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Abstract
In this paper we present PICT, our differentiable
2D and 3D fluid simulator for machine learning
in the PyTorch framework with support for GPU
acceleration. We implemented the PISO algo-
rithm using custom CUDA operations for the core
components and Python for the overall algorithm
to achieve GPU performance while keeping the
simulation easily customizable. To support ge-
ometry beyond toy examples we support spatially
adaptive multi-block grids using a generalized co-
ordinate system. This allows the user to refine
the grid as necessary and align it to boundaries.
The forward simulation is validated using ana-
lytical and numerical references as well as long
rollouts for stability. The gradients of individual
components are checked numerically, and we con-
ducted non-trivial optimization and learning tests
to verify the usability of our gradients.

1. Introduction
Modeling and numerical simulation of fluid phenomena,
governed by the well-known Navier-Stokes (NS) equations,
has a long history in computer science. Computational
fluid dynamics (CFD) have many applications in weather
forecasting [1], medicine [2], and mechanical design [3],
but suffer from heavy computational complexity, especially
when employing direct numerical simulation (DNS). While
established methods like Reynolds-averaged Navier–Stokes
(RANS) and large eddy simulation (LES) aim to reduce
this computational complexity, one area of research that is
attracting increasing attention is to employ machine learning
(ML) methods to improve the performance of simulators.
One way is to completely replace the solver by a network
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that has learned the dynamics from data, but this has proven
to be unreliable in generalization and long rollouts [4]. A
more promising one is replacing or augmenting costly parts
of existing approaches with learned components in hybrid
solvers. Properly training such hybrid solvers often requires
the rest of the simulator to be differentiable to allow for
the more stable end-to-end training in which the learned
components can correct for their own prediction errors that
would otherwise accumulate in longer trajectories. Another
avenue that can benefit from differentiable solvers is learned
control tasks [5], [6] and design optimization [7]. Despite
the apparent interest in differentiable solvers, only very few
such methods exist [8], [9]. Bezgin et al. [10] argue that this
may be due to the mismatch between the typically low-level
implementation of high-performance solvers and high-level
machine learning frameworks, and subsequently introduced
JAX-Fluids [10] as a python framework that bridges this
gap.

We follow a similar avenue, albeit with different choices for
algorithms and discretization, and developed PICT, imple-
menting the PISO algorithm by Issa [11] for incompress-
ible flows in CUDA for GPU acceleration for the PyTorch
machine learning framework. Our solver is intended as a
general DNS solver that can be used with gradient-based
methods for various optimization tasks and applications and
supports spatially adaptive meshes by using a generalized
coordinate system [12], [13] and multi-block grids. This
allows the user to refine the grid as necessary and align it to
arbitrary boundaries while keeping the grid topology a regu-
lar Cartesian grid structure for easier memory handling and
straightforward connection to convolutional neural networks
(CNN). For the connection to auto differentiation (AD), we
implement analytical gradients for the core components of
the PISO algorithm, including an implicit Euler step, and
integrate them for use with PyTorch’s AD. As is common
for ML applications, we implement our solver for GPU for
better runtime performance. To validate our implementation,
we compare forward simulations to existing analytical or
numerical references. We also show our solver’s stability
in long turbulent rollouts. For differentiation, we validated
the gradients of individual operations numerically and show
that backpropagation through long rollouts is stable and
provides meaningful gradients for both direct optimization

1



PICT: Adaptive GPU Accelerated Differentiable Fluid Simulation for Machine Learning

of physical quantities, i.e., viscosity and boundary velocity,
and for learning a control force with a CNN.

2. Method
2.1. Governing Equations and Algorithm

The governing NS equations to simulate incompressible
flows take the form of momentum

∂u

∂t
+∇ · (uu)− ν∇2u = −∇p+ S (1)

and continuity
∇ · u = 0, (2)

with velocity u, pressure p, viscosity ν, time t, and external
sources S.

For the numerical simulation we use the PISO algorithm
introduced by Issa [11]. It comprises a predictor step to
solve the momentum equation (1) and advance the simu-
lation in time, followed by typically 2 corrector steps to
enforce continuity (eq. (2)) on the result. For the predictor
step

1

∆t
u∗+∇·(unu∗)−ν∇2u∗ =

1

∆t
un−∇p+Sn+1 (3)

the velocity is split into velocity from previous step un

(advecting) and the velocity guess u∗ (advected). In matrix
form this advection is Cu∗ = 1

∆tu
n −∇p+ S, which we

solve with an implicit Euler step.

For the corrector step the matrix C is split into its diagonal
A and off-diagonal entries H . With h = −Hu∗ + u0

∆t , the
pressure correction comes from the linear system

∇2(A−1p∗) = ∇ ·
(
A−1h+A−1Sn+1

)
(4)

which is solved for the pressure p. This pressure is then
used to compute the corrected, divergence-free velocity u∗∗

with
u∗∗ = A−1h−A−1∇p∗ +A−1Sn+1 (5)

The pressure correction, equations 4 and 5, are repeated
twice [11], with an additional ∗ indicating the second update.
The velocity of the next time-step is then un+1 := u∗∗∗.

2.2. Discretization

For discretization we use the finite volume method (FVM)
based formulation as described by Maliska [13]. At its core,
it uses the divergence theorem to convert the divergence op-
erators ∇· of the governing equations to sums over discrete
faces f of final volume elements.

∇ · u ≈
∑

f

uf · n⃗faf , (6)

where n⃗f is the face normal and af its area.

Transformations To align grid axes to physical bound-
aries and support refinement in areas of interest we include
the option to transform the vertices of the regular grids.
Since we use a FVM-based formulation, the face fluxes
created from eq. (6) need to take the new physical size and
orientation of the now-transformed faces into account. To
handle these mesh transformations we use the generalized
coordinate system as described by Kajishima and Taira [12]
and Maliska [13], which effectively scales af and rotates
n⃗f , but allows to precompute the required factors from the
mesh coordinates. We only support static meshes that do not
change during the simulation, but a discussion of temporally
changing grids can be found in [13].

Block structure To handle complex geometry, we use a
multi-block grid where the domain of interest can be split
into multiple blocks, but each block is still a regular grid
with its own velocity and pressure tensor that together make
up the global field. Advection and pressure are still solved
for the whole domain. Each side of a block can have one
boundary specified, either a connection with matching res-
olution or a prescribed quantity. The block connections
allow for more complicated meshes while keeping the regu-
lar structure for most of the memory. This also fits nicely
for the connection to CNNs where connections could be
handled by padding with a ghost layer of connected blocks.

Boundary Conditions In addition to the connections be-
tween blocks, we support Dirichlet boundaries for the ve-
locity, with Neumann being a possible extension, and an
advective outflow boundary. The advective outflow updates
the boundary between each PISO step by advecting the
block’s boundary cell layer into the boundary with some
characteristic velocity um to satisfy ∂u

∂t +um
∂u
∂xi

= 0. This
prevents the boundary from reflecting flow structures back
into the domain [14]. During the PISO step the boundary
is then treated as a fixed Dirichlet boundary. The pressure
boundary conditions for Dirichlet velocity boundaries are
implicitly 0-Neumann, for the implementation these pre-
scribed boundaries can be largely ignored as the pressure
correction should not change them.

2.3. Implementation

Our solver is implemented as C++/CUDA module for
Python containing the individual operations needed to build
the PISO algorithm with implicit Euler advection. It com-
prises the setup of the advection/diffusion linear system
(matrix and RHS of eq. (3)), a preconditioned BiCGStab
GPU solver for advection, the setup of the pressure system
(matrix and RHS of eq. (4)), a simpler CG solver for pres-
sure, and the pressure correction for the predicted velocity
field (eq. (5)). It also includes the data structure necessary
to store the multi-block structure with its tensors and con-
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Figure 1. Some example transformed multi-block meshes that can be handled by our simulator. From left to right: a torus grid with
rotational distortion, a (rather bad) mesh fitting a round obstacle in a block, a refined C-grid around an airfoil.

Figure 2. Velocity of the final frame of various forward simulations. For 2D the velocity is mapped to a color circle, for 3D the absolute
velocity vector is mapped directly to RGB. Top left: a multi-block vortex street setup with a rectangular obstacle, the white lines show
block connections. Top right: a crop of a vortex street using a torus grid and a rotating round obstacle. The cell centers are resampled to a
pixel grid, which leaves some empty black areas. Bottom left: a crop of the center slice of a 3D flow around a rotating cylinder. Bottom
right: a flow around a NACA 0012 airfoil, also resampled and cropped.

nections and make them accessible on the GPU. The final,
combined PISO algorithm is then implemented in Python to
allow for easier customization.

2.4. Differentiability

To support the differentiability needed for integration with
ML applicated we implement analytical gradients for the
individual operations. For the operations that build the lin-
ear systems, this is mainly done by ”inverting” the forward
compute graph. For the linear solvers we do not backpropa-
gate through the solution procedure of Ax = b, but instead
solve the system AT∂b = ∂x for ∂b [15]. The gradient w.r.t.
the matrix entries is then the outer product ∂A = −∂b⊗ x.
Since A is a sparse matrix, only elements that exist on A
are used for ∂A. For the connection to PyTorch AD the
individual differentiable operations are wrapped in Python
to enable the necessary tensor tracking.

3. Results
First we test various forward simulations to validate the ac-
curacy and long-term stability of our solver. Then we show
optimization and learning setups to verify gradient back-
propagation through longer rollouts beyond numerically
checked gradients.

3.1. Validation of the Forward Simulation

We validated our solver using the analytical solution of the
Plane Poiseuille flow, and numerical references for 2D [16]
and 3D [17] lid-driven cavity setups. Here we also tested
different Reynolds numbers, grid refinement towards the
closed boundaries, rotational distortions of the grid, and
permutations of the lid boundary for the lid-driven cavity
setups. See appendix B for more details and result graphs.

Flow Around Obstacle We investigated flows around
various obstacles to test solver stability. The first test is a
simple vortex street with a box obstacle and 8 computational
blocks, as shown in figure 2. Inflow is from the left, and
the domain is periodic in y-direction. The results show a
consistent and stable vortex shedding behavior. Our second
test is another vortex street with a round obstacle inside a
torus grid. Here the grid is split into 2 blocks, left and right
of the obstacle, to handle the now curved in- and outflow
boundaries. We further prescribed a tangential motion at the
obstacle boundary to simulate a clockwise rotating obstacle.
This induces vortex shedding from the start of the simulation
and redirects it from the center line, downwards in our case.
Then we extrude this torus vortex street to 3D with inverted
obstacle rotation which shows a more chaotic behaviour.
Lastly, we simulate the flow on a 3-block C-grid around a
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Table 1. Runtime Performance Metrics. The columns contain: sim steps: length of the simulation in PISO-steps. opt it: optimization
iterations for learning tasks, each including a full simulation. max mem: peak GPU memory usage. sim time: wall clock time for the
forward simulation, total and per simulation step, including network evaluation. opt time: is the same for the backpropagation and variable
update. The first 4 tests are forward simulations, followed by our 2 optimization tests. All test were run on a single Nvidia RTX A5000.

Test resolution #cells sim steps opt it max mem sim time opt time
Block Vortex Street 512× 96 48k 4102 - 32MB 13.5m (174ms) -
Torus Vortex Street 128× 60 7680 6585 - 17MB 10m (90ms) -

3D Vortex Street 128× 60× 32 245k 5755 - 181MB 43m (451ms) -
Airfoil 791× 143 113k 14788 - 200MB 162m (658ms) -

Direct Optimization 32× 32 1024 70 - 400 100 190MB 7m (45ms) 3m (22.5ms)
Learned Control 64× 32 2048 500 500 605MB 3h (40ms) 1h (14ms)

Figure 3. The final frame of the learned control test. From left to right: the first velocity of the simulation, the final velocity of a simulation
without control force, the final velocity with learned control force applied over the simulation, the control force of the final frame. The
velocity is mapped to a color circle and normalized in each visualization.

NACA 0012 airfoil. The left, upper, and lower boundaries
are prescribed with the inflow velocity, while we use the
advective outflow condition on the right. Visualizations
of the results are in fig. 2, sequences can be found in the
appendix.

3.2. Optimization and Learning

The gradients of our individual operations are validated
numerically using PyTorch’s gradcheck [18]. We further
investigated a simple direct optimization of a flow quantity
before training a neural network with gradients from our
solver. For the direct optimization we use a lid-driven cavity
setup and optimize both viscosity and lid velocity using
simple gradient descent (GD). As loss we use a L2 loss to
a reference simulation, using only the final velocity at the
horizontal and vertical center lines, similar to the velocity
profiles of the lid-driven cavity validation. Over the course
of the optimization both quantities converge towards their
targets, showing that the gradients point consistently in the
right direction even when backpropagating through a up to
400 steps long rollout. More information is in appendix D.

Learned Control To showcase training a CNN within our
solver we use the torus vortex street setup with a slightly
rotating obstacle to induce vortex shedding behavior from
the start. With this we train a simple 3-layer CNN Θ (3x3

kernel, stride 1, ReLU activation) that maps the velocity
to the forcing term of the next step Θ(un) = Sn+1. The
objective is to minimize the y-velocity after the following
PISO step, i.e. Ln+1 =

(
un+1
y

)2
. The simulation is run

for 500 iterations, and Θ and L are evaluated and applied at
every step. Gradients are then backpropagated through the
500 iterations rollout. In the end the network learns to keep
the flow away from the obstacle, which is shown in fig. 3.

4. Conclusion
In summary, we presented our differentiable fluid simulator
and its integration with ML applications. We showed its sta-
bility and accuracy in forward simulations and the efficacy
of the provided gradients for optimization tasks. While our
simulator is robust and works well in the investigated sce-
narios, there are still some limitations: not every quantity is
made differentiable, most notably the mesh transformations.
The quality of the mesh is also very important for stable
results, as large variations between neighboring cells, such
as seen in the middle mesh in fig. 1, quickly deteriorate the
results. We anticipate that the combination of a powerful,
efficient, and differentiable flow solver will enable a large
variety of interesting learning objectives that are highly rel-
evant for practical applications. We plan to make the solver
publicly available as open-source.
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A. Implementation Details
Fig. 4 shows a visualization of the data flow in our solver. The boxes are individual differentiable operations implemented in
C++/CUDA and wrapped in Python while the remaining structure of the PISO algorithm is realized directly in Python.

B. Validation Results
B.1. Plane Poiseuille flow

The plane Poiseuille flow is a simple 2D test case in which the NS equations simplify to have the analytic solution
u = G

2∗ν y(1− y). It is a flow through a periodic channel with closed no-slip boundaries and a constant forcing G. In our
test we use ν = 1 and G = 1 and tested growing resolutions and refinement towards the closed boundaries. All resolutions
agree well with the analytic solution, as can be seen in fig. 5. For non-orthogonal grid transformations we also tested a grid
with rotational distortion in the center of the grid (not shown).

B.2. Lid-Driven Cavity

We compare a converged lid-driven cavity simulation to high-res DNS references for 2D [16], see Fig. 6 and 7 and 3D [17],
see Fig. 8, for different Reynolds numbers and with grid refinement towards the boundaries. With increasing resolution, the
solution converges to the reference. For higher Reynolds numbers (Fig. 7 and 8) the refinement, shown in the right pair,
further improves the results, while at lower Reynolds numbers the uniform grid performs better. Additionally, we tested
permutations of the lid and its velocity direction and rotational distortions of the grid (not shown). The results on a distorted
grid are impacted by the worse mesh quality but are still stable and close to the reference.

C. Simulation Sequences
Figures 9 to 13 show several interesting frames from different simulations. Note that compared to the ’sim steps’ from Table
1 a frame can consist of multiple simulation steps. The last frame shown is always the final step of the simulation.

D. Optimization
As mentioned in sec. 3.2, we run direct optimizations (no network training) on two different low-dimensional flow quantities,
namely viscosity and lid velocity, in the same lid-driven cavity setup that we also used for the simulation validation above.
Here, we use a 2D setup with a resolution of 32× 32 and closed no-slip boundaries. The boundary at the lower y-border
moves in x-direction as the driving lid. As objective for the optimization we use a L2 loss to the velocity of a reference
simulation. This loss is evaluated only on the last frame of the simulation and only on the horizontal and vertical center
lines of the grid, meaning that this sparse supervision is backpropagated through the complete simulation rollout. We use
simple gradient descent without momentum for the optimization. The learning rate depends on the quantity optimized.
When optimizing a quantity, it is initialized as uinit = 1 for lid velocity or νinit = 0.005 for viscosity. The target values
are utar = 0.2 and νtar = 0.001 respectively. This results in both the initial and target state having Re = 200. A quantity
that is not optimized in a test is set to its target value. We run the optimization for 100 iterations (variable updates). Each
iteration runs a simulation for 10 time units with adaptive time-steps sizes based on the current lid velocity. When optimizing
the quantities individually they converge against their respective value used in the reference simulation, as expected, see
fig. 14 and 15. However, there is no unique solution given the simple objective when jointly optimizing viscosity and lid
velocity, where a higher velocity can compensate for a lower viscosity and vice versa. While this results in flows of different
Reynolds number that are visually distinct, it still converges to a solution with low loss. The exact solution found depends
on the relative learning rates used for the optimization, as shown in fig. 16.

6



PICT: Adaptive GPU Accelerated Differentiable Fluid Simulation for Machine Learning

Figure 4. A flow chart showing the implemented components of our solver and their interaction.
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Figure 5. The 2 graphs on the left show vertical u-velocity profiles for the plane Poiseuille flow for increasing resolution from 8× 8 to
128 × 128. Left is a uniform grid, middle uses a grid refined towards the closed boundaries. On the right is a stream plot of the 2D
lid-driven cavity with Re 5000 and resolution 128× 128 with the lid at the top moving to the right.

Figure 6. Velocity profiles for the 2D lid-driven cavity with Re 100 for increasing resolutions. The left image of a pair is the u-velocity on
the vertical center line, and the right is the v-velocity on the horizontal center line. The left pair uses a uniform grid, the right a grid that
was refined towards all boundaries.

Figure 7. Velocity profiles for the 2D lid-driven cavity with Re 5000 for increasing resolutions. The left image of a pair is the u-velocity
on the vertical center line, and the right is the v-velocity on the horizontal center line. The left pair uses a uniform grid, the right a grid
that was refined towards all boundaries.

Figure 8. Velocity profiles for the 3D lid-driven cavity with Re 1000 for increasing resolutions. The left image of a pair is the u-velocity
on the vertical center line, and the right is the v-velocity on the horizontal center line. The left pair uses a uniform grid, the right a grid
that was refined towards all boundaries.
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Figure 9. Simulation of a 2D flow around a box obstacle. Top left: frame 1, top right: frame 260, bottom left: frame 350, bottom right:
frame 500.

Figure 10. Simulation of a 2D flow around a round obstacle that is rotating clockwise. Left to right: frame 1, 25, 200.

Figure 11. Simulation of a 3D laminar flow around a round obstacle, middle slice in z-dimension. Left to right: frame 1, 25, 200.
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Figure 12. Simulation of a 3D turbulent flow around a round obstacle that is rotating counter-clockwise, middle slice in z-dimension. Left
to right: frame 1, 25, 200.

Figure 13. Simulation of a 2D flow around a NACA 0012 airfoil. Top left: frame 1, top right: 70, bottom left: 120, bottom right: 200.

Figure 14. Optimization of the lid velocity with learning rate 4e-2. From left to right: final frame of the simulation with initial parameters,
with optimized parameters, with the reference parameters, loss over the optimization iterations, lid u-velocity over the optimization
iterations.
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Figure 15. Optimization of the viscosity with learning rate 1e-5. From left to right: final frame of the simulation with initial parameters,
with optimized parameters, with the reference parameters, loss over the optimization iterations, viscosity over the optimization iterations.

Figure 16. Joint optimization of lid velocity and viscosity. For the velocity we use a learning rate of 2e-2 in both cases, while the viscosity
learning rate is 4e-7 in the top row and 6e-7 in the bottom row. From left to right: final frame of the simulation with initial parameters,
with optimized parameters, with the reference parameters, loss over the optimization iterations, lid u-velocity over the optimization
iterations, viscosity over the optimization iterations. The bold dashed line shows the target value.

11


