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Abstract

Large Language Models (LLMs) have rapidly evolved into general-purpose agents capable
of reasoning, planning, and acting across diverse tasks. While much progress has focused
on scaling model size and aligning behavior through natural language, a growing body of
research reveals that code—with its structured, executable, and compositional nature—plays
a uniquely powerful role in shaping and augmenting LLM capabilities. The emerging synergy
between code and LLMs is transforming how models reason, act, and collaborate—both
individually and as agents. This survey systematically examines how code acts as both a
medium and a mechanism to empower LLM agents. We synthesize a growing body of work
where code is not only the output but also the internal mechanism that improves an agent’s
ability to decompose tasks, form plans, use tools, coordinate with others, and ground actions
in real or digital environments.

1 Introduction

Large Language Models (LLMs) have emerged as versatile agents, capable of performing a wide range of
cognitive and interactive tasks—reasoning through problems, planning sequences of actions, and engaging
with dynamic environments. While advances in scale, instruction tuning, and alignment have significantly
improved their linguistic competence, these models still face limitations when it comes to structured reasoning,
long-term consistency, verifiability, and interaction with the external world (Liang et al., |2023a).

In parallel, a striking trend has gained momentum: LLMs that can generate, interpret, and use code
demonstrate markedly stronger capabilities across tasks that require precision, abstraction, modularity, and
interaction (Zhao et al., [2023). Rather than being treated solely as a modality for generation (e.g., in code
completion or synthesis), code is increasingly central to how LLMs reason, act, and collaborate [Wang et al.
(2024). Code provides a structured and executable interface that allows language models to offload complex
reasoning, formalize plans, manipulate memory, orchestrate tools, and coordinate with other agents.

This survey aims to explain the widespread adoption of code-specific training in the general LLM training
paradigm and how code enhances LLMs to act as Agents, based on the taxonomy of relevant papers (see
Figure [1)).

Organization of this Survey We define code as formal language that is both machine-executable and
human-interpretable (see our detailed definition of code and typical methods for LLM code training in
Appendix . With insights from characteristics of code (see our case studies in Appendix , our literature
review reveals that integrating code into LLM training +4) enhances their programming and reasoning
capabilities (§3.1)); ¢) enables the models to directly generate executable, fine-grained steps during decision-
making(; iti) boosts agents’ capabilities tointeract with real and digital environments through structured
actions, tools, and cross-agent coordination(§3.3)); iv) empowers memory management strategies by code-based
solutions, improving long-term memory retention, self-awareness, and adaptive learning(; and 7v) situates
the LLMs within a code execution environment, allowing them to receive automated feedback from integrated
evaluation modules and self-improve (§3.5)).
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Figure 1: The organization of our paper, with a curated list of the most representative works.

2 Preliminaries

2.1 Our Definition of Code

Code represents a significant abstraction layer beyond natural language, characterized by structured formal
language systems that are simultaneously machine-executable and human-interpretable. While natural
language serves as an abstraction of human thought, formal languages (our definition of code) constitute
abstractions that can be systematically parsed and executed according to well-defined rules. These formal
languages exhibit distinctive attributes including structural rigidity, symbolic representation, modularity, and
non-ambiguity—features largely absent in natural language communication.

The inherent organization, deterministic interpretation, and compositional nature of code enable precise
execution paths that natural language cannot guarantee. This fundamental difference in symbolic organization
explains why, even when trained using identical paradigms, code-trained language models demonstrate
capabilities distinct from those trained exclusively on natural language corpora.

For our purposes, human-readable programming languages (Python, JavaScript, etc.) represent archetypal
examples of code. Conversely, we exclude low-level machine languages composed of binary instructions due to
their limited human comprehensibility. Our definition also encompasses pre-constructed formal languages such
as function sets implemented in systems like WebGPT (Nakano et all, [2021)), as these can be deterministically
parsed and executed through rule-based mechanisms.

Additionally, we extend our definition to include other formal expression systems—predefined function
libraries, mathematical deduction formalisms, and similar rule-based notational systems—recognizing that
language models trained on these structured symbolic systems exhibit advantages comparable to those trained
on conventional programming languages. This expanded definition enhances this survey’s comprehensiveness
in addressing multiple contemporary research directions.
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2.2 LLM Code Training Methods

Language models acquire code capabilities through training with language modeling objectives applied to
structured code repositories. The sequential readability characteristic of code makes this approach conceptually
similar to training models for natural language generation and comprehension.

Formally, for a language model architecture Mg with parameters © operating on a code corpus T = ty, ..., t,,
optimization typically proceeds by minimizing the language modeling loss:

L(T) =Y —log P(tilt;—, ... ti—1;©)

%

When utilizing conventional programming languages as training material (Chen et al., [2021; |Li et al., |2022;
Nijkamp et al., 2022), researchers typically extract datasets from open-source repositories like GitHub. This
approach yields training corpora with scale comparable to natural language datasets, constituting what we
term code pre-training. Implementation strategies include either continuing training of pre-trained language
models using code repositories (as with Codex (Chen et al., [2021))), or developing models from initialization
using combined natural language and code datasets (illustrated by CodeLLM (Ma et all |2023)).

For specialized formal languages with more constrained expression spaces, such as domain-specific function
libraries (Schick et al., |2023]), mathematical notation systems (Wu et al, 2022)), or database query languages
(Sun et al.l 2023), available training material is typically more limited. We characterize training on these
specialized languages as code fine-tuning.

Beyond supervised learning approaches, reinforcement learning—particularly Proximal Policy Optimization
(PPO)—has emerged as a critical methodology for training code-generating LLM-based agents. The PPO
algorithm optimizes model parameters through iterative policy improvements while restricting update
magnitudes to prevent performance deterioration.

In the context of LLM code generation, PPO training typically follows a structured workflow: First, the
model generates candidate code sequences based on input prompts. These outputs are then evaluated through
reward functions that assess code correctness, efficiency, or other desired attributes. The computed rewards
are converted to advantages, which calibrate how much better or worse actions were relative to the model’s
current policy.

The heart of PPO is its objective function that incorporates clipped probability ratios:

10 = 8o ( 22 st (2241 )]

ﬂ-aold(a|s) ﬂ-eold(a|5

Where mp represents the current policy, ms,,, the previous policy, A(s,a) the advantage function, and € a
hyperparameter (typically 0.1-0.2) controlling clip range. This formulation prevents excessively large policy
changes by clipping the probability ratio.

For LLM-based code agents, the PPO training loop integrates several crucial components: ) sequence
generation using the actor model, i) reward computation combining model-based and rule-based evaluations,
iii) advantage estimation incorporating temporal relationships between code tokens, iv) critic model updates to
improve value predictions, and v) actor model updates that optimize the policy while respecting KL-divergence
constraints between consecutive policies. This approach enables models to learn from execution feedback and
environmental interaction rather than solely from static examples—a critical advantage for developing robust
code generation capabilities.

3 Code-empowered LLMs Agents

In the preceding sections, our discussion highlighted the various ways in which code integration enhances LLM
Agents. Beyond these general improvements, we recognize that code-empowered LLMs play an especially
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critical role when these foundation models are used to instantiate agents. Therefore, in the following sections,
we will explore how code training provides capability edges that benefit code-LLM agents.

We will examine embodied agents in a broad sense, which require processing and generating multimodal
inputs. Due to language’s abstraction properties, many existing approaches use language for supervision,
processing, and integration of multimodal signals. We observe that the enhancements provided by code
training in LLMs typically manifest at each stage of the IA application. For instance: ¢) improving the agent’s
decision-making capabilities regarding environmental perception, reasoning, and planning (, it) enabling
agents to more flexibly ground natural language actions to machine-interpretable formal languages, thereby
facilitating more generalized tool use practices (§3.3]), and #4) optimizing performance through automatic
feedback derived from code execution environments (§3.5). The following sections will provide detailed
explanations of each of these aspects.

3.1 Code-LLMs

Large Language Models pre-trained or fine-tuned on code—commonly referred to as code-LLMs—exhibit
enhanced capabilities that go beyond natural language understanding. Exemplified by models like OpenATI’s
Codex (Chen et al. [2021)), this class of LLMs leverages the structural, formal, and executable nature of
code to develop more robust reasoning and compositional generalization. Unlike natural language, code
imposes strict syntactic and semantic constraints: it requires producing logically coherent, sequentially valid
instructions that can be executed and verified at each step. By learning from these properties, code-augmented
LLMs demonstrate stronger capabilities in symbolic manipulation, mathematical reasoning (Wu et al.| [2022]),
general-purpose programming (Chen et al.| 2021)), and structured data querying (Sun et al. 2023} |Cheng
et al., 2023).

Crucially, these models also show marked improvements on non-code tasks that benefit from structured
reasoning. The discipline of code—its demand for precision, modularity, and step-wise logic—enhances
chain-of-thought (CoT) prompting across a variety of domains (Lyu et al., [2023; Zhou et all 2023} [Fu &
Khot), |2022)). This influence extends to multimodal and semi-structured inputs such as charts, markup, and
HTML documents, where code-augmented models outperform their natural language counterparts (Furuta
et al.l 2023} |[Liu et al. [2023a).

In the remainder of this section, we organize the capabilities of code-LLMs into three subcategories: (%)
Programming Skills, which assess the core coding competencies and generalization of these models; (i)
Program-Based Reasoning, which explores how code can scaffold and improve complex reasoning; and (i)
Capturing Structured Knowledge, which highlights how code enhances model understanding of structured and
multimodal information.

Programming Skills A foundational benefit of code-LLMs lies in their ability to learn and perform core
programming tasks with high competence. These models are not only trained to understand and generate
code but also to generalize across languages, frameworks, and problem domains—enabling them to serve as
reliable coding assistants and integral components of intelligent agents.. Recent models such as OpenCoder
(Huang et al. 2024), Deepseek-Coder-V2 (Zhu et al.; |2024)), and SantaCoder (Allal et al., |2023)) are trained
specifically to improve multilingual code generation and comprehension across languages and frameworks.
DeepSeek-Coder-V2 |Zhu et al.| (2024)) is an open-source Mixture-of-Experts (MoE) code language model that
achieves performance comparable to GPT-4 Turbo in code-specific tasks. It supports an extensive range of
338 programming languages and extends the context length from 16K to 128K, enhancing its capability to
handle complex coding tasks. CodeGen (Nijkamp et al., [2022) and Codex (Chen et al.l |2021)) demonstrate
that models trained on diverse programming corpora can generalize to unseen coding problems and languages.
These models often excel in standard programming benchmarks, including HumanEval and MBPP, showcasing
their capacity for code synthesis, completion, and repair tasks. They form the technical backbone of many
code-empowered agents.

Program-Based Reasoning Beyond raw coding ability, code pretraining significantly enhances LLMs’
reasoning capabilities, especially for tasks requiring structured, step-wise problem decomposition. Fu et al.
(2022) and Ma et al. (2023a) empirically demonstrate that code training improves chain-of-thought (CoT)
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reasoning in math and logic tasks. Building upon this, PAL (Program-Aided Language Models) (Gao et al.,
2023)) introduces a method where LLMs generate Python programs as intermediate reasoning steps, offloading
execution to a Python interpreter. Similarly, Program of Thoughts (PoT) prompting (Chen et al., 2023al)
disentangles reasoning from computation by having LLMs generate programs that are executed externally.
SelfzCoT (Lei & Deng, [2023) further refines this idea by using program-based rationales for self-consistency.
(Yang et al., 2024)) introduces the task of reasoning in the wild, where LLMs must solve problems of unknown
types by identifying subproblems and generating appropriate programs These approaches treat code not just
as output but as a reasoning substrate, enabling verifiability and modularity in inference.

Capturing Structured Knowledge Code’s strong bias for structure also helps LLMs acquire and
generalize over structured data modalities. Code4Struct (Wang et al., |2023b) shows that code-formatted
supervision improves parsing and semantic extraction from semi-structured text. ViStruct (Chen et al.l
2023c) extends this to visual documents by encoding layout and content into structured prompts. MATCHA
(Liu et al., |2023al) and WebGUM ([Furuta et al.l |2023) leverage code-like representations to handle HTML
and autonomous web navigation. Pix2Struct (Lee et all |2023)) is pre-trained as an image-to- text model
on masked website screenshots, and further training with OCR, language modeling, and image captioning
objectives. These models demonstrate that code inductive biases can bridge language with tabular, visual,
and markup representations, enhancing LLMs’ comprehension in semi-structured environments.

3.2 Decision Making

Environment Perception It’s important to emphasize that perception in intelligent agents occurs
continuously and should be organized in a structured manner where different modalities are processed
simultaneously without temporal disparities, with important elements receiving heightened attention. This
principle of “structured perception” often contradicts the training paradigm of LLMs that lack code training,
as unprocessed language datasets are unstructured, and the temporal sequentiality of language is emphasized
by the need to interpret text, making perception time-dependent. Conversely, for formally structured
languages, when LLMs are trained on such texts, they partially shed the temporal dependency assumptions
imposed by natural language text datasets. The most intuitive example is class definitions in code, where
attributes are established, stored, and accessed in a tree structure without a concept of “sequence.” Additional
examples include webpage layouts.

In agent development, researchers have explicitly or implicitly utilized the capacity of code-LLMs to perceive
the world in a structured manner, enhancing the precision and effectiveness of input processing. ChatRex
(Jiang et al.| [2025) segments visual inputs and transcribes them into text corresponding to layout-content
pairs, strengthening the agent’s structured information perception and making its reasoning more grounded.
WorldCoder (Tang et al.l |2024) stores world models in code format, enabling flexible addition, deletion, and
querying of environmental perceptions. Where2Learn (Wang et al., [2025) abstracts embedded environmental
perceptual knowledge into steps (code) for environment exploration, creating learning datasets guided by
structured knowledge, helping perception models learn more effectively. Perception-Action (Mavrogiannis
et al., |2025]) encapsulates perceptions that cannot be described linguistically into APIs, using API return
values to inform agents about more specialized environmental perception.

Reasoning & Planning Code-LLM based agents demonstrate significant advantages in planning and
reasoning capabilities due to the inherent characteristics of code itself. The symbolic, modular nature of
programming languages facilitates well-decoupled, logically structured reasoning steps between different
functionalities. These advantages manifest in several ways: ¢) When code serves as the reasoning medium,
thought chains become more concise and precise with minimal redundancy; i) The syntax allows for
functional composition and nesting, making it easier to express complex logic through established grammatical
structures; iii) Execution results from code steps can be derived from external modules such as calculators or
deterministically verified by compilers, making intermediate steps more accurate and reliable.

For example, Codeplan (Wen et al., 2024)) utilizes code as the planning format, overcoming the limitations of
natural language planning such as lack of analysis, verification, and clear logical structure, thereby enhancing
overall performance on reasoning tasks. The survey “Code to Think, Think to Code” (Yang et al., [2025)
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provides detailed descriptions of how code properties enhance reasoning capabilities in LLMs. Chain of Code
(Li et all |2024a) replaces natural language thoughts with code-formatted reasoning, reducing hallucination in
intermediate steps and improving performance on tasks requiring sophisticated reasoning. “Steering Text and
Code” (Chen et al.;, [2025) addresses some negative examples of converting text to code for reasoning and
proposes solutions to these challenges. “World Models for Model-based Task Planning” (Guan et al. 2023)
represents the planning components of all covered tasks using a formal task language, leveraging human-LLM
collaboration to continuously refine code-form plans.

Multi-Agent Coordination Code plays a pivotal role in orchestrating multi-agent collaboration by
serving as a shared interface for communication, task planning, and synchronized execution. Systems like
MetaGPT (Hong et al.| [2023) and ChatDev (Qian et al. [2023)) introduce code-centric workflows where agents
specialize in roles (e.g., architect, coder, tester) and collaborate through structured code generation pipelines,
mimicking real-world software engineering teams. These frameworks use code not just as output but as a
medium of coordination, enabling modular task decomposition and collective progress tracking. On the other
hand, frameworks such as CAMEL (Li et al., 2023a) and AutoFlow (Li et al., [2024b) focus on autonomous
collaboration protocols, where agents negotiate and align through natural language and code-grounded
dialogue to co-design task plans and workflows. CAMEL (Li et al.| 2023a)) in particular emphasizes role-play
and dialogue-based alignment to simulate social dynamics among agents, while AutoFlow (Li et al., [2024b)
automates the creation of executable workflows by converting high-level objectives into interdependent code-
based subtasks. Across these systems, code serves both as a shared language and a structuring mechanism,
enabling agents to coordinate not through fixed rules, but via adaptable, executable artifacts.

3.3 Execution

Action Grounding Action grounding in agents requires translating planning or steps from unstructured,
machine-unreadable natural language into a formalized language format that machines can interpret and
execute. Code-LLM agents hold a distinct advantage in this domain as their action space already exists
within well-defined formal language structures, such as Python code or API calls.

Several works demonstrate this advantage effectively. CodeAct (Wang et al. [2024]) enables LLM agents
to utilize executable Python code for performing actions, revising decisions, and combining tools flexibly
through multi-turn interactions. This approach grounds abstract reasoning in concrete, executable operations.
GRAPPA (Bucker et al., |2025) introduces a team of specialized conversational agents, prominently featuring
code-based instruction writing that enhances model performance. These agents assist robots in grounding
their actions to the environmental context and adjusting behavior based on visual and motor feedback,
eliminating the need for additional human demonstrations or custom configurations. RoboTool (Xu et al.,
2023) employs LLMs to transform natural language instructions into executable standardized code-form robot
actions. This system enables creative tool utilization by integrating task understanding, planning, parameter
computation, and code generation into a cohesive framework that bridges the gap between human intent and
machine execution.

Tool Use In the context of code-LLM agents, tool utilization refers to the ability of LLMs to appropriately
invoke external tools or APIs through specifically formatted commands. This capability involves recognizing
when tool assistance is beneficial, selecting the most suitable tool for a given scenario, and constructing
syntactically valid invocation statements that adhere to the tool’s interface requirements. From this perspective,
many research efforts in tool learning essentially focus on enabling agents to communicate with specialized
execution modules through formal, machine-interpretable languages. These approaches allow the language
model to delegate specific tasks to dedicated components, creating a more effective division of labor where
the LLM handles high-level reasoning while specialized tools manage domain-specific operations. This tool
integration framework represents a fundamental capability for code-generating agents that need to interact
with external systems and resources to accomplish complex tasks.

For example, ToolLLM (Qin et al, 2023|) addresses the tool-use challenge for open-source LLMs by creating
a diverse instruction-tuning dataset (ToolBench) and fine-tuning models like LLaMA, allowing them to
effectively interact with external APIs and generalize to new tools, achieving performance on par with advanced
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models like ChatGPT. ToolAlpaca (Tang et al.l 2023)) empowers compact LLMs to acquire generalized tool-use
skills by automatically generating a diverse tool-use corpus through multi-agent simulations, enabling these
models to apply previously unseen tools without specific training. GPT4Tools (Yang et al.,2023) enhances the
tool-use capabilities of open-source LLMs by training them on self-instructed data generated from advanced
models, which structures tool interactions using code to solve visual tasks efficiently through fine-tuning
and zero-shot generalization. LATM (Cai et al, 2024) equips LLMs with the ability to generate reusable
tools as executable code for solving tasks, splitting the tool creation and usage process between models
to enable cost-effective and efficient problem-solving through modular tool reuse and functional caching.
Gorilla (Patil et al.| [2023)) refines LLaMA-based models for more accurate APT call generation by mitigating
hallucinations and adapting to evolving documentation, providing a robust and flexible tool-use system when
integrated with a document retriever. ToolCoder (Ding et all, |2025)) allows LLMs to approach tool usage
as a code generation task by converting natural language queries into Python function scaffolds, offering
precise, modular, and reusable tool interactions grounded in executable code. AutoTools (Shi et al. 2025)
enables LLMs to autonomously convert tool documentation into executable code, validate its correctness,
and integrate tools into scalable, flexible problem-solving workflows, enhancing the efficiency of tool use.

Cross-Agent Execution While multi-agent coordination often emphasizes planning and role assignment,
cross-agent execution focuses on how agents collaboratively generate, test, and refine executable code within
shared environments. This paradigm treats code not merely as an output but as a dynamic medium
for interaction and synchronization among agents. Frameworks like AgentCoder (Huang et al., 2023)
exemplify this approach by assigning specialized roles to agents—such as programmer, test designer, and test
executor—that iteratively collaborate to produce and validate code. Each agent contributes its expertise,
and through continuous feedback loops, they enhance code quality and robustness. AutoGen (Wu et al.|
2023)) extends this concept by enabling agents to engage in multi-turn dialogues, combining natural language
and code to accomplish complex tasks. This conversational framework allows for flexible agent behaviors
and interaction patterns, facilitating the development of diverse applications ranging from mathematics to
software engineering. Addressing the challenges of maintaining synchronization in collaborative environments,
SyncMind (Guo et al., |2025) introduces a framework to measure and recover from out-of-sync scenarios
among agents. By analyzing real-world software engineering tasks, it highlights the importance of shared
understanding and adaptability in multi-agent systems. Collectively, these systems illustrate the evolution of
multi-agent frameworks where shared code spaces serve as the foundation for collaborative execution. By
leveraging code as both a communication medium and an execution platform, agents can achieve higher levels
of coordination, adaptability, and efficiency in complex tasks.

3.4 Memory Management

Effective memory management is crucial for large language model (LLM) agents to handle extended contexts,
adapt to dynamic environments, and perform complex tasks. Recent advancements have introduced code-
centric frameworks that structure and evolve memory systems to enhance agent capabilities. For LLM agents,
learning from past experiences can also be viewed as managing the episodic memory (Shinn et al., |2023).
Retrieval-Augmented Planning (RAP) Kagaya et al.| (2024) retrieves past experiences corresponding to the
current situation. MemGPT [Packer et al.| (2023]) draws inspiration from traditional operating systems to
address the limitations of LLMs’ context windows. By implementing a virtual context management system,
it simulates hierarchical memory structures, allowing agents to manage different memory tiers. It allows
LLM to select content to retain in working memory and to search for information in long-term memory.
Generative Agents [Park et al.| (2023) retrieve memories based on recency, importance, and relevance to the
current situation. Generative Agents also generate tree-structured reflections, but they focus on a continuous
scenario rather than task-oriented rules. AutoManual |Chen et al.|(2024) enables LLM agents to autonomously
build their understanding through interaction and adapt to new environments. It categorizes environmental
knowledge into diverse rules and optimizes them in an online fashion.
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3.5 Self-improvement

In code environment-integrated agent learning frameworks, agents can observe the environment, issue actions,
and receive update signals through a unified program execution process. This integration is evident in
numerous frameworks designed for training general-purpose agents using reinforcement learning. A prime
exemplification of this approach is Reinforcement Learning with Execution Feedback (RLEF) (Gehring et al.)
2025)), which enables large language models to progressively enhance their capabilities by utilizing execution
results as feedback. This methodology substantially improves the models’ problem-solving abilities while
minimizing the need for human intervention. When evaluated on competitive programming challenges, RLEF
demonstrates exceptional performance, establishing new benchmarks while significantly reducing sample
efficiency requirements and facilitating effective multi-stage self-improvement processes. Complementary to
this, the Self-Debugging framework proposed by ? teaches LLMs to automatically identify and fix their own
code mistakes by iteratively analyzing execution errors and refining their outputs. This approach underscores
the growing potential of execution feedback—mnot just as a training signal but as an active loop for runtime
correction and continual self-improvement within agentic workflows.

4 Challenges and Future Directions

Despite the promising synergy between code and LLMs, several challenges remain. Current models still
struggle with reliably generating syntactically correct and semantically coherent code in complex, multi-turn,
or multimodal contexts. Robust program-based reasoning requires stronger grounding and debugging abilities,
especially in open-ended, real-world scenarios. Memory management through code structures remains
underexplored, particularly for long-horizon planning and persistent agent behavior. Moreover, aligning
code-executing agents with user intent and safety constraints remains a key concern. Future work should focus
on improving the modularity and generalization of code-based reasoning, developing more transparent and
adaptive execution-feedback loops, and scaling multi-agent collaboration via code as a shared coordination
protocol. Building open, interpretable, and continually learning agents will be essential for realizing the full
potential of code-powered intelligence.

5 Conclusion

In this survey, we have systematically explored how code functions not merely as an output modality but as a
foundational catalyst that empowers large language models (LLMs) to reason, act, and improve more effectively.
By synthesizing findings across a wide array of recent literature, we highlight how the integration of code into
pretraining and prompting pipelines transforms LLMs into more capable, agentic systems. Code provides a
dual advantage: it inherits the compositional semantics and readability of natural language while introducing
the formal structure, executability, and verifiability of symbolic systems. These properties make code an ideal
training signal for developing more precise, structured, and interpretable model behavior. Through this lens,
we examined five core dimensions in which code enhances LLM agents: i) Code-LLMs: Code-trained models
display superior programming skills, compositional generalization, and cross-domain capabilities, forming the
technical backbone of many agentic systems; ii) Decision-Making: Code-aware models demonstrate more
reliable planning, reasoning, and problem decomposition—often via program-based prompting techniques that
yield modular and verifiable thought processes; iii) Execution: Code enables LLMs to interface with tool APIs,
control environments, and translate natural language into executable formal commands, facilitating grounded
and robust task completion; iv) Memory Management: Through structured function definitions and calls,
code improves how models organize, retrieve, and reuse information—providing scaffolds for modular memory
strategies and persistent workflows; and v) Self-Improvement: The integration of execution environments
allows LLMs to observe, debug, and iteratively refine their outputs using programmatic feedback, paving the
way for continual learning and autonomous skill acquisition. By viewing code as a core enabler of reasoning,
structure, and agency, we aim to provide a unified perspective on how code is transforming the capabilities and
design of LLM agents—and to inspire future research at the intersection of language, logic, and computation.
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A Discussions

A.1 Intrinsic Qualities of Code that Contribute to LLM Empowerment

Reflecting on our definition of code in the introduction section ( as formal languages that are both
human-interpretable and machine-executable, we highlight that while some features are shared by all code,
programming language, as the most well-known and most established type of code, enjoy some unique
advantages. In Figure [2] we provide a case study comparing code and natural language.
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1. Object-Oriented Programming
Adyv: Structured
def - 2. Functional Programming

Adv: Modular & Explicit

3. Procedural Programming
Adv: Step-by-Step

Figure 2: We generate pseudo-code for the “IntelligentAgent” class and employ ChatGPT to compile its
docstring. By contrasting the self-explanatory code with its natural language docstring, we observe that code
exhibits greater structure, expressiveness, and logical coherence, underscoring certain advantages of code over
natural language.

First, we talk about the core feature shared by all code within the range of our definition. The inherent
nature of code is that they are explicit and have clear definitions for every single line, while natural language
is generally in free form and can be very ambiguous. Consequently, code is significantly better at expressing
detailed commands, signifying a specific step, and transmitting control signals. This generally led to the
improvement in §??, the improvement for more controlled planning (cf. planning part in 7 and also
helped with action execution (§3.3)).

Programming languages, a critical component of the code family, are specifically designed for machine
communication. Their advantages extend beyond mere explicitness and clarity. One overwhelming feature of
programming languages (though some formal languages also define logical commands and loops) is that they
contain structural definitions. Some well-known features are logical operands (If & Else), loops (For & While),
nesting (within Functions), and even class definition and class inheritance (Object Oriented Programming).
This feature makes them super suitable for expressing nesting and complicated structures (cf. §?? and the
perception part in . Another feature is that programming languages are often paired with a very powerful
execution environment. This executable feature benefits much as it naturally delegates some harder tasks to
lower level, like arithmetic computing or interacting with a simulated environment when connecting to a
Database, Minecraft, and so on, also facilitating reasoning discussed in §77. What’s more, the execution
often includes feedback mechanisms, which can be valuable for further refining the generator (§?? and §3.5)).
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A.2 Breadth by Code Delegation or Depth by Multimodality Joint Learning

LLMs can swiftly and cost-effectively address tasks involving more data modalities by utilizing code to invoke
tools. Simultaneously, joint fine-tuning on multimodal data enhances the model’s precision and robustness
in perceiving each modality, resulting in superior task performance. For instance, on the VQA dataset
GQA (Hudson & Manning} [2019), ViperGPT (Suris et al., 2023), a typical code-centric paradigm, marginally
surpasses the multimodal model BLIP-2 (Li et al., |2023b) in the zero-shot scenario after learning visual model
API usages. However, its accuracy remains significantly lower than other supervised multimodal models. It is
also still uncertain whether this approach will surpass the state-of-the-art models on multi-modal procedural
planning (Liu et al., |2023b)). One reason is that the code-centric paradigm’s effectiveness hinges on the
central decision model and individual task execution components. This makes code-delegation approaches
susceptible to error accumulation across steps and highly influenced by the worst-performing sub-modules
or tools. Nevertheless, code delegation remains essential, as certain tools’ advantages, such as the precision
of calculators and the flexibility of search engines, cannot be learned by training multimodality models
alone. The high extensibility of the code-centric paradigm to various tools and modalities also makes it a
perfect fit for domains where training data is hard to collect at scale. We anticipate that the central decision
model, utilizing code to invoke tools, will evolve from text-only LLMs to multimodality models capable of
comprehensively understanding and processing multimodal data.

A.3 The Potential of Using Code-centric Framework for Intelligent Agent Construction

We observed a rising trend in leveraging code in the construction of LLM-based intelligent agents. As shown
in we showed three major scenarios where agents can effectively benefit from code usage. We also identified
that this trend mainly originated from the increasing need to evaluate agents in a real-world scenario, where
executive environments and interactions are everywhere. A natural question arises: Does code have the
potential to substitute natural language and become the dominant media in the construction of agents?

A lot of work has begun to adopt this approach, like Voyager (Wang et al.l |2023a)) in a simulated Minecraft
environment. They used code for high-level planning, low-level control sequence, and execution to interact
with the environment. Acquired skills are also organized in the format of code snippets. With the code-centric
paradigm, the framework is highly automatic and efficient. However, it’s also true that many framework
today are still using natural language for planning, probably because they provide more human-interpretable
reasoning steps. Human feedback in natural language is also widely used to harvest strong reward models that
reflect real human preferences. We hypothesize that the integration of code will continue gaining popularity
on our path to AGI, especially for facilitating interactions between agents and the real world. Nevertheless,
natural language could hardly be replaced regarding the interaction between agents and humans.(Drori et al.
2022; [Chen et al.l |2023a; [Lei & Deng [2023). Leveraging this understanding, we aim to explore novel research
avenues in LLM reasoning inspired by the utilization of “code”.

B Paper Statistics from Arxiv

We write a Python script that serves as a web scraper to extract paper details from the ArXiv preprint
server, specifically focusing on the field of computer science. The web scraper gathers information about
papers related to specific topics, including code, LLM, and TA. The script navigates through the ArXiv
website, fetching essential details such as paper title, abstract, authors, and subject categories. We analyze
and visualize data related to these papers in Figure 3| intending to provide insights into the trends and
relationships between LLMs, code-related topics, and TAs in the past few years.

C Benchmarks for Evaluating Complex Reasoning with Code:

While there exist many benchmarks used to evaluate the abilities of LLMs (Liang et al., [2023b)) across many
disciplines, the benchmarks that most directly evaluate LLMs pre-trained on code in complex reasoning
tasks are programming benchmarks such as CodeBLEU (Ren et al., 2020]), where metrics that better match
a human’s evaluation of what is good logical, interpretable, and syntactically concise code was created,
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Figure 3: Paper statistics from Arxiv. We identified a significant and growing trend in recent research focused
on code-based large language models (LLMs) and LLM-based intelligent agents (IAs). Code usage contributes
much to the success of these cutting-edge models and systems.

and CodeXGLUE where multiple programming tasks such as code repair and code defect
detection were accumulated into one dataset. Other suitable benchmarks include math datasets such as
many of MIT’s undergraduate math courses such as calculus and linear algebra, (Drori et al., 2022), LILA, a
compilation of 23 tasks that test for mathematical abilities, language format, language diversity, and external
knowledge abilities of LLMs (Mishra et al.l [2023), and theorem proving from the metamath theorem code
language (Polu & Sutskever} 2020). Others include question-answering tasks that require complex abilities to

perform data retrieval in SQL databases (Ye et all [2023), such as those seen by the Spider dataset (Yu et all
[2019; Rajkumar et al., 2022).

D The Comprehensive Paper List

To complement the core paper list presented in Figure [l we have included a comprehensive list of papers in
Figure ?7?. It is important to note that this list excludes papers used for performance comparisons between
code and natural language. Instead, it focuses on papers that have utilized code to augment the capabilities
of Large Language Models and intelligent agents.

E Mappings of Sections to Core Code features

In each section, we identify key code features that contribute to the success of enhancing Large Language
Models and Intelligent Agents. The correlation between each section and its core features is detailed in
Table ?7. We have classified code features into three main categories: Machine Executable, Structured and
Expressive, and Explicit and Unambiguous. Various aspects of these core features play a pivotal role in the
effective use of code. Detailed explanations of these aspects are provided in the right column of the table.
Additionally, further information can be found in the preamble of each respective section.
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