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Abstract

Adaptive neuromotor interfaces are poised to enhance human-computer interaction
experience and increase human mobility and accessibility to diverse users. These
interfaces are important in assisting human users with dynamic control tasks
where direct, physical interactions may be undesirable or impossible by predicting
user intent from neuro signals. Existing methods for developing neuromotor
interfaces suffer from distribution shifts due to inter and intra-user variability and
the requirement for large amounts of supervised training data. Towards implicitly
adapting to streaming user behavior without intent labels, we propose an interactive
contrastive fine-tuning method to address these limitations. We formulate pseudo-
intent labeling as a Bayesian inference problem guided by an optimal task policy
referred to as the "teacher" prior. Using a simulated robotic control task, we show
that our method successfully aligns with user intent even when the teacher prior is
misspecified against a diverse group of simulated users.

1 Introduction

Adaptive human-computer interfaces (HCI) are on the verge of challenging the status quo of how
we interact with computers as well as increasing human mobility in scenarios where direct, physical
interaction may be undesirable or impaired, such as in robot teleoperation and active prosthesis
[Meeker and Ciocarlie, 2019, Luu et al., 2022]. A human-computer interface takes a human-provided
signal or command as input and generates an output to interact with an environment. The goal of
the output is typically to match human intent (e.g., an intended control action) to perform some
tasks in the environment. In this work, we focus on surface electromyography (EMG) which is a
type of neuromotor interface based on readings of electric signals from muscles using electrodes
attached to the user’s skin. These interfaces have a wide range of potential applications, particularly in
gesture-based control [Li et al., 2021] and handwriting recognition [Beltrán Hernández et al., 2020].

Developing EMG interfaces typically involves collecting pairs of motor intent and EMG signals from
users and training an EMG policy to decode motor intent. However, this approach often degrades
due to distribution shifts introduced by inter and intra-user variability. Transfer learning has been
explored to improve generalization across distributions by incorporating more data from diverse
users and scenarios [Cote-Allard et al., 2021], but it requires large amounts of training data and data
collection effort, particularly for large or continuous action spaces. Recent works have demonstrated
online interactive training as a promising way to reduce data requirements and adapt to both the user
and the task distributions [Gijsberts et al., 2014, Freitag et al., 2023]. However, these methods still
require that (proxy) intent labels can be obtained from the online training environment. Alternatively,
Reddy et al. [2022] demonstrated the feasibility of unsupervised interface policy alignment using
mutual information objectives. However, the authors also found that the resulting interface policy
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may be entangled with task environment dynamics, which potentially limits user mobility and task
transfer. Thus, a key challenge in applying the interactive fine-tuning paradigm to general control
tasks is to obtain motor intent labels from user behavior.

In this work, we propose a semi-supervised contrastive learning approach to address the lack of
intent-labeled data and distribution shift when learning adaptive EMG interfaces from diverse users.
We formulate user intent extraction as a Bayesian inference problem to naturally leverage labeled pre-
training data for unlabeled fine-tuning data. Then, we use contrastive mutual information estimation
[Aitchison and Ganev, 2021, Walker et al., 2023] to compute the posterior over latent intent from input
EMG signals. For the contrastive method to extract meaningful intents, we use a class of prior whose
density is proportional to that of the optimal task policy which we refer to as the "teacher". Using
simulated robotics control experiments, we show that the teacher prior is necessary to achieve both
high task performance and intent prediction accuracy. More importantly, we show that the teacher
prior is also not overly restrictive when adapting to diverse users for whom it may be misspecified
due to varying task expertise and EMG policy quality awareness.

2 Contrastive Learning neuromotor Interface from Teacher (LIFT)

2.1 Problem setup

We consider the setting where a human user operates in a dynamic control task modeled as a Markov
Decision Process (MDP) by the tuple (S,A, P,R, µ, γ) where S is a set of states, A a set of actions,
P : S×A → ∆(S) a transition probability distribution, R : S×A → R a reward function, µ : ∆(S)
an initial state distribution, and γ ∈ (0, 1) a discount factor. An optimal control policy in the MDP is
a mapping π∗ : S → ∆(A) which maximizes the expected discounted cumulative rewards defined
as: J(π) = Eµ,P,π[

∑∞
t=0 γ

tR(st, at)].

In the setting of motor control through an EMG interface (e.g., in robot teleoperation), we assume the
user has a control strategy π(a|s) which maps environment states to a motor intent. However, the user
cannot directly implement their intended actions in the environment but their intended actions can be
sensed through EMG devices attached to their limbs. We assume the EMG signals x are sampled
from a distribution P (x|a). To facilitate the user with the control task, we wish to train an EMG
policy E(a|x) that takes human EMG signals x as input and outputs (or decodes) their intended
action a to the environment. The goal for the EMG policy is not to maximize return in the control
task per se but rather maximize user mobility by making accurate predictions of their motor intents.

2.2 Pseudo-labeling motor intent from prior teacher

Our main goal is to infer unobserved user motor intents from their behavior, which serve as pseudo
labels for fine-tuning the EMG policy. The combination of user and the current EMG policy generates
a dataset of trajectories in the form of sequences of environment states, EMG signals, and EMG
policy predictions: D = {τ1:N}, τ = (s0:T , x0:T , u0:T ), where we use u to denote the control actions
predicted by the data-collecting EMG policy. We formulate pseudo-labeling as computing a posterior
distribution over the missing motor intents a:

P (a0:T |s0:T , x0:T , u0:T )

=

∏T
t=0 E(ut|xt)P (xt|at)π(at|st)P (st|st−1, ut−1)∫

a0:T

∏T
t=0 E(ut|xt)P (xt|at)π(at|st)P (st|st−1, ut−1)

=

T∏
t=0

P (xt|at)π(at|st)∫
at
P (xt|at)π(at|st)

(1)

where P (s0|s−1, u−1) = µ(s0) is the initial environment state distribution.

To overcome the intractability of computing the exact posterior, we instead train an approximate
posterior Q(a|x) using auto-encoding variational Bayes [Kingma and Welling, 2013]. However,
we also do not want to train a generative model of realistic EMG signals in the form of P (x|a)
with our interactively collected dataset. We thus resort to an energy-based or recognition-based
formulation from [Poole et al., 2019, Aitchison and Ganev, 2021, Walker et al., 2023] where the
distribution P (x|a) is jointly parameterized by an energy function f(x, a) and the empirical observed
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data distribution P̂ (x) = 1
N

∑
i δ(x− xi), xi ∈ D as:

Pf (x|a) =
P̂ (x)ef(x,a)

Ff (a)
, Ff (a) =

∫
x

P̂ (x)ef(x,a) (2)

To ensure that the latent variable learned by the model corresponds to environment control actions
rather than arbitrary permutations common in latent variable models [Murphy, 2012], we use a strong
prior that the unknown user policy is the optimal control policy π = argmaxE[

∑∞
t=0 γ

tR(st, at)].
We refer to this policy as the "teacher" since it contains a substantial amount of knowledge to align
the latent variable a to environment controls. Following Burgess et al. [2018], we also introduce
a temperature parameter β ≥ 0 to control the strength of this assumption where a higher value
encourages the encoder to copy the teacher and a lower value encourages the encoder to learn from
EMG signals. The well-known evidence lower bound (ELBO) objective can be written as follows:

L(f,Q;D)

= E(x,s)∼D,a∼Q(·|x)[logPf (x|a) + β(log π(a|s)− logQ(a|x))]
= E(x,s)∼D,a∼Q(·|x)[log P̂ (x) + log ef(x,a) − logFf (a) + β(log π(a|s)− logQ(a|x))]
= E(x,s)∼D,a∼Q(·|x)[f(x, a)− logEx̃∼P̂ (·)[e

f(x̃,a)]]︸ ︷︷ ︸
MI loss

−β E(x,s)∼DKL[Q(a|x)||π(a|s)]︸ ︷︷ ︸
Teacher loss

+C

(3)

where C = Ex∼D[log P̂ (x)]. The first term is the contrastive loss from mutual information-based
representation learning approaches [Poole et al., 2019]. We thus use the InfoNCE variation due to its
low variance [Oord et al., 2018]. The second term encourages the encoded latent variables to align
with environment actions via the teacher.

2.3 Contrastive pre-training and fine-tuning

Figure 1: Proposed EMG policy training
pipeline.

We use the contrastive approach for both pre-training and
fine-tuning so that the energy function f(x, a) is warm-
started for the fine-tuning stage. Given the pre-training
dataset has ground truth intent labels (denoted with y), we
adapt the objective in (3) by replacing the teacher prior
π(a|s) with a data-dependent prior P (a|y) = N (a|y, σ2)
which is a Gaussian distribution centered at y with fixed
variance σ2. We also add a log-likelihood loss to (3)
for the observed label where the likelihood is defined as
P (y|a) = N (y|a, σ2) with the same variance.

After pre-training, the iterative fine-tuning proceeds in
multiple data collection sessions. Between each session,
we initialize the energy function f and encoder Q(a|x) from the previous session and optimize a
weighted combination of pre-training (pt) and fine-tuning (ft) losses: L(f,Q;Dft) + λL(f,Q;Dpt)
where λ ≥ 0. We then set the latest EMG policy to the updated encoder Q(a|x) to collect data in the
next session. See Fig. 1 for our training pipeline.

3 Experiments

We perform simulated experiments in the Fetch-Reach environment, which is a 3 continuous DOF
goal-reaching environment with varying goal locations in the Gymnasium-Robotics platform [Plappert
et al., 2018]. For pre-training we use the dataset presented in [Côté-Allard et al., 2019] which contains
single-DOF discrete movements. We use a K-nearest neighbor-based data augmentation method to
generate additional synthetic continuous multi-DOF EMG feature-action pairs. The same method
is used to simulate EMG features of new users during fine-tuning. We then train the encoder using
the method described in section 2 and evaluate the EMG policy’s action prediction accuracy in
mean-absolute error (MAE) and achieved rewards when interfacing with simulated users. We repeat
all experiments with 4 seeds and report the average metrics. See Appendix A.3 for details.
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Figure 3: User intent prediction accuracy (MAE) achieved by a copy-the-teacher baseline and LIFT
(ours) and the improvement upon the baseline for different user beliefs of EMG policy noises and
slopes. LIFT achieved higher accuracy when the users were more misalignment with the teacher
prior and believed the EMG policy was more noisy.

The importance of teacher prior To understand the importance of the teacher prior in (3) for
accurately predicting user intent, we fine-tuned a set of EMG encoders with varying β from 0 to
1. Setting β to 0 corresponds to optimizing only the mutual information between EMG signals and
encoder outputs, fully ignoring alignment with environment controls and the teacher. In order to
rule out the possibility that the importance of the teacher prior reduces with the amount of training
data, we sampled a large number of environment steps (10k) in a single data collection session and
trained the EMG policy Q(a|x) on this dataset. Fig. 2 shows that setting β = 0 failed to align with
user intent as indicated by the high action prediction accuracy. However, only a small β value was
sufficient to achieve low MAE. For subsequent experiments, we choose β = 0.5 and λ = 0.5.

Figure 2: Intent prediction accu-
racy (MAE) for different weight-
ings of teacher prior (β) and pre-
train loss (λ).

Adapting to diverse users We then study whether our method
can effectively adapt to diverse users, whose policies may deviate
substantially from the optimal teacher policy. To simulate these
diverse users, we built a user model that chooses actions based on
1) their subjective beliefs of the EMG policy quality and 2) their
task expertise (see details in Appendix A.1). We model subjective
beliefs using two parameters: the amount of noise it adds to the
user’s true intent (noise b) and how the noise level increases with
the intended action magnitude (slope k). We model expertise using
a user policy noise scaling parameter α. As shown in Fig. 5 in
the Appendix, the teacher prior becomes strongly misspecified at
higher noise, low slope, and high α. Our goal is to understand
how misspecification affects the performance of our method, how
it interacts with β, and most importantly, whether it offers benefit
over a simple baseline copying the teacher prior by dropping the contrastive loss.

Our main results are shown in Fig. 3 which plots the MAE for a range of user beliefs of EMG
policy noises and slopes for α = 1. As expected, the best MAEs are achieved at low noise levels
where the teacher prior is well-specified. The benefit of our approach is most pronounced at higher
noise levels where in the best case we achieved an improvement of 0.047 MAE (≈ 25 %) over the
copy-the-teacher baseline. As illustrated in Fig. 6 (Appendix), a similar pattern holds for nosier users
with α = 3, albeit at a smaller amount of improvements. Fig. 8 in the Appendix shows that both
MAE and reward improves over the training sessions, highlighting the utility of interactive training.
However, a limitation of the experiment is that, compared to the baseline, LIFT’s final improvement
in MAE did not lead to significant increase in task reward most likely due to the simplicity of the task
(see Appendix Fig. 7).

4 Conclusion & Limitations

In this paper, we proposed a contrastive approach to aligning EMG interface policies with diverse
user intent without direct supervision or reward. A limitation of this work is the simplicity of the
control task and the lack of a user study. We hope to address these in future work.
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A Appendix

A.1 User model

Following a long tradition of modeling rational user behavior under incorrect beliefs [Reddy et al.,
2018, Wei et al., 2023, Beliaev et al., 2022], we designed a set of user models (i.e., their true policies)
for which the teacher policy may be strongly misspecified to test the performance of our approach in
these settings. We assume all policies in the user model set optimize the true task reward, given users
receive clear task instructions. The primary reasons why policies in the set could differ are 1) users
have different beliefs about the quality of the EMG policy and 2) users have different levels of task
expertise. We now introduce our model for these aspects respectively.

Modeling user belief In our prior exploration of the pre-trained EMG policy, we found that the
intent prediction error the policy makes on average is positively correlated with the ground truth action
magnitude and can be described with a linear trend and a positive bias. Inspired by this, we model the
user’s belief of the quality of the EMG policy using a positive slope parameter k and a bias b. These
two parameters jointly determine the amount of Gaussian distributed noise ϵ ∼ N (0, k · |a|+ b) it
adds to corrupt user-intended actions. The slope parameter increases noise when the action magnitude
is high, forcing the user to take smaller magnitude actions. On the other hand, the base noise b forces
the user to take higher magnitude actions to neutralize or “fight" EMG policy noise. We denote the
concatenation of slope and base noise as z = [k, b] and the stochastic mapping from user intent to
decoded control from this process as P (u|a, z).
We obtain the type-conditioned user policy π(a|s, z) using meta reinforcement learning in a user
simulator developed based on the above user model. At the beginning of each training episode, we
first sample a base noise b ∼ P (b) and a slope k ∼ P (k). We then train the user policy to maximize
the following criterion:

max
π

E b∼P (·),k∼P (·),π(·|st,z)
ut∼P (·|at,z),st+1∼P (st+1|st,ut)

[ ∞∑
t=0

γtR(st, ut)

]
(4)

where the reward is computed from the EMG policy-predicted actions rather than the user intended
actions. The value functions for the optimal user policy are defined as:

Q(s, a, z) = Eu∼P (·|a,z)[R(s, u) + γEs′∼P (·|s,u)[V (s′, z)]

V (s, z) = max
a

Q(s, a, z)
(5)

Modeling user expertise Following Beliaev et al. [2022], we model user task expertise using
state-dependent variance scaling of a policy, which is applied to the above type-conditioned user
policy. Let α : S → R+ denote a mapping from a state to a (negative) temperature scale, we define
the following user policy:

π(a|s, z, α) = exp(α(s)Q(s, a, z))∫
ã
exp(α(s)Q(s, ã, z))

(6)

where higher α(s) reduces the variance of the policy and concentrates the action probability density
around the optimal actions; on the other hand, lower α(s) increases the variance of the policy.

For Gaussian policies (used in our experiments) where for each state a mean µ and a variance σ2 over
actions is predicted by the policy network, we can show that (6) simply corresponds to reducing the
variance for higher α(s) (see blow). We thus apply variance scaling instead of fitting another policy
network to achieve (6).

We design a variance scaling function ρ : S → R+ which computes the distance to the goal along
each dimension from the environment state and outputs a scale by linearly interpolating the current
distance on an interval of variance scale against a minimum and maximum applicable distance. The
minimum of the variance scale interval is set to 1 so that the original (zero-temperature) policy
variance is used. We then apply the scale to the optimal policy obtained from (4) and compute the
scaled variance as (ρ(s)σ)2.
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Proposition A.1. For Gaussian distributions with mean and variance parameters θ = [µ, σ2] fitted
to approximate policies of the form:

πθ(a) ≈
exp(αQ(a))∫
ã
exp(αQ(ã))

(7)

where Q(a) is the action value function and α is a temperature parameter, changing α is equivalent
to scaling the variance of the Gaussian distribution.

Proof. Fitting the above policy is equivalent to solving the following optimization problem [Haarnoja
et al., 2018a]:

max
θ

Eπθ(a)[Q(a)] +
1

α
H[πθ(a)] (8)

where H[·] denotes Shannon entropy.

To show that different α does not affect the mean parameter of the Gaussian distribution, recognize
that:

∇θEπθ(a)[Q(a)]− 1

α
∇θH[πθ(a)]

= EP (ϵ)[∇aQ(a)|a=µ+σϵ∇θ(µ+ σϵ)]− 1

α
0.5∇θ log(2πeσ

2)

(9)

where we have used the reparameterization trick [Kingma and Welling, 2013, Ruiz et al., 2016] with
P (ϵ) = N (0, 1) to express the gradient of the first term. The temperature parameter only affects the
gradient of the variance parameter σ2 through the second term and not the mean parameter µ which
only exists in the first term. Thus, for different α, we can achieve (8) by fixing the mean parameter
and adjusting the variance parameter.

A.2 Motivation for weighted fine-tuning loss

The weighted fine-tuning loss L(f,Q;Dft) + λL(f,Q;Dpt), λ ≥ 0 defined in section 2.3 was used
to retain knowledge from the pre-training session and avoid catastrophic forgetting in the fine-tuning
sessions. This could be motivated from the following Bayesian principle.

Let a prior distribution over the energy function be denoted as P (f). The posterior distribution over
f given the pre-training dataset can be written as follows:

P (f |Dpt) ∝ exp
(
logP (Dpt|f) + logP (f)

)
≈ exp

(
|Dpt|L(f,Q;Dpt) + logP (f)

) (10)

where the approximation is due to the loss L(f,Q;Dpt) being a sample-based approximation of the
ELBO, which is itself a lower bound on the marginal likelihood logP (Dpt|f).
When adapting to new users, we assume their intent to EMG mapping Pf ′(x|a) is a perturbation
of that of the pre-training users, i.e., the transition distribution P (f ′|f) is concentrated around f .
This should result in a prior P (f ′|Dpt) =

∫
f
P (f ′|f)P (f |Dpt). Instead of modeling the transition

distribution, we directly model the prior over f ′ using the pre-trained log-posterior and a temperature
parameter λ ≥ 0 as:

P (f ′|Dpt) ∝ exp(λ logP (f ′|Dpt)) (11)

After observing the fine-tuning dataset, the posterior over f ′ can be written as:

P (f ′|Dft) ∝ exp
(
logP (Dpt|f ′) + logP (f ′|Dpt)

)
≈ exp

(
|Dft|L(f ′, Q;Dft) + λ|Dpt|L(f ′, Q;Dpt) + λ logP (f ′)

) (12)

Omitting the initial prior, the approximate log-posterior after fine-tuning is proportional to:

logP (f ′|Dft) ∝ L(f ′, Q;Dft) + λ
|Dpt|
|Dft|

L(f ′, Q;Dpt) (13)

We subsume all weightings under a single hyperparameter to facilitate tuning.
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A.3 Implementation detail

Our implementation is available at https://github.com/KilianFt/LIFT.

Dataset and features For supervised pre-training, we use the dataset presented in Côté-Allard
et al. [2019] which contains 7 different classes of wrist movements that closely resemble movements
in 3 DOF: Neutral, Radial and Ulnar Deviation, Wrist Flexion and Extension, and Hand Open and
Close. The dataset was recorded using a Thalmic Labs Myo Armband, with 8 EMG channels and a
frequency of 200 Hz from 40 participants (28 males and 12 females). Each movement was recorded
for 20-80 seconds depending on the data acquisition protocol. Samples were collected in chunks of
5 seconds with pauses in between to avoid user fatigue. These movements were treated as discrete
prediction targets in [Côté-Allard et al., 2019].

We split EMG signals into windows of size 200 with an overlap of 150. For each channel in a window,
we extract the mean absolute value resulting in a vector x of length 8 used as input to the EMG policy.

Continuous supervised pre-training on discrete data While our dataset (and all available others)
are collected on discrete actions, our control task has continuous action space. We solve this problem
using data augmentation where we linearly interpolate discrete action EMG features following Nowak
and Castellini [2016] to obtain continuous multi-DOF labels.

Specifically, we create new samples as follows. Let aaug represent a new action, A = {ai}ni=1 be the
set of original actions with features xi, d(aaug,ai) the Euclidean distance between the augmented
and original action and knn the number of nearest neighbors to consider.

We first compute the distance between the new action aaug and each original action ai as

d(aaug,ai) = ∥aaug − ai∥2 (14)

We then select the indices of the top knn smallest distances:

{i1, i2, . . . , iknn} = argmini d(aaug,ai) (15)

which in turn are used to calculate the weights of each selected action as the inverse of the distances
to the top-k nearest neighbors:

wj =
1

d(aaug,aij ) + ϵ
for j ∈ {1, 2, . . . , knn} (16)

where ϵ is a small value to prevent division by zero. The weights are normalized so that they sum to
1:

ŵj =
wj∑knn

j=1 wj

(17)

Finally, the interpolated feature xaug is computed as the weighted sum of the features corresponding
to the top-k nearest actions:

xaug =

knn∑
j=1

ŵjxij (18)

Thus the interpolated feature vector is a linear combination of the features of the nearest actions,
weighted by their inverse distances.

For pre-training, we held out 3 participant’s data as validation and used the rest to create the augmented
dataset Daug = {(xaug, aaug)1:M} where aaug are sampled uniformly from the action space interval
[−1, 1]. We then combine it with the original dataset and train the initial EMG policy using supervised
contrastive learning. For all experiments, we set knn to 3.

EMG simulation To evaluate our method in simulation, we developed an EMG simulator using the
same mechanism as in the previous section. For each user input intent a, we output EMG features
computed using (18). Importantly, the EMG data used for interpolation were sampled from the
participant data held out from the training set to mimic a real user study.
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Task environment We used the Fetch-Reach environment in the Gymnasium-Robotics platform
[Plappert et al., 2018], where each observation is a concatenation of the kinematic information about
the end effector, the desired goal and the achieved goal. The action space for our experiments has 3
continuous DOF with a range [−1, 1] with a dense reward given by the negative distance to the goal.
The environment observation space was only available to the teacher and not the EMG decoding
policy.

Teacher & user model training To train the teacher and user policies, we used Soft Actor Critic
(SAC) [Haarnoja et al., 2018a] because of its stochastic nature. The policy’s output is a tanh Normal
distribution in the same range as the environment action space and consists of 3 layers, 256 hidden
units each, and ReLU activation function. The critic networks use the same hidden configuration. We
trained for a total of 150k frames with a batch size of 256 with both policy and critic learning rates
equal to 3e− 4. Following [Haarnoja et al., 2018b], we set the initial SAC temperature parameter to
1 and update it to match an automatically set policy entropy. In practice, and our experiments as well,
the final temperature at the end of training becomes approximately 0.

EMG policy training The EMG policy/encoder is a multi-layer perceptron (MLP) network with 3
layers each with 256 neurons and SiLU activation function and without dropout.

For pre-training we created 1000 augmentations per person using the method in (18). We set the
magnitude of the original actions present in the dataset to 0.8 (with 1.0 being the maximum). We
then combined the original and augmentation dataset to get a total of 66353 samples. The data from
three users (7783 samples) were held out for validation while the rest (58570 samples) was used for
training.

As described in section 2.3, we learn from the ground truth action labels using a likelihood P (y|a) =
N (y|a, σ2) and a data dependent prior P (a|y) = N (a|y, σ2). We use σ = 0.2 for both.

For the KL divergence term in (3), we use a single sample approximation for the expected log
likelihood under the prior distribution and compute the encoder entropy in closed form because
it predicts the parameters of Gaussian distributions. In our experiments, we noticed that down-
weighting the entropy term led to improved accuracy. We thus chose an entropy weight of 0.01 for all
experiments.

For pre-training, we trained for 50 epochs with a learning rate of 3e−4 and a batch size of 128, which
we found works well for convergence. For fine-tuning, we collect 2000 samples per session and train
for a maximum of 2000 steps between each data collection session. This is repeated for 5 sessions in
our experiments. Finally, in the sixth round, we again collected 2000 samples for validation purposes.

Hardware All experiments were conducted on a cluster of NVIDIA Tesla T4 GPUs. Pre-training
was completed in approximately 3 minutes, while fine-tuning experiments required around 8 minutes
per run, with a total of 520 fine-tuning experiments (120 for teacher importance and 400 for user
adaptation).

A.4 Additional results

User model In this section, we illustrate the behavior of the user model trained by meta RL. Fig. 4
shows the reward achieved and average action magnitude taken by the user model for varying user
beliefs about EMG policy noise and slope under different true EMG policy noise. As expected, when
the environment had low noise, users with the correct beliefs of low noise and low slope generally
achieved higher reward. When the environment has higher noise, users who believed the noise slope
was lower achieved higher reward. In both environment noise settings, the user model tends to take
higher magnitude actions when it believes the noise level is higher and slope lower. This can be
understood as "fighting against" environment noise.

In order to ensure our method can adapt to diverse users, we would also like the optimal control
policy under inaccurate user beliefs make the teacher prior strongly misspecified. Fig. 5 shows that
this is indeed the case. When users believe the EMG policy noise and slope are significantly higher
than zero, the difference between the user policy and the teacher policy in terms of MAE of the most
likely actions can be as high as 0.36.
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(a) Reward achieved by simulated users with varying beliefs about EMG policy noise and slope under different
true EMG policy noise.

(b) Average action magnitude taken by simulated users with varying beliefs about EMG policy noise and slope
under different true EMG policy noise.

Figure 4: Illustration of simulated user behavior

Adapting to diverse users Here we include additional results for the fine-tuning experiment. Fig.
6 shows the user intent prediction MAE for the baseline and LIFT for users with α = 3 (i.e., noisier
behavior/lower expertise). The pattern is similar to Fig. 3 except that the improvement upon the
baseline is smaller.

Fig. 7 shows that the improvement in reward by LIFT compared to the baseline is very small. We
believe this is due to the simplicity of the Reach environment where even copying the incorrect
teacher can achieve good reward.

Fig. 8 show the performance of LIFT and baseline over the fine-tuning sessions. In most cases, the
highest improvements occurred in sessions 1 and 2 with smaller changes in following iterations. It
can be seen that LIFT compensates for high noise more effectively than the copy-the-teacher baseline
and improves the mean MAE and reward in all cases compared to pre-training.
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Figure 5: MAE of the most likely actions under user and teacher policies for varying beliefs about
EMG policy noise and slope under different true EMG policy noise. This shows that the teacher
policy can be strongly misspecified for users with incorrect beliefs.

Figure 6: User intent prediction accuracy (MAE) achieved by a copy-the-teacher baseline and LIFT
(ours) and the improvement upon the baseline for different user beliefs of EMG policy noises and
slopes at α = 3.
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Figure 7: Task reward achieved by a copy-the-teacher baseline and LIFT (ours) and the improvement
upon the baseline for different user beliefs of EMG policy noises and slopes at α = 1 and α = 3.

Figure 8: Mean validation MAE and reward over all interactive fine-tuning sessions after the first
session for varying user beliefs of noise bias b. The average is taken over the seeds, noise slopes and
policy variances. Higher noise leads to worse MAE but LIFT manages to retain better performance
when noise increases compared to the copy-the-teacher baseline. Different to the MAE, reward trends
between copy-the-teacher baseline and LIFT are relatively similar due to the simplicity of the task.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The goal of this paper is to propose a contrastive method for fine-tuning EMG
interface policies, which is achieved by the body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discussed the limitations of the lack of user study and simplicity of
the experiments in the final section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide all proofs in the appendix and have verified them to the best of our
knowledge.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we have extensively documented implementation details in the appendix
to the best we can.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will make the code available after the review process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we explain our experimental details in the appendix and will open-source
our code for full transparency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we provide error bars in the appendix but rely on mean results in the main
text due to space constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, this is documented in the appendix in the paragraph EMG policy training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, this work conforms with the NeurIPS code of ethics to the best level we
could determine.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper conducts fundamental research and does not directly concern area
with potential positive or negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Creators and original owners of assets are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Tis paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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