=0..T—1

Our goal is to match the state-only trajectory distribution ;™ induced by the policy with the state-
only expert trajectory distribution x% by minimizing the Kulback-Leibler divergence (KLD) be-
tween them:

Jsor—rom = Drr (W ||1") = E(sp,....s0)~pme [log p™ — log p*]
= E(Si+1,si)~#“9 [log :U’Tre (SiJrl |52) — log :uE<Si+1 |Si)]

®)

Under review as a conference paper at ICLR 2022

The conditional expert state transition distribution p”(s;41/s;) can be learned offline from the
demonstrations for example by training a conditional normalizing flow on the given state/next-
state pairs. The policy induced conditional state transition distribution can be rewritten with the
Bayes theorem using the environment model p(s;11|a;, s;) and the inverse action distribution den-
sity g (a;|si41,5):

17 (si41]s5) = p($z‘+/1|az" si)mo(ails:) ©)

7T9(ai|3i+1, Si)

which holds for any a; where 7’ > 0 . Thus, one can extend the expectation over (s;11, s;) by the
action a; and the KLD minimization can be rewritten as

min Dy, (™ ||1n”) = min Y " g, ;0000 ~me [108D(si41]as, 5:) + log mo(ails:)
1=0..T—1

—log my(ailsit1,) —log u”(sit1]ss)]
(10)
Now, by defining a reward function (also see[A.2)
r(ai, 8i) 1= By mp(siirasss) [~ 108 D(siy1]as, si) +log mp(ailsiya, i) +log u” (siya]si)] (11)

that depends on the expert state transition likelihood p”(s;11|s;), on the environment model
p(Si+1|as, s;) and on the inverse action distribution density 7y (a;|si+1, ;) the state-only trajectory
distribution matching problem can be transformed to a max-entropy reinforcement learning task:

min DKL(UWG ‘ |ME) = mmax Z E(ai,Si)Nﬂ'e [_ log e (ai‘si) + T'(Cli, SL)]

1=0..T—1

= Inax Z E(ai75i)’\‘7r8 [r(ai7si) —l—H(ﬂ'g(‘S)]

i=0..T—1

12)

In practice the reward function r(a;, s;) can be computed using monte carlo integration with a single
sample from p(s;11]a;, s;) using the replay buffer.

This max-entropy RL task can be optimized with standard max-entropy reinforcement learning al-
gorithms. In this work, we applied the Soft Actor Critic algorithm (Haarnoja et al., |2018a) as it is
outlined in Section 2.1

The extension to infinite horizon tasks can be done by introducing a discount factor as in the work
by Haarnoja et al.|(2018b) with our reward definition and one obtains the following infinite horizon
maximum entropy objective:

Jue-in = 3 Bansyeml D 7V Biaysymme [1(as.55) + H(mo(]s;)]si,a:]] (13)

i=0.. inf j=i..inf
3.1 ALGORITHM

To evaluate the reward function the environment model p(s;11|a;, s;) and the inverse action dis-
tribution function 7y (a;|s;+1, s;) have to be estimated. We model both distributions using con-
ditional normalizing flows and train with maximum likelihood based on expert demonstrations
and rollout data from a replay buffer. The environment model p(s;i1]a;,s;) is modeled by
e (Sit1]ai, s;) with parameter ¢ and the inverse action distribution function 7 (a;|s;+1, s;) is mod-
eled by p,)(a;]8i41, s;) with parameter 7.

The whole training process according to Algorithm [1]is described in the followingﬂ The expert
state transition model ¥ (s;41s;) is trained offline using the expert dataset Dz which contains K
expert state trajectories. After this initial step the following process is repeated until convergence in
each episode. The policy interacts with the environment for 7" steps to collect state-action-next-state
information which is saved in the replay buffer Drp. The conditional normalizing flows for the
environment model f14(s;+1|as, s;) (policy independent) and the inverse action distribution model
fn(ailsit1,si) (policy dependent) are optimized using samples from the replay buffer Dgp for
N steps, which we found works well in practice. Afterwards we use the learned models together
with the samples from the replay buffer to compute a one-sample monte carlo approximation of the
reward to train the Q-function. The policy 7y (a¢|s;) is updated using SAC.

2Code will be available at https://github.com/*

Under review as a conference paper at ICLR 2022

Algorithm 1 State-Only Imitation Learning by Trajectory Distribution Matching
1: procedure SOIL-TDM(Dpg)

2: Train ¥ (s¢41|s¢) with Dp : {so, s1,...57 He,

3: for episodes do

4 for range (T) do > generate data

5: g < sample(mg(as|st))

6: St41 < Psim(Se41]5t, at) > apply action

7 Store (8¢, at, St+1) in Dgp

8: end for

9: for range (N) do > update dynamics models
10: {(s¢,a1,8041)}2., ~ Drp > sample batch
11: train ,un(&t|8t+1,8t) and M¢(8t+1|dt73t)

12: end for

13: for range (N) do > SAC Optimization
14: {(st, a4, 8¢041)}21 ~ Drp > sample batch
15: a; < sample(mg(at|st))

16: optimize my(a|s:) with J, from eq. > update policy
17: > estimate reward
18: (8¢, G¢) < —1og pg(se41lar, s¢) + 1log py (aelsi1, s¢) + log uf (si11ls:)

19: optimize Qq(ay, s¢) with Jg from eq. > update Q-function
20: end for

21: end for
22: end procedure

3.2 RELATION TO LEARNING FROM OBSERVATIONS

The LfO objective of previous approaches minimizes the divergence between the joint policy state
transition distribution and the joint expert state transition distribution:

Jrso = Drr (™ (s',s)|ln"(s', 5)) (14)
which can be rewritten as (see[A.1))

Jrso = Drr (™ (sz, o s0) [l (57, s0) + D Dro(u™(s)lln®(s:)) (A9)

i=1..T—-1

Thus, this LfO objective minimizes the sum of the KLD between the joint distributions and the
KLDs of the marginal distributions. The SOIL-TDM objective in comparison minimizes purely the
KLD of the joint distributions. In case of a perfect distribution matching - a zero KLD between
the joint distributions - the KLDs of the marginals also vanish so both objectives have the same
optimum.

4 RELATED WORK

A fast and straightforward method to train an agent on expert demonstrations is behavioral cloning
(BC) (Pomerleau, |1991]). For a given set of expert states, the error on predicted actions is minimized.
The performance relies heavily on the number of expert demonstrations. In BC, the actor is only
trained on states visited by the expert and therefore does not learn how to combat deviations from
small errors or handle states not available in the expert dataset. The work by |Ross et al.| (2011)
improves the limitations of BC using a no-regret imitation learning approach called DAgger.

Many recent approaches are based on inverse reinforcement learning (IRL) (Ng & Russell, [2000).
In IRL, the goal is to learn a reward signal for which the expert policy is optimal. AIL algorithms
are popular methods to perform imitation learning in a reinforcement learning setup (Ho & Ermon,
20165 |Fu et al.L|2017; |Kostrikov et al.,[2019;[2020). In AIL, a discriminator gets trained to distinguish
between expert states and states coming from policy rollouts. The goal of the policy is to fool the
discriminator. The policy gets optimized to match the state action distribution of the expert, using
this two-player game.

Under review as a conference paper at ICLR 2022

A key problem with AIL for LfD and LfO is optimization instability (Miyato et al. [2018). Wang
et al.| (2019) avoid the instabilities resulting from adversarial optimization by estimating the support
of the expert policy to compute a fixed reward function. Similarly, Brantley et al.| (2020) use a
fixed reward function by estimating the variance of an ensemble of policies. Both methods relied on
additional behavioral cloning steps to reach expert-level performance.

LfO can be divided into model-free and model-based approaches. [Torabi et al.| (2018b) proposed
the model-free approach GAILfO which uses the GAIL principle with the discriminator input being
state-only. |Yang et al.| (2019) analyzed the gap between the LfD and LfO objectives and proved
that it lies in the disagreement of inverse dynamics models between the imitator and expert. Their
proposed method IDDM is based on an upper bound of this gap in a model-free way. OPOLO
proposed by [Zhu et al.| (2020) is a sample-efficient LfO approach also based on AIL, which enables
off-policy optimization. The policy update is also regulated with an inverse action model that assists
distribution matching in a mode-covering perspective.

Other model-based approaches either apply forward dynamics models (Sun et al.l 2019; [Edwards
et al [2018) or inverse action models (Torabi et al., [2018a; [Liu et al.l [2020; Jiang et al., [2020).
Sun et al.| (2019) proposed a solution based on forward dynamics models to learn time dependant
policies. While being provably efficient, it is not suited for infinite horizon tasks. Alternatively, be-
havior cloning from observations (BCO) (Torabi et al.|[2018a) learns an inverse action model based
on simulator interactions to infer actions based on the expert state demonstrations. Jiang et al.[(2020)
investigated imitation learning using few expert demonstrations and a simulator with misspecified
dynamics. Similar to these model-based approaches, GPRIL by |Schroecker et al.|(2019) uses nor-
malizing flows as generative models to learn backward dynamics models to estimate predecessor
transitions and augmenting the expert data set with further trajectories, which lead to expert states.
A detailed overview of LfO was done by [Torabi et al.|(2019).

Our proposed method is most similar to the approach by |[Kim et al.| (2021) called Neural Density
Imitation (NDI), where density models are used to perform distribution matching. However, in
contrast to NDI which is an LfD approach, our state-only approach does not require expert actions.
To remove the requirement for expert actions we use three conditional normalizing flows to estimate
the expert state conditional likelihood, the forward dynamics, and the backward dynamics. These
are combined into an estimated reward which is used to train the max-entropy RL SAC algorithm.
We show that the overall algorithm minimizes the KLD between the imitation policy and expert
policy joint state distributions.

5 EXPERIMENTS

We evaluate our proposed method described in Section [3]in a variety of different imitation learning
tasks and compare it against the baseline method OPOLO. The performance compared to the recent
state-only imitation learning approach OPOLO is of particular interest since both methods rely only
on state observation data to imitate an expert. For simple reinforcement learning tasks, most current
imitation learning methods are able to reach expert level performance using a single trajectory of
expert demonstrations. We therefore evaluate and compare all methods in more complex and higher
dimensional continuous control environments using the Pybulleﬂ physics simulation (Coumans &
Bail 2016-2019). To evaluate the performance of all methods, the episode reward of the trained
policies are compared to reward from the expert policy.

The expert data is generated by training an expert policy based on conditional normalizing flows
and the SAC algorithm on the environment reward. A conditional normalizing flow policy has been
chosen for the expert to make the distribution matching problem for OPOLO and SOIL-TDM -
which employ a conditional Gaussian policy - more challenging and more similar to real-world IL
settings. Afterward, the expert trajectories are generated using the trained policy and saved as done
by Ho & Ermon (2016ﬂ For the OPOLO baseline, the original implementation with the official
default parameters for each environment are use

*https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/examples
(Open Source MIT License)

*https://github.com/openai/imitation (Open Source MIT License)

>https://github.com/illidanlab/opolo-code (Open Source MIT License)

Under review as a conference paper at ICLR 2022

HalfCheetahBulletEnv-v0 HopperBulletEnv-v0 ‘Walker2DBulletEnv-v0 AntBulletEnv-v0 CartPoleContinuousBulletEnv-v0

o8 as aa

o6 a6 a6

rel. reward
rel. reward
rel. reward
rel. reward

o4 o4

04
a3 - expart
T w 0 02 0z
OPOLO pol. oes
e —— OPOLO est. reward
— SOIL-TDM
] 2 4 7o 90

1 2 4 T 10 oo 1 2 4 7 10 oo

N trajactories N trajectories N trajectories N trajectories N trajectories

Figure 2: Unkown true environment reward selection criteria: Performance comparison on con-
tinuous control environments using the Pybullet physics simulation. Relative reward for different
amount of expert trajectories using OPOLO, BC and SOIL-TDM as imitation learning methods.
The best policies based on estimated convergence values were selected. The value 1 corresponds to
expert policy performance.

We want to answer the question which method is best suited to train a policy if no environment
reward for early stopping and only a limited amount of expert demonstrations are available. The
experiments in OPOLO (Zhu et al.,|2020) used the environment reward to select the best performing
policy after training was done. This was a fair comparison to find the method resulting in the overall
best performance, since the authors used the same approach for all methods they compared. We
argue, however, that such a policy selection criterion might not be available in many real-world use
cases.

We use convergence estimates available during training which do not rely on the environment reward
to select the best policy for each method. In adversarial training the duality gap (Grnarova et al.,
2019; |Sidheekh et al.| [2021) is an established method to estimate the convergence of the training
process. In the IL setup the duality gap can be very difficult to estimate since it requires the gradient
of the policy and the environment (i.e. the gradient of the generator) for the optimization process
it relies on. We therefore use two alternatives for model selection for OPOLO. The first approach
selects the model with the lowest policy loss and the second approach selects the model based on the
highest estimated reward over ten consecutive epochs. To estimate the convergence of SOIL-TDM
the policy loss based on the KLD from equation [I0] is used. It can be estimated using the same
models used for training the policy.

The evaluation is done by running 3 training runs with ten test episodes (in total 30 rollouts) for
each trained policy and calculating the respective mean and confidence interval for all runs. We plot
the rewards normalized so that 1 corresponds to expert performance. Implementation details of our
method are described in the Appendix

The evaluation results of the discussed methods on a suite of continuous control tasks with unkown
true environment reward as a selection criterion are shown in Figure 2| The achieved rewards are
plotted with respect to the number of expert trajectories provided for training the agent. The confi-
dence intervals are plotted using lighter colors.

If the true environment reward is unkown the results show that SOIL-TDM achieves or surpasses
the performance of OPOLO for both OPOLO policy selection methods over all numbers of expert
demonstrations on all tested environments (with the exception of one and two expert trajectories in
the Ant environment). In general the adversarial method OPOLO exhibits a high variance of the
achieved rewards. The stability of the SOIL-TDM training method without an adversarial loss is
evident from the small confidence band of the results which gets smaller for more expert demonstra-
tions.

Under review as a conference paper at ICLR 2022

HalfCheetahBulletEnv-v0 HopperBulletEnv-v0 ‘Walker2DBulletEnv-v0 AntBulletEnv-v0 CartPoleContinuousBulletEnv-v0
10 —_—
10 === = 10 10 = me_—_—
" \/’
o8 o8 o8 o8
a8 -__\/——

o6 a6 06

rel. raward
rel. reward
rel. raward
rel. raward

o4 o4 o4 04

-2 02 a2 0z 0z

pert
04 — oPoLD
50L-TOM

1 2 4 T 10 1 2 4 7 10 1 2 4 7 o 1 2 4 7 o 1 2 4 T o
N trajectories N trajectories N trajectories. N trajectories. M trajectories

Figure 3: Best true environment reward selection criterion: Performance comparison on continuous
control environments using the Pybullet physics simulation. Relative reward for different amount
of expert trajectories using OPOLO and SOIL-TDM as imitation learning methods. The value 1
corresponds to expert policy performance.

Figure [3|shows the benchmark results of OPOLO and SOIL-TDM if the true environment reward is
used as an early stopping criterion. This is the method applied by the OPOLO authors. In this setup,
our method still achieves competitive performance or surpasses OPOLO with the exception of one
and two expert trajectories for the Ant environment.

6 CONCLUSION

In this work we propose a non-adversarial state-only imitation learning approach based on the mini-
mization of the Kulback-Leibler divergence between the policy and the expert trajectory distribution.
This objective leads to a maximum entropy reinforcement learning problem with a reward function
depending on the expert state transition distribution and the forward and backward dynamics of the
environment which can be modeled using conditional normalizing flows. The proposed approach
is compared to the state-of-the-art learning from observations method OPOLO in a scenario with
unkown environment rewards and achieves superior performance. The non-adversarial training ob-
jective leads to stable and reproducible results compared to the adversarial method across all tasks.

REPRODUCIBILITY AND ETHICS STATEMENT

To ensure reproducibility the used hyperparmeters and neural network topologies of our training
setup are described in detail in Appendix[A.3] Additionally, the code will be made publicly available
with a camera ready submission.

Societal impacts of improved imitation learning algorithms can be increased automation with ad-
verse effects on the job market for human labor in areas such as transportation or industrial assem-
bly tasks. Another problem might be the potential misuse of such algorithms for non-civil purposes.
Real-world application of imitation learning algorithms might also pose a safety risk and should
therefore be regulated, especially in domains where human life might be harmed such as traffic.

REFERENCES

Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich K&the. Analyzing inverse problems
with invertible neural networks. In International Conference on Learning Representations, ICLR,
2019a. URL https://github.com/VLL-HD/FrEIAL

Lynton Ardizzone, Carsten Liith, Jakob Kruse, Carsten Rother, and Ullrich Kéthe. Guided image
generation with conditional invertible neural networks. ArXiv, 2019b. URL http://arxiv.
org/abs/1907.02392.

https://github.com/VLL-HD/FrEIA
http://arxiv.org/abs/1907.02392
http://arxiv.org/abs/1907.02392

Under review as a conference paper at ICLR 2022

Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In
International Conference on Learning Representations, ICLR, 2020.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016-2019.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp, 2017.
URL https://arxiv.org/abs/1605.08803.

Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L. Isbell. Imitating la-
tent policies from observation. In Proceedings of the 35th International Conference on Machine
Learning, 2018.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. In International Conference on Learning Representations, ICLR, 2017.

Seyed Kamyar Seyed Ghasemipour, Shane Gu, and Richard S. Zemel. Understanding the re-
lation between maximum-entropy inverse reinforcement learning and behaviour cloning. In
DGS@International Conference on Learning Representations, 2019.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. In arxiv:cs.LG, 2017.

Paulina Grnarova, Kfir Y. Levy, Aurelien Lucchi, Nathanael Perraudin, lan Goodfellow, Thomas
Hofmann, and Andreas Krause. A domain agnostic measure for monitoring and evaluating gans.
In Advances in Neural Information Processing Systems, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. Technical report, 2018b.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2016.

Shengyi Jiang, Jingcheng Pang, and Yang Yu. Offline imitation learning with a misspecified simu-
lator. In Advances in Neural Information Processing Systems, 2020.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In Proceedings of the 37th International Conference on Machine Learn-
ing, 2020.

Kuno Kim, Akshat Jindal, Yang Song, Jiaming Song, Yanan Sui, and Stefano Ermon. Imitation with
neural density models. In arxiv:cs.LG, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, ICLR, 2015.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, 2018.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In International Conference on Learning Representations, ICLR, 2019.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, ICLR, 2020.

Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Imitating driver behavior
with generative adversarial networks. In 2017 IEEE Intelligent Vehicles Symposium (IV), pp.
204-211, 2017.

10

http://pybullet.org
https://arxiv.org/abs/1605.08803

Under review as a conference paper at ICLR 2022

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning. In
International Conference on Learning Representations, ICLR, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
ICLR, 2018.

A. Ng and S. Russell. Algorithms for inverse reinforcement learning. In “International Conference
on Machine Learning”, 2000.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. In Foundations and Trends in Robotics, 2018.

George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1-64, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation. In
Neural Computation, 1991.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Proceedings of the 32nd International Conference on Machine Learning, 2015.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, 2011.

Yannick Schroecker, Mel Vecerik, and Jonathan Scholz. Generative predecessor models for sample-
efficient imitation learning. In International Conference on Learning Representations, ICLR,
2019.

Sahil Sidheekh, Aroof Aimen, Vineet Madan, and N. C. Krishnan. On duality gap as a measure
for monitoring gan training. 2021 International Joint Conference on Neural Networks (IJCNN),
2021.

Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imitation learn-
ing from observation alone. In Proceedings of the 36th International Conference on Machine
Learning, 2019.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 4950-4957,
2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
In International Conference on Machine Learning Workshop on Imitation, Intent, and Interaction
(13), 2018b.

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from obser-
vation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, 2019.

Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori, and Yiannis Demiris. Random expert dis-
tillation: Imitation learning via expert policy support estimation. In Proceedings of the 36th
International Conference on Machine Learning, 2019.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. In
Advances in Neural Information Processing Systems, 2019.

11

Under review as a conference paper at ICLR 2022

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observa-
tions. In Advances in Neural Information Processing Systems, 2020.

Brian D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. PhD thesis, 2010.

A APPENDIX

A.1 RELATION TO LFO

The learning from observations (LfO) objective minimizes the divergence between the joint policy
state transition distribution and the joint expert state transition distribution:

min Jz, ;o = minDgr, (1™ (s, 8)||uP (5, 5)) (16)

where s’ is a successor state of s given a stationary policy and stationary s, s marginals. This can
be rewritten as

Jso =Y Drr(W™ (s, si)lln” (siv1,s:)
i=0..T—1

= > / (si1,) (log 1™ (si41,85) — log p (si41, 1))

1=0..T—1

Z / (7, -, 80)(log ™ (3i+1;3i)_log,uE(SiJrlaSi))
i=0..T—1

:/M (5708 (log ™ Sz+1,5i)*10gNE(5i+1,8i))
1:0 T—-1
= [u"(sr,.., 50) (log 0™ (si418:) + log 1™ (s;) — log 1 (si41]s:)) — log pu” (s;)
1=0..T—1
K (ST, -5 S0) B0 (54)
:]Es,...,s ~”[g7+10g]
LS RGN |
bis Mm’ Si
D (1 (57 SO (57, s 80)) + S Faraaynero o o8,
i=1..T—1 1 (si)
=D (1™ (57, -0y 50) | |87 (575 ..., 50)) + Drcr (1™ (si) 1" (s4))
1=1..T—-1

a7

A.2 BOUNDED REWARDS

Since we use the SAC algorithm as a subroutine all rewards must be bounded. This is true if all
subterms of our reward function

r(a;,s;) = Esi+1~u“’9(si+1\si)[_ log p(si+1las, si) + log Wé(ai\siﬂ, 5i) + IOgME(Si+1|Si)]
are bounded which holds if

€ < mp(ailsitr, si),p(sis1lai, si), P (sia|si) < H Vag, 85, 8i41

for some € and H which is a rather strong assumption which requires compact action and state
spaces and a non-zero probability to reach every state s;y; given any action a; from a pre-
decessor state s;. Since this is in general not the case in practice we clip the logarithms of
mp(ailsivis 8i)s p(sit1lai, si), pF(sit1]si) to [—15,1e9]. It should be noted that the clipping the
logarithms to a maximum negative value still provides a reward signal which guides the imitation
learning to policies which achieve higher rewards.

12

Under review as a conference paper at ICLR 2022

A.3 IMPLEMENTATION DETAILS

We use the same policy implementation for all our SOIL-TDM experiments. The stochastic policies
mg(a¢|s:) are modeled as a diagonal Gaussian to estimate continuous actions with two hidden layers
(512, 512) with ReLLU nonlinearities.

To train a policy using SAC as the RL algorithm, we also need to model a Q-function. Our imple-
mentation of SAC is based on the original implementation from|Haarnoja et al.|(2018b)) and the used
hyperpameter are described in Table|l| In this implementation, they use two identical Q-Functions
with different initialization to stabilize the training process. These Q-Functions are also modeled
with an MLP having two hidden layers (512, 512) and Leaky ReLU.

Table 1: Training Hyperparameter

SAC Parameter Value

Optimizer Adam (Kingma & Ba,72015)7
learning rate policy 1-1074

learning rate Q-function 3-107*

discount 0.7 (Ant 0.9)

mini batch size 2048

replay buffer size 2106

target update interval 1

number of environments 16

max number of environment steps 1.6 - 10° (Ant 8 - 105)
SOIL-TDM Parameter Value

expert transition model training steps 10*

learning rate expert transition model 1-1074

learning rate forward dynamics model 1-1074

learning rate backward dynamics model | 1-107%

update interval dynamics models 1

We implement all our models for SOIL-TDM using the PyTorch framework version 1.9.0 (Paszke
et al., 2017). To estimate the imitation reward in SOIL-TDM a model for the expert transitions
g (s'|s) as well as a forward pu(s’|s, a) and backward dynamics model i (a|s’, s) has to be learned.
All three density models are based on RealNVPs (Dinh et al.,2017) consisting of several flow blocks
where MLPs preprocess the conditions to a smaller condition size. The RealNVP transformation
parameters are also calculated using MLPs, which process a concatenation of the input and the
condition features. After each flow block, we added activation normalization layers like [Kingma &
Dhariwal|(2018)). To implement these models, we use the publicly available VLL—FrEIAE] framework
version 0.2 (Ardizzone et al. 2019a)) using their implementation of GLOWCouplingBlocks with
exponent clamping activated. The setup for each model is layed out in Table [2| We add Gaussian
noise to the state vector as a regularizer for the training of the expert transition model p 5 (s’|s) which
increased training stability for low amount of expert trajectories. We implement a linear decrease of
the standard deviation from 0.05 to 0.005 during the training of the expert model.

We train and test all algorithms on a computer with 8 CPU cores, 64 GB of working memory and an
RTX2080 Ti Graphics card. The compute time for the SOIL-TDM method depends on the time to
convergence and is from 4h to 16h.

Shttps://github.com/VLL-HD/FrEIA (Open Source MIT License)

13

Under review as a conference paper at ICLR 2022

Table 2: Normalizing Flow Setup

HE(sls) | ps(s')s,a) | polals',s)
N flow blocks 16 16 16
Conditional hidden neurons 64 48 192
Conditional hidden layer 2 2 2
Conditional feature size 32 32 8
Flow block hidden neurons 64 48 192
Flow block hidden layer 2 2 2
Exponent clamping 8 1 1

A.4 ADDITIONAL RESULTS

The following figures (Figure[d]- [7) show the policy loss and the estimated reward together with the
environment reward during the training on different pybullet environments for OPOLO and SOIL-
TDM (our method). All plots have been generated from training runs with 4 expert trajectories and
10 test rollouts. It can be seen that the estimated reward and policy loss from SOIL-TDM correlates
well with the true environment reward with the exception of the walker environment. It is possible
that the policy loss of SOIL-TDM is lower than O since its based not on the true distributions.
Instead its based on learned and inferred estimates of expert state conditional distribution, policy
state conditional distribution, policy inverse action distribution and g-function with relatively large
absolute values (50-100) each. These estimation errors accumulate in each time-step due to sum
and subtraction and due to the Q-function also over (on average) 500 timesteps which can lead to
relatively large negative values.

14

Under review as a conference paper at ICLR 2022

20

policy loss
200
a
a
8
8
B
g
5
a
200
~400
0 2 4 [
steps
policy loss
o
TNy Y
-2
-
a
8
=
=
g
g
-4
+
-
-10
oo 05 10 15
steps

Figure 4: The policy loss, estimated reward (based on discriminator output for OPOLO) and the
environment test loss during training in the pybullet Ant environment using our proposed SOIL-

1e6

estimated reward

estimated reward

=)
o

=4

0.5

Qg6

as

04

a3

oz

L8]

Qo

SOIL-TDM AntBulletEnv-v0

estimated reward

steps

OPOLO AntBulletEnv-v0

estimated reward

steps

®

1500

test reward

1000

=0

1500

test reward

1000

500

test reward
0 2 4 6 8
steps 1e6
test reward
a0 as 10 15 20
steps 16

TDM and the original OPOLO implementation with 4 expert trajectories.

15

Under review as a conference paper at ICLR 2022

SOIL-TDM HopperBulletEnv-v0

policy loss estimated reward test reward
2500
P 12
10
a 2000
. 08
B 1500
g
a 50 g E
E
5 K] g
g B i
|- E 04 2 1000
@
-100 az
00
-125 00
150 02 0
000 025 050 075 100 125 150 000 025 050 075 100 125 150 000 025 050 075 100 125 150
steps 126 staps 1e6 staps 1e6
OPOLO HopperBulletEnv-v0
policy loss estimated reward test reward
00 2500
08
05 2000
as
-0 B 1500
] 04 B
E i g
z i &
H £ g
a E o
-15 = 03 1000
H
0z
20 =00
o1
25 a
ao 02 04 a6 08 10 L] 0z 04 06 a8 10 an a2 04 06 08 0
steps 126 sleps 1e6 staps 126

Figure 5: The policy loss, estimated reward (based on discriminator output for OPOLO) and the
environment test reward during training in the pybullet Hopper environment using our proposed
SOIL-TDM and the original OPOLO implementation with 4 expert trajectories.

16

Under review as a conference paper at ICLR 2022

policy loss
0
o
=50
a
8
oy
B
&
-100
-150
200
a0 as 10
steps
policy loss
a0
-02
04
2 06
=
g
H
08
-10
-12
-14
ao 02 04 a6

L3

estimated reward

estimated reward

a8

a6

04

oz

o

02

05

04

03

0z

o1

oo

SOIL-TDM Walker2DBulletEnv-v0

estimated reward

oo os 10 15
steps 1e6
OPOLO Walker2DBulletEnv-v0
estimated reward

on 0z 04 06 o8 10

test reward

test reward

1750

1500

1250

1000

750

=0

250

1750

1500

1250

1000

750

00

250

test reward
L1} as 10 15
steps 1e6
test reward
an a2 04 06 08 0
steps 126

Figure 6: The policy loss, estimated reward (based on discriminator output for OPOLO) and the
environment test reward during training in the pybullet Walker2D environment using our proposed
SOIL-TDM and the original OPOLO implementation with 4 expert trajectories.

17

Under review as a conference paper at ICLR 2022

SOIL-TDM HaliCheetahBulletEnv-v0

policy loss estimated reward test reward
2500
150 10
00
100
1500
0 o5
B 000
a 2]
8 a i 5
- 3 g
g £ o P
= 50 £ L]
H
Q
-100
05 -500
-150
-1000
-200
-10
a0 025 050 Q75 100 125 150 a0 025 050 75 100 125 150 a0 @25 050 075 100 125 150
steps 126 staps 1e6 staps 1e6
OPOLO HalfCheetahBulletEnv-v0
policy loss estimated reward test reward
o7
o . -
L u Nprayt
a6 00
-1
05
1000
=2 ®
a g 04 E
8
5 B B
E E 03 i o
B
o
- az
-1000
a1
-5
-2000
ao
oo 02 04 a6 o8 10 oo 02 04 a6 o8 10 oo o2 04 06 a8 10
steps 1e6 steps 1e6 steps 1e6

Figure 7: The policy loss, estimated reward (based on discriminator output for OPOLO) and the
environment test reward during training in the pybullet HalfCheetah environment using using our
proposed SOIL-TDM and the original OPOLO implementation with 4 expert trajectories.

18

	INTRODUCTION
	Background
	Maximum Entropy Reinforcement Learning and Soft Actor Critic
	Imitation Learning
	Normalizing Flows

	Method
	Algorithm
	Relation to learning from observations

	Related Work
	Experiments
	Conclusion
	Appendix
	Relation to LfO
	Bounded rewards
	Implementation Details
	Additional Results

