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Abstract

Skill assessment from video entails rating the quality of a person’s physical perfor-
mance and explaining what could be done better. Today’s models specialize for an
individual sport, and suffer from the high cost and scarcity of expert-level supervi-
sion across the long tail of sports. Towards closing that gap, we explore transferable
video representations for skill assessment. Our CROSSTRAINER approach dis-
covers skill-attributes—such as balance, control, and hand positioning—whose
meaning transcends the boundaries of any given sport, then trains a multimodal
language model to generate actionable feedback for a novel video, e.g., “lift hands
more to generate more power” as well as its proficiency level, e.g., early expert.
We validate the new model on multiple datasets for both cross-sport (transfer) and
intra-sport (in-domain) settings, where it achieves gains up to 60% relative to the
state of the art. By abstracting out the shared behaviors indicative of human skill,
the proposed video representation generalizes substantially better than an array of
existing techniques, enriching today’s multimodal large language models. Project
page: https://vision.cs.utexas.edu/projects/CrossTrainer/.

1 Introduction

The basis of assessing skilled physical activities, particularly sports, is largely visual. Precisely
how a tennis player grasps and swings their racquet; how a basketball player releases the ball to
shoot a free throw; how a rock climber stretches and pulls to traverse the boulder—such visual
details are discernible to the expert eye and essential for providing meaningful coaching. Advances in
multimodal video understanding could, therefore, transform AI-assisted coaching and skill assessment.
For example, future AI agents could provide personalized feedback to users based on videos captured
on their phone or smartglasses, greatly expanding the accessibility of 1-1 coaching. Similarly, AI
could analyze how multiple players’ skills would complement each other when building a team, or
even detect patterns in injuries as a function of execution style.

Towards achieving the above, the core vision and machine learning task is as follows: given a video
of an athlete’s performance, estimate their skill level [12, 28, 37, 39, 67, 70, 71, 73] and indicate
what could be improved [9, 16, 68].

This task raises important unsolved challenges. First of all, assessing skill requires fine-grained
understanding of all physical aspects. Whereas traditional action understanding emphasizes high-level
semantics [17, 18, 27, 55, 60, 87, 88, 92]—and thus seeks invariance to execution differences—here
the subtle differences are exactly what matters. For example, a novice and expert shooting a soccer
ball into the net might accomplish the same overall action, but details about their approach, footwork,
and trajectory of the ball are essential to analyze skill. Secondly, compounding the challenge,
supervision is costly and difficult to scale across the long tail of sports. An estimated 8,000 unique
sports exist today across the world, but only a small subset is widely recorded and distributed—often
driven by geographic and economic factors. Similarly, expert supervision is expensive and cannot be
scaled up easily using traditional annotator pools. Making it worse, due to the common assumption
that the axes of evaluation vary so wildly between sports, all prior work trains and tests on in-domain
data, i.e., the same drill, exercise, or sport [9, 12, 37, 70, 70–72, 85, 98].
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Figure 1: Overview of the idea. Given a short video of an athletic skill, what could be better? Given video
demonstrations from multiple sports, we learn skill-attributes that are incorrectly demonstrated, e.g., wrong foot
positioning in badminton (top). These skill-attributes are common across various sports, and transfer to novel
uncommon sports, e.g., shinty (bottom). Our method improves both the in-domain and zero-shot settings. Sports
chosen for illustration; see Sec. 4 for dataset details.

We propose CROSSTRAINER, a new approach to video-based skill analysis that accounts for these
challenges. Our key insight is to learn a universal skill-attribute representation that transcends the
boundaries of sports and hence allows sharing and transfer between them. A skill-attribute is a
describable fine-grained concept about the physical performance that can take on different visual
forms in different sports, e.g., ball control, foot positioning, coordination, timing, or balance. By
automatically learning these shared properties from video-language commentaries, and then surfacing
them during training, we aim to amplify the value of the limited training data available for any one
sport.

Building on the skill-attributes, we then train a generative multimodal language model to predict i)
which skill-attributes are incorrectly demonstrated in a given video, ii) what the proficiency level is,
and iii) free-form commentary about which adjustments would improve the performance. Essentially
we factor skill assessment into its generalizable cross-sport component (e.g., lacks control) and its
focused sports-specific component (e.g., “you should increase the spacing between your legs for
better control of the soccer ball”). Our formulation aims to unlock the translation of skill assessment
from widespread, highly marketed sports to uncommon, low-resource sports, such as kabaddi, frisbee,
waterpolo, shinty, kho-kho, or bandy. See Fig. 1.

Though this represents a departure from today’s AI models [9, 12, 37, 70, 70–72, 85, 98], cognitive
science supports both transferability across sports having similar skill sets and shared terminology
for assessment [19, 65, 77, 82]. For example, basketball players make better decisions playing soccer
compared to tennis players, due to the former two sports’ shared underlying properties [77]; similarly,
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contact-sport athletes exhibit better zero-shot understanding of a new contact sport compared to
non-contact sport athletes [19]; and transferable skills arise from similar affordances [43, 81] or
environmental properties [82]. Our work is the first to translate these intuitive findings from cognitive
science into a working video understanding model.

We validate our ideas on three diverse datasets: Ego-Exo4D [37], which contains soccer, basketball,
and rock climbing; QEVD [68], which contains fitness exercises; and in-the-wild YouTube videos of
people tutoring physical activities. We show that training an intermediate skill representation yields
both superior in-domain performance (for familiar sports) as well as better zero-shot performance
(where the particular sport or drill is never seen by the model during training). CROSSTRAINER out-
performs all competitive baselines on all axes of assessment—actionable feedback, skill-attributes,
and proficiency estimation—with relative gains up to 60%. Furthermore, compared to any of the
baselines, CROSSTRAINER shows much more graceful degradation when transferring to a novel sport.
Overall our approach is a stepping stone for learning a unified skill-centric video representation for
assessment and coaching in the presence of real-world data and annotation constraints.

2 Related Work

Learning representations from videos. Substantial research explores new ways to learn video
representations [6, 48, 51, 74, 92], targeting video understanding tasks of action recognition [36,
45, 49, 89], action anticipation [1, 32, 33, 35, 57], procedural understanding [13, 14, 20, 62, 101],
and temporal step localization [3, 58, 97, 99, 100]. Instructional videos offer a valuable window
into skilled human activity [59, 84, 103], and recent work explores how to navigate between related
how-to’s [7, 8, 102] and identify their differences [61]. Whereas prior work explores activity-centric
representations emphasizing the semantics of what is being done, our problem requires capturing
how it is being done, which we show is essential for skill assessment.

Video-based sports analytics. Sports analytics and assessment raises a number of interesting
challenges for computer vision [12, 37, 70, 71, 73, 85, 98]. Multiple ongoing workshops and chal-
lenges [22, 34, 64] offer tasks including ball spotting, foul recognition, and game state reconstruction.
Prior work on skill assessment either assigns a score (or equivalence class label) to a video demon-
stration [12, 37, 67, 70, 71, 73], optimizes a group contrastive score distribution [85, 98], or chooses
the better of two demonstrations [12, 29]. Broadening the scope of skill assessment beyond scoring
videos, ExpertAF [9] aims to provide actionable feedback in the form of natural language commen-
tary, relevant video retrievals, and generated pose corrections. As discussed above, all the above
existing work in video-based skill assessment is limited to in-domain testing, whereas we explore
transfer across sports, enabled by the proposed skill-attributes. In addition, orthogonal to the transfer
contribution, our results across three datasets representing 6 distinct sports and fitness activities and
30 distinct drills raises the bar in breadth of validation compared to any prior skill assessment work.

Zero-shot generalization and attributes. Testing on novel classes and scenarios is crucial for real
open-world settings. In one line of work, zero-shot generalization is enabled by shared multimodal
representations learned from noisy vision-language data, benefiting image classification [75, 90, 93],
action recognition [10, 95, 96], video to text and text to video retrieval [6, 80, 87, 88, 91, 92], or
image segmentation [15, 26, 40]. In another line of work, attributes are intermediate variables [41,
42, 54, 66, 83, 94] that can express a new category even without training images (e.g., zebras are
black and white and striped). Though they share our motivation for shared representations, all of
the existing methods focus on semantics (what) as opposed to dynamic execution (how), and none
are directly applicable to skill assessment from video. Ours is the first work to explore attributes for
fine-grained activities in video and the first to demonstrate the relevance for skill feedback.

3 Method

We introduce the problem statement in Sec. 3.1, followed by an overview of key datasets (Sec. 3.2),
our idea to extract skill-attributes (Sec. 3.3), the full model (Sec. 3.4), and training (Sec. 3.5).
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Figure 2: Discovered skill-attributes from Ego-Exo4D [37] (left) and QEVD [68] (right). We see phrases
reflecting generalizable physical concepts like control, hand/body positioning, and movement.

3.1 Problem definition

At inference time, given a short video clip V ∈ Dte from the test set Dte, we want to assess its quality,
even if the exact same skill/drill was never seen in training—and even (more extreme) if the sport
in V was not seen during training. The desired assessment output covers three aspects: report the
skill-attributes performed incorrectly, generate actionable feedback that can help the learner improve,
and finally, estimate a proficiency score. Consistent with the transfer observed in cognitive science
studies [43, 81, 82], we focus on physical skills executed by an individual and hence assume the
video contains one person of interest; multi-player team interactions are also interesting but less
amenable to transfer and outside the scope of this work.

To handle this task of assessing both in-domain and novel data, we employ a two-stage training
process. In the pretraining stage, we train the model to generate the incorrectly demonstrated skill-
attributes, i.e., we learn a function Fa to predict the skill-attributes Ŝ = {s1, s2, ...} that the person
in the video should improve on:

Fa(V | Dtr) = Ŝ, (1)
where Dtr denotes the training set, e.g., if a person in the video is dribbling a soccer ball, S can be
control and leg positioning, supposing the person is incorrectly executing those two. See Fig. 1, left.

In the second stage, we finetune the model for the remaining two aspects of assessment. Firstly, we
generate feedback conditioned on the inferred skill-attibute set Ŝ,

Ft(V, Ŝ | Dtr) = T, (2)

where T is a textual actionable feedback statement for improvement, e.g., “the player is too straight
and should bend more for a better control”. While the skill-attributes are words or short phrases
indicating suboptimal dimensions in general terms, the feedback consists of sentence(s) elaborating
on what to fix in the context of the observed sport. Finally, we generate the proficiency level of the
person in V , again conditioned on Ŝ:

Fp(V, Ŝ | Dtr) = P, (3)

where P is the proficiency class label, e.g., novice, intermediate, early expert or late expert.

All aspects of assessment are evaluated in both the in-domain and zero-shot settings, to explore both
the absolute performance of our proposed approach with respect to the literature (in-domain) as
well as its ability to transfer to novel sports and scenarios (zero-shot). In the experiments we tackle
multiple datasets of various sports and fitness activities, introduced next and detailed more in Sec. 3.5.

3.2 Skilled physical activity datasets

Before introducing our model, we next overview the key existing datasets leveraged in this study, since
being familiar with their contents will help visualize our overall learning paradigm. Ego-Exo4D [37]
contains 2,593 videos, totaling 239 hours with 289 total participants playing 3 sports—soccer, rock
climbing, and basketball. Qualcomm Exercise Videos Dataset (QEVD) [68] has 223 long home
fitness exercise videos, totaling 13 hours, where 28 total participants perform 23 structured workout

4



knees more to jump to generate power

Generating skill-attributes Generating actionable feedback

Proficiency
estimation

ZS-1:  All sports and skills except shooting

All sports and drills

Proficiency: Late expert

Test drill: Mid-range shooting

Incorrect skill-attribute: Jump

Actionable feedback: Bend the

ZS-2:  All basketball skills except shooting

ZS-3:  All sports except basketball

Figure 3: Method overview and evaluation settings. (Left) We encode videos into tokens v that can be fed to a
multimodal LLM L, with a mapper fm that trains for skill-attributes. We use these visual tokens to generate
skill-attributes (bottom left). Next, this pretraining is used to generate actionable feedback (bottom middle) and
proficiency score (bottom right). (Right) Example of the various training settings for in-domain and zero-shot.

moves (like jumping jacks, planks, squats, etc.). To stretch our model on in-the-wild zero-shot
settings, we also show qualitative results using YouTube sports videos collected by us—frisbee,
water polo and soccer (juggling).

Both Ego-Exo4D and QEVD provide actionable feedback commentary for the videos, which consists
of timestamped positive and negative critiques, ideas to correct form, pacing, or other aspects of
execution. Each sport is critiqued by expert coaches or players from that same sport. Given a video
V , the expert pauses the video at multiple timepoints t and provides verbal feedback, e.g., “...here
he’s showing good control but lacks speed, which is critical to an effective dribble...”. Ego-Exo4D
additionally has proficiency labels corresponding to four distinct skill levels, from novice to late
expert. See Figure 5 and Supp. for examples.

3.3 Stage I: Discovering skill-attributes for pretraining supervision

To supervise the training of Fa, we obtain the skill-attributes set S for every video demonstration
by sourcing it from Ego-Exo4D and QEVD commentaries—totaling around 34k unique feedback
strings. We use these commentaries as a signal to extract the skill-attributes the learner in the video
should improve on, as detailed next. While the Ego-Exo4D and QEVD expert commentary represent
existing video-language datasets nicely suited for our purposes, such commentary could potentially
be sourced “in the wild" from current video sharing platforms (e.g., Reddit, TikTok, etc.) where
people provide similar verbal assessments for videos shared on social media. See Supp.

For each training sample, we prompt a large language model (LLM) [2] to extract skill-attributes that
are suboptimally demonstrated according to its expert commentary text T . We provide examples to
help define the intent of skill-attributes to the LLM. See Supp. for full prompt. This process yields
S = {s1, s2, ...} from the expert commentary T at time t. Note that |S| can be of any length. Fig. 2
shows word clouds of the discovered skill-attributes for the two video datasets. We observe that many
salient phrases transcend sport boundaries, like body positioning, balance, control, and movement.

Finally, we sample a video chunk around the time t, i.e., [t − µ1, t + µ2] and associate it with the
skill-attribute set S.1 By using an LLM combined with the raw commentary data, we obtain diverse,
open-vocabulary skill-attributes for every training sample. We draw on these resulting LLM-inferred
annotations when training the multimodal LLM (Sec. 3.4).

3.4 Stage II: Skill assessment from video

Next we present our model design for learning Fa. Taking inspiration from the success of multimodal
LLMs [44, 46, 53, 56], we convert a query video V into visual tokens. Next, we input the visual

1The commentary text has only a timepoint t, not a temporal extent; this window extraction is consistent
with how the temporal ambiguity is handled in prior work [9, 51, 76].
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tokens to a multimodal LLM, along with a prompt to predict the skill-attributes S. The output is
parsed to create the prediction Ŝ. Fig. 3 shows the overview, and we describe each step next.

Encoding video demonstrations. We first use a standard video encoder fv (we use EgoVLP2 [74]
and CLIP [75], though others are possible) to extract video features from the video demonstration,
v′ = fv(V ), see Fig. 3 (top left). Our model supports either single-view or multi-view inputs. When
available, multi-view observations of a skilled physical activity can give valuable detail; for example,
an egocentric view of the basketball being shot by the hands along with one or more exocentric
viewpoints of the player’s full body pose would provide complementary information. When using
multiple views, v′ is simply the concatenation of features from individual views. The video spans
µ1 + µ2 seconds, as discussed in Sec. 3.3, and one feature is extracted per second. Therefore, v′ is a
vector of dimension (µ1 + µ2)×N where N is the output feature dimension.

Note that our representation is video-frame based, meaning the person’s body pose is visible in the
RGB but not explicitly extracted. While one could alternatively supplement the input with explicit
body poses, our early experiments showed that the accuracy advantage is minimal compared to the
high compute needed to get state-of-the-art poses [79], i.e., 34 seconds for a 10 second clip.

Pretraining: Multimodal LLM for skill-attribute generation. After encoding the videos, we input
it to a multimodal LLM (M-LLM), denoted as L. An LLM is a suitable choice since the output
attributes are expressed in text format. We prompt the model as follows: “<video> Here is a video of
a person doing <sport name>. Highlight up to <k> key concept areas where the person can improve:
...”. We replace the ‘<video>’ tag with video encodings obtained above.

The output of the M-LLM contains ‘k’ skill-attributes, distinct phrases that represent the dimensions
of suboptimal execution in the provided video demonstration. These outputs are parsed to obtain the
skill-attributes set Ŝ, see Fig. 3 (bottom left). To this end, we employ a trainable mapper fm that
converts the feature vector v′ to a representation compatible with the LLM, v = fm(v′). The idea is
that fv is a large pretrained model and kept frozen, while fm is trainable to convert the visual features
to a multimodal representation. The supervising signal to train this M-LLM is the skill-attribute set S
obtained in Sec. 3.3. We use standard log-likelihood loss [30, 53, 63, 86]. We emphasize that this
pretraining enables the model to generate skill-attributes, as opposed to retrieving from a closed set.
We show the superiority of this approach over retrieval in the experiments.

This pretraining stage results in aligning the video features v towards skill-attributes, thus making it
suitable for the other axes of assessment—actionable feedback and proficiency estimation. We now
use the pretraining weights for completing the assessment task suite, as described next.

Skill-attributes for actionable feedback. For generating expert actionable feedback, we provide
the output skill-attributes Ŝ, along with video V , as input to the model L and output the actionable
feedback. See Fig. 3 (bottom middle). Next, we prompt the model L with a prompt as follows:

“<video> Here is a video of a person doing <sport name>. Here are some possible axes that need
improvement, as rated by an AI coach (may contain mistakes): <Ŝ>. Give feedback on the execution
that will help the person improve.” As above, <video> is replaced by v. Importantly, this prompt
provides both V and Ŝ as an additional guiding signal for the actionable feedback generation process.
The generated actionable feedback T contains ideas for improvement that are personalized to the
video specifics, e.g., “you need to bend more while dribbling to maintain control” as opposed to
simply naming the skill dimension to improve, e.g., control. While skill-attributes can be the same for
two sports, the resulting actionable feedback will be geared towards the specific sport. This factoring
helps make our model transferable, while also enabling sport-specific actionable feedback.

Skill-attributes for proficiency estimation. Lastly, we deploy skill-attributes for proficiency esti-
mation. As we want to discern how the skill-attributes representation compares to standard video
features without such training, we employ a linear probe setting where we have a linear layer fp that
takes in frozen v and outputs a class representing the proficiency P , see Fig. 3 (bottom right). The
proficiency is a label of expertise: novice, intermediate, expert, or late expert. Only fp is trainable.

3.5 Training and inference settings and implementation details

Train/test splits. Our approach aims to improve both traditional in-domain and zero-shot skill
assessment. The datasets organize video clips by their superclass sport and their subclass skill.
A skill is a drill or specific exercise, and each sport can have multiple skills. Ego-Exo4D has 3
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Table 1: Quantitative results. Skill-attribute generation results (IoU@0.7) for Ego-Exo4D [37] and QEVD [68]
(top left). Actionable feedback generation results for Ego-Exo4D [37] (top right) and QEVD [68] (bottom
left). Metrics used to match SOTA on the corresponding dataset, B@4=BLEU@4, M=Meteor, R-L=ROUGE-L,
B=BERT score. Proficiency estimation for individual sports (bottom right). Standard errors are reported in text.

Skill-attribute generation

Method IoU@0.7 Ego-
Exo4D [37]

QEVD [68]

InternVideo2-NN [88] 14.0 23.8
InternVideo2-FT [88] 15.0 24.5
VideoChat2 [47] 9.3 16.9
LLaVA [53] 9.7 17.3
LLaVA-FT [53] 14.6 26.9
Stream-VLM [68] 14.5 28.0
ExpertAF [9] 15.0 28.1
Attribute-Retrieval 19.7 32.4
CROSSTRAINER 25.7 37.6

Actionable feedback on Ego-Exo4D [37]

Method B@4 M R-L

InternVideo2-NN [88] 42.1 46.9 49.3
InternVideo2-FT [88] 42.9 47.6 50.0
VideoChat2 [47] 27.8 44.3 41.9
LLaVA [53] 28.5 44.1 44.2
LLaVA-FT [53] 43.5 48.5 51.5
LLaVA-FT w/ pose [53] 43.6 48.5 51.7
PoseScript/Fix [23, 24] 24.1 44.5 46.3
ExpertAF [9, 63] 44.9 49.6 54.6
CROSSTRAINER 45.6 51.7 57.8

w/o two-stage 43.8 48.8 52.3

Actionable feedback on QEVD [68]

Method M R-L B

Socratic-LLaMA-2-7B 9.4 7.1 86.0
Video-ChatGPT [56] 10.8 9.3 86.3
LLaMA-VID [50] 10.6 9.0 86.0
Stream-VLM [68] 12.7 11.2 86.3
CROSSTRAINER 17.6 18.1 87.8

w/o two-stage 12.1 10.8 86.0

Proficiency estimation on Ego-Exo4D [37]

Method B.ball Soccer Rock Cl.

EgoVLPv2 [74] 48.0 62.5 34.0
CROSSTRAINER 53.1 68.8 37.1

superclasses and 5 subclasses: soccer has skills dribbling and penalty kick; basketball has skills
Mikan layup, reverse layup, jump shot; rock climbing is not sorted into skills. QEVD has 1 superclass
(fitness) and 23 subclass skills (jumping jacks, squats, etc.). To explore models’ generalization ability,
we perform controlled experiments with the following train/test settings, in decreasing volume of
available training data (see Fig. 3 (right)):

• Fully supervised (FS): Train on all sports and skills, and test on held-out set of videos. This
represents in-domain testing.

• All sport zero-shot (ZS-1): Train on all sports and skills, except the target skill. This means
other skills from the same sport are seen during training.

• Familiar sport zero-shot (ZS-2): Train on all skills from the same sport, except the target
skill. This means only the same sport is seen during training.

• Novel sport zero-shot (ZS-3): Train only on n− 1 sports, test on skills from the n-th unseen
sport. This means other skills from the same sport are not seen during training.

For each controlled experiment, we retrain the model to avoid any information leak between the train
and the test splits, and between the seen and novel sports.

Model architecture. fv is EgoVLPv2 [74] for Ego-Exo4D [37] (precomputed with dataset) and
CLIP [75] for QEVD [68] (lightweight to extract). We use one feature per second with a 4096-d
output. For Ego-Exo4D [37], we use the ego and four exo views, while QEVD [68] is single-view.
fm is a two layered MLP with GELU activation, consistent with [52]. The MLP+GELU module
takes in 4096-d representation, consistent with the embedding dimension of the multimodal LLM L,
Llama-3.1-8B-Instruct [5]. fp is a linear layer with output size 4, the number of proficiency levels.

Training details. We train both Fa and Ft in LoRA setting [38], with rank 128, alpha 256, and
dropout 0.05, for efficiency. The best performance is obtained with a learning rate of 2× 10−3 for
fm and 2 × 10−4 for L. Recall that fv is kept frozen. The model is trained for 2 epochs or till
convergence. Total training time depends on the dataset setting, varying between 1− 3 hours. All
experiments are performed on one GH200 NVIDIA node.
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Figure 4: Zero-shot performance. Performance trend when testing on various skills (dribbling, penalty, etc.)
for different in-domain and zero-shot training settings (FS, ZS-1, etc.) for skill-attribute generation (top) and
actionable feedback generation (bottom) for Ego-Exo4D. The relative drop in performance w.r.t. FS is shown
as a percentage. Our method is consistently the best for all methods, and the relative drop is the least for all
zero-shot variants (ideal curve would be flat and high). See Supp. for QEVD. Legend: CROSSTRAINER,

ExpertAF [9] and InternVideo2 [88].

4 Experiments and Results

We first present actionable feedback generation (Sec. 4.1) for its focus in prior work and directly
comparable SOTA methods. Next, we validate the skill-attributes pretraining (Sec. 4.2). Finally, we
present proficiency estimation (Sec. 4.3) and explore long-tail in-the-wild YouTube videos (Sec. 4.4).

4.1 Generating actionable feedback

First we evaluate actionable feedback generation: given a video, generate the natural language
commentary explaining what to correct.

Baselines. We compare against the SOTA ExpertAF [9] and Stream-VLM [68] models as well as the
original baselines from their respective experiments, which include strong multimodal LLMs with
model size 7B-8B. CROSSTRAINER has fewer trainable parameters due to our use of LoRA [38], but
we leave the baselines in their full (non-LoRA) form to report their most accurate numbers. “w/o
two-stage” is the end-to-end ablation not using skill-attributes.

Metrics. Following [9, 68], we report language metrics—METEOR [11], BLEU-4 [69],
ROUGE [78] and BERT-score [25], reported out of 100; higher is better. While establishing ground
truth commentary is nuanced and there could be multiple valid feedback statements for a given
video, prior work [9] shows that this evaluation paradigm correlates strongly with human subjects’
evaluation of the generated commentary.

Fully supervised in-domain results. Tab. 1 (top right and bottom left) shows the results.
CROSSTRAINER clearly outperforms all prior work and strong baselines. Standard error is less than
0.1 for all metrics. This result clearly supports using skill-attributes as an intermediate representation
for actionable feedback. We investigate the robustness of actionable feedback generation to the choice
of the LLM L and the noise level in the Supp. Fig. 5 (first two rows) shows qualitative outputs for
both datasets, where our model correctly captures the expert’s feedback.

Zero-shot transfer. Fig. 4 (bottom row) shows the trend when transferring the knowledge from
one domain to another in Ego-Exo4D [37] (see Supp. for QEVD [68]; results are similar). We plot
the best M-LLM (ExpertAF [9]) and retrieval (InternVideo2-FT [88]) baselines; we see a similar
trend in all other baselines. Our method obtains the best performance for all training settings and
degrades most gracefully as training data coverage diminishes in the increasingly difficult zero-shot
settings (ZS-1, ZS-2, ZS-3). Our max drop is 4%, vs. 17% for the baseline. In Fig. 5 (bottom
left), we show a confusion matrix denoting better transfer from soccer to basketball, and vice versa,

8



Actionable feedback: Good!
Make your cores tighter.

Fully supervised

GT: The player needs to improve by jumping on the release of the jump shot to get
the necessary lift, power, arc, and accuracy. 

Trained on soccer
Skill-attributes: Jump 

Actionable feedback: The
player should jump while
releasing the ball to
generate the correct power
and control of the ball.
Proficiency: Early Expert

Skill-attributes: Jump 

Actionable feedback: The
release of the ball should
be at the same time as the
jump for best use of the
momentum.
Proficiency: Early Expert

Fully supervised

GT: The player needs to adjust their hip and shoulder alignment to receive the ball
more effectively with the outside of their foot.

Trained on basketball

Skill-attributes: Hip and 
shoulder alignment 
Actionable feedback: The
player should orient their
shoulder and hip towards
the ball for correct receive.
Proficiency: Late Expert

Skill-attributes: Shoulder
position 

Actionable feedback: The
player should face the ball
when receiving it.

Proficiency: Late Expert

Fully supervised

GT: The climber's body weight falls back and away from the wall due to the use of
their flagging foot.

Trained on basketball
Skill-attributes: Body
positioning 
Actionable feedback: The
climber should not leave a
hanging foot as it increases
pressure on hands.

Proficiency: Early Expert

Skill-attributes: Balance

Actionable feedback: The
extended leg is causing the
person to fall off due to
imbalance.

Proficiency: Early Expert

Fully supervised

GT: Stand up tall and engage your core.

Skill-attributes: Core
tightness 

GT: Let's keep moving. Let's go!

Skill-attributes: None

Actionable feedback: That's
it! Keep it up

Skill-attributes: Power

Actionable feedback: Keep the hand
closer to the body to generate power

ASR: This big loopy motion does
not help derive power, and it's too
long of a throw.

Skill-attributes: Hand positioning

Actionable feedback: The player
should have less rotation of the wrist
to allow better grip and throw power.

ASR: The most common mistake is
to over-rotate the ball with your wrist.

Skill-attributes: Knee bend
Actionable feedback: The player
should loosen a bit and bend the
knees more to adjust to the ball
movement.

ASR: Don't keep your knees straight
like this.

Ego-Exo4D Ego-Exo4D

Ego-Exo4D QEVD QEVD

Novel: Frisbee Novel: Water polo Novel: Juggling
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GT: The player should not look down when
dribbling to avoid loosing track of teammates.

Skill-attributes: Knee bend, Leg positioning

Actionable feedback: The player should bend the
knees more.

Failure Cases

GT: The player lacks intention while hitting the ball

Skill-attributes: Control

Actionable feedback: The player should bend the
body a bit more towards right for more control.

Figure 5: Qualitative results. CROSSTRAINER generates skill-attributes, actionable feedback, and proficiency
for samples from both Ego-Exo4D [37] and QEVD [68]. The outputs are meaningful even in the zero-shot
setting (first two rows). Our method is also applied to in-the-wild videos from YouTube with novel sports
(frisbee and water polo) and even new drills (juggling in soccer) with feedback matching the YouTube expert’s
comments (transcribed with ASR) (third row). Confusion matrix shows better transfer between related sports
(bottom left). Failure cases here and in Supp. show the difficulty of the task, especially non-visual feedback like
lacking intent (bottom right).

compared to rock climbing—reinforcing observations in cognitive science [43, 65, 81]. In summary,
CROSSTRAINER demonstrates robust to transfer to novel sports and drills.

4.2 Learning skill-attributes in pretraining

Next we evaluate the skill-attribute prediction (c.f. Sec. 3.3).

Baselines. We compare to retrieval baselines (InternVideo2 [88], nearest neighbor (NN) and finetuned
(FT), and Attribute-Retrieval trained with contrastive learning), zero-shot multimodal baselines
(VideoChat2 [47], LLaVA [53]), and a finetuned version of the best multimodal baseline (LLaVA-FT).
In addition, we again compare to ExpertAF [9], a SOTA model for generating actionable feedback,
but here we convert its output to skill attributes by text-only LLM prompting [2]. All the baselines
have access to the same actionable feedback data as ours [37, 68], and they directly supervise with it.

Metrics. Since skill-attributes are a list of phrases, we employ IoU-based matching (a.k.a. Jaccard
index) [21, 31] between the inferred annotations (Sec. 3.3) and generated skill-attributes. We call a
pair a match if BERT-score is more than k, and report IoU@k for k=0.7 here and {0.8, 1.0} in Supp.

Fully supervised in-domain results. Tab. 1 (top left) shows the results for Ego-Exo4D [37] and
QEVD [68]. CROSSTRAINER outperforms all zero-shot and trained baselines that post process
actionable feedback to obtain skill-attributes, by more than 10%. Moreover, our method outperforms
Attribute-Retrieval by 6%—showcasing the effectiveness of our generative approach. The standard
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error is less than 0.5 for all metrics and all methods. Fig. 5 shows examples predicting the skill-
attributes that the person should improve.

Zero-shot transfer. Fig. 4 (top row of plots) shows the zero-shot transfer results for Ego-Exo4D [37]
(see Supp. for QEVD [68]; results are similar). As above, we see a clear advantage of our training
scheme. Moreover, CROSSTRAINER declines much more gracefully than the baselines. Overall,
these results show the effectiveness of our skill-attribute guided pretraining for zero-shot transfer.

4.3 Estimating demonstrator proficiency

Next we evaluate the quality of the learned video representation v for proficiency estimation.

Baselines and metrics. We compare the strength of the video representation with respect to the
frozen representation fv , i.e., EgoVLPv2 [74] for all scenarios. We report classification accuracy.

Results. Tab. 1 (bottom right) shows the results. We see a clear gain of up to 6% when using the
pretrained video representation, with standard error <1. Fig. 5 shows some example predictions,
where our model can distinguish between early and late expert.2 This experiment suggests another
potential use case in pretraining skill-centric representations for better assessment and feedback.

4.4 Testing long tail in-the-wild YouTube sports videos

Finally, we explore applying CROSSTRAINER to novel sports and drills in in-the-wild videos from
YouTube. We extract 10 clips from tutorial videos where an expert tutor demonstrates the incorrect
way of doing a drill, while also explaining the incorrectness (i.e., the target feedback, which is
withheld from our model). Details of obtaining the videos from YouTube are given in the Supp. We
use the expert’s transcribed ASR text to compare with the output of our model.

Results. Fig. 5 (fourth row) shows example results (rest in Supp.). We see that a model trained
on Ego-Exo4D [37] videos (soccer, basketball, rock climbing), is able to predict the issue with
demonstrations in novel long-tail sports frisbee and water polo. Moreover, we also see correct
feedback in a novel juggling drill in soccer, which CROSSTRAINER is not trained with. We observe
that learning a sport-specific vocabulary is difficult in zero-shot transfer. Nonetheless, the essence is
captured and described in text, e.g., even though the model does not understand the loopy motion, it
understands that keeping the hands closer to the body helps in generating more power—a fact known
and applied in various physical scenarios. We also verify the generations with a user study. Human
subjects not associated with the project rated 75% of the generations as actionable and correct. Every
generation is judged by three raters, and we take a majority vote.

Failure cases in Fig. 5 (bottom right) showcase the difficulty in capturing subtle mistakes, especially
non-visual feedback like intent, decision. We further discuss limitations and societal impact in Supp.

5 Conclusion

We introduced CROSSTRAINER—a novel approach that discovers skill-attributes from video demon-
strations. These skill-attributes are generalizable, enabling a zero-shot transfer of skill assessment
to novel sports and drills. Our experiments show notable gains in actionable feedback generation
and proficiency estimation for both in-domain and zero-shot settings. In the future, we will explore
ways to quantify sport relatedness to predict the transferability between sports, as well as explicit
representations to capture the environmental context.
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A Supplementary material for Learning Skill-Attributes for
Transferable Assessment in Video

A.1 Table of content

This supplementary contains the following:

• A supplementary video that first motivates the problem with some example actionable
feedback requests from learners on Reddit (discussed in Sec. 3.3). Next, we show qualitative
results from Ego-Exo4D [37], QEVD [68], and YouTube videos. Finally, we also show
some failure cases.

• Sec. A.2: LLM prompt that we use to obtain skill-commentary from expert commentary.

• Sec. A.4: Additional quantitative results to show metrics for skill-attribute generation, and
QEVD [68] zero-shot results.

• We discuss limitations in Sec. A.5.

• We also discuss societal impact in Sec. A.6.

A.2 LLM prompt for obtaining skill-attribute from expert commentary

In Sec. 3.3, we discuss using a large language model (LLM) to extract skill-attributes that are
suboptimally performed. We use the following prompt:

System: Answer the question regarding a commentary about a sports drill. Do not add
information not present in the question.
User: The transcript of an expert commentating on a SPORT NAME COMES HERE drill is
given below. List down the concepts that are correct and incorrect in the drill, as noted by the
expert. The concepts are distinct aspects of the skill, e.g., control, body positioning, speed,
body movement, hand position, and so on. Feel free to come up with newer concepts and
write the response in two lines. The first line should contain the correctly shown concepts,
and the second line should contain the incorrectly shown concepts. It should be in this format.
Correct - comma separated concepts.
Incorrect - comma separated concepts.
Here is the expert feedback:
NARRATION COMES HERE
Assistant:

We prompt the LLM to provide both correctly and incorrectly demonstrated skill-attributes. Our
Attribute-Retrieval baseline (Sec. 4.3) uses both of them.

A.3 Obtaining YouTube videos for testing long tail in-the-wild sports and drills

We evaluate the performance of our model on zero-shot sports and drills from in-the-wild YouTube
videos in Sec. 4.4. To obtain a dataset for this test, we create a list of novel sports and novel drills
within the Ego-Exo4D [37] and QEVD [68] sports (basketball, soccer, rock climbing, exercise), and
search for videos on YouTube with their coaching videos. Our criteria is that the video should contain
a mistake done by a learner, and a coach giving feedback. Note that many videos show only the
correct demonstration; hence, obtaining videos for our task is challenging.

Specifically, we randomly selected some common sports—soccer (juggling), basketball (dribbling)
and some rarer ones like water polo, korfball, polo, jai alai, kin ball, frisbee. We search more than
50 videos with keywords like “Coaching video of <sport/drill>”, “<sport/drill> training session for
beginners”, “<sport/drill> common mistakes for beginners”, “Dos and don’ts in <sport/drill>”. The
videos are manually watched to find the desired coaching instances. The process took overall 12
hours, and was done by graduate students not associated with this project.
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Table 2: Buckets of exercises in QEVD [68] grouped by similarity in execution and effect.

Group name Exercises Remark
Stretches & mobility quad stretch, armcrosschest,

good morning beginner, floor
touches, toe touchers

Focused on flexibility and range of mo-
tion; often used in warm-up or cooldown
phases. Involves static or slow dynamic
movement.

Cardio & agility high knees, quick feet, jumping
jacks, air jump rope, butt kick-
ers, puddle jumps

Elevates heart rate with low to moderate
resistance; emphasizes agility and coor-
dination with repetitive footwork.

Leg strength & lower-
body

squats, squat jumps, squat kicks,
walking lunges, lunge jumps,
standing kicks

Targets glutes, quads, hamstrings
through controlled or explosive leg
movements. Builds strength and
endurance.

Core & upper-body plank taps, moving plank,
pushups, shoulder gators

Focuses on core stabilization and up-
per body strength, particularly arms,
shoulders, and chest. Often bodyweight-
based.

Full-body boxing squat punches, mountain
climbers

High-intensity, compound movements
that engage multiple muscle groups
while promoting coordination and
rhythm.
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Figure 6: Zero-shot performance. Performance trend when testing on various skills (stretches, cardio, etc.)
for different in-domain and zero-shot training settings (FS, ZS-1, etc.) for skill-attribute generation (top) and
actionable feedback generation (bottom) for QEVD [68]. Legend: CROSSTRAINER, Stream-VLM [68]
and InternVideo2 [88].

A.4 Additional quantitative results

In Sec. 4.2 and Tab. 1 (top left), we show results for generating skill-attributes for IoU@0.7. We
extend the table to show results on IoU@k for k ∈ {0.7, 0.8, 1.0} in Tab. 3.

Next, we show zero-shot transfer performance on the QEVD [68] dataset (summarized in main paper,
and detailed here due to space limitations). Note that all videos in QEVD are for fitness exercises,
and they are not as distinct as a different sport. Moreover, every video contains multiple exercises,
with the transition labeled as “Moving to (EXERCISE NAME)...”. We use these labels to split the
videos per-exercise. We discard instances that are before the start of any labeled exercise. Next, we
create sport labels based on similarity in execution and effects. We create this division for the purpose
of zero-shot transfer experiments. This split is created using consensus from ChatGPT-4o [2] and
Llama-3.1 [5], and finally manually verified. The splits and the reasonings are given in Tab. 2. A
total of 23 unique exercises are divided into 5 groups.
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Table 3: Quantitative results. Skill-attribute generation results for IoU@k for k ∈ {0.7, 0.8, 1.0} for Ego-
Exo4D [37] and QEVD [68], extension of Tab. 1 (top left) on remaining k values.

Method IoU @0.7 @0.8 @1.0

InternVideo2-NN [88] 14.0 8.9 7.7
InternVideo2-FT [88] 15.0 9.4 8.2
VideoChat2 [47] 9.3 6.6 4.0
LLaVA [53] 9.7 7.2 4.9
LLaVA-FT [53] 14.6 9.1 8.1
Stream-VLM [68] 14.5 9.1 8.3
ExpertAF [9] 15.0 9.5 8.4
Attribute-Retrieval 19.7 12.7 10.7
CROSSTRAINER 25.7 15.9 14.4

Method IoU @0.7 @0.8 @1.0

InternVideo2-NN [88] 23.8 16.3 14.8
InternVideo2-FT [88] 24.5 16.6 15.3
VideoChat2 [47] 16.9 11.4 10.1
LLaVA [53] 17.3 12.5 11.8
LLaVA-FT [53] 26.9 19.2 18.2
Stream-VLM [68] 28.0 19.9 18.6
ExpertAF [9] 28.1 19.7 18.3
Attribute-Retrieval 32.4 24.7 23.0
CROSSTRAINER 37.6 29.8 28.1

Table 4: Robustness and sensitivity of LLM: Comparison of actionable feedback generation with various
sources of skill-attributes (left). Comparison of BERT similarity score of skill-attributes generated by our method
with skill-attributes obtained from different LLMs and prompts (right).

Skill-attrib. source Test-set L B@4 M R-L

Llama-3 8B (orig) Llama-3 8B (orig) 45.6 51.7 57.8
Mistral 8B [4] Llama-3 8B (orig) 45.3 51.8 57.5
Llama-3 8B (orig) Mistral 8B 45.8 51.8 57.8

Llama-3 8B (orig)
w/ 10% noise Llama-3 8B (orig) 45.2 50.5 56.2
w/ 20% noise Llama-3 8B (orig) 45.1 50.0 54.9
w/ 30% noise Llama-3 8B (orig) 44.3 49.4 53.1
w/ 50% noise Llama-3 8B (orig) 42.7 47.3 50.2
w/ 70% noise Llama-3 8B (orig) 41.9 46.3 49.6

Ours vs Score

Llama-3 8B w/ prompt choice 1 0.99
Llama-3 8B w/ prompt choice 2 0.98
Mistral 8B [4] 0.98

Fig. 6 shows the results. First, in skill-attribute generation (top row), we see that our method
outperforms both Stream-VLM [68] and InternVideo2 [88] baselines. Moreover, as seen in Ego-
Exo4D [37], the performance decrease in the zero-shot setting is milder than the drop observed in the
baselines. Finally, we see a similar trend in actionable feedback generation (bottom row). Overall,
zero-shot results in both Ego-Exo4D [37] and QEVD [68] show that our idea of learning to generalize
using skill-attributes is effective.

Finally, to show the robustness and sensitivity, we perform the following experiments on Ego-
Exo4D [37] actionable feedback generation:

Robustness to the choice of the language model: We train and evaluate skill-attributes using different
language models. We first train the model using Mistral’s 8B language model (mistralai/Ministral-
8B-Instruct-2410) [4] and compare it against the skill-attributes test set obtained using Llama-3.1-8B-
Instruct, and vice-versa. Tab. 4 (left) shows the results. We see that the model is robust to the choice
of the language model, and using any strong language model helps achieve a good performance.

Actionable feedback generation w/ noisy skill-attributes: We inject noise in the actionable feedback
generation evaluation. We replace X% of inferred skill-attributes with a random skill-attribute and
observe the performance at various levels of noise X. See results in the table below. We observe that
adding noise degrades the performance, with the performance matching that of end-to-end direct
training at X = 20%. We can conclude that the performance is positively correlated to the quality of
the generated skill-attribute. Improving that will also improve the actionable feedback performance.
These ablation studies further showcase the effectiveness of using skill-attributes for actionable
feedback.

Correlation between skill-attributes generated using different LLMs: We try two prompt variants,
and a different language model (Mistral 8B, mistralai/Ministral-8B-Instruct-2410) [4] to compare
the similarity between generated skill-attributes—checking if our idea is independent of the chosen
language model. We use Hungarian matching to find the most-similar match between the new
skill-attribute set and our original skill-attribute set. Next, we find the average BERT score [25]
between the sets. Tab 4 (right) shows the results. We see a very high similarity between skill-attributes
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generated from different prompts, and a different language model. This result implies that our idea is
independent of the choice of a reasonable language model.

A.5 Limitations

We observe that the proposed model struggles with feedback that is about aspects not directly visible
in the video. Phrases like lacking intent is not groundable definitively and hence, is not captured.
Nevertheless, this inability to capture abstract notions is also observable in all the baselines, and in
general, vision encoders. Secondly, as we discuss in Sec. 4.1, commentary is subjective and there can
be various correct ways of providing feedback that improves a learner’s performance.

Moreover, in this work, we do not factor aspects like terrain and opponent behavior. This assump-
tion is consistent with the datasets Ego-Exo4D [37] and QEVD [68] that are both single-person,
and do not consider external factors. Furthermore, prior work also considers single-person skill
assessment/feedback [9, 12, 37]. There are research works in multi-agent cooperation, but they are
restricted to simulation and simpler objectives than performance feedback.

A.6 Societal impact

Our CROSSTRAINER can be used for learning skills, especially long-tailed low-resource sports like
kho-kho, shinty. On the positive side, our model democratizes access to skill coaching, and it promotes
inclusivity in underrepresented sports. More learning will promote more people playing the sport,
and eventually, more data for training and expansion of knowledge. However, the model is trained
with Ego-Exo4D [37] and QEVD [68] that might have regional bias. We believe as more data is
available, the biases will go down, and we will move closer towards full physical skill understanding.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes] We show results on transferring performance across various sports on
multiple datasets.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: [Yes] Sec. 4.4 discusses the limitations of our work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA] We do not propose any theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [Yes] Sec. 3.5 describes all the information required to reproduce the code.
Furthermore, we will release the code and the data upon paper acceptance.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: [No] The code and data will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [Yes] The method section (Sec. 3) discusses the training and test details, along
with all the design choices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [Yes] All result sections have the maximum standard error reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [Yes] The details of compute resource and training duration is given in Sec. 3.5.
We did not have significant computational overhead due to failed experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [Yes] The authors confirm that this research follows the NeurIPS code of
ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: [Yes] Supplementary discusses societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
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Justification: [Yes] We only use Exo-Exo4D [37] and QEVD [68] dataset for the research.
Moreover, the generations of the language model is finetuned to only generate expert
commentary. We believe our trained model cannot be misused.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [Yes] We have cited and ensured all the codes and models have licenses that
we can use for this research.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: [Yes] All the details of the weakly-supervised dataset is provided in Sec. 3.
We will provide the documentation of the code along with its release to the community.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: [Yes] Our model design use LLM as the core component. This is a standard in
recent video understanding methods [46, 53].
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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