
To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

MODEL ALIGNMENT USING INTER-MODAL BRIDGES

Ali Gholamzadeh,
MPI for Biological Cybernetics
& University of Tübingen
ali.gholamzadeh@tue.mpg.de

Noor Sajid
Kempner Institute, Harvard University
& MPI for Biological Cybernetics
noorsajid@g.harvard.edu

ABSTRACT

Foundation models have demonstrated remarkable performance across modalities
such as language and vision. However, inter-modal model reuse remains limited
due to the difficulty of aligning internal representations. Existing methods re-
quire extensive paired training data or are constrained to specific domains. We
introduce a semi-supervised approach for model alignment via conditional flow
matching. The conditional flow between latent spaces of different modalities (e.g.,
text-to-image or biological-to-artificial neuronal activity) can be learned in two
settings: (1) solving a (balanced or unbalanced) optimal transport problem with
an inter-space bridge cost, and (2) performing memory-efficient alignment using
labelled exemplars. Despite being constrained by the original models’ capacity,
our method–under both settings–matches downstream task performance of end-
to-end trained models on object recognition and image generation tasks across
MNIST, ImageNet, and Majaj et al. (2015) datasets, particularly when labelled
training data is scarce (< 20%). Our method provides a data-efficient solution for
inter-modal model alignment with minimal supervision.

1 INTRODUCTION

Foundation models like GPT-X, DeepSeek, Gemini, Sora, and Dall-E have demonstrated remark-
able performance across modalities such as text, image, and video (Brown, 2020; OpenAI, 2023;
Gemini et al., 2023). While these large-scale models represent significant investments in computa-
tional resources and data curation (Brown, 2020), their inter-modal model reuse1 remains limited by
the fundamental challenge of aligning internal representations (Imani et al., 2021; Klebe et al., 2023;
Huh et al., 2024). Existing approaches for aligning models across modalities typically require exten-
sive paired datasets to build correspondence (Zhai et al., 2022), yet such datasets are rarely available
at scale (Gadre et al., 2024). Current alignment techniques are further constrained by their reliance
on abundant paired data or their focus on specific domains (Gadre et al., 2024), limiting their broader
applicability. Thus, developing alignment methods that can operate with minimal supervision while
generalising across domains remains an open and critical challenge.

To address this, we propose model space alignment via inter-modal bridges for inter-modal inte-
gration of models with minimal supervision. Our approach centres on learning morph between
latent spaces, where a noise distribution is mapped to the target space conditioned on source sam-
ples (Klein et al., 2023). These morphs are learned in a semi-supervised setting with access to a
small set of paired samples between target and source distributions. We use these paired samples
in two ways: through true alignment using the labelled pairs themselves, or by solving a balanced
or unbalanced optimal transport (OT) problem (Peyré & Cuturi, 2019) that uses our inter-modal
bridge cost(Sec. 3.3) to compute optimal couplings between distributions. The inter-modal bridge
cost captures similarities between latent spaces using intra-space distances and paired samples.

Our contributions are as follows:
• Introduce an inter-modal bridge cost across distinct latent spaces using intra-space distances and

paired inter-space samples (Sec. 3.3).
• Show improved conditional flow matching using global OT alignment and true alignment com-

pared to a local OT alignment baseline (Klein et al., 2023) (Sec. 5).
1Reusing pre-trained models across different data modalities, such as using a vision model on text data,

without needing to retrain them.
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Figure 1: Pictorial representation of our approach for aligning model space using multi-modal
bridges. We consider two pre-trained models; fX and fY and their corresponding datasets DX
and DY . Next, we obtain source and target latent distributions µ and ν and compute the optimal
coupling π⋆ across these two distributions using paired samples (xpi , y

p
j ) ∈ P as inter-space bridges

or using the paired sampled directly. Given this, we learn the velocity field vt,θ that morphs noise ρ
conditioned on xi in the source distribution to some target yi using samples from the optimal cou-
pling π⋆(· | xi).

• Validation of our model alignment method – between image-text and biological-artificial neural
representations – on downstream object recognition and image generation tasks using minimal
paired samples (i.e., < 20%) (Sec. 5) across different datasets (Sec. 4).

2 PRELIMINARIES

In this work, we consider two datasets, DX and DY , and two bounded sets, X ⊂ Rp and Y ⊂ Rq ,
referred to as the source and target domains respectively (Fig. 1). The model representation is
defined as fX : DX → X and the set of probability measures on X is denoted as P(X ). For a
coupling π ∈ P(X × Y), the marginal distribution is denoted as πX (x) =

∫
Y π(x, y) dy. The

entropy for π ∈ P(X × Y) is given by H(π) = −
∫
X×Y π(x, y) log(π(x, y)) d(x, y).

(Unbalanced) Linear entropic OT Given some cost function c : X × Y → R, the (unbalanced)
linear entropic OT for µ ∈ P(X ) and ν ∈ P(Y) is:

π⋆ := arg inf
π∈P(X×Y)

∫
X×Y

c(x, y)π(x, y)dxdy − ϵH(π) + λX KL(πX ∥ µ) + λYKL(πY ∥ ν) ,

(1)

where ϵ ≥ 0 is a hyperparameter controlling the trade-off between minimising the transport cost and
the smoothness of the solution, λis the unbalanced weighting parameters2 and KL(· ∥ ·) denotes the
Kullback–Leibler divergence. For the discrete setting, the Sinkhorn algorithm (Cuturi, 2013) solves
the linear entropic OT problem by iteratively updating the coupling to minimise the regularised cost
while satisfying marginal constraints. In the unbalanced setting a variation of the Sinkhorn algorithm
can be used (Frogner et al., 2015; Séjourné et al., 2023).

(Unbalanced) Quadratic entropic OT Given two intra-space cost functions cX : X × X → R
and cY : Y × Y → R, this method extends the linear OT problem to distinct spaces by learning a
coupling that encourages the matches of elements close in one probability distribution to be close in
the other distribution as well (Vayer, 2020; Séjourné et al., 2023):

π⋆ := arg inf
π∈P(X×Y)

∫
(X×Y)2

|cX (x, x′)− cY(y, y′)|
2
dπ(x, y) dπ(x′, y′)− ϵH(π)

+ λX KL⊗(πX ∥ µ) + λYKL⊗(πY ∥ ν) ,
(2)

where tensorised KL⊗(p ∥ q) = KL(p⊗ p ∥ q ⊗ q).
2In our experiments, instead of directly setting the λi’s, we use an alternative parameter τ (see Ap-

pendix L.1)
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(Unbalanced) Fused Gromov-Wasserstein (U-FGW) Given two partially comparable spaces, U-
FGW extends U-GW by combining both the intra-space structural dissimilarity with an inter-space
feature discrepancy (Titouan et al., 2019) and can be formalised as:

π⋆ := arg inf
π∈P(X×Y)

∫
(X×Y)2

(
α|cX − cY |2 + (1− α)c2XY

)
dπ(x, y) dπ(x′, y′)− ϵH(π)

+ λX KL⊗(πX ∥ µ) + λYKL⊗(πY ∥ ν) ,
(3)

where cX : X × X → R and cY : Y × Y → R are the intra-cost functions: cXY : X × Y → R
the fused cost3 and α ∈ [0, 1] the trade-off parameter. For discrete settings, this can be solved by
iteratively updating the coupling using conditional gradient updates (Vayer, 2020; Séjourné et al.,
2021).

(Unbalanced) Generative entropic neural OT (U-GENOT) Like the OT solvers, U-GENOT
aims to find an optimal mapping between the source and target distributions (Klein et al., 2023)
using conditional flow matching (CFM). CFM was introduced as a simulation-free technique to train
a velocity field by regressing it against a target vector field (Lipman et al., 2022). Here, the velocity
field, vt,θ(x), is a time-varying vector-valued function that describes the instantaneous direction and
speed of movement for each point in the space from the initial distribution to the target distribution.
Tong et al. (2023) used CFM to distil the discrete optimal map between two distributions in the same
space (OT-CFM). See Appendix B for further details.

U-GENOT extends this to cases where the source and target distributions are in different spaces,
i.e., µ ∈ P(X ) and ν ∈ P(Y) (Klein et al., 2023). For this, a conditional time-varying velocity
field vt,θ(· | x) : X → Y on the target space was assumed and optimal parameters (θ∗) found by
minimising:

LU-GENOT(θ) = Et,z∼ρ(x,y), ∼π⋆∥vt,θ(ty + (1− t)z | x)− (y − z)∥2

+Ex∼µ
[
(η − ηθ)(x)2

]
+ Ey∼ν

[
(ξ − ξθ)(y)2

]
,

(4)

where t ∼ U [0, 1] and π⋆ is the optimal coupling found using any discrete solvers (e.g. U-GW and
U-FGW) on mini-batches i.e., local alignment and ηθ, ξθ are the non-negative neural reweighting
functions (for further details see Appendix L.1). Importantly, U-GENOT learns a separate flow for
each point in the source distribution x ∈ X and transforms a noise distribution ρ ∼ N (0, Iq) ∈
P(Rq) into a conditional coupling π⋆(· | x) (defined using an appropriate OT solver) for out-of-
sample prediction.

3 LEARNING INTER-MODAL MORPHS USING BRIDGE COST

Building upon the neural OT formulation introduced in Sec. 2, we outline our approach for learning
inter-modal morphs4. Specifically, we employ U-GENOT (Klein et al., 2023) to learn a transport
function that maps between the latent distributions of two distinct domains (i.e., vision and text),
leveraging features extracted from particular models and paired data points (Sec 3.1). This involves
selecting the appropriate alignment strategy (Sec 3.2) to either find the optimal coupling (π⋆: Eq. 1-
3) using the new bridge cost function (Sec 3.3) or using the labelled pairs directly, and an augmented
neural architecture for learning the velocity field (Eq. 4; Appendix E.1).

3.1 PROBLEM SETTING

Given datasets DX and DY where each element represents the same object but originates from
distinct spaces, we aim to learn a transport function T : X → Y mapping the latent distribution
µ ∈ P(X ) to ν ∈ P(Y) (Fig. 1). For this, we leverage models as feature extractors for each
space: fX : DX → X and fY : DY → Y . These models map data points from their respective
domains to feature vectors, yielding latent distributions in the feature spaces, denoted as µ ∈ P(X )
and ν ∈ P(Y), respectively. Then, our task is to learn the transport function T . To facilitate
this, we assume access to a set of paired points (xpi , y

p
i ) ∈ P , where xpi = fX (dpi ) ∈ X and

ypi = fY(d
p
i ) ∈ Y represent the latent representations of the same object across the two domains.

3We use "fused cost" to refer to inter-space distance functions X × Y → R.
4Here, we use "morph" as a general term for mapping a source distribution to a target distribution, while

"conditional flow matching" refers to the specific implementation used to learn this mapping.
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Figure 2: Pictorial representation of alignment methods. Here, — represents true pairs, xip, yip ∈ P ,
− − represents coupling given some fused cost CXY and OT solver, and ◦ & ◦ represent batches of
samples.

The aim is for each pair of data points, dxi ∈ DX and dyi ∈ DY to satisfy: fY(d
y
i ) ≈ T (fX (dxi )) .

In other words, the transport function T should map the latent representation xi = fX (dxi ) in space
X to approximately match the corresponding latent representation yi = fY(d

y
i ) in domain Y .

Our approach supports both supervised and semi-supervised learning paradigms. In this context, we
assume access to n source domain points, denoted as X = [xi]

n
i=1, and m target domain points,

denoted as Y = [yj ]
m
j=1. Among these, we assume a set of paired points denoted by P , with size

|P | = l, where 0 < l ≤ max(n,m). This serves as anchor for learning the inter-domain mapping.
Accordingly, the supervised setting would be where l = n = m, i.e., all points are paired across
domains. The semi-supervised setting occurs when l < min(n,m), allowing us to leverage both
paired and unpaired data points to construct inter-space cost (see Sec. 3.3). This enables us to tackle
a wide range of practical scenarios.

3.2 ALIGNMENT STRATEGY

To compute the optimal coupling (π⋆) used to train the velocity field vt,θ, we propose three distinct
alignment strategies: true, global, and local (Fig. 2). True alignment focuses on paired samples to
construct a joint distribution between the source and target domains. Given a paired set P of size l,
the coupling πtrue ∈ P(X × Y) is:

πtrue(xi, yj) =

{
1
l , if (xi, yj) ∈ P
0, otherwise

(5)

This approach ensures direct alignment for paired data but does not fully use the information avail-
able in unpaired samples.

Conversely, global alignment computes a full OT plan using the entire dataset. First, we construct
a fused-cost matrix CXY – as defined in Sec 3.3 and Appendix F – and then solve the OT problem:
πglobal = OTϵ,τ (X,Y,CXY ) , where ϵ is the entropy regularisation parameter and τ is unbalanced
parameter. This can be implemented using either linear OT with the Sinkhorn solver or quadratic OT
with the FGW solver5. Global alignment provides an appropriate mapping but incurs a significant
memory cost of O(nm), as it requires computing and storing the distance between each pair. To
address scalability concerns, we compare with local alignment following (Klein et al., 2023). This
solves the OT problem on subsets of the data at each iteration. For batches Xb and Y b drawn from
the source and target distributions, we compute: πlocal

b = OTϵ,τ (X
b, Y b, CbXY ) . While this strategy

improves scalability, it can introduce misalignment due to batch approximations (Fatras et al., 2021)
and the time complexity ranges fromO(b2) toO(b3) depending on the solver for batch size b (Cuturi,
2013; Scetbon et al., 2022). This is because we are calculating a ’local’ πlocal

b using a ’local’ CbXY
at each iteration, and then sample from this to learn the conditional flow.

3.3 INTER-MODAL BRIDGE COST

We propose a bridge cost function that leverages paired samples to define the inter-domain
cost (Fig.3). For this, we use paired points as bridges between two spaces to calculate the inter-
space cost function. Using the intra-space cost matrices CXX and CY Y , we define Cbridge

XY as:

Cbridge
XY (xi, yj) =

0 if (xi, yj) ∈ P
min

(xp
i ,x

p
j )∈P

(
CXX(xi, x

p
i ) + CY Y (y

p
j , yj)

)
otherwise (6)

5To calculate the inter-space cost CXX and CY Y , we use cosine distance unless specified otherwise.
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Figure 3: Pictorial representation of bridge cost
via (xpi , y

p
j ) ∈ P and (xi, yj) ̸∈ P .

The Cbridge
XY is determined as the minimum sum

of intra-costs, using the paired samples as zero-
cost links between the spaces. This represents
the optimal bridging cost between the paired el-
ements. The intra-cost, CXX and CY Y was cal-
culated as the cosine distance between xi, xj ∈
X and yi, yj ∈ Y .

3.4 ALGORITHM OVERVIEW

To learn the multi-modal morphs, we extract the features using some models. Next, the optimal
coupling π⋆ is calculated using one of the three proposed alignment strategies: true, global, or local.
For global alignment, this involves calculating the bridge cost using paired samples, which informs
the construction of the cost matrix, CXY that is used for training the velocity field vt,θ via (Eq. 4).
We follow a similar approach for local alignment except the fused cost and optimal coupling are
recalculated at each iteration. For true alignment, we use the paired samples to define the optimal
coupling. Next, at each iteration, we sample from the coupling, generate noise, and optimise the
velocity field to minimise the transport cost. Once trained, the velocity field can be used for out-
of-sample prediction from the source to the target space. This iterative process continues until
convergence or for a predefined number of iterations. See Appendix D for pseudo-code.

4 DATASET AND EXPERIMENTAL SETUP

We evaluated our approach in two settings: alignment between image-text representations and be-
tween biological-artificial neural network representations. For image-text alignment, we used:

• MNIST contains 60, 000 training and 10, 000 test samples of handwritten digits across ten
classes (LeCun et al., 2010). For these experiments, we used 50, 000 samples from the training
set to train two variational auto-encoders (VAE) (Kingma & Welling, 2014) (See Appendix G.1.1
for more details): VAEimage for reconstructing images and VAEtext for reconstructing the one-hot
encoded labels. Afterwards, these trained networks were used as ’pre-trained’ models and fea-
tures were extracted for the 10, 000 remaining training samples. We used these to train the model
morph from the latent space of VAEtext to the one of VAEimage and vice-versa6. The test data were
used to evaluate different morph formulations.

• ImageNet contains approximately 1.2 million training samples across 1, 000 classes (Rus-
sakovsky et al., 2015). In these experiments, we used two pre-trained models: ViT-Base (Dosovit-
skiy et al., 2021), a vision transformer, for image feature extraction, and MiniLM-L6 (Wang et al.,
2020), a pre-trained sentence encoder, for textual features. Image features were derived from
the classification token of the final layer of ViT-Base, while the textual features were encoded in
the format ’A photo of a class name’, following the protocol introduced in CLIP (Radford et al.,
2021). We used 50% train/10% validation split to train inter-modal morphs, and the remaining
40% for evaluation.

For (potentially more noisy) alignment of biological-artificial neural representations, we used:

• Majaj et al. (2015) dataset that contains neural activity recordings from the visual area (V4) and
the inferior temporal cortex (IT) of monkeys viewing distinct visual stimuli. The stimuli consisted
of eight categories, each containing 8 core images, resulting in 64 unique stimuli. Each stimulus
was paired with 50 randomly selected backgrounds, generating a final set of 3, 200 images. To
reduce noise, neural activity for each unique stimulus was averaged across approximately 50
presentations, with a minimum of 28 repetitions per stimulus. We used randomly selected splits
for train/validation/test datasets, 60%/20%/20%, that were consistently used for all analyses.
Using this dataset, we considered how aligned the neural activity across a biological and artificial
network could be when exposed to the same stimulus. To extract artificial neural representations,
we used a pre-trained EfficientNet-B0 as its variants have shown effectiveness in Brain-Score
metrics (Schrimpf et al., 2018).
6Bi-directionality was modelled to evaluate how morphing between text-to-image vs image-to-text could

differ and their influence on the downstream task performance.
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Figure 4: Noise distribution trajectory to the target latent space of a language model at t = (0, 0.5, 1)
using true alignment with 1% paired points. The latent source and target feature spaces for ImageNet
are visualised using UMAP (McInnes et al., 2018). Top: Classes with minimal overlap in the image
latent space. Bottom: Classes with high overlap in the image latent space.

Using these datasets, we assessed the impact of alignment modalities (Sec 5.1-5.2), model qual-
ity (Sec 5.1.2), the inter-modal bridge cost (Sec 5.1.3) (Sec 5.1.4) and velocity field architecture
(Sec 5.1.4) for learning appropriate morphs. All reported experiments used 5 different random seeds
and had a training budget of 18 hours on one A100 GPU. The models used for each experiment
are presented in Appendix. G, with evaluation metrics incl. morph quality, and downstream task
performance measures (Appendix. H).

5 RESULTS

5.1 IMAGE-TEXT ALIGNMENT

To align image-text representations, we used GENOT to learn conditional flow matching. In exper-
iments with local and global alignment, the optimal coupling was computed using linear and FGW
OT solvers.

5.1.1 IMAGE-TO-TEXT CONDITIONAL FLOW MATCHING

We considered whether the degree of overlap in source feature space (i.e., images; Fig.4 source
column) could influence the conditional flow matching to the target latent space (i.e., text; Fig. 4,
t = 1.0 column) using UMAP projects of the feature spaces with 1% paired points7. Using true
alignment, we observed that when the source feature space (i.e., images) had minimal overlap, the
resulting distribution showed a clear separation (Fig. 4; top row, t = 1.0). Conversely, when the
feature spaces are similar (e.g., Husky and Siberian Husky), the resulting distribution mirrors the
source, exhibiting substantial overlap (Fig. 4; bottom row, t = 1.0).

5.1.2 MODEL QUALITY

Building on this, we quantified how the quality of the model influenced the performance of the
learned flow from image to text. We measured quality in terms of feature space overlap, reflecting
how well-disentangled the encoded space was, using varying numbers of randomly selected classes
from each dataset (Appendix H.1). For both datasets, we observed a decline in performance (refer to
Appendix H.3 for how accuracy was computed) as the feature space overlap increased (Fig.5.A-B).
The degree of overlap was directly correlated with the number of classes used (Fig. 5.C). Fig. 5.D

7We use UMAP to provide an intuitive low-dimensional representation, that captures simple correlations
and local structure. Therefore, UMAP visualisations should be interpreted as qualitative approximations rather
than definitive measures of alignment quality.
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Figure 5: Latent space overlaps on conditional flow matching from image-to-text domain, using
true alignment in a fully supervised setting. A) MNIST experiment. B) ImageNet experiment. C)
Relationship between the number of classes and the degree of overlap in the latent space for the
ImageNet dataset. D) UMAP visualisations of the classes with the highest overlap in the latent
space of the ViT-B model.
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Figure 6: Matching accuracy across fused costs for linear and FGW solvers. The optimised value
of α⋆ was used for FGW solvers. Matching accuracy was calculated by sampling from the optimal
coupling π⋆ and averaging the number of correct matches. A) MNIST experiment. α⋆: KNN: 0.25,
KCCA: 0.5, bridge: 0.5. B) ImageNet experiment. α⋆: KNN: 0.25, KCCA: 0.5, bridge: 0.25.

presents a UMAP projection of the ViT-B feature space, highlighting several classes with significant
overlap in the ImageNet experiments. This high overlap may result from the training capacity of
the base ViT model (Tsipras et al., 2020) or potential mislabelling within the original dataset (Beyer
et al., 2020). These results suggest that the latent spaces’ degree of disentanglement and overall
quality play a critical role in shaping the learned flow.

5.1.3 INTER-SPACE BRIDGE COST

We examined the effectiveness of the bridge cost function in learning the optimal coupling by eval-
uating the matching accuracy (i.e., the average number of correct responses based on the ground
truth labels) for the Linear and FGW OT solvers. We compared the performance against KNN and
KCCA cost functions (Appendix F), using large sample sizes (100, 000 for ImageNet and 10, 000
for MNIST). Our results show that the bridge cost consistently outperformed the other cost func-
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Figure 7: Velocity Field vθ architecture benchmark. Comparison of the baseline feed-forward archi-
tecture and the adaptive normalisation architecture (with blocks) for image-to-text tasks in a fully
supervised setting, using true alignment, across various sizes. Here, A) MNIST experiments, and B)
ImageNet experiments.

tions across both datasets and various paired point configurations (Fig. 6). Additionally, we observe
a clear association between the number of paired points and improvements in coupling quality and
matching accuracy. Next, we evaluated the performance of discrete solvers. We find that FGW
(Eq.3), which considers both intra- and inter-space costs using optimised α⋆( Appendix. K), per-
formed the best for MNIST and linear OT solver (Eq.1) for ImageNet. Based on these results, we
employed the bridge cost and the best-performing OT solvers for all subsequent experiments.

5.1.4 VELOCITY FIELD NETWORK ARCHITECTURE

We evaluated two distinct architectures – Klein et al. (2023) baseline and neural network with adap-
tive normalisation – for parameterising the conditional velocity field network vt,θ (Appendix E.1).
The baseline follows the design of GENOT (Klein et al., 2023), utilising a neural network that
takes time, source, and latent noise as inputs. Each input vector is embedded independently using
a multi-layer perceptron (MLP) block before concatenation. The second architecture, inspired by
Diffusion Transformers (DiT) (Peebles & Xie, 2023), integrates adaptive layer norm (Perez et al.,
2018) (adaLN) blocks (see Appendix E.1). Here, input latent noise is normalised in each block,
conditioned on time and source data. We tested three size variants of each architecture. Our results
indicate that the adaLN-based architecture consistently outperformed its counterpart (Fig. 7). For
the MNIST dataset (Fig.7.A), all adaLN architectures outperformed the baseline architectures with
similar parameter counts. For the ImageNet dataset, only the larger adaLN architecture success-
fully learned the mapping (Fig.7.B). Furthermore, in terms of sample efficiency, the larger adaLN
networks achieved the target accuracy significantly faster – potentially due to dynamic activation
normalisation ( Appendix E). Given this, the velocity field in all remaining experiments was param-
eterised using the adaLN-Large architecture.

5.1.5 DOWNSTREAM TASK PERFORMANCE
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Figure 8: Image-to-text test accuracy for Im-
ageNet.

For the ImageNet dataset, we evaluated the accuracy
of image-to-text feature space using varying num-
bers of paired samples (Fig. 8). We compared our
approach against the classification head on ViT re-
ported as 83.97 in Dosovitskiy et al. (2021). This
represents the upper bound for the model’s perfor-
mance potential. Under the given training time
constraints (i.e., 18 hours), local alignment failed
to converge and exhibited poor performance, since
it requires computing the fused-cost and optimal
coupling at each iteration. Similarly, the global
solver under-performed in settings with very few
paired samples, likely due to misalignment issues
stemming from the discrete solver in these regimes
(Fig. 5). However, as the number of paired samples
increased to ≈ 10%, performance improved to a level comparable to the classifier.
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Figure 9: Downstream task performance across different alignment strategies using bridge cost with
FGW solver, and the baseline models for MNIST. A) Test accuracy for text reconstruction from
image input. B) Mean squared error between text-image constructions and true images pixel-wise
2D distributions for each class using test data.

Finally, we compared the morph results across different numbers of paired points for the MNIST
dataset. The image-to-text transformation revealed that the performance of both global and true
alignment was on par with the baseline methods(Fig. 9.A). Importantly, with a small number of
paired samples (i.e., < 10%), our method outperforms these baselines. However, local alignment
had significantly worse performance compared to other methods. This is due to misalignment and
flow misguidance–also noted in (Fatras et al., 2019), this effect can be mitigated by increasing the
batch size (Klein et al., 2023). For the text-to-image transformation (Fig. 9.B), we generated images
for each class from the corresponding labels. After morphing from VAEtext to the VAEimage latent
space, we reconstructed the images and evaluated them using mean squared error (Appendix H.2).
In scenarios with limited paired samples, both the local and global alignment methods outperformed
all other approaches.

5.2 BIOLOGICAL-ARTIFICIAL NEURAL REPRESENTATION ALIGNMENT

Based on our initial evaluation Appendix. L.2 we observed that Unbalanced setup works better, U-
GENOT to learn the conditional flow matching, U-EOT solver8 to compute the optimal coupling for
global alignment and used Pearson correlation to calculate the intra-space cost (Appendix. H.4).
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Figure 10: Neural prediction errors for the learned conditional flow matching from EfficientNet
representations at layer 1, layer 3, and the features layer to neural recordings in A) IT and B) V4
using true and global alignment. Statistically significant differences were found for all pairwise
comparisons, except those explicitly annotated with ns (Wilcoxon-Mann-Whitney test).

5.2.1 MODEL-TO-NEURAL ACTIVITY CONDITIONAL FLOW MATCHING

To assess the quality of the learnt conditional flow matching, we compared the prediction error
under different alignment strategies – true and global – while varying the proportion of paired data
from 0.2 to 0.8. For true alignment, increasing the proportion of paired data led to over-fitting, as

8We used linear since it performed better than U-FGW.
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Figure 11: Downstream task performance for classifying core image categories using the learnt
conditional flow maps from different layers of EfficientNet mapped to neural recordings from A) IT
and B) V4 regions. The neural activity was decoded using an SVM from (Majaj et al., 2015); the
model was optimised using the training data to predict the category from neural representations. The
black dotted line indicates random assignment accuracy and the pink line is SVM’s accuracy on the
actual brain activity test set.

reflected in a consistent increase in prediction error when morphing between model layers and neural
activity for V4 and IT (Fig. 10). For the global alignment given the highly noisy neural data, we
adopt an unbalanced OT setting (Eq. 1-3) and following Klein et al. (2023) optimise the degree of
mass conservation between source and target distributions (via τα and τβ) (Eq. 4; Appendix L). Our
results show that increasing the proportion of paired data corresponds to a decrease in prediction
error when morphing between model layers and neural activity for V4 and IT (Fig. 10).

5.2.2 DOWNSTREAM TASK PERFORMANCE

Next, we evaluated category classification accuracy across different images using varying numbers
of paired samples (Fig. 11). For this, we did not apply neural re-weighting (Eq. 4). We compared
our approach to an SVM trained to predict category labels, which serves as an upper bound for
the models performance. For IT and V4, deeper layers of EfficientNet performed better on the
downstream task for both true and global alignment. This aligns with prior findings that later layers
encode higher-order semantic features, making them more relevant for predicting activity in higher-
order brain areas, while earlier layers primarily capture low-level visual features (Yamins et al.,
2014).

6 CONCLUSION

We investigated inter-modal model alignment across text-image and biological-artificial neural repre-
sentations. To achieve this, we introduced an inter-modal bridge cost for fusing feature spaces. Our
results show this bridge cost enables effective alignment between distributions from separate modal-
ities even with limited paired samples between source and target spaces. Furthermore, we found that
global alignment (using samples from the computed optimal coupling) achieves competitive down-
stream performance while avoiding overfitting in noisy settings compared to true alignment (using
labelled pairs). These findings emphasise two key factors for morphing quality: intra-space sepa-
ration within feature spaces and inter-space alignment between them. However, the effectiveness
of our method may be limited by the quality of pre-trained feature extractors and the availability
of paired samples. Therefore, future work should focus on developing more disentangled represen-
tations to improve model reusability across modalities. Separately, our future work will look to
validate this model space alignment approach on larger models, different datasets and modalities.
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A OPTIMAL TRANSPORT

Optimal Transport (OT) was introduced by (Monge, 1781) as a way of transferring dirt from one
place to another by minimising the transport cost between the source and target distributions. Given
two probability measures µ ∈ P(X )and ν ∈ P(Y), and a cost function c(x, y) that quantifies the
distance between pairs (x, y) where x ∈ X and y ∈ Y , the objective is to find a push-forward map T
that minimises the total cost of transporting mass from µ to ν. This problem can be mathematically
formulated as finding the optimal map T ⋆ that solves:

T ⋆ := arg inf
T#µ=ν

∫
X

c(x, T (x))dµ(x) , (7)

subject to the constraint that the push-forward of µ under T equals ν. However, solving the Monge
problem is challenging, and the map T ⋆ may not be unique or even exist in some cases. Kantorovitch
introduced a relaxation of the original Monge problem (Kantorovich, 1942) i.e., instead of seeking a
deterministic mapping between two distributions, Kantorovich proposed finding a probabilistic map-
ping π, known as a coupling, which is a joint probability distribution over X ×Y . The Kantorovich
problem is defined as:

π⋆ := arg inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(x, y)dxdy. (8)

For computational efficiency, the entropy-regularised version of this problem is usually considered
in OT formulations, i.e. Eq. 1.

B FLOW MATCHING

Given a smooth time-varying vector field v : [0, 1]×Rd → Rd we can define an ordinary differential
equation (ODE):

dx

dt
= vt(x) , (9)

where the solution is a flow denoted by ϕt(x) describing the trajectory of a point x over time with
an initial condition ϕ0(x) = x. The evolution of an initial probability distribution ρ0 ∈ P(Rd) to a
probability path pt(x) under this flow is governed by the continuity equation:

∂pt
∂t

= −∇ · (ptvt) (10)

The distribution pt is the push forward of the initial distribution ρ0 by the flow ϕt, denoted pt =
(ϕt)#ρ0, which describes how the distribution evolves under the influence of the flow.

In Continuous Normalising Flows (Chen et al., 2018) (CNFs), this vector field vt,θ(x) is parame-
terised using a neural network (θ) that is optimised to satisfy the terminal condition ρ1 = (ϕt)#ρ0,
where ϕt is a flow associated with the vector field. Conditional Flow Matching (CFM) (Lipman
et al., 2022) extends this such that a probability path is constructed using samples from source and
target distributions and CNF vector field vθ(t, x) learnt by optimising the following:

LCFM(θ) = Et,x0∼ρ0,x1∼ρ1∥vt,θ(tx1 + (1− t)x0)− (x1 − x0)∥2 , (11)

where t ∼ U [0, 1].

C RELATED LITERATURE

Fusion techniques have been introduced to combine different modalities. For example, multi-modal
encoders such as CLIP (Radford et al., 2021) and AIGN (Jia et al., 2021) map data from distinct
domains into a shared representation using a contrastive objective (Oord et al., 2018). These models
often surpass traditional approaches in zero-shot transfer tasks on new datasets (Chen et al., 2020;
Kolesnikov et al., 2019), but typically require large amounts of paired data for training and come
with substantial computational costs.

Model stitching (Lenc & Vedaldi, 2015) represents another line of work, where intermediate la-
tent representations from one model are transformed into another by learning a stitching module.
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This technique has been employed to align representations within models (Lenc & Vedaldi, 2015;
Csiszárik et al., 2021) or across different modalities (Merullo et al., 2022). While effective in
learning transformations, this method generally requires end-to-end training of the stitching mod-
ule, which is impractical when only the latent representations of the source and target models are
accessible during training.

Within a semi-supervised learning setup, Klebe et al. (2023) proposed to learn a shared embedding
space by mapping the representations from two pre-trained multi-modal models into a common
space. This approach necessitates only a small amount of labelled data but requires an additional
model to be trained in the joint space for downstream tasks. In contrast, our approach directly
identifies the transformation between the two latent representations, bypassing the need for a shared
embedding space and additional models.

D ALGORITHM FOR LEARNING MULTI-MODAL BRIDGES

We proposed model space alignment via multi-modal bridges using three different alignment strate-
gies. For this, we align latent space distributions by either solving an OT problem (local and global)
or true paired samples (true), and then learn flow matching for out-of-sample predictions (Algo-
rithm 1).

Algorithm 1 Learning inter-modal morphs via true, global, or local alignment

Input:
Two pre-trained models fx and fy
Two datasets DX and DY ▷ source and target domains
Paired samples P ▷ optional paired samples
Entropy regularisation parameter ϵ
Unbalanced weighting parameters τ = (τX , τY)
Reweighting neural networks ηθ and ξθ
Batch size b
Number of iterations Titer
OT solver and cost function
X ← fx(DX ), Y ← fy(DY) ▷ Extract latent features using pre-trained models
π ← πtrue(X,Y, P ) ▷ true alignment based on paired samples P using Eq.5
CXY ← fused_cost(X,Y, P )
π ← OTϵ,τ (X,Y,CXY )

for t = 1, . . . , Titer do
Sample x1, . . . , xb ∼ X and y1, . . . , yb ∼ Y
CbXY ← fused_cost

(
[xi]

b
i=1, [yi]

b
i=1, P

)
π ← OTϵ,τ

(
[xi]

b
i=1, [yi]

b
i=1, C

b
XY

)
Sample (i1, j1), . . . , (ib, jb) ∼ π
Sample z1, . . . , zb ∼ N (0, 1), t1, . . . , tb ∼ U([0, 1])
L(θ)←

∑
k ∥vt,θ([zk, yjk ]|t, xik)− (yjk − zk)∥

2
2 +∑

k

(
ηθ(xk)− bπkX

)2
+
(
ξθ(yk)− bπkY

)2
.

θ ← Update
(
θ, 1b∇L(θ)

)
end for

Algorithm 1 was implemented in JAX (Bradbury et al., 2018) using Flax (Heek et al., 2024). For
discrete OT solvers, we used the OTT-JAX library (Cuturi et al., 2022). To compute the KCCA
between samples, we used the MVLearn library (Perry et al., 2021). We used these default hyper-
parameters for training – unless explicitly specified otherwise:

• optimiser: adam (learning rate = 10−4)

• batch size = 256
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Figure 12: Iterations required to achieve 80% accuracy in MNIST experiments.

• entropy regularisation ϵ = 5× 10−3 with normalised cost matrices

• fused penalty α = 0.5

• max number of iterations Titer = 10, 000

• Unbalanced weighting parameters τ = (1, 1)

• Reweighting neural networks ηθ, ξθ: multi-layer perceptron (MLP) used in Klein et al. (2023).

Out-of-sample prediction At inference time, we solved Eq. 9 for t1 = 1 using the velocity field
vt,θ, a sampled point from the noise distribution z as the initial condition at t0 = 0 conditioned on
some out-of-sample point x.

The solution follows the form:

ŷ = ODESolve(vt,θ(· | x), z, t0 = 0, t1 = 1), (12)

where the function ODESolve numerically solves the ODE from t0 to t1, yielding ŷ as the trans-
ported output at time t1 = 1, while the condition x modifies the evolution of the ODE as necessary.

E LEARNING THE VELOCITY FIELD

To learn the velocity field vt,θ two different architectures were considered: 1) MLP (i.e., Baseline):
three separate blocks for latent noise, time, and condition, which were concatenated and processed
by a final MLP block following (Klein et al., 2023), and 2) adaLN: blocks with adaptive layer
normalisation (adaLN) following (Perez et al., 2018). For each, we had three variations–small,
medium, and large (Table 1)– with the SiLU activation function applied after every layer in all
models. For each setting, we measured the number of iterations required to achieve 80% accuracy
in image-to-text experiments on the MNIST dataset, using true alignment in a supervised setting.
The results demonstrate the effectiveness of the AdaLN architecture, which converges more rapidly
and attains acceptable performance levels more efficiently (Figure 12).

Model Layers N Hidden size d Parameters
MLP-Small 4 256 700K
MLP-Medium 6 512 3M
MLP-Large 8 1680 49M

adaLN-Small 5 128 700K
adaLN-Medium 7 256 3M
adaLN-Large 8 1024 49M

Table 1: Different architectures for velocity field networkvt,θ. Here, MLP-X architecture refers to
the Klein et al. (2023) baseline.
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Figure 13: Overview of KNN fused cost. We construct a fused graph from K-Nearest Neighbour
(KNN) graphs for spaces X (blue) and Y (red). Intra-space adjacency matrices adjXX and adjY Y
and adjXY are used to form this graph. The fused graph allows estimation of the fused cost matrix
CknnXY via shortest path distances using a heat kernel approximation.

E.1 ADAPTIVE LAYER NORMALISATION

Diffusion Transformers (DiT) (Peebles & Xie, 2023) and earlier works on diffusion models with
U-net backbones (Dhariwal & Nichol, 2021) demonstrated the effectiveness of adaLN. For our for-
mulation, we similarly replaced the standard MLP blocks with adaptive layer norm blocks. Unlike
traditional layer normalisation, which directly learns the scale and shift parameters, adaLN regresses
these parameters based on a time-dependent condition vector. The normalised output is then com-
bined with the original input through a residual connection, where dimension-wise scaling param-
eters, initialised to zero, are applied. This adaptive mechanism enables more flexible and dynamic
normalisation in response to the varying conditions during training.

F FUSED COSTS

K-Nearest Neighbour cost The use of K-Nearest Neighbour (KNN) graphs and the shortest path
distances, induced by Euclidean distance, has been proposed as a means to approximate geodesic
distances on data manifolds (Crane et al., 2013). Notably, several studies have demonstrated the
effectiveness of this data-driven cost function (Moon et al., 2018; Demetci et al., 2022; Huguet et al.,
2023). Inspired by this approach, we first calculate the intra-space matrices CXX and CY Y using
Euclidean distance:

CXX [i, j] = |xi − xj |2, CY Y [i, j] = |yi − yj |2, (13)

where xi, xj ∈ X and yi, yj ∈ Y represent data points in their respective spaces. Based on this, we
compute intra-domain K-Nearest Neighbour adjacency matrix:

adjXX [i, j] = |xi − xj |2. (14)

we construct an inter-space graph to approximate the fused-cost function. Given two intra-space
k-nearest neighbour (kNN) adjacency matrix, adjXX and adjY Y , and a paired set P , we define the
inter-space graph Gfused as:

Gfused = graph_from_adj
[

adjXX adjXY
adjXY adjY Y

]
(15)

where adjXX and adjY Y are the adjacency matrices of GXX and GY Y , respectively. The matrix
adjXY is:

adjXY [i, j] =
{
1 if (xi, yj) ∈ P
0 otherwise

Then, the fused cost matrix CknnXY is the shortest path in Gfused:

CknnXY [i, j] = ShortestPath(Gfused, xi, yj) , (16)

estimated using the heat kernel in our experiments (Crane et al., 2013; Heitz et al., 2021).

The heat kernel provides an approximation of the shortest path by modelling heat diffusion across
the graph. Nodes that are closer in terms of the shortest path will exhibit faster heat diffusion, which
allows us to estimate distances between them based on the behaviour of the heat kernel for small
diffusion times.
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Figure 14: Overview of KCCA fused cost. Using paired samples, we find the projection vectors
α and β to a joint space. The points xi and yj are then transformed into this joint correlation-
maximising space, denoted as uxi and uyj . Finally, we compute the distance between the points in
this joint space.

Kernel canonical correlation analysis cost Kernel canonical correlation analysis (Hardoon et al.,
2004) (KCCA) extends canonical correlation analysis (CCA) (Hotelling, 1992) by projecting the
data into a high-dimensional feature space using some kernel function k(·, ·). It then finds pro-
jections in this high-dimensional space that maximise the correlation between the two sets of data.
Using the paired point matrices Xp = [xip]

l
p=1 and Yp = [yjp]

l
p=1, where (xip, yjp) ∈ P , we

calculate the projection vectors α and β (Hardoon et al., 2004):

ρ = max
α,β

αKXp
KYp

β√
αK2

Xp
α · βK2

Xp
β
. (17)

where these kernel matrices KXp
= k(Xp, Xp) and KYp

= k(Yp, Yp) based on paired samples and
a kernel function k(·, ·). we define the fused cost CkccaXY as:

uX = KXα

uY = KY β

CkccaXY [i, j] = cosine_distance(u(i)X , u
(j)
Y ) ,

(18)

where uX and uY are the projections of the joint embedding space for the entire dataset. We used
paired samples to compute the projection vectors α and β. For our experiments, KCCA is for-
malised using a Gaussian RBF kernel and paired points. By maximising the correlation between the
projected variables from these two sets, KCCA tries to find a joint space for the maximum possible
shared information.

G MODELS

G.1 MNIST EXPERIMENTS

Here, we provide details about the different models considered for text-image alignment using the
MNIST dataset; including the pre-trained models (VAEimage and VAEtext) and the fusion baseline
(Fused VAE) (Kingma & Welling, 2014):

G.1.1 VAEimage AND VAEtext

VAEimage was trained on 50, 000 image samples of size (28, 28, 1) from the MNIST training dataset,
using mean binary cross-entropy as the reconstruction loss. The image pixel values were converted
to 1 if the value was higher than 0.5, otherwise to 0. Separately, VAEtext was trained to compress
one-hot encoded labels into a compact space and reconstruct the original labels from the input, and
was trained using softmax cross entropy as the reconstruction loss. Table 2 provides architecture
details.

G.1.2 VAE BASELINES

The baseline models – depending on the task were trained in an end-to-end fashion – for either
reconstructing images from text using binary cross-entropy or reconstructing labels from image
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Model Type Architecture

VAEtext

Input: (10)
Encoder: FC 64, 32
Latents: 4
Decoder: FC 32, 16, 10, softmax output

VAEimage

Input: (28× 28× 1)
Encoder: Conv 128, 256, 512
Latents: 16
Decoder: ConvT 256, 128, 1, sigmoid output

Table 2: VAEimage and VAEtext architectures. After each layer, we apply a ReLU non-linearity. For
the convolutional (conv) layers, we used 3 × 3 kernels, with strides set to (2, 2) and same padding
consistently across all models.

input using the softmax cross-entropy function. Each of these baselines was trained using different
latent dimensions (large = 128 and small = 16; Table 3)

For the Fused VAE, we modified the vanilla VAE model to have two separate encoders and decoders
for each modality. For this model, the encoders learn to map data from different modalities to a joint
embedding space, and each decoder reconstructs the output based on the representation in this joint
space. To construct the Fused VAE, we modified the ELBO:

LELBO−qϕ1
= Eqϕ1(z|x) [log pθ1(x|z)]︸ ︷︷ ︸

Reconstruction Loss 1

+Eqϕ1(z|x) [log pθ2(y|z)]︸ ︷︷ ︸
Reconstruction Loss 2

−KL(qϕ1(z|x) ∥ p(z))︸ ︷︷ ︸
KL Divergence

,
(19)

where qϕ1
and qϕ2

represent the distributions parameterisations by ϕ1 and ϕ2 for the first and second
encoders, respectively. Similarly pθ1 and pθ2 denote the distributions parameterised by θ1 and θ2 for
the first and second decoders. Given these, Fused VAE loss was defined as:

LELBO-fused = LELBO−qϕ1
+ LELBO−qϕ2

. (20)

We trained two variants of the Fused VAE using paired samples from the two domains; Fused VAE
(E2E) was trained on the raw data Fused VAE (Latent) was trained on the latent spaces of pre-trained
(VAEimage) and (VAEtext). This allows for a nuanced comparison of how each model variant handles
multi-modal data integration.

G.2 IMAGENET EXPERIMENTS

G.2.1 VISION TRANSFORMER

The Vision Transformer (ViT) (Dosovitskiy et al., 2021) leverages the transformer (Vaswani, 2017)
architecture to process images by dividing them into patches and applying self-attention to cap-
ture global relationships. The original paper introduced three variants of ViT: ViT-B (Base), ViT-L
(Large), and ViT-H (Huge), each differing in scale and complexity. For feature extraction for Im-
ageNet, we used ViT-B model pre-trained (Wu et al., 2020) on ImageNet-21k (Deng et al., 2009)
(which contains 14 million images and 21, 843 classes) at a resolution of 224 × 224. For image
pre-processing, we followed the procedure outlined in Dosovitskiy et al. (2021).

G.2.2 SENTENCE TRANSFORMER

The Sentence Transformer (Reimers & Gurevych, 2019), commonly known as SBERT, converts
sentences and paragraphs into embeddings that capture the high-level semantic meaning of the text.
A common application of sentence transformers is measuring semantic similarity between sentences
using cosine similarity. For our experiments, we used the pre-trained model all-MiniLM-L6-v2
from the Hugging Face repository, which is based on the MiniLM architecture (Wang et al., 2020),
to extract textual features from the input prompts.
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Model Type Task Architecture

VAE (small) text->image

Input: (10)
Encoder: FC 64, 32.
Latents: 16
Decoder: ConvT 1024, 512, 1, sigmoid output.

VAE (large) text->image

Input: (10)
Encoder: FC 64, 32.
Latents: 128
Decoder: ConvT 1024,512,1, sigmoid output.

VAE (small) image->text

Input: (28× 28× 1)
Encoder: Conv 512, 1024, 2048.
Latents: 16
Decoder: FC 32, 16, 10, softmax output.

VAE (large) image->text

Input: (28× 28× 1)
Encoder: Conv 512, 1024, 2048.
Latents: 128
Decoder: FC 32, 16, 10, softmax output.

Fused VAE (E2E) image<->text

Input1: (28× 28× 1)
Input2: (10)
Encoder1: Conv 512, 1024, 2048.
Encoder2: FC 64, 32.
Latents: 128
Decoder1: ConvT 1024, 512, 1, sigmoid output.
Decoder2: FC 32, 16, 10, softmax output.

Fused VAE (latent) image<->text

Input1: (16)
Input2: (4)
Encoder1: FC 8× 1024
Encoder2: FC 8× 1024
Latents: 128
Decoder1: FC 8× 1024, 16.
Decoder2: FC 8× 1024, 4.

Table 3: Baseline models architectures for the MNIST experiments. Here, FC is for the fully con-
nected layer, Conv is for the convolutional layer and ConvT is for the convolutional transpose layer.

G.3 MAJAJ ET AL. (2015) EXPERIMENTS

G.3.1 EFFICIENTNET-B0

For our experiments, we used a pre-trained EfficientNet-B0 (Tan & Le, 2019) (top-1 accuracy: 0.76
on ImageNet) to extract artificial neural network activations. Briefly, this entailed extracting the ac-
tivations from all ReLU non-linearities after each intermediate convolutional layer for each unique
stimulus in the dataset (Canatar et al., 2024). Following (Schrimpf et al., 2018), we kept the first
1000 principal components per layer using 1000 validation images. For all further analysis, we se-
lected layers based on their performance in neural predictivity (Brain-Score)(Schrimpf et al., 2018),
effective dimensionality (ED)(Elmoznino & Bonner, 2024), and representational similarity analysis
(RSA) (Kriegeskorte et al., 2008) for IT and V4 regions. The final layers selected for morphing were:
layer 1, layer 2, layer 3, layer 5, layer 6, and features. Note, the same process can be applied to
extract neural activity from other networks as well e.g. ResNets (He et al., 2016), ConvNeXts (Liu
et al., 2022), ViTs (Dosovitskiy et al., 2021) .

H METRICS

Here, we introduce the different metrics used in Sec. 5.
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H.1 FEATURE OVERLAP

We compute the overlap in the feature space, assuming the feature space is Euclidean, for a pre-
trained model using a metric derived from k-nearest neighbours (kNN). We randomly select a batch
of b samples, X = {xi}bi=1, from the domain X , with corresponding labels L = {li}bi=1. First,
we calculate the k-nearest neighbours for each point xi in the feature space. For each point xi, the
overlap is defined as the proportion of its k-nearest neighbours that have a label different from li. If
ψknn(xi) represents the set of the k-nearest neighbours of xi, then the overlap for a given point xi
is:

overlap(xi) :=
1

k

∑
xj∈ψknn(xi)

1(lj ̸= li) , (21)

where 1(lj ̸= li) is the indicator function, which equals 1 if the label lj of the neighbour xj differs
from the label li, and 0 otherwise. We approximate the feature space overlap as the mean of the
individual overlaps for all samples xi in the batch. This metric provides a measure of how often
points in the feature space are surrounded by neighbours with different labels, reflecting the degree
of separation within the feature space. For all experiments reported in Sec. 5, we used k = 15 and
five randomly selected batches, each with size b = 100K for ImageNet experiment and the b = 5K
for MNIST expriments.

H.2 EVALUATING MNIST

Image-to-text We use the reconstruction cost as the reported test accuracy for the VAE and fused-
VAE (E2E) baseline models. For models that rely on latent spaces, such as morphing models and
latent VAE, after transforming the test split images from the VAEimage to the VAEtext latent space, we
reconstruct the labels using the VAEtext decoder and report this as the test accuracy.

Text-to-image: For the baseline models with end-to-end training we construct images from the
labels. However, for other models that transfer representations between latent spaces, we use the
respective transformed representations and construct an image using VAEimage. Assuming we have
n text-image pairs {(xi, yi)}ni=1 in the test dataset, where each xi ∈ {0, 1}28×28, and let {x̃i}ni=1 be
the samples reconstructed using the transportation method T . Assume that Sc is the set of indices
such that i ∈ Sc ⇒ yi = c and |Sc| = Nc. We construct the 2D pixel-wise distributions for the
original and reconstructed images for each class c:

P (Xj,k | c) = 1

Nc

∑
i∈Sc

xj,ki ,

P (X̃j,k | c) = 1

Nc

∑
i∈Sc

x̃j,ki ,

(22)

where Xj,k represents the pixel at position (j, k) in the original images, and X̃j,k represents the
corresponding pixel in the reconstructed images. From this, we calculate the Next, we define the
mean squared error (MSE) metric between the pixel-wise distributions for the original images (X)
and the reconstructed ones (X̃) for class c, denoted as MSE(c):

MSE(c) =
1

282

28∑
j=1

28∑
k=1

(
P (Xj,k | c)− P (X̃j,k | c)

)2

. (23)

Finally, the mean squared error for the transportation function is defined as:

MSE =
1

10

9∑
c=0

MSE(c). (24)
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H.3 EVALUATING IMAGENET

For the ImageNet experiments, after training the velocity field vt,θ, for each image dxj with label lj
in the test split, we compute its representation xj in the embedding space of the pre-trained image
model. We then use Eq.12 to obtain the corresponding prediction ŷj in the target space.

The ImageNet dataset contains 1000 unique classes, and we assume their representations in the
embedding space of the language domain are denoted as Y = [yi]

1000
i=1 , corresponding to the labels

[li]
1000
i=1 . To classify each predicted point ŷj , we compute the cosine distance between ŷj and all

points yi in the target space. The nearest neighbour ylk is the point that minimises cosine distance:

k = argmin
i

cosine_distance(ŷj , yi) (25)

where lk is the label corresponding to the closest. The accuracy is then computed as follows:

accuracy =
1

n

n∑
j=1

1(lj = lk) (26)

where 1 is the indicator function and n is the total number of test samples.

H.4 CALCULATING INTRA-SPACE COST FOR MAJAJ ET AL. (2015)

To compute the intra-space cost matrix CXX for neural activity responses, we use a correlation-
driven cost similar to Yamins et al. (2014). Let xi, xj ∈ X be the neural responses to stimuli si and
sj , respectively. We define the cost matrix as:

CXX(xi, xj) = 1− cov(xi, xj)√
var(xi)var(xj)

. (27)

Similar to previous experiments, we normalise the intra-space cost matrix by its mean before com-
puting the optimal coupling.

H.5 ARTIFICIAL-TO-BIOLOGICAL NEURAL REPRESENTATION EVALUATION

Following Majaj et al. (2015); Kar et al. (2019), we evaluated the morphs’ performance in a category
object classification task (Fig. 11) using support vector machine (SVM) classifiers Chang & Lin
(2011). For V4 and IT region, we trained separate SVMs to decode neural activity corresponding to
the category of core images using the entire training dataset. We employed a linear C-SVC model
with a linear kernel and hinge loss with L2 regularisation, and performed 5-fold cross-validation for
hyperparameter optimisation.

I GENOT VALIDATION

To ensure that baselines were consistent with reported results in Klein et al. (2023), we replicate the
results for the Swiss roll (R3; source distribution) to spiral (R2; target distribution) using the GW
solver (unsupervised) and local alignment. Fig.15 shows the evolution of the noise distribution into
the target distribution in R2 space.

J ALIGNMENT STRATEGIES
We evaluated the runtime per iteration for various alignment strategies (Fig.16) using the same com-
putational setup. We observed that local alignment exhibits significantly higher time complexity
compared to other strategies. This is primarily due to the necessity of solving an OT problem at
each iteration (Algorithm 1). In scenarios involving more complex distributions, such as those in the
ImageNet dataset, the difference in computational cost becomes even more pronounced. The need
to compute the fused cost and solve the OT problem in each iteration further exacerbates the time
complexity in such cases.
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Figure 15: Mapping from Swiss roll to Spiral using local alignment

Figure 16: Runtime per iteration (in seconds) for different alignment strategies across MNIST and
ImageNet datasets.

K OT SOLVER OPTIMISATION

We examined the effectiveness of different OT discrete solvers in learning the optimal coupling,
using large sample sizes (100, 000 for ImageNet and 5, 000 for MNIST). Both global and local
alignment strategies rely on OT discrete solvers, which can be either linear or fused FGW, and the
performance of these solvers has a significant impact on the morphing quality. The FGW solver inte-
grates intra-domain costs, CXX and CY Y , derived using cosine distance, and an inter-domain cost,
which is computed based on the formulation introduced in Sec.3.3 and Appendix F. Additionally,
the hyperparameter α controls the trade-off between quadratic and linear OT objectives.

For the ImageNet and MNIST experiments, we evaluated the matching accuracy of the discrete
solvers as a function of the ratio of paired samples, varying both the values of α and the inter-
domain cost function. In accordance with Eq. 3, as α → 1, the quadratic costs dominate over the
linear component, favouring a solution that leans towards unsupervised alignment, as paired samples
are used exclusively in the inter-domain cost. Conversely, when α = 0, the problem simplifies to a
linear OT problem.

L UNBALANCED SETTING

L.1 THEORETICAL BACKGROUND FOR U-GENOT

Unbalanced optimal transport (U-OT) is an extension of the classical OT problem, where the
marginals of the optimal coupling π⋆ found in Eqs. 1-3 can differ from the true source (µ) and
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Figure 17: Matching accuracy across different values of α for discrete OT solvers in the MNIST
experiment. Accuracy was computed by evaluating the correct matches from the optimal coupling
π⋆ for different fused costs. A) KNN, B) KCCA, C) Bridge.
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Figure 18: Matching accuracy across different values of α for discrete OT solvers in the ImageNet
experiment. Accuracy was computed by evaluating the correct matches from the optimal coupling
π⋆ for different fused costs. A) KNN, B) KCCA, C) Bridge.

target (ν) distributions (Séjourné et al., 2023). By relaxing the constraint that mass must be exactly
preserved between distributions, U-OT can ignore or down-weight outliers and noisy samples that
would otherwise force suboptimal transport plans. This makes U-OT particularly well-suited for
aligning neural activity data, which often contains measurement noise.

The unbalanced weighting parameters, λX and λY , control the extent to which the marginals of the
optimal coupling can diverge from the true source and target distributions. We follow the convention
used by Klein et al. (2023) to define:

τX =
λX

λX + ϵ
, τY =

λY
λY + ϵ

, (28)

where we recover the classical OT problem by setting τi = 1 when λi → ∞. We note that the un-
balancedness parameter τi is influenced by the entropy regularisation parameter ϵ in this definition.

When using unbalanced OT solvers in U-GENOT, two reweighting functions, η : X → R+ and ξ :
Y → R+, are employed for the source and target space, respectively. These reweighting functions
are defined as π⋆X = η · µ and π⋆Y = ξ · ν in the unbalanced setting. Practically, these functions
can be approximated by parameterising neural reweighting functions, ηθ and ξθ, which are trained
to re-balance the U-OT using Eq. 4.

L.2 EXPERIMENTAL CONSIDERATIONS FOR ALIGNING NEURAL REPRESENTATIONS

For the neural activity model experiments presented in Sec.5.2, we used the unbalanced OT setting to
account for noise in the neural recordings. However, the choice of unbalanced weighting parameters
was empirically determined. In our case, since we are using a global strategy (with a low number
of data points and low memory requirements), we solve the OT problem only once. The quality of
the learned mapping by U-GENOT depends on the performance of the discrete solver. Therefore,
we tuned the hyperparameters τi and ϵ for different layers of EfficientNet and varying numbers of
paired points.

It is worth noting that the source and target distributions are uniform over the training set. However,
when using the unbalanced setting, some samples may be excluded from the joint distribution by
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Figure 19: Predicted versus true aes ratio.

assigning them low probability. When the unbalancedness parameters are low (τi < 0.9), the true
strategy is recovered, as the paired points have zero inter-space cost. However, this can lead to
issues (Fig. 20) and requires tuning the hyperparameters to maximise matching accuracy under the
optimal coupling π⋆ϵ,τ , i.e., to minimise the number of excluded samples from the marginals using
the validation set. We define the ratio of excluded samples for a coupling π:

excluded_ratio(π) = 1− 1

N
|{x1, . . . xN ∼ πX }| −

1

N
|{y1, . . . yN ∼ πY}| , (29)

where N is the total number of data points in the validation set and |·| shows the set size. Using this,
we defined the accuracy to excluded samples (i.e., aes) ratio to optimise this trade-off:

aes =
matching_acc(π)
excluded_ratio(π)

. (30)

To find a general rule for all layers and regions, we specified ϵ, τX , τY , and the paired:unpaired ratio
as independent variables, with aes ratio as the dependent variable. Fitting an ordinary least squares
regression model resulted in an adjusted R2 of 0.909 (Fig. 19).

For the experiments reported in Sec. 5.2 we set the entropy regularisation parameter to ϵ = 10−3

and show in Fig. 20 the average value of the aes ratio for different pairwise combinations of τX and
τY as well as the paired:unpaired ratio. We found that τX = τY = 0.99 is suitable for varying levels
of paired:unpaired sampled.
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Figure 20: Heatmaps of the average values of the aes ratio as a function of τX and τY , with ϵ = 10−3.
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