
Under review as submission to TMLR

Pre-Training Representations of Binary Code Using Con-
trastive Learning

Anonymous authors
Paper under double-blind review

Abstract

Binary code analysis and comprehension is critical to applications in reverse engineering and
computer security tasks where source code is not available. Unfortunately, unlike source
code, binary code lacks semantics and is more difficult for human engineers to understand
and analyze. In this paper, we present ContraBin, a contrastive learning technique that
integrates source code and comment information along with binaries to create an embed-
ding capable of aiding binary analysis and comprehension tasks. Specifically, we present
three components in ContraBin: (1) a primary contrastive learning method for initial
pre-training, (2) a simplex interpolation method to integrate source code, comments, and
binary code, and (3) an intermediate representation learning algorithm to train a binary
code embedding. We further analyze the impact of human-written and synthetic comments
on binary code comprehension tasks, revealing a significant performance disparity. While
synthetic comments provide substantial benefits, human-written comments are found to in-
troduce noise, even resulting in performance drops compared to using no comments. These
findings reshape the narrative around the role of comment types in binary code analysis.
We evaluate the effectiveness of ContraBin through four indicative downstream tasks re-
lated to binary code: algorithmic functionality classification, function name recovery, code
summarization, and reverse engineering. The results show that ContraBin considerably
improves performance on all four tasks, measured by accuracy, mean of average precision,
and BLEU scores as appropriate. ContraBin is the first language representation model
to incorporate source code, binary code, and comments into contrastive code representation
learning and is intended to contribute to the field of binary code analysis. The dataset used
in this study is available for further research.

1 Introduction

Binary code1 provides valuable information about a program’s content and behavior and is often the only
available representation of a program in certain cases, such as legacy systems, proprietary software, and
penetration testing (Harris & Miller, 2005). Binary code analysis is critical to many software related tasks,
and understanding binary code can serve as a critical source of information about program content and
behavior, and thus a foundation of many applications (Wang et al., 2000; Pierce & Mudge, 1994; Cifuentes
et al., 1999; Giffin et al., 2004).

However, while understanding and analyzing binary code is essential for various tasks, there exists no prac-
tical, generalizable strategy for comprehending binary code due to inherent characteristics: compared to
source code and natural languages, binary code has very limited semantics, is substantially more difficult for
humans to understand, and is much more difficult to analyze automatically.

Currently, binary code analysis is approached through two methods: (1) traditional static and dynamic
analysis and (2) AI-based methods. Traditional methods use manual techniques and specific algorithms (e.g.,
dataflow analysis), but are limited in their ability to be used across different platforms and applications (Bao

1In this paper, we use binary code to refer to both executable binary functions and lifted assembly/intermediate represen-
tations because they are trivially interchangeable.

1



Under review as submission to TMLR

Conduct Perform

Code Writing Compilation
Source Code

Comment Binary Code

Human Analysis Decompilation

Unknown Process

Unknown Process

Expert Programmer Compiler/Decompiler

Figure 1: Illustration of the software compilation and human documentation process. Expert programmers
can analyze source code to write comments or produce code based on comments. Compilers can compile
source code and obtain binary code, whereas decompilers can decompile binary code and get source code.

et al., 2014; David et al., 2016; Aslanyan et al., 2020). AI-based methods use machine learning to capture both
program structure and semantics, and have combined syntax, semantics, and structure to create embeddings
for specific tasks (Guo et al., 2020; Lacomis et al., 2019; Chen et al., 2022b). However, few focus on large-
scale pre-trained representations for binary code, which is a largely unexplored area (Feng et al., 2020; Guo
et al., 2020), instead focusing primarily on source code or related syntactic structures like abstract syntax
trees.

Considering the critical challenges needed to assist binary code analysis, in this paper, we present Contra-
Bin, a novel contrastive learning model that combines simplex interpolation to approximate human gradual
learning, and intermediate contrastive learning to produce a high quality embedding for binary code. Large
corpora of source code and documentation can be combined with corresponding compiled binary code to
serve as a basis for an effective contrasting learning approach.

ContraBin consists of three components and an evaluation, illustrated in Figure 2. First, we leverage com-
ments within the source code and the corresponding binary code (which can be obtained from compiling the
source code), and randomly choose two of the three representations (i.e., source code, comments, and binary
code) to conduct primary contrastive learning. Then, we design linear and non-linear simplex interpolation
methods to interpolate two data embeddings and obtain an intermediate representation. Next, we introduce
an intermediate contrastive learning approach to incorporate source code and comment information into
binary code. Lastly, we evaluate the trained binary code embedding on three downstream tasks for binary
code analysis to validate our model. We elaborate upon the design of ContraBin in Section 2.

The design of ContraBin is based on three key insights derived from multi-view learning, human translation
and code compilation, and contrastive learning: (1) source code, corresponding human-written comments,
and compiled binary code can flexibly represent the same semantics of a given program but just in different
modalities.

(2) Human documentation (e.g., comments within source code, written in natural languages) and compilation
(or decompilation) by the compiler share similar gradual learning properties, as shown in Figure 1. With
this insight, we design simplex interpolation among source code, binary code, and comments to imitate a
unified learning process.

(3) While source code, binary code, comments, and their intermediate representations correspond to the
same program semantics, they are dissimilar to other source code, binary code, comments, intermediate
representations.

We show how these insights can be combined to form an effective multi-modal contrastive learning embedding
capable of aiding the analysis of binaries.

We evaluate ContraBin’s pre-trained embeddings against state-of-the-art large-scale pre-trained mod-
els (Liu et al., 2019; Feng et al., 2020; Guo et al., 2020; 2022a)2.

2We note that existing pre-trained models have focused on applications where source code is available — we make a best
effort to compare our novel embedding for binaries against previous work in spite of this key difference.

2



Under review as submission to TMLR

We evaluate ContraBin in four indicative downstream tasks and corresponding datasets that entail binary
code analysis: (1) binary functional algorithm analysis, (2) binary function name recovery, (3) binary code
summarization, and (4) binary reverse engineering, using POJ-104 (Mou et al., 2016), DIRE (Lacomis et al.,
2019),

and two subsets of AnghaBench (Da Silva et al., 2021), respectively. We choose these tasks and datasets
because they also permit a fair comparison with state-of-the-art models that make use of source code. Our
results show that ContraBin substantially outperforms current code analysis models on the vast majority
of task-relevant metrics and achieves comparable performance on others.

In conclusion, we claim the following contributions:

• We present ContraBin, a novel contrastive learning-based framework leveraging simplex interpolation
on source code, comments, and binary code to learn an effective representation (i.e., a pre-trained
embedding) of binary code.

• We design a new simplex interpolation approach to capture the inherent process of gradual learning of
humans to assist contrastive learning.

• We derive a novel intermediate contrastive learning algorithm to incorporate external knowledge and
semantics in source code and comments into binary code.

• We provide an in-depth analysis of the impact of human-written and synthetic comments on binary
code comprehension tasks, demonstrating that synthetic comments significantly enhance performance,
while human-written comments can introduce noise and reduce model effectiveness compared to using
no comments.

• To the best of our knowledge, this is the first study to derive intermediate contrastive learning for
binary code analysis to improve representation model performance.

• We conduct extensive experiments on indicative datasets in evaluation, demonstrating that Contra-
Bin outperforms other state-of-the-art models in all four downstream tasks on binary code analysis
with respect to task-relevant metrics such as BLEU-4 for summarization and accuracy for algorithmic
classification.

Positive

Paired Batch

Paired Batch

Source Code

Binary Code

Primary Contrastive Learning: (b) with naive SI + (c) and Secondary Contrastive Learning: (b) + (c)

Comment

(b) (c)

Task-Specific Fine-Tuning: (d)

(d)

Pre-training binary code representation

Dissimilarity

Functionality Classification

Function Name Recovery

Code Summarization

Simplex

Interp (SI)

✔

Negative

Dissimilar

Embedding

Similar

Embedding

Similarity

Batch-wise simi/dissimilarity

Anchored

Encoder*

Comment

Embedding

Source

Embedding

Freezed Gradient

Trainable

Encoder*

✗

✗

(a)

Binary

Embedding

Trainable Gradients

Learning b/w BE and SIE

Triplet Data Preparation: (a)

Reverse Engineering

Used for downstream tasks after pre-training

*Encoders initialized with pretrained models.

Machine
Generated

Compilation

Figure 2: Overview of ContraBin’s Training Framework. The framework consists of four components:
(a) Triplet Data Preparation, where triplet data (source code, binary code, and comments) are created
through compilation and machine-generated comments; (b) and (c) are collectively structured into two
learning stages: (1) Primary Contrastive Learning, which selects a single representation (naive SI) and
applies batch-wise similarity and dissimilarity; and (2) Secondary Contrastive Learning, which generates
interpolated representations using simplex interpolation (SI) and further aligns them. Finally, (d) Task-
Specific Fine-Tuning applies the pre-trained embeddings to downstream tasks.

3



Under review as submission to TMLR

2 Approach

In this section, we describe ContraBin, our approach to obtain high quality representation for binary
code that can be used for a swath of binary analysis and comprehension tasks. In practice, our goal is to
augment stripped, semantics-dearth binaries with rich contextual information provided by comments and
source code. At a high level, we use a large-scale pre-training task along with downstream tasks related
to binary code. ContraBin leverages tuples of (source code, binary code, comments) from many different
programs scraped from GitHub, which form the basis of a contrastive learning task. The architecture of
ContraBin is summarized in Figure 2, which consists of three components. Given source code, we first
generate comments using pre-trained models, compile each code snippet to emit binary code, and randomly
choose two of the three code representations in each batch of triplets to conduct primary constrastive learning.
Then, we derive embeddings for the triplets from our encoder as a simplex projection, and generate an
intermediate representation based on random and learnable interpolation. Next, we train our encoder by
intermediate contrastive learning using anchored representation and intermediate representation (i.e., one of
the three representations is anchored while the other two are not). Finally, we apply the trained binary code
embedding to four downstream tasks to evaluate its performance.

Background In recent years, pre-trained representations have become a powerful tool in code analysis,
offering the ability to leverage vast amounts of existing knowledge to improve the performance and gen-
eralization of models. By pre-training on large datasets of source code and natural language comments,
these representations capture essential patterns and semantics that are difficult to learn from binary code
alone. In our approach, we utilize these pre-trained models to bridge the gap between the rich, high-level
information available in source code and comments, and the lower-level, more abstract nature of binary code.
This strategy allows our model to develop a deeper understanding of binary code by learning from multiple
modalities, ultimately enhancing its ability to perform complex tasks in code analysis.

To achieve this, our approach is structured in several key stages, each building on the previous one to refine
and improve the model’s understanding of binary code. We begin by aligning the representations of source
code, comments, and binary code through a series of pre-training steps designed to capture the nuances of
each modality. By progressively refining these embeddings, our model learns to effectively transfer knowledge
between different forms of code representation, ensuring that the final binary code embedding is robust and
semantically rich. The following sections detail each of these stages, illustrating how they contribute to the
overall effectiveness of our methodology.

2.1 Primary Contrastive Learning

This subsection introduces the primary contrastive learning approach for the simplex interpolation. Recall
that the conversion process between two representations can involve complex analyses (e.g., compilation)
or creative human processes (e.g., code comprehension). At the same time, no generalizable models have
been trained on datasets containing binary code. This can lead to the cold start problem in representation
learning (Contardo et al., 2014) when a new data representation (e.g., a novel program never seen before)
emerges in a system. Therefore, it is challenging to capture their features — the same scenario applies to
binary code representation.

Comparison The initial phase of ContraBin reflects the early learning stages individuals go through
when encountering a new concept, emulating it using straightforward comparisons.

To mitigate this cold start problem, we adopt primary contrastive learning in the first step of model training.
Specifically, we use three representations of a program: comments (i.e., summarization generated by code
models), source code (i.e., as written by developers), and binary code (i.e., as emitted from a compiler), and
randomly choose two of them to conduct contrastive learning, as shown in Figure 2. During this step, the
simplex interpolation module is disabled:

this approach is inspired by multi-view learning (Zhao et al., 2017) in computer vision, in which an object
can have k views, and all of the views are exactly from the same object. In our model, either source code,

4



Under review as submission to TMLR

binary code, or comment can represent the same program, so we treat the three representations (also denoted
as modalities or views) of a program to enrich the information in binary code

There are two steps in primary contrastive learning: manifold projection and batch-wise similarity compar-
ison.

Manifold projection To perform primary contrastive learning, the vector representation for each input
string (i.e., of instructions, source code, or comments) is obtained by an encoding function fM that projects
an instance x into a manifold space M with dimension d In this paper, xs, xb and xc denote input string of
source code tokens, binary code (assembly or IR lifted from a binary), and comment of one program, while
hs, hb, hc ∈ Rd are their corresponding vector representations. The batch-wise manifold projection is

Hs = fa
M(Xs), Hc = fa

M(Xc),
Hb = f t

M(Xb),
(1)

where Xs, Xb and Xc are the matrix representations of a batch of programs, and Hs, Hb and Hc ∈ Rn×d

are the matrix representations of a batch of projected embedding. We use a single anchored encoder fa

for encoding source code and comments and a trainable encoder f t for binary code. In this context, the
use of the terms ‘anchored’ and ‘trainable’ refers to the fact that the parameters of the encoder used for
encoding comments and source code will not be updated by any binary code. Only the binary code encoder
is trainable. This design was made based on our early experimental findings, in which we found that using
binary code to update comments and source code resulted in an ineffective model due to the considerable
differences between binary code and these other forms of representation. To optimize the training process and
build upon existing knowledge, we utilized pretrained embeddings, allowing for more efficient adaptation to
the task of binary code representation. This strategy reduces the need for training from scratch and enables
a more effective fine-tuning process.

Batch-wise similarity comparison To align binary code representations with their corresponding source
code and comments, we adopt a loss function inspired by CLIP (Radford et al., 2021). This method leverages
batch-wise similarity and dissimilarity between different program representations to update the model.

Specifically, we compute the in-batch cross-similarity between the anchored representation (either comment
or source code) and the trainable binary code representation as follows:

logits = Hc/sHT
b , (2)

where Hc/s and Hb represent the embeddings of comments or source code and binary code, respectively, and
the notation Hc/sHT

b indicates standard matrix multiplication. The resulting logits quantify the in-batch
cross-similarity.

To ensure compatibility with the cross-entropy loss, we convert the logits into a probability distribution
using the softmax function:

P = softmax(logits, dim = −1). (3)

Next, we compute the in-batch similarity of the representations within each modality:

simc/s = Hc/sHT
c/s, simb = HbHT

b , (4)

where simc/s and simb represent the intra-batch similarities of the comment/source code and binary code
embeddings, respectively.

To construct the target distribution for the loss computation, we take the average of the intra-batch simi-
larities and apply the softmax function:

targets = softmax
( simc/s + simb

2 , dim = −1
)

. (5)

The loss function is then computed using the cross-entropy (CE) between the probability distributions of P
and targets:

L = CE(P, targets). (6)

5



Under review as submission to TMLR

Interp NN

Learnable Simplex Interpolation Module Interp NN Blocks

Concat

ProjectionHead

Fully Connected

Sigmoid

SI Module
Interpolation Index

Intermediate Representation
Embedding 1

Embedding 2

Figure 3: Illustration of the Simplex Interpolation Process. The left side shows our linear interpolation
pipeline, learning a λ to interpolate h1 and h2, two of the hc, hs and hb. The right side provides one type of
interpolation NN block, consisting of the structure of ProjectionHead, a fully-connected layer, and the final
Sigmoid layer.

By minimizing this loss, the model learns to align semantically similar binary code, source code, and comment
embeddings in a unified embedding space. Minimizing the cross-entropy penalizes differences between P and
targets, forcing the two distributions to become more similar. As targets reflects the similarity structure of
embeddings, this process aligns P with it, effectively concentrating the distributions (reducing entropy) and
pulling semantically related concepts closer in the embedding space.

Explanation of the loss function The loss function is designed to address the inherent differences between
binary code and higher-level code or comments. By minimizing this loss, the model learns to position related
concepts—whether from binary code, source code, or comments—closely together in a unified embedding
space. This approach enhances the model’s ability to transfer knowledge across these diverse representations,
leading to improved performance in downstream tasks. Although inspired by the contrastive loss used in
CLIP, this function is tailored to the specific needs of binary code representation, ensuring that similar
embeddings are aligned while distinct ones are separated. This loss function can then help to align the
binary code embedding closer to the representations of comments and binary code in the manifold M,
thereby providing a well-trained binary code embedding as the starting point for subsequent steps. The
model will then back propagate the loss and update the parameters.

2.2 Secondary Contrastive Learning

To enhance the representation quality of binary code embeddings, secondary contrastive learning builds on
primary contrastive learning by integrating simplex interpolation and intermediate contrastive learning. In
primary contrastive learning, naive interpolation is used, where a single representation is selected without
applying interpolation techniques (as illustrated in Figure 2). Secondary contrastive learning extends this
by introducing two advanced simplex interpolation methods: linear interpolation for direct learning and
non-linear interpolation for customized learning. These methods generate diverse and expressive views of
program representations, enabling the model to better capture semantic relationships among source code,
binary code, and comments. Intermediate contrastive learning then operates across all views generated by
the simplex interpolation methods, providing a novel mechanism to align semantically related representations
while preserving distinctions among unrelated ones. Figure 2 illustrates the integration and interaction of
these components within a unified training pipeline.

Simplex interpolation for gradual learning After completing primary contrastive learning, we use
simplex interpolation for gradual learning among the three representations, as shown in Figure 2 (a). Simplex
interpolation is inspired by human translation (e.g., from source code to comment or vice versa) and the code
compilation (or decompilation) process, in which conversion from one representation to the other involves
intermediate thinking or analysis. While we acknowledge that the manifold assumption is a common tool in
understanding deep learning phenomena, its application here serves primarily to align with our color boxes
discussed from Section 2.1 to Section 2.4. This assumption provides a simplified framework to conceptualize
the interpolation process, aiding in the explanation of our model’s behavior in binary code representation
learning.

6



Under review as submission to TMLR

Analogy and extrapolation The subsequent portion suggests that ContraBin compares represen-
tations of the same program to learn differences and similarities among programs.

We use both linear and non-linear simplex interpolation as part of a gradual learning approach to obtain
increasingly expressive embeddings. Based on simplex interpolation theories (Thrampoulidis et al., 2022), we
presume the intermediate representations between any of the two in source code, binary code, and comments
can be a different view of the same program. The detailed steps are shown as follows:

Linear interpolation for direct learning We create two interpolation methods to generate inputs for
contrastive learning: linear interpolation and non-linear interpolation, as shown in a unified Figure 3. Both
interpolation methods follow the same interpolation function Γ(A, B; λ) defined as:

Γ(A, B; λ) = λ · A + (1 − λ) · B, (7)

where A and B are batch data representations, λ ∈ [0, 1] denotes the interpolation index, and · indicates
element-wise multiplication. In ContraBin, we define Hl = Γ(H1, H2; λl) and Hn = Γ(H1, H2; λn) for
linear and non-linear interpolation, respectively. Linear interpolation imitates the learning process between
one thing to another, where the model progresses towards all knowledge points for a given task. In practice,
we regard the interpolation index as a trainable parameter, learned by a neural network, denoted as:

λl = f l
interp(H1 + H2), (8)

where f l
interp denotes the interpolation neural network function that learns the optimal interpolation index

for H1 and H2, and λl denotes a linear interpolation index ranging from 0 to 1. Note that the Interp NN
blocks in Figure 3 are one of the possible implementations. We apply linear interpolation to the manifold
vectors of source code and binary code using:

Hl = λl · H1 + (1 − λl) · H2, (9)

where Hl denotes the batch-wise intermediate representation generated by the linear interpolation. The
broadcast property is adopted so that the scalar λl expands to the shape of H1 and H2, enabling element-
wise multiplication.

Non-linear interpolation for customized learning We further consider non-linear interpolation to
capture complex semantics and enhance model performance. Unlike linear interpolation, which uses a scalar
λ, non-linear interpolation treats the interpolation index as a matrix with the same shape as H1 and H2,
allowing finer-grained and feature-wise control. Formally, this is defined as:

λn = fn
interp(H1 + H2), (10)

Hn = λn · H1 + (1 − λn) · H2, (11)
where λn is a matrix representing the non-linear interpolation index and fn

interp is the corresponding neural
network function. Both interpolated embeddings Hl and Hn serve as input to the intermediate contrastive
learning step.

Intermediate contrastive learning for representation refinement To further refine the binary code
embeddings, we introduce intermediate contrastive learning, which leverages interpolated representations
generated in Subsection 2.2. These interpolations provide an alternative view of the program’s semantics,
acting as unseen yet reasonable information about the same program. This step builds on the concept of
contrastive learning by incorporating these interpolated representations into the training process.

As illustrated in Figure 4, the interpolated representation hi (a combination of source code projection hs

and comment projection hc) is compared against the binary code projection hb in the embedding manifold
M. Similarly, h′ denotes all dissimilar projections, which include other representations in the batch that do
not belong to the same program.

To compute the intermediate contrastive loss, we define

Zi =
∑

h′∈B′

exp(sim(hi, h′)/τ),

7



Under review as submission to TMLR

Source Code

Binary Code

Comment

Dissimilar Representation

Inherent Similarity

Inherent Disimilarity

Away from

Close to

Intermediate Representation

Manifold

Interpolation

Figure 4: Illustration of the intermediate contrastive learning. The source code hs, binary code hb, com-
ment hc, and their interpolations hi in manifold M are inherently similar, whereas they are dissimilar to
any other program representations h′. Therefore, they will be close to one another but away from others
during training.

where B′ denotes the set of all dissimilar projections in the batch, sim(·, ·) represents the cosine similarity
between two embeddings, and τ is a temperature parameter. The loss is then computed as:

Lintermediate = − 1
N

N∑
i=1

log
(

exp(sim(hi, hb)/τ)
exp(sim(hi, hb)/τ) + Zi

)
,

where N is the batch size. This formulation encourages the interpolated representation hi to align closely
with the corresponding binary code projection hb, while maintaining separation from unrelated projections
h′. By introducing Zi, we explicitly represent the normalization factor in the denominator, which simplifies
the interpretation of the loss and enhances its clarity.

Intermediate Representations in Context Intermediate contrastive learning refines embeddings
by aligning related representations and separating unrelated ones, enabling ContraBin to better
capture semantic relationships for improved learning.

To stabilize training, we adopt a stop-gradient mechanism for the anchored representation during opti-
mization, detaching the gradient of hs or hc when used as the anchor to prevent instability caused by
intermediate representations. This mechanism facilitates the integration of intermediate contrastive learning
into the overall training process, ensuring that interpolated views contribute effectively to refining binary
code embeddings. Building on this foundation, the subsequent gradual learning step further enhances the
model’s ability to capture nuanced semantic relationships across diverse program representations.

Gradual learning Following the gradual learning literature, models learn most effectively when they follow
a natural, progressive order as humans do (Gou et al., 2021; Cho & Hariharan, 2019). Specifically, models
learn high-level data abstracts initially, then progress to more complicated embeddings. Following this
intuition, we train our model via primary contrastive learning during cold start. After several epochs (10
epochs in our implementation), we switch the training pattern to contrastive learning based on linear simplex
interpolation and non-linear simplex interpolation to further improve the generalizability of our model and
finalize the training process, shown in Algorithm 1. By integrating all three parts, ContraBin follows a
natural learning curve (i.e., from simple to complex) to better understand the meaning of binary code.

2.3 Task-Specific Fine-Tuning

To evaluate the effectiveness of our pre-trained binary code embeddings, we apply them to four downstream
tasks: (1) algorithmic functionality classification from binaries, (2) binary code function name
recovery, (3) binary code summarization, and (4) binary reverse engineering. These tasks compre-
hensively span two domains: binary code analysis (tasks 1 and 2) and binary code comprehension (tasks 3
and 4). By addressing a diverse set of challenges, our fine-tuning approach demonstrates the versatility and
robustness of the learned embeddings.

8



Under review as submission to TMLR

Algorithm 1 ContraBin pre-training framework
Require: Source code set Xs with paired binary code set Xb and comment set Xc, split into train Xtrain and

validation Xval.
Ensure: Minimization of loss on Xval.

1: if Primary contrastive learning then
2: for batch = 1, . . . , kstart do
3: Project Xc, Xs and Xb to M with encoders fa and ft

4: Compute batch-wise similarity loss between two representations in M and train the predictors and encoder
5: end for
6: end if
7: if Contrastive learning by linear or non-linear simplex interpolation then
8: for batch = 1, . . . , kinterp do
9: Project Xc, Xs and Xb to M with encoder fa and ft

10: Choose two of the encoded representations and compute the index λl or λn by the interpolation NN and get
intermediate representations

11: Compute batch-wise similarity loss between intermediate and the other representation in M and train the
binary encoder and interp NN

12: end for
13: end if

Fine-tuning is performed using task-specific objectives, each tailored to the requirements of the respective
downstream task. For classification tasks, including algorithmic functionality classification and function
name recovery, we employ a cross-entropy loss function:

Lclassification = − 1
N

N∑
i=1

yi log ŷi,

where yi is the true label, ŷi is the predicted probability, and N is the batch size. This objective encourages
the model to predict accurate labels for binary code representations.

For summarization and reverse engineering tasks, we treat the problem as a sequence-to-sequence generation
task. Here, the loss function used is a token-level cross-entropy loss:

Lseq2seq = − 1
N

N∑
i=1

T∑
t=1

yi,t log ŷi,t,

where T represents the sequence length, yi,t is the true token at time step t, and ŷi,t is the predicted
probability for that token. This formulation ensures the model learns to generate accurate textual summaries
and source code representations.

All four tasks are adapted from the CodeXGlue3 benchmark, with modifications for binary code analysis.
For instance, the binary functionality classification and function name recovery tasks are based on their
corresponding tasks in CodeXGlue but focus on pre-compiled binary representations rather than source code.
Similarly, binary code summarization and reverse engineering extend the summarization and translation
tasks in CodeXGlue to the domain of binary-to-natural language and binary-to-source code transformations,
respectively. Detailed descriptions for each task are provided below.

Algorithmic Functionality Classification from Binaries This task involves classifying binary code
according to its functionality, such as distinguishing "quicksort" from "md5 hash." Accurate classification
assists developers in isolating specific code blocks, improving readability, saving development time, and aiding
in reverse engineering (Haq & Caballero, 2021). For example, given a binary, the goal is to categorize it into
classes like sorting, hashing, or searching. As shown in Table 1, this task is categorized under "Analysis" and
represents a key aspect of binary code analysis, where our method leverages multiple program representations
for robust classification.

3https://github.com/microsoft/CodeXGLUE

9

https://github.com/microsoft/CodeXGLUE


Under review as submission to TMLR

Table 1: Categorization and objectives of downstream tasks.
Task Domain Objective

Algorithmic functionality classification (1) Analysis Categorize binaries by functionality
Function name recovery (2) Analysis Predict meaningful function names
Code summarization (3) Comprehension Generate concise summaries for binaries
Reverse engineering (4) Comprehension Decompile binaries into source code

Function Name Recovery Recovering function names from binary code sequences is crucial for stripped
binaries that lack meaningful names and debugging information. This task, categorized as "Analysis" in
Table 1, significantly reduces manual effort in reverse engineering and malware analysis scenarios, particularly
when source code is unavailable. By predicting function names effectively, our embeddings restore clarity to
binary code, enhancing the overall analysis workflow.

Code Summarization This task translates binary code into concise English summaries, aiding compre-
hension and facilitating security assessments, reverse engineering, and software maintenance. As outlined
in Table 1, code summarization falls under the "Comprehension" category, emphasizing its role in improv-
ing understanding of binary functionality and enabling more effective software analysis through succinct
summaries.

Reverse Engineering Decompiling binary code into source code is essential for tasks like security as-
sessments, defect localization, and software comprehension. While tools like Hex-Rays and Ghidra offer
decompilation support, they often generate code that lacks symbolic names and deviates from canonical
developer-written formats. Reverse engineering, classified under "Comprehension" in Table 1, benefits from
our embeddings by transforming binaries into more interpretable source code, providing valuable insights
into the original binaries.

We summarize the categorization of these tasks, their objectives, and their respective focus areas in Table 1,
which groups the tasks into "Analysis" and "Comprehension" domains.

2.4 Parallelism Between the Presented Steps and the Learning Stages

To ensure a clear understanding of the connections between the training steps and the overall learning
pipeline, we explicitly describe the parallelism between the training stages and learning steps in ContraBin.
Each stage in our framework directly contributes to a specific aspect of the learning process, as illustrated
in Figure 2:

• Primary Contrastive Learning Step: This step corresponds to the initial stage of representation
learning, where naive interpolation (selecting a single representation from source code or comments)
is used. It serves as the foundational phase to align binary code with these modalities in the
embedding space without introducing intermediate representations.

• Secondary Contrastive Learning Step: This step builds upon the foundational alignment by
introducing simplex interpolation, where representations of source code and comments are interpo-
lated to generate intermediate views. These interpolated representations provide a nuanced semantic
bridge, which, when combined with intermediate contrastive learning, allows the model to refine its
embedding space. By focusing on relationships between source code and comments, this step ensures
that binary code embeddings are enriched through contextually meaningful relationships.

• Task-Specific Fine-Tuning Step: In this final stage, the pre-trained embeddings are applied to
downstream tasks. This step translates the learned embeddings into practical utility, demonstrating
their effectiveness across binary analysis and comprehension tasks.

The transitions between these steps ensure a seamless progression from foundational alignment to representa-
tion refinement and practical application. This structured pipeline integrates the learning stages cohesively,
as depicted in Figure 2 and aligned with the corresponding text sections.

10



Under review as submission to TMLR

0 2 4 6 8 10
Program length (log)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
of

 p
ro

gr
am

s

Frequency of programs vs. program length (log)
Binary code length (log)
Comment length (log)
Source length (log)

Figure 5: Length distribution of the source code, binary code, and comments in the preprocessed dataset.
Comments are skewed to shorter lengths.

3 Experimental Design

In this section, we introduce the experimental design for the evaluation of ContraBin. Specifically, we
design and conduct four experiments in total: one assessment of the pre-training of ContraBin, and
three others for evaluating the performance of ContraBin’s embeddings using indicative downstream tasks
relating to binary code analysis. We introduce these experiments to answer the following research questions:

• RQ1: How accurately can the embeddings provided by ContraBin perform in the tasks of binary code
analysis? Does ContraBin outperform state-of-the-art pre-trained language representation models
evaluated by classification metrics?

• RQ2: How well do the embeddings provided by ContraBin in the task of binary code comprehension?
Is it better than state-of-the-art pre-trained language representation models evaluated by NLP metrics
and human perception?

• RQ3: How effective is the linear and non-linear intermediate contrastive learning in ContraBin, and
what are the advantages and areas for improvement?

Before we evaluate each RQ in turn, we first introduce the experimental configuration, including the dataset
for training and evalution, as well as the experimental procedures and settings.

3.1 Training Design

To train ContraBin, we must build a dataset consisting of three program representations: source code,
compiled binary code, and source code comments or summaries, and train ContraBin to generate improved
embeddings for downstream tasks. We obtain each program representation as follows:

Source code: To obtain source code, we use a widely-used public dataset called AnghaBench (Da Silva
et al., 2021) as our source data for training ContraBin4. Specifically, we adopt the benchmark dataset
that contains 1 million single-function C files extracted from programs and mined from popular GitHub
repositories. This dataset serves as the source code representation in our method to incorporate semantic
variety into the training process.

Binary code: After obtaining the source code from AnghaBench, we compile the code snippets in Ang-
haBench using Clang (specifically, LLVM5) to generate the corresponding assembly code. We choose LLVM
assembly for platform transparency — many static and dynamic analyses exist for LLVM, and the Clang
infrastructure supports many language backends from LLVM bitcode. However, in practice, any straight-line
assembly language could fit the requirements of ContraBin (i.e., the contrastive learning framework).

4AnghaBench: http://cuda.dcc.ufmg.br/angha/home
5LLVM Compiler Infrastructure: https://LLVM.org/

11



Under review as submission to TMLR

Comments: During pre-analysis, we found most comments in real-world source code are not globally infor-
mative. Specifically, human-written comments can be random in content (e.g., they may contain copyright
notifications, random snippets of old code, or unstructured explanations), or contain partial information
about the current location of code statements — source code comments in general are not always descriptions
of semantics of a program’s complete source code. Therefore, we adopt an Encoder-Decoder CodeT5 (Wang
et al., 2021) model to automatically generate a single comment for each snippet of source code in our dataset.

Figure 5 shows the length distribution of the processed dataset derived from AnghaBench. The overall com-
ment length distribution is quite different from both source and binary code since comments are considered
a high-level abstraction of information using natural languages (as opposed to structured programming or
assembly languages). We also compute the 90th percentile of length and find the results for source code,
binary code, and comments to be 422, 2853, and 63, respectively.

We use two Nvidia A40 GPUs during model pre-training and follow the parameter settings of Simple-
CLIP (Shariatnia, 2021). We set the random seed as 42 in the pre-training for reproduction. To better
evaluate the performance and robustness, we also train two versions of our model, ContraBin-PCL and
ContraBin. For ContraBin-PCL, we set 10 epochs for primary contrastive learning only. For Contra-
Bin, we use 10, 10, and 10 to improve the overall model efficiency on binary code analysis, and 10, 30, 30 to
enhance the general model performance on binary code comprehension.

3.2 Evaluation Design

Our evaluation of each research question considers different tasks and perspectives. For each of our three
downstream tasks, we choose a publicly available dataset (and corresponding reference in the literature).
We preprocess each dataset so that they can leverage the pre-trained embeddings from ContraBin. The
evaluation datasets include different source code and their compiled assembly. We describe each task and
associated dataset in detail below.

POJ-104 For the binary functional algorithm classification task (RQ1: Downstream Task 1), we adopt
POJ-104 from the CodeXGLUE dataset (Lu et al., 2021). In an Open Judge (OJ) system, students submit
their solutions to a programming problem, and the OJ system judges whether the code can run successfully
on all available test suites. In this way, the OJ system aims to improve the programming skills of users. From
this dataset, we can find other programs that perform the same task as an input program (e.g., programs
can be classified as bubble sort vs. heap sort. vs. Fibonacci sequence, etc.).

The dataset includes programming problems and verified source code solutions. There are 104 programming
problems in POJ-104, with 500 examples each. The dataset is categorized into train/development/test sets
with non-overlapping program problem labels. Thus, we can view this dataset as containing 104 different
classes in which to classify an input program. While the original POJ-104 dataset used source code structural
information, we adapt it for classifying input binaries.

In our experiments, we compile each solution in POJ-104 to LLVM assembly code, keeping the functionality
label unchanged, as shown in Table 2. This change transforms POJ-104 into an assembly code dataset
suiting our binary analysis interests. We fine-tune each model with 2 epochs and a block size of 400. We use
training and validation batch sizes of 32 and 8, respectively, and choose learning rate to be 2e-5 and maximal
gradient normalization to be 1. In all fine-tuning processes, we use the default random seed of 123456.

DIRT For the binary function name recovery task (RQ2), we chose the DIRT dataset used to train
DIRTY(Lacomis et al., 2019), a recent machine learning model augmenting decompiler outputs with variable
type and name predictions. The full dataset contains around 1 million functions spread across 75,656 binaries
that were mined from public GitHub repositories using GHCC6. With the help of a decompiler, each binary
is lifted into equivalent C pseudocode and processed into a list of lexemes and an implementation-defined for-
mat for enumerating source-level variable information. Because the DIRT dataset is a preprocessed dataset
that does not conform with ContraBin’s expected inputs, we instead obtained the list of GitHub reposito-
ries that were used to construct the DIRT dataset and compiled each project ourselves. We modified GHCC

6GHCC: https://github.com/huzecong/ghcc

12



Under review as submission to TMLR

Table 2: Dataset statistics for algorithmic classification.
POJ-104 (Functionality Classification) AnghaBench (Code Summarization)

Data Type # Problems # Examples # Unique Sum # Examples
Train 64 14,614 14,700 16,383
Dev 16 5,079 902 910
Test 24 8,102 890 911

DIRE (Function Name Recovery) AnghaBench (Reverse Engineering)
Data Type # Names # Examples # Unique Source # Examples
Train 91 49,933 15,937 16,383
Dev 91 2,774 909 910
Test 91 2,775 903 911

to save the intermediate LLVM bitcode objects produced during compilation and disassemble each bitcode
object into readable LLVM assembly using the LLVM disassembler.

In our experiments, we select function names with number of functions larger than 200, and remove some
function names that are not specific to a type of function (i.e., main, _, and __list_add) to make sure
the model is trained on meaningful data. We further strip all LLVM files of their original function names
(i.e., @TESTFUN0 as the name of the first function in an LLVM file) and measure ContraBin’s ability to
classify these function names. The dataset statistics are shown in Table 2. We fine-tune each model with
5 epochs and a block size of 256. We use training and validation batch sizes of 8 and 16, respectively, and
choose learning rate to be 2e-5 and maximal gradient normalization to be 1. In all fine-tuning processes, we
use the default random seed as 123456.

AnghaBench For the binary code summarization and reverse engineering tasks, we use the AnghaBench
test set (Da Silva et al., 2021) during pre-training, which includes code never been seen by the model.
Specifically, we only select the main function in LLVM code and its paired source code for fine-tuning
the code summarization and reverse engineering tasks. To better fit the capacity of pre-trained language
models, we further truncate the length of binary code by only selecting the first 512 instructions. The dataset
statistics are displayed in Table 2. In this paper, we evaluate the model’s ability to translate and summarize
binary code using the validation set and analyze its embedding using the test set.

In our experiments, we defined the input length for both the summarization and reverse engineering tasks as
512, and the output length for summarization and translation as 32 and 512, respectively. We use training
and evaluation batch size of 16 and beam size of 5. We set the number of epochs for the summarization task
to 5 and the batch number for the reverse engineering task to 20000. For reproducibility, the random seed
is set to 42 for both tasks.

4 Experimental Results

In this section, we present the results of our evaluation, addressing each of our research questions. We
provide a detailed analysis of the data, discussing how it supports or challenges our hypotheses. Specifically,
we examine the effectiveness of our proposed approach in integrating binary code into large-scale pre-training
models and incorporating rich information from source code and comments into binary code. We also evaluate
the generalizability of our model across different downstream tasks in binary code analysis.

4.1 Embedding Analysis

We present a case study to analyze the binary code embeddings generated by our model. While binary
codes in the AnghaBench test set are unique, semantically related codes can naturally cluster together in the
embedding space due to shared functionality or structural patterns. This clustering is an expected property
of a well-trained model and demonstrates its ability to encode meaningful relationships among binary codes.
This analysis provides an initial qualitative evaluation of the embedding behavior, offering insights into how
our model encodes these relationships. While this analysis highlights trends in embedding quality, it is not
intended to serve as definitive evidence, and we provide more robust quantitative evaluations in subsequent
sections.

13



Under review as submission to TMLR

bool process_record_kb (uint16_t keycode, keyrecord_t * record){
// put your per-action keyboard code here
// runs for every action, just before processing by the firmware
return process_record_user (keycode, record);
}

bool process_record_keymap (uint16_t keycode, keyrecord_t * record){
return true;
}

define dso_local i32 @process_record_kb(i32 %0, i32* %1) #0 {
%3 = alloca i32, align 4 
%4 = alloca i32*, align 8
store i32 %0, i32* %3, align 4
store i32* %1, i32** %4, align 8
%5 = load i32, i32* %3, align 4
%6 = load i32*, i32** %4, align 8
%7 = call i32 @process_record_user(i32 %5, i32* %6)
ret i32 %7
}

define weak dso_local i32 @process_record_keymap(i32 %0, i32* %1) #0 {
%3 = alloca i32, align 4
%4 = alloca i32*, align 8
store i32 %0, i32* %3, align 4
store i32* %1, i32** %4, align 8
ret i32 1
}

Figure 6: Embedding analysis of pre-trained models for binary code. In each subfigure, the red and orange
dots represent the embeddings of the keymap function and key record function binary codes, respectively.
The lower part shows their source and binary code. RoBERTa, CodeBERT, and GraphCodeBERT generate
separate embeddings for similar semantics, while ContraBin (PCL) and ContraBin cluster them together.

Table 3: Quantitative evaluation of ContraBin on binary functional algorithm classification of POJ104
using mean of average precision (MAP), recall (MAR) and F1 score (MAF1).

Approaches MAP MAR MAF1
RoBERTa (Liu et al., 2019) 38.29 28.57 32.72
CodeBERT (Feng et al., 2020) 39.99 (+4.44%) 29.94 (+4.80%) 34.24 (+4.64%)
GraphCodeBERT (Guo et al., 2020) 39.48 (+3.11%) 29.38 (+2.95%) 33.69 (+2.96%)

ContraBin (PCL) 37.03 (-3.29%) 26.99 (-5.53%) 31.22 (-4.59%)
ContraBin (Ours) 43.78 (+14.34%) 33.87 (+18.55%) 38.19 (+16.71%)

Case study: Semantic alignment of binary codes To evaluate the semantic alignment, we selected two
binary functions derived from process_record_keymap and process_record_user, which share similar
input structures and functionality. As shown in Figure 6, embeddings generated by RoBERTa, CodeBERT,
and GraphCodeBERT project these functions far apart in the embedding space. This separation indicates
that these models struggle to capture the shared semantic characteristics of the two functions. In contrast,
embeddings generated by ContraBin (PCL) position the two functions closer together, reflecting a better
alignment of their shared semantics. ContraBin further reduces the distance between these functions,
demonstrating its ability to refine binary code embeddings through intermediate contrastive learning.

General trends in embedding space structure To analyze how different models organize binary codes
in the embedding space, we examined patterns across the AnghaBench test set. Figure 6 illustrates that em-
beddings generated by RoBERTa, CodeBERT, and GraphCodeBERT exhibit scattered distributions, with
no discernible grouping for binary codes derived from similar tasks, such as hash table operations or data
processing routines. In contrast, embeddings from ContraBin (PCL) display a more structured distribu-
tion, where binary codes related to similar functionalities begin to cluster into distinct regions. Embeddings
generated by ContraBin refine this structure further, consolidating these clusters into a cohesive region
while maintaining separation for unrelated binary codes. This visualization reveals distinct patterns in how
the embedding spaces produced by different models are structured, offering insights into the organization of
binary code representations.

4.2 RQ1: Binary Code Analysis

After analyzing embedding of binary code using all pre-trained models, we start qualitative binary code anal-
ysis of ContraBin by two downstream tasks: algorithmec functionality classification and binary functiona
name recovery.

14



Under review as submission to TMLR

Table 4: Quantitative evaluation of ContraBin and multiple pre-trained methods on binary function name
recovery of DIRE using accuracy, mean of average prevision (MAP), mean of average recall (MAR), and
mean of average F1 score (MAF) as four key criteria.

Approaches Accuracy MAP MAR MAF1
RoBERTa (Liu et al., 2019) 29.41 28.41 25.00 26.59
CodeBERT (Feng et al., 2020) 24.94 (-15.20%) 23.25 (-18.15%) 20.82 (-16.70%) 21.97 (-17.39%)
GraphCodeBERT (Guo et al., 2020) 25.95 (-11.76%) 27.59 (-2.87%) 22.52 (-9.91%) 24.80 (-6.74%)

ContraBin (PCL) 28.83 (-1.96%) 28.65 (-0.85%) 25.83 (-3.35%) 27.17 (-2.16%)
ContraBin (Ours) 33.41 (+13.60%) 30.79 (+8.39%) 28.14 (+12.58%) 29.41 (+10.58%)

Table 5: Quantitative evaluation of ContraBin and multiple pre-trained methods on binary code sum-
marization of AnghaBench using BLEU-4, GLUE-4, ROUGE-2, and exact match (xMatch). Performance
differences are calculated relative to GraphCodeBERT.

Approaches BLEU-4 GLUE-4 ROUGE-2 xMatch
RoBERTa (Liu et al., 2019) 24.30 (-25.05%) 25.55 (-22.45%) 30.16 (-23.52%) 4.95 (-37.41%)
CodeBERT (Feng et al., 2020) 32.07 (-1.11%) 32.80 (-0.43%) 38.83 (-1.57%) 7.91 (0.00%)
GraphCodeBERT (Guo et al., 2020) 32.43 (Base) 32.94 (Base) 39.45 (Base) 7.91 (Base)

ContraBin (PCL) 30.89 (-4.75%) 31.13 (-5.50%) 37.02 (-6.15%) 6.70 (-15.28%)
ContraBin (Ours) 34.36 (+5.95%) 34.82 (+5.71%) 41.20 (+4.43%) 9.34 (+18.10%)

Result for POJ-104 Our first downstream task is algorithmic functionality classification for binary code.
Recall that, in this setting, we use pre-trained embeddings from ContraBin to aid classifying an input
binary snippet into one of 104 classes of algorithms (e.g., bubble sort vs. heap sort vs. Fibonacci, etc.).

To evaluate the performance of ContraBin in this downstream task, we adopt mean of average previ-
sion (MAP), mean of average recall (MAR), and mean of average F1 score (MAF) as three key criteria. We
consider only C code that can be compiled to binaries — while most programs compiled successfully, we
exclude those that could not be compiled, and report MAP, MAR, and MAF across all 104 classes. For this
task and the three subsequent tasks, we used the results of RoBERTa as a baseline for comparison.

Table 3 presents the quantitative evaluation of ContraBin against several pre-trained methods. CodeBERT
and GraphCodeBERT shows comparable performance to RoBERTa on all three metrics, with a performance
improvement of less than 5%. However, ContraBin demonstrates a substantial improvement in MAP,
MAR, and MAF1 by 14.34%, 18.55%, and 16.71%, respectively. We note that the performance of Con-
traBin (PCL) is lower than that of RoBERTa. This can be partially attributed to the use of contrastive
learning over three different modalities, which can result in the binary code embedding becoming overfitted
to the exact embedding of either source code or comments, making the model less effective.

Result for DIRE Our second task for binary code analysis is function name recovery, which is transformed
into a function name classification task where the models are required to classify binary code into one of the
91 function names based on the settings. To evaluate the model performance, we used the same metric set
as in POJ-104, with an additional accuracy metric, and applied all models to compiled LLVM code of the
DIRE dataset.

The overall performance, as shown in Table 4, revealed that fine-tuning CodeBERT and GraphCodeBERT
resulted in a decrease in performance, making them less effective than the baseline RoBERTa model in all
metrics by up to approximately 20%. This demonstrated that current models are unable to generalize when
the domain of downstream applications for binary code analysis shifts and may even become ineffective. On
the other hand, ContraBin still demonstrated considerable improvement over all three metrics by 13.6%,
8.39%, and 10.58%, respectively, demonstrating the generalizability of our pretrained model on different
downstream tasks.

15



Under review as submission to TMLR

define dso_local i32 @pyb_main(i32 %0) #0 {
%2 = alloca i32, align 4
store i32 %0, i32* %2, align 4
%3 = load i32, i32* %2, align 4
%4 = call i64 @mp_obj_is_str(i32 %3)
%5 = icmp ne i64 %4, 0
br i1 %5, label %6, label %8

6: ; preds = %1
%7 = load i32, i32* %2, align 4
store i32 %7, i32* @pyb_config_main, align 4
br label %8

8: ; preds = %6, %1
%9 = load i32, i32* @mp_const_none, align 4
ret i32 %9

}

mp_obj_t pyb_main(mp_obj_t main){
if (mp_obj_is_str(main)){

pyb_config_main = main;
}
return mp_const_none;

} ContraBin: Returns a constant that is used for the given object

ContraBin(PCL): This function is used to define a typedef for the 
typedef for the typedef for th

roberta: Returns the number of bytes in the given platform
codebert: This function defines the type of variables and function

graphcodebert: This function is used to define variables and 
functions

define internal void @opensolaris_unload() #0 {
%1 = call i32 @mutex_destroy(i32* @cpu_lock)
ret void

}

__attribute__((used)) static void
opensolaris_unload(void){

mutex_destroy(&cpu_lock);
}

ContraBin: Unloads a mutex
ContraBin(PCL): Unloads a cpu

RoBERTa: Unloads a file
CodeBERT: Unloads a lock

GraphCodeBERT: Unloads the mutex

Unloads a mutex

Returns a constant that is used for the given object

Figure 7: A positive case study on binary code summarization. The first case demonstrates ContraBin’s
ability for semantic completion, while the second showcases its long-term semantic reconstruction capability.

Table 6: Quantitative evaluation of ContraBin on binary reverse engineering of AnghaBench using BLEU-
4, GLUE-4 and exact match (xMatch).

Approaches BLEU-4 GLUE-4 xMatch
RoBERTa (Liu et al., 2019) 69.72 68.29 23.52
CodeBERT (Feng et al., 2020) 70.37 (+0.94%) 67.27 (-1.50%) 23.41 (-0.47%)
GraphCodeBERT (Guo et al., 2020) 71.56 (+2.64%) 69.88 (+2.32%) 24.73 (+5.14%)

ContraBin (PCL) 69.73 (+0.02%) 69.41 (+1.64%) 23.41 (-0.47%)
ContraBin (Ours) 71.14 (+2.04%) 70.41 (+3.10%) 25.16 (+7.01%)

4.3 RQ2: Binary Code Comprehension

We further analyze ContraBin’s ability in binary code comprehension by evaluating its performance on two
additional downstream tasks: binary code summarization and binary code reverse engineering. We used the
test set of AnghaBench to perform in-domain analysis to assess the effectiveness of our proposed approach.

Result for AnghaBench (Summarization) For the binary code summarization task, we evaluate all
models using four widely adopted metrics: BLEU-4 (Papineni et al., 2002), GLUE-4 (Mutton et al., 2007),
ROUGE-2 (Lin, 2004), and Exact Match (xMatch). As shown in Table 5, ContraBin achieves consistent
improvements across all metrics compared to the baseline method, GraphCodeBERT. Specifically, Con-
traBin shows improvements of 5.95% in BLEU-4, 5.71% in GLUE-4, 4.43% in ROUGE-2, and 18.08% in
xMatch over GraphCodeBERT, showcasing its superior capability in binary code summarization.

To further highlight the effectiveness of ContraBin, we present a case study in Figure 7. In the first
example, ContraBin successfully captures the functionality of the binary program, while other models
diverge to irrelevant objectives, such as "cpu," "file," or "lock." In the second example, other models struggle
with summarizing longer binary code. For instance, ContraBin (PCL) generates incomplete sentences,
whereas RoBERTa, CodeBERT, and GraphCodeBERT produce either incorrect or overly general summaries.
These cases demonstrate ContraBin’s ability to maintain long-term semantic consistency and robustness
in binary code summarization, enabled by its novel binary embeddings.

Result for AnghaBench (Reverse Engineering) For the binary code reverse engineering task, we use
similar metrics, except ROUGE, which is designed for summarization only, to evaluate the performance
of ContraBin on direct code translation between source code and binary code. As shown in Table 6,
ContraBin improves the baseline method by 2.04% in BLEU, 3.10% in GLEU, and 7.01% in xMatch.
Compared with GraphCodeBERT, which outperforms ContraBin in BLEU, ContraBin outperforms on
the other two metrics (GLUE and xMatch).

We also show a case study in Figure 8. In the first case, ContraBin can maintain the consistency of variable
names in the generated source code, while the other methods have issues such as changing variable names

16



Under review as submission to TMLR

// Gold
dword_t sys_exit_group(dword_t status){

STRACE("exit_group(%d)\\n", status);
do_exit_group(status << );

}

// Gold
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,u type,u mask){

return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
}

define dso_local %struct.crypto_skcipher* @crypto_alloc_skcipher(i8* %0, i32 %1, i32 %2) #0 {
%4 = alloca i8*, align 8
%5 = alloca i32, align 4
%6 = alloca i32, align 4
store i8* %0, i8** %4, align 8
store i32 %1, i32* %5, align 4
store i32 %2, i32* %6, align 4
%7 = load i8*, i8** %4, align 8
%8 = load i32, i32* %5, align 4
%9 = load i32, i32* %6, align 4
%10 = call %struct.crypto_skcipher* @crypto_alloc_tfm(i8* %7, i32* @crypto_skcipher_type2, i32 %8, i32 %9)
ret %struct.crypto_skcipher* %10

}

// ContraBin
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u type, u mask){

return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
}
// ContraBin(PCL)
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u type, u mask){

return crypto_alloc_tfm(alg_skcipher_type, &crypto_skcipher_type, type, mask);
}
// RoBERTa
struct crypto_skcipher *crypto_alloc_skcipher(const char *name, const uint_t count, const uint_t count){

return crypto_alloc_tfm(name, &crypto_skcipher_type, count, count);
}
// CodeBERT
struct crypto_skcipher *crypto_alloc_skcipher(const char *key, u mask,u mask){

return crypto_alloc_tfm(key, &crypto_skcipher_type, mask, mask);
}
// GraphCodeBERT
struct crypto_skcipher *crypto_alloc_skcipher(void *priv, u len, u mask){

return crypto_alloc_tfm(priv, &crypto_skcipher_type, len, mask);
}

// ContraBin
dword_t sys_exit_group(int status){

STRACE("sys_exit_group%d\\n", status);
do_exit_group(status << );

}
// ContraBin(PCL)
dword_t sys_exit_group(int ret){

STRACE("\\n", ret);
do_exit_group(ret << );
return ret;

}
// RoBERTa
int sys_exit_group(int group){

STRACE("sys_exit", group);
do_exit_group(group << );
return(group);

} 

// CodeBERT
int sys_exit_group(int i){

STRACE("%d\\n", i);
do_exit_group(i);
return i;

}
// GraphCodeBERT
int sys_exit_group(int ret){

STRACE("\\n", ret);
do_exit_group(ret << );

}

define dso_local i32 @sys_exit_group(i32 %0) #0 {
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 %0, i32* %3, align 4
%4 = load i32, i32* %3, align 4
%5 = call i32 @STRACE(i8* getelementptr inbounds 

([16 x i8], [16 x i8]* @.str, i64 0, i64 0), i32 %4)
%6 = load i32, i32* %3, align 4
%7 = shl i32 %6, 8
%8 = call i32 @do_exit_group(i32 %7)
%9 = load i32, i32* %2, align 4
ret i32 %9

}

Figure 8: A positive case study on binary reverse engineering. The first case demonstrates ContraBin’s
ability to control generated content, while the second showcases its ability to maintain semantic consistency.

Table 7: Ablation studies of ContraBin on binary functional algorithm classification of POJ104 using
mean of average precision (MAP), recall (MAR), and F1 score (MAF1). Differences are noted in points (pt).

Ablations MAP MAR MAF1
Human-written comments 3.11 (-40.67 pt) 3.01 (-30.86 pt) 3.06 (-35.13 pt)

Comment 42.76 (-1.02 pt) 33.23 (-0.64 pt) 37.40 (-0.79 pt)
Anchor 40.96 (-2.82 pt) 31.07 (-2.80 pt) 35.34 (-2.85 pt)
Interpolations 37.03 (-6.75 pt) 26.99 (-6.88 pt) 31.22 (-6.97 pt)

None (ContraBin) 43.78 33.87 38.19

and adding incorrect statements. In the second case, the other methods also generate more redundant
information. This highlights the ability of ContraBin to generate semantically consistent binary code
translations.

4.4 RQ3: Analysis and Summary of Model

We can evaluate the effectiveness of different components of ContraBin through the performance of Con-
traBin (PCL). Our novel model component improves the quality of binary code embedding, as evidenced
by our embedding analysis. Our proposed intermediate contrastive learning improves model performance
and enhances the robustness and generalizability of the model across various downstream tasks in binary
code analysis, as demonstrated by tasks 1 and 2. Furthermore, ContraBin can accurately summarize and
translate more binary code while maintaining semantic consistency and long-term dependent coverage, as
indicated by tasks 3 and 4. Demonstrated by all four downstream tasks, including two tasks for binary
code analysis and two tasks for binary code comprehension, we can confidently conclude that Contra-
Bin enhances the quality of binary code embeddings, leading to improved model performance and greater
generalizability.

17



Under review as submission to TMLR

2 4 6 8 10
Comment length (log)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fr
eq

ue
nc

y

Comparison of Comment Lengths (log)
Generated Comment Length (log)
Human-Written Comment Length (log)

Figure 9: Comparison of log-transformed length distributions for original and extracted comments. The
human-written comments exhibit a broader spread indicating diverse lengths, whereas generated comments
are predominantly shorter.

5 Ablation Studies and Model Insights

In this section, we delve into the critical components of our model through extensive ablation studies and
comparisons, demonstrating the impact of each design choice on the overall performance. Additionally, we
explore the adaptation of our model architecture to contemporary LLMs, particularly the transition from
RoBERTa to T5, and how our pretraining strategy enhances the model’s understanding of binary code. The
findings underscore the importance of each element in our approach and validate the effectiveness of our
training methodology.

5.1 Ablation Studies

We assess each component of our model through ablation studies. Specifically, we remove three conditions to
test the efficiency of each design element: (1) We remove comments as one of the modalities during training,
(2) we replace the anchored encoder with a learnable one so that it can be updated during training, and (3)
we eliminate both linear and non-linear interpolation from our model design. For the pretraining process,
we adhere to the original hyperparameters, training the first and second ablations for 30 epochs and the
third ablation for 10 epochs. For the third ablation, we ensure that the model is converged by the end
of pretraining. We test the pretrained models on the binary functional algorithm classification of POJ140,
using the same hyperparameters. The results are shown in Table 7.

From the table, it is evident that removing comments, stopping gradients, and eliminating interpolation
decrease the MAF1 scores by 2.07 pt, 7.46 pt, and 18.25 pt, respectively. This demonstrates the effectiveness
of each component in our model design. The baseline performance observed in these ablation studies is as
follows: MAP of 43.78, MAR of 33.87, and MAF1 of 38.19. We will use these baseline performance metrics
as a reference in the following sub-analysis to further dissect the contributions of individual components.

5.2 Comparison of Human-Written and LLM-Generated Comments in Pretraining

In our study, we explored the impact of using human-written versus LLM-generated comments during the
pretraining phase of ContraBin. The objective was to evaluate how each type of comment influences the
model’s ability to comprehend and process binary code. While human-written comments provide a diverse
range of insights, they are often inconsistent in length and detail, which may limit their effectiveness in
large-scale pretraining scenarios. On the other hand, LLM-generated comments tend to be more consistent
and focused, potentially offering a more structured learning experience for the model. The following analysis
compares the length distributions and performance outcomes associated with both types of comments.

Comment length distribution analysis The analysis of comment length distributions, as depicted in
Figure 9, reveals a significant difference between human-written and LLM-generated comments. Human-

18



Under review as submission to TMLR

written comments display a broader spread and variability in length, suggesting diverse approaches to code
documentation by developers. On the other hand, LLM-generated comments tend to be shorter and more
consistent in length, indicating a more standardized generation process by the model. These distinctions
in comment length and variability may impact the pretraining effectiveness of ContraBin. To explore this
further, we conducted a series of experiments to compare the performance of ContraBin when pre-trained
using human-written versus LLM-generated comments.

Performance comparison The experiments reveal a striking decrease in performance when ContraBin is
trained with human-written comments compared to LLM-generated comments. Specifically, Table 7 shows
that the use of human-written comments results in MAP dropping from 43.78 to 3.11, MAR from 33.87
to 3.01, and MAF1 from 38.19 to 3.06. These reductions of 40.67 pt, 30.86 pt, and 35.13 pt, respectively,
highlight the stark contrast in effectiveness between the two types of comments.

The collapse in performance with human-written comments underscores the critical role of concise and
consistent LLM-generated comments in enhancing ContraBin’s ability to comprehend and analyze binary
code. Human-written comments often introduce noise or inconsistencies that hinder representation learning,
while the structured nature of LLM-generated comments provides a stronger foundation for binary code
analysis. The performance gap can be attributed to the following factors:

• Redundancy and Verbosity: Human-written comments often include excessive or redundant
details, introducing noise that disrupts semantic alignment between source code, comments, and
binary code.

• Focus on Implementation Details: Unlike LLM-generated comments, human-written comments
tend to emphasize specific implementation nuances rather than summarizing the core functionality,
which impairs generalizable learning.

• Variability in Style and Structure: Human-written comments exhibit inconsistent styles and
structures, creating additional challenges for coherent learning compared to the uniformity of LLM-
generated comments.

These findings emphasize the necessity of concise, high-level comments for effective representation learning
and highlight the critical impact of training data quality on model performance. Future work should fur-
ther investigate the interplay between comment quality and model effectiveness to better understand these
dynamics.

5.3 Multi-Step vs. Multi-Objective Pretraining Approaches

We further explore the impact of different pretraining strategies on the performance of our model. Specifically,
we compare the effectiveness of a traditional multi-step pretraining approach with a more integrated multi-
objective contrastive learning method. By analyzing these approaches, we aim to understand how the
alignment and combination of multiple objectives influence the model’s ability to classify binary functional
algorithms accurately.

Multi-Objective Contrastive Learning: In this study, we introduced a multi-objective contrastive learn-
ing approach that incorporates an average of all three losses—binary code, source code, and comments—as
a unified multi-objective loss function. This method was designed to encourage the model to simultane-
ously learn from all available modalities, aiming to enhance its overall ability to classify binary functional
algorithms.

Performance Comparison: The performance results highlight a dramatic decrease in effectiveness when
transitioning from a multi-step pretraining approach to a multi-objective contrastive learning method. Specif-
ically, the multi-objective approach led to a reduction of over 97% across all key metrics—MAP, MAR, and
MAF1—compared to the multi-step method. This stark drop underscores the difficulties and risks associated
with integrating multiple objectives into a single learning process, particularly when these objectives are not
perfectly aligned or when the model struggles to balance the competing losses effectively.

19



Under review as submission to TMLR

Choice of ContraBin

define dso_local i32 @main() #0 {
%1 = alloca i32, align 4
store i32 0, i32* %1, align 4
%2 = call i32 @read()
call void @foo()
call void @print()
ret i32 0

}

#include <stdio.h>

int read();
void foo();
void print();

int main() {
int result = 0;
result = read();
foo();
print();
return 0;

}

define dso_local i32 @main() #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i32, align 4
store i32 0, i32* %1, align 4
store i32 0, i32* %2, align 4
%4 = load i32, i32* %2, align 4
%5 = load i32, i32* %3, align 4
%6 = call i32 @f1(i32 %4, i32 %5)
call void @print(i32 %6)
ret i32 0

}

#include <stdio.h>

int f1(int a, int b);
void print(int result);

int main() {
int var1 = 0, var2 = 0;
int var3;
scanf("%d", &var3);
int result = f1(var2, var3);
print(result);
return 0;

}

Choice of CodeT5Original Function

#include <stdio.h>

void work(int var);

int main() {
int var1 = 0;
int var2;
scanf("%d", &var2);
work(var2);
return 0;

}

define dso_local i32 @main() #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 0, i32* %1, align 4
%4 = load i32, i32* %2, align 4
call void @work(i32 %4)
ret i32 0

}

Figure 10: A negative case study on POJ function classification in binary code. The second example shows
CodeT5’s success in maintaining functional integrity, while the third example highlights a misclassification
by ContraBin, which overfit to the source and comment information due to contrastive learning.

5.4 Negative Cases

In this negative case study, we examine a scenario involving function classification in binary code, as illus-
trated in Figure 10. The original function is a simple program that reads an input, performs a sequence of
operations, and prints the result. The code is structured in a way that preserves the flow of data from the
input through various function calls to the output. This structure is essential for maintaining the logical
integrity of the program, as any deviation in the sequence or function calls could alter the intended behavior.

CodeT5’s Performance CodeT5 successfully identifies and preserves this structure, correctly mapping the
sequence of operations from the source code to the binary function. By doing so, CodeT5 ensures that the
original intent of the program is maintained in the binary output, demonstrating its ability to handle the
intricacies of binary code classification where functional integrity is paramount.

ContraBin’s Misclassification In contrast, ContraBin misclassifies the function, likely due to its ex-
tensive pretraining on natural language and source code semantics. While ContraBin’s broad pretraining
allows it to capture a rich set of semantic relationships, this can lead to overgeneration or misinterpretation
when applied to binary code, where precise structural alignment is critical. The model’s reliance on seman-
tic cues from source code and comments may introduce biases, causing it to incorrectly infer the function’s
structure, as seen in this case. This misclassification highlights a potential limitation of ContraBin’s ap-
proach: while it excels in tasks requiring semantic understanding, it may struggle in scenarios where the
strict preservation of code structure is necessary for accurate function classification.

5.5 Extensibility to Contemporary LLMs

The evolving landscape of LLMs necessitates the adaptation of existing methodologies to newer, more ad-
vanced architectures. As LLMs like T5 (Raffel et al., 2020), CodeT5 (Wang et al., 2021) and its deriva-
tives become increasingly prominent, it is crucial to ensure that techniques initially developed for models
like RoBERTa can be effectively extended to these contemporary frameworks. This section outlines the
key adaptations required to transition from RoBERTa’s encoder-only architecture to T5’s encoder-decoder
structure.

• Model Architecture Adaptation: Adapting from RoBERTa to T5 requires handling the transition
from an encoder-only architecture to an encoder-decoder framework. This involves modifying the
model structure to ensure that the input is properly processed through both the encoder and decoder

20



Under review as submission to TMLR

Table 8: Performance Comparison of ContraBin and CodeT5 with T5 on Binary Functional Algorithm
Classification for POJ104 (MAP, MAR, MAF1).

Model MAP MAR MAF1
T5 (Raffel et al., 2020) 23.35 17.34 19.90
CodeT5 (Wang et al., 2021) 28.82 (+23.42%) 21.71 (+25.21%) 24.76 (+24.43%)

ContraBin (CodeT5) 30.1 (+28.91%) 22.16 (+27.79%) 25.53 (+28.34%)

layers of T5. Specifically, tasks previously handled by RoBERTa’s single encoder must now be split
between T5’s encoder and decoder to fully leverage T5’s capacity for generating meaningful output
sequences.

• Tokenizer and Data Processing: The transition also involves switching from RoBERTa’s Byte-
Pair Encoding (BPE) tokenizer to T5’s SentencePiece tokenizer. This change necessitates revisiting
the data preprocessing steps to accommodate the differences in how tokens are generated, including
adjustments in token length, padding, and special token handling to ensure compatibility with T5’s
tokenization requirements.

• Attention Mechanisms and Loss Function: The difference in attention mechanisms between
RoBERTa and T5 requires revising the attention computation, especially in the forward pass. Addi-
tionally, because T5 is designed for sequence-to-sequence tasks, the loss function and output processing
need adjustments to align with T5’s architecture, ensuring that the model optimizes effectively during
training.

For this task, we utilized 8 Nvidia A100 GPUs for ContraBin (CodeT5) model pre-training, with the
random seed set to 42 to ensure reproducibility. Since the focus was exclusively on binary code analysis
rather than comprehension, we adjusted our training strategy accordingly. We reduced the training duration
to 40% of the previous rounds to concentrate the model’s efforts on this specific task. This reduction was
intentionally implemented to optimize the model’s performance in binary code analysis, ensuring precision
and efficiency without unnecessary overextension.

As shown in Table 8, the ContraBin (CodeT5) model with our pretraining method achieves significant
improvements over CodeT5. Specifically, our model achieves a MAP of 30.1, which is a 4.45% improvement
over CodeT5, a MAR of 22.16 (+2.07%), and a MAF1 of 25.53 (+3.11%). These results underscore the
effectiveness of our training methodology in enhancing the model’s ability to comprehend and process binary
code, demonstrating the adaptability and strength of the T5 architecture.

By addressing the challenges in model architecture, tokenization, and attention mechanisms, we have demon-
strated how our approach not only maintains but also enhances its effectiveness in processing binary code
across different LLM architectures. This adaptability underscores the flexibility and robustness of our
methodology, particularly when applied to state-of-the-art models like T5.

6 Related Work

In this section, we highlight key areas of related work, including traditional program analysis techniques
and neural models for binary code analysis. Additionally, we discuss the foundational concepts that inspired
the design of ContraBin, such as large-scale pre-trained embeddings, simplex interpolation, contrastive
learning, and graph representation learning. These areas provide a strong basis for understanding how
ContraBin leverages advancements in program analysis and machine learning to improve binary code
representation and comprehension.

Binary code analysis Binary code analysis plays an important role in the bigger domain of software analysis
and maintenance. For example, tracing execution can help the analysis of the functionality algorithms
from binaries (Pierce & Mudge, 1994), reusing profile information can speed up the similarity comparison
of frequently executed core code (Wang et al., 2000), incorporating sequences of system calls can help
detect software vulnerabilities (Giffin et al., 2004), and combining machine and binary-interface descriptions

21



Under review as submission to TMLR

can assist software reverse engineering (Cifuentes et al., 1999). Traditionally, in programming language
and software engineering, researchers have presented various work based on static and dynamic program
analysis techniques. For instance, BYTEWEIGHT (Bao et al., 2014) automatically classifies algorithms
by functionality from binaries, BINSEC (Djoudi & Bardin, 2015; David et al., 2016) formalizes low-level
regions of code to extract semantics on the programs, and BinSide (Aslanyan et al., 2020) uses intermediate
representations to conduct cross-platform static analysis.

Neural code models In recent years, neural code models have attracted the attention of researchers in
software engineering and security. With the assistance of AI (Vaswani et al., 2017), it can improve many
source code analysis tasks, such as neural clone detection, neural code similarity comparison, neural code
search, etc (Ben-Nun et al., 2018; Shi et al., 2019; Zeng et al., 2021; Ye et al., 2020; Zhang et al., 2022).

For example, SySeVR combines syntax, semantics, and neural vector representation to detect software vul-
nerabilities (Li et al., 2021), InnerEye adopts techniques in Natural Language Processing (NLP) to compare
between samples of binary code (Zuo et al., 2019), GNN-BPE (Guo et al., 2022b) applies Graph Neu-
ral Networks (GNN) on binary code by fusing the semantics of Control Flow Graphs (CFG), Data Flow
Graphs (DFG), and call graphs, and Bin2Vec (Arakelyan et al., 2021) learns binary code representation via
Graph Convolutional Networks (GCN). Compiler chain detection has also emerged as a promising application
of machine learning in binary analysis, enabling the identification of the toolchains used to generate binary
executables and aiding tasks like provenance analysis and malware detection (Chen et al., 2022a; De Blaere
et al., 2023). Additionally, the survey by Marcelli et al. (Marcelli et al., 2022) provides a detailed review of
how machine learning techniques are solving the binary function similarity problem, which complements the
above-discussed approaches. However, these methods involve complex aggregation of additional binary code
representations and have limited generalizability across tasks.

Large-scale pre-trained embeddings With the recent success of large-scale pre-trained embedding in
AI, research has been conducted on applying similar approaches to code analysis (Ben-Nun et al., 2018;
Shi et al., 2022; Jiang et al., 2022; Bertolotti & Cazzola, 2022). In particular, RoBERTa (Liu et al., 2019)
serves as the baseline, CodeBERT (Feng et al., 2020) incorporate code generation and identification into
training process, GraphCodeBERT (Guo et al., 2020) combines Abstract Syntax Tree (AST) to further
improve embedding quality. There are also many recent models designed for source code understanding,
including CodeTrans (Elnaggar et al., 2021) and CoTexT (Phan et al., 2021) that incorporate different
language modalities and multi sub-tasks for better code representation learning, and CodeT5 (Wang et al.,
2021) which proposes an identifier-aware pre-training task to improve embedding distinction. ContraBin
aims similar goals with these large-scale language representation models but focuses on a more effective and
efficient representation for binary code in terms of better semantics

Contrastive learning As a recent emerging research direction, contrastive learning can enhance the per-
formance of many computer vision tasks by contrasting samples against each other to learn common proper-
ties (Tian et al., 2020; Xiao et al., 2020). For example, MoCo (He et al., 2020) proposes a dynamic dictionary
to facilitate contrastive learning, SimSiam(Chen & He, 2021) introduces a Siamese network and stop gradient
scheme to prevent collapsing in optimization, and CLIP (Radford et al., 2021) integrates visual concepts and
raw text about images to provide much broader source of supervision in multi-modal contrastive learning.
As for program understanding, ContraCode (Jain & Jain, 2021) is the first work using contrastive learning
in source code analysis by code augmentation and comparison. We design ContraBin based on the con-
trastive learning framework which simultaneously and gradually learns from binary code, source code, and
comments within the same program.

7 Conclusion

To summarize, we propose a novel approach that fully integrates binary code into the large-scale pre-training
model framework and incorporates rich information from source code and comments into binary code. Our
experiments demonstrate that our proposed components outperform other approaches in four downstream
tasks in binary code analysis and comprehension. We believe that our research work can inspire the AI,
software engineering, and security communities to develop new methods that can further improve binary
code analysis and comprehension and facilitate binary code applications from various perspectives.

22



Under review as submission to TMLR

Data Availability Statement

The data and code used in this study are publicly available on Zenodo at https://zenodo.org/records/1
5219264. The repository includes:

• Preprocessed datasets used for training and evaluation.

• Complete implementation of the ContraBin framework, including all scripts for data preprocessing,
model training, and evaluation.

• Detailed documentation and configuration files to facilitate reproducibility and ease of use.

Researchers are encouraged to access the repository to replicate our findings or use the provided resources
as a foundation for further studies. Any questions or issues regarding the data or code can be directed to
the corresponding authors.

References
Shushan Arakelyan, Sima Arasteh, Christophe Hauser, Erik Kline, and Aram Galstyan. Bin2vec: learning

representations of binary executable programs for security tasks. Cybersecurity, 4(1):1–14, 2021.

Hayk Aslanyan, Mariam Arutunian, Grigor Keropyan, Shamil Kurmangaleev, and Vahagn Vardanyan. Bin-
side: Static analysis framework for defects detection in binary code. In 2020 Ivannikov Memorial Workshop
(IVMEM), pp. 3–8. IEEE, 2020.

Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley. {BYTEWEIGHT}:
Learning to recognize functions in binary code. In 23rd USENIX Security Symposium (USENIX Security
14), pp. 845–860, 2014.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension: A learnable
representation of code semantics. Advances in Neural Information Processing Systems, 31, 2018.

Francesco Bertolotti and Walter Cazzola. Fold2vec: Towards a statement based representation of code for
code comprehension. ACM Transactions on Software Engineering and Methodology, 2022.

Ligeng Chen, Zhongling He, Hao Wu, Fengyuan Xu, Yi Qian, and Bing Mao. Dicomp: Lightweight data-
driven inference of binary compiler provenance with high accuracy. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 112–122. IEEE, 2022a.

Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, Graham Neubig, and Bogdan Vasilescu.
Augmenting decompiler output with learned variable names and types. In 31st USENIX Security Sympo-
sium, Boston, MA, August 2022b. URL https://www.usenix.org/conference/usenixsecurity22/pre
sentation/chen-qibin.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4794–4802, 2019.

Cristina Cifuentes, Mike Van Emmerik, and Norman Ramsey. The design of a resourceable and retargetable
binary translator. In Sixth Working Conference on Reverse Engineering (Cat. No. PR00303), pp. 280–291.
IEEE, 1999.

Gabriella Contardo, Ludovic Denoyer, and Thierry Artières. Representation learning for cold-start recom-
mendation. In ICLR, 2014.

23

https://zenodo.org/records/15219264
https://zenodo.org/records/15219264
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-qibin
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-qibin


Under review as submission to TMLR

Anderson Faustino Da Silva, Bruno Conde Kind, José Wesley de Souza Magalhães, Jerônimo Nunes Rocha,
Breno Campos Ferreira Guimaraes, and Fernando Magno Quinão Pereira. Anghabench: A suite with one
million compilable c benchmarks for code-size reduction. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pp. 378–390. IEEE, 2021.

Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-Laure Potet, and
Jean-Yves Marion. Binsec/se: A dynamic symbolic execution toolkit for binary-level analysis. In 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), vol-
ume 1, pp. 653–656. IEEE, 2016.

Brent De Blaere, Jens Vankeirsbilck, and Jeroen Boydens. Utilizing parity checking to optimize soft error
detection through low-level reexecution. IEEE Transactions on Reliability, 2023.

Adel Djoudi and Sébastien Bardin. Binsec: Binary code analysis with low-level regions. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 212–217. Springer,
2015.

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Silvia Severini,
Florian Matthes, and Burkhard Rost. Codetrans: Towards cracking the language of silicon’s code through
self-supervised deep learning and high performance computing. arXiv preprint arXiv:2104.02443, 2021.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural languages. In
Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1536–1547, 2020.

Jonathon T Giffin, Somesh Jha, and Barton P Miller. Efficient context-sensitive intrusion detection. In
NDSS, 2004.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6):1789–1819, 2021.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with data flow. In
International Conference on Learning Representations, 2020.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified cross-modal
pre-training for code representation. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7212–7225, 2022a.

Yixin Guo, Pengcheng Li, Yingwei Luo, Xiaolin Wang, and Zhenlin Wang. Exploring gnn based program
embedding technologies for binary related tasks. In 2022 IEEE/ACM 30th International Conference on
Program Comprehension (ICPC), pp. 366–377. IEEE, 2022b.

Irfan Ul Haq and Juan Caballero. A survey of binary code similarity. ACM Computing Surveys (CSUR), 54
(3):1–38, 2021.

Laune C Harris and Barton P Miller. Practical analysis of stripped binary code. ACM SIGARCH Computer
Architecture News, 33(5):63–68, 2005.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9729–9738, 2020.

Paras Jain and Ajay Jain. Contrastive code representation learning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, 2021.

Yuan Jiang, Xiaohong Su, Christoph Treude, and Tiantian Wang. Hierarchical semantic-aware neural code
representation. Journal of Systems and Software, 191:111355, 2022.

24



Under review as submission to TMLR

Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire Le Goues, Graham Neubig,
and Bogdan Vasilescu. Dire: A neural approach to decompiled identifier naming. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 628–639. IEEE, 2019.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. Sysevr: A framework for using
deep learning to detect software vulnerabilities. IEEE Transactions on Dependable and Secure Computing,
2021.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches
out, pp. 74–81, 2004.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark dataset for
code understanding and generation. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio, Mohamad Mansouri, and
Davide Balzarotti. How machine learning is solving the binary function similarity problem. In 31st
USENIX Security Symposium (USENIX Security 22), pp. 2099–2116, 2022.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree structures
for programming language processing. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pp. 1287–1293, 2016.

Andrew Mutton, Mark Dras, Stephen Wan, and Robert Dale. Gleu: Automatic evaluation of sentence-level
fluency. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp.
344–351, 2007.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pp. 311–318, 2002.

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Annibal, Alec Peltekian, and Yanfang Ye. Cotext:
Multi-task learning with code-text transformer. In Proceedings of the 1st Workshop on Natural Language
Processing for Programming (NLP4Prog 2021). Association for Computational Linguistics, 2021.

Jim Pierce and Trevor Mudge. Idtrace/spl minus/a tracing tool for i486 simulation. In Proceedings of Inter-
national Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pp. 419–420. IEEE, 1994.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR,
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

M. Moein Shariatnia. Simple CLIP, 4 2021.

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dongmei Zhang, and Hongbin
Sun. On the evaluation of neural code summarization. In Proceedings of the 44th International Conference
on Software Engineering, pp. 1597–1608, 2022.

25



Under review as submission to TMLR

Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy Ranganathan, and Milad Hashemi. Learning exe-
cution through neural code fusion. In International Conference on Learning Representations, 2019.

Christos Thrampoulidis, Ganesh Ramachandra Kini, Vala Vakilian, and Tina Behnia. Imbalance trouble:
Revisiting neural-collapse geometry. Advances in Neural Information Processing Systems, 35:27225–27238,
2022.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What makes for
good views for contrastive learning? Advances in Neural Information Processing Systems, 33:6827–6839,
2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 8696–8708, 2021.

Zheng Wang, Ken Pierce, and Scott McFarling. Bmat-a binary matching tool for stale profile propagation.
The Journal of Instruction-Level Parallelism, 2:1–20, 2000.

Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. What should not be contrastive in contrastive
learning. In International Conference on Learning Representations, 2020.

Fangke Ye, Shengtian Zhou, Anand Venkat, Ryan Marucs, Nesime Tatbul, Jesmin Jahan Tithi, Paul Pe-
tersen, Timothy Mattson, Tim Kraska, Pradeep Dubey, et al. Misim: An end-to-end neural code similarity
system. arXiv preprint arXiv:2006.05265, 2020.

Chen Zeng, Yue Yu, Shanshan Li, Xin Xia, Zhiming Wang, Mingyang Geng, Linxiao Bai, Wei Dong, and
Xiangke Liao. degraphcs: Embedding variable-based flow graph for neural code search. ACM Transactions
on Software Engineering and Methodology, 2021.

Yifan Zhang, Junwen Yang, Haoyu Dong, Qingchen Wang, Huajie Shao, Kevin Leach, and Yu Huang. Astro:
An ast-assisted approach for generalizable neural clone detection. arXiv preprint arXiv:2208.08067, 2022.

Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview: Recent progress and new
challenges. Information Fusion, 38:43–54, 2017.

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang. Neural machine transla-
tion inspired binary code similarity comparison beyond function pairs. In Proceedings 2019 Network and
Distributed System Security Symposium. Internet Society, 2019.

26


	Introduction
	Approach
	Primary Contrastive Learning
	Secondary Contrastive Learning
	Task-Specific Fine-Tuning
	Parallelism Between the Presented Steps and the Learning Stages

	Experimental Design
	Training Design
	Evaluation Design

	Experimental Results
	Embedding Analysis
	RQ1: Binary Code Analysis
	RQ2: Binary Code Comprehension
	RQ3: Analysis and Summary of Model

	Ablation Studies and Model Insights
	Ablation Studies
	Comparison of Human-Written and LLM-Generated Comments in Pretraining
	Multi-Step vs. Multi-Objective Pretraining Approaches
	Negative Cases
	Extensibility to Contemporary LLMs

	Related Work
	Conclusion

