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Abstract

Tuning pre-trained language models (PLMs)
with task-specific prompts has been a promis-
ing approach for text classification. Partic-
ularly, previous studies suggest that prompt-
tuning has remarkable superiority in the low-
data scenario over the generic fine-tuning
methods with extra classifiers. The core idea
of prompt-tuning is to insert text pieces, i.e.,
template, to the input and transform a classifi-
cation problem into a masked language mod-
eling problem, where a crucial step is to con-
struct a projection, i.e., verbalizer, between
a label space and a label word space. A
verbalizer is usually handcrafted or searched
by gradient descent, which may lack cover-
age and bring considerable bias and high vari-
ances to the results. In this work, we focus
on incorporating external knowledge into the
verbalizer, forming a knowledgeable prompt-
tuning (KPT), to improve and stabilize prompt-
tuning. Specifically, we expand the label word
space of the verbalizer using external knowl-
edge bases (KBs) and refine the expanded la-
bel word space with the PLM itself before pre-
dicting with the expanded label word space.
Extensive experiments on zero and few-shot
text classification tasks demonstrate the effec-
tiveness of knowledgeable prompt-tuning.

1 Introduction

Recent years have witnessed the prominence of Pre-
trained Language Models (PLMs) (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2019;
Raffel et al., 2020; Xu et al., 2021) due to their
superior performance on a wide range of language-
related downstream tasks such as text classifica-
tion (Kowsari et al., 2019), question answering (Ra-
jpurkar et al., 2016), and machine reading compre-
hension (Nguyen et al., 2016). To fathom the prin-
ciples of such effectiveness of PLMs, researchers
have conducted extensive studies and suggested

that PLMs have obtained rich knowledge during
pre-training (Petroni et al., 2019; Davison et al.,
2019; Roberts et al., 2020). Hence, how to stim-
ulate and exploit such knowledge is receiving in-
creasing attention.

One conventional approach to achieve that is
fine-tuning (Devlin et al., 2019), where we add
extra classifiers on the top of PLMs and fur-
ther train the models under classification objec-
tives. Fine-tuning has achieved satisfying results
on supervised tasks. However, since the extra
classifier requires adequate training instances to
tune, it is still challenging to apply fine-tuning
in few-shot learning (Brown et al., 2020) and
zero-shot learning (Yin et al., 2019) scenarios.
Originated from GPT-3 (Brown et al., 2020) and
LAMA (Petroni et al., 2019, 2020), a series of
studies using prompts (Schick and Schütze, 2020a;
Liu et al., 2021) for model tuning bridge the gap
between pre-training objective and down-stream
tasks, and demonstrate that such discrete or contin-
uous prompts induce better performances for PLMs
on few-shot and zero-shot tasks.

A typical way to use prompt-tuning is to wrap
the input sentence into a natural language template
and let the PLM conduct masked language model-
ing. For instance, to classify the topic of a sentence
x: “What’s the relation between speed and accel-
eration?” into the “SCIENCE” category, we wrap
it into a template: “A [MASK] question: x”. The
prediction is made based on the probability that the
word “science” is filled in the “[MASK]” token.
The mapping from label words (e.g., “science” ) to
the specific class (e.g., class SCIENCE) is called the
verbalizer (Schick and Schütze, 2020a). Verbalizer
bridges a projection between the vocabulary and
the label space and is proven to have a great in-
fluence on the performance of classification (Gao
et al., 2020).

Most existing works use human-written ver-
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balizers (Schick and Schütze, 2020a, 2021), in
which the designers manually think up a single
word to indicate each class. However, the human-
written verbalizers usually determine the predic-
tions based on limited information. For instance, in
the above mentioned example, the naive verbalizer
{science}→ SCIENCE means that only predicting
the word “science” for the [MASK] token is re-
garded as correct during inference, regardless of
the predictions on other relevant words such as
“physics” and “maths”, which are also informative.
Such handcrafted one-one mapping limits the cov-
erage of label words, thus lacking enough informa-
tion for prediction and also inducing bias into the
verbalizer. Therefore, the handcrafted verbalizers
are hard to be optimal in prompt-tuning, where the
semantics of label words are crucial for predictions.

Some works try to mitigate the disadvantage of
handcrafted verbalizer, and propose to search for
the best verbalizer(s) using gradient descent (Liu
et al., 2021; Schick et al., 2020) and induce a
few words that are similar to the class name in
terms of word sense but differ in terms of sur-
face forms. However, such optimization-based
expansion is difficult to infer words across granu-
larities (e.g. from “science” to “physics”). If we
expand the verbalizer of the above example into
{science, physics} → SCIENCE, the probability of
predicting the true label will be considerably en-
hanced. Therefore, to improve the coverage and
reduce the bias of the verbalizer we present to in-
corporate external knowledge into the verbalizers
to facilitate prompt-tuning, namely, knowledgeable
prompt-tuning (KPT). Since our expansion is not
based on optimization, it will be more favorable for
zero-shot learning.

Specifically, KPT contains three steps: construc-
tion, refinement, and utilization. (1) Firstly, in the
construction stage, we use external KBs to generate
a set of label words for each label (in § 3.2). Note
that the expanded label words are not simply syn-
onyms of each other, but covers different granulari-
ties and perspectives, thus are more comprehensive
and unbiased than the class name. (2) Secondly, we
use the PLM itself to denoise the expanded label
words. For zero-shot learning, we propose to use
a contextualized prior to remove those words with
low prior probability. Since the words from the KB
can have dramatically different prior probabilities,
we propose a robust calibration method, namely,
contextualized calibration, to boost the zero-shot

performance (in § 3.3). For few-shot learning, we
assign a learnable weight to each label word to
denoise the knowledgeable verbalizer. (3) Finally,
we apply either a vanilla average loss function or a
weighted average loss function for the utilization
of expanded verbalizers, which map the scores on
a set of label words to the scores of the labels.

We conduct extensive experiments on zero-shot
and few-shot text classification tasks. The empiri-
cal results show the effectiveness of KPT (in § 4).
In addition to the promising improvements than reg-
ular prompt-tuning, KPT also reduces the predic-
tion variances in few-shot experiments and yields
more stable performances (in § 5). We will make
the source code publicly available.

2 Related Work

This work focuses on incorporating knowledge
into prompt verbalizers. Thus, three groups of
research are related to KPT: prompt-tuning, the
verbalizer construction, and knowledge-enhanced
PLMs. Since we conduct experiments on text clas-
sification tasks, we introduce several works of zero-
shot and few-shot text classification in § 4.

Prompt-tuning. Since the emergence of GPT-
3 (Brown et al., 2020), prompt-tuning has re-
ceived considerable attention. GPT-3 (Brown et al.,
2020) demonstrates that with prompt-tuning and in-
context learning, the large-scale language models
can achieve superior performance in the low-data
regime. The following works (Schick and Schütze,
2020a,b) argue that small-scale language models
(Radford et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2019) can also achieve decent
performance using prompt-tuning. While most of
the researches are conducted on text classification
or the tasks in SuperGLUE (Wang et al., 2019),
some works extend the impact of prompt-tuning
into other tasks, e.g., relation extraction (Han
et al., 2021; Chen et al., 2021). In addition to us-
ing prompt-tuning for various down-stream tasks,
prompt is also used to probe knowledge from the
PLMs (Petroni et al., 2019, 2020).

Verbalizer Construction. As introduced in § 1,
the verbalizer is an important component in prompt-
tuning, and existing studies have shown that verbal-
izers have a strong influence on the performance of
prompt-tuning (Holtzman et al., 2021; Gao et al.,
2020). Most works use human-written verbalizers
(Schick and Schütze, 2020a), which are highly bi-
ased towards personal vocabulary and do not have
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science, mathematics, biology, 
research, knowledge, physics, 
electron, scientist, capabilities, labs, 
knowledge, innovate, calculation, ..., 
agrobiology, mscience,  euclid, 
orthogon, einstein, bioacoustics, chemo, 
axiom, nomenclature

What's the relation between speed and acceleration?A [MASK] :

SCIENCE

Construct Knowledgeable Verbalizer Refine Knowledgeable Verbalizer

science, mathematics, biology, 
research, knowledge, physics, 

electron, scientist, capabilities, labs, 
knowledge, innovate, calculation, ..., 
agrobiology, mscience,  euclid, 
orthogon, einstein, bioacoustics, 
chemo, axiom, nomenclature

physics

mathematics

science

calculation

research

MLM 
Head

Original Input Template

Filtering / Calibration / Weighting Knowledge Base

g

Final Verbalizer

physics

mathematics


science

…

basketball

NBA


sports

question

Knowledgeable 

Verbalizer

Label Words

Labels

SCIENCE 

SPORTS
…

…

Prediction

SCIENCE

[CLS]

Label

Figure 1: The illustration of KPT , the knowledgeable verbalizer maps the predictions over label words into labels.
And the above part is the construction, refinement and utilization processes of KPT .

enough coverage. Some other studies (Gao et al.,
2020; Shin et al., 2020; Liu et al., 2021; Schick
et al., 2020) design automatic verbalizer search-
ing methods for better verbalizer choices, however,
their methods require adequate training set and vali-
dation set for optimization. Moreover, the automat-
ically determined verbalizers are usually synonym
of the class name, which differs from our intuition
of expanding the verbalizer with a set of diverse
and comprehensive label words using external KB.
Schick et al. (2020); Shin et al. (2020) also try
multiple label words for each class. The optimal
size of their label words set for each class is gener-
ally less than 10. In this work, we propose KPT ,
which uses external knowledge to boost the perfor-
mance of prompt-tuning. Compared to the previous
strategies, our method can generate and effectively
utilize more than 100 related label words across
granularities for each class, and can be effectively
applied to a zero-shot setting.

Knowledge Enhanced PLMs. Using external
knowledge to enhance the performance of PLMs
has been extensively studied in recent years, and it
is usually applied to the pre-training stage (Zhang
et al., 2019b; Liu et al., 2020) and the fine-tuning
stage (Yang et al., 2019; Guan et al., 2020). Specifi-
cally, in text classification tasks, Chen et al. (2019);
Zhang et al. (2019a); Sinoara et al. (2019) also
explore utilizing KBs to enhance the input text.
Different from these methods, KPT incorporates
external knowledge in the prompt-tuning stage and

yields remarkable improvements in zero-shot and
few-shot text classification tasks.

3 Knowledgeable Prompt-tuning

In this section, we present our methods to incorpo-
rate external knowledge into a prompt verbalizer.
We first introduce the overall paradigm of prompt-
tuning and then elucidate how to construct, refine
and utilize the knowledgeable prompt.

3.1 Overview
LetM be a language model pre-trained on large
scale corpora. In text classification task, an input
sequence x = (x0, x1, ..., xn) is classified into a
class label y ∈ Y . Prompt-tuning formalizes the
classification task into a masked language model-
ing problem. Specifically, prompt-tuning wraps the
input sequence with a template, which is a piece of
natural language text. For example, assuming we
need to classify the sentence x =“What’s the rela-
tion between speed and acceleration?” into label
SCIENCE (labeled as 1) or SPORTS (labeled as 2),
we wrap it into

xp = [CLS] A [MASK] question : x

Then M gives the probability of each word v
in the vocabulary being filled in [MASK] token
PM([MASK] = v|xp). To map the probabilities
of words into the probabilities of labels, we define
a verbalizer as a mapping f from a few words in
the vocabulary, which form the label word set V ,
to the label space Y , i.e., f : V 7→ Y . We use Vy
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to denote the subset of V that is mapped into a spe-
cific label y, ∪y∈YVy = V . Then the probability of
label y, i.e., P (y|xp), is calculated as

P (y|xp)=g
(
PM([MASK]=v|xp)|v ∈ Vy

)
, (1)

where g is a function transforming the probabil-
ity of label words into the probability of the label.
In the above example, regular prompt-tuning may
define V1 = {“science”}, V2 = {“sports”} and g
as an identity function, then if the probability of
“science” is larger than “sports”, we classify the
instance into SCIENCE.

We propose KPT, which mainly focuses on us-
ing external knowledge to improve verbalizers in
prompt-tuning. In KPT , we use KBs to generate
multiple label words related to each class y, e.g.,
V1 = {“science”,“physics”, ...}. And we propose
a contextualized calibration method to eliminate
noise in the expanded V . Finally, we explore the
vanilla average and weighted average approaches
for the utilization of the expanded V . The details
are in the following sections.

3.2 Verbalizer Construction

The process of predicting masked words based on
the context is not a single-choice procedure, that is,
there is no standard correct answer, but abundant
words may fit this context. Therefore, the label
words mapped by a verbalizer should be equipped
by two attributes: wide coverage and little sub-
jective bias. Such a comprehensive projection is
crucial to the imitation of pre-training, i.e., prompt-
tuning. Fortunately, external structured knowledge
could simultaneously meet both requirements. In
this section, we introduce how we use external
knowledge for two text classification tasks: topic
classification and sentiment classification.

For topic classification, the core issue is to ex-
tract label words related to the topic from all as-
pects and granularities. From this perspective,
we choose Related Words 1, a knowledge graph
G aggregated from multiple resources, including
word embeddings, ConceptNet (Speer et al., 2017),
WordNet (Pedersen et al., 2004), etc., as our exter-
nal KB. The edges denote "relevance" relations and
are annotated with relevance scores which could
be used to measure the correlations between label
words and topics. We use the name of each topic v
as the anchor node to get the neighborhood nodes
NG(v) whose scores are larger than a threshold η

1https://relatedwords.org

as the related words. Thus, each class is mapped
into a set of label words Vy = NG(v) ∪ {v}. For
binary sentiment classification, the primary goal
is to select as many expressions as possible that
tend to be positive or negative. And we use the
sentiment dictionary summarized by previous re-
searchers 2,3. Thus, we get a knowledgeable ver-
balizer mapping multiple label words to a class
label, which enhances the handcrafted verbalizer
with external knowledge. Several examples of the
label words in the KPT are in Table 1.

3.3 Verbalizer Refinement

Although we have constructed a knowledgeable
verbalizer that contains comprehensive label words,
the collected knowledgeable verbalizer can be very
noisy since the vocabulary of the KB is not tailored
for the PLM. Thus it is necessary to further refine
such verbalizer by retaining high-quality words and
removing low-relevance words. In this section, we
introduce the refinement of verbalizers in zero-shot
and few-shot settings.

Zero-shot Refinement. In zero-shot learning,
three problems need to be addressed to facilitate
the use of knowledgeable verbalizers. First of all,
some of the words recommended by the KB are
out-of-vocabulary (OOV) for the PLM, however,
these words may also provide information for clas-
sification and should not be removed completely.
To support the prediction of these words, we simply
use the average probability of each token in their
tokenizations being filled in the masked position as
the probability for these words.

The second problem is to handle the rare words.
We assume that several words in the KB are rare to
the PLM, thus the prediction probabilities on these
words tend to be inaccurate. Instead of using a
word-frequency dictionary, we propose to use con-
textualized prior of the label words to remove these
words. Specifically, given a text classification task,
we denote the distribution of the sentences x in
the corpus as D. For each sentence in the distribu-
tion, we wrap it into the template and calculate the
predicted probability for each label word v in the
masked position PM([MASK]=v|xp). By taking
the expectation of the probability over the entire
distribution of sentences, we can get the prior dis-
tribution of the label words in the masked position.

2https://www.enchantedlearning.com/
wordlist/positivewords.shtml

3https://www.enchantedlearning.com/
wordlist/negativewords.shtml

https://relatedwords.org
https://www.enchantedlearning.com/wordlist/positivewords.shtml
https://www.enchantedlearning.com/wordlist/positivewords.shtml
https://www.enchantedlearning.com/wordlist/negativewords.shtml
https://www.enchantedlearning.com/wordlist/negativewords.shtml
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Dataset Label Label Words

AG’s News
POLITICS politics, government, diplomatic, law, aristotle, diplomatical, governance, ...
SPORTS sports, athletics, gymnastics, sportsman, competition, cycling, soccer, ...

IMDB
NEGATIVE abysmal, adverse, alarming, angry, annoy, anxious, apathy, appalling, ...
POSITIVE absolutely, accepted, acclaimed, accomplish, accomplishment, ...

Table 1: Examples of the expanded label words. In topic classification (e.g. AG’s News), they are expanded by
knowledge graphs, and in sentiment classification (e.g. IMDB), they are expanded by sentiment dictionary.

We can formalize it as

PD(v)=Ex∼DPM([MASK]=v|xp). (2)

Empirically, we found that using a small-size un-
labeled support set C̃ sampled from the training
set and with labels removed, will yield a satisfying
estimate of the above expectation. Thus, assuming
that the input samples {x ∈ C̃} have a uniform
prior distribution, the contextualized prior is ap-
proximated by

PD(v) ≈ 1

|C̃|

∑
x∈C̃

PM([MASK]=v|xp). (3)

Then we remove the label words whose prior prob-
abilities are less than a threshold.

The third problem is the drastic difference in
the prior probabilities of label words. As previous
works (Zhao et al., 2021; Holtzman et al., 2021)
have shown, some label words are less likely to be
predicted than the others, regardless of the label of
input sentences, resulting in a biased prediction. In
our setting, the label words in the KB tend to have
more diverse prior probabilities. Therefore, we use
the contextualized prior of label words to calibrate
the predicted distribution, namely, contextualized
calibration (CC):

P̃M([MASK]=v|xp) =
PM([MASK]=v|xp)

PD(v)
. (4)

Compared to the contextual calibration (Zhao
et al., 2021) and PMIDC (Holtzman et al., 2021),
our method utilizes a small unlabeled support set
but yields better and stabler results (see § 5.1).

Few-shot Refinement. In few-shot learning, the
refinement is easier since we can identify each label
word’s influence on the prediction. After collecting
the label words from the KB, we first remove the
label words that are split into multiple tokens, since
they tend to be more tricky to handle in the training
objective. To mitigate the problem of noisy label
words, we assign a learnable weight wv to each
label word v. The weights form a vector w ∈ R|V|,

which is initialized to be a zero vector. The weights
are normalized within each Vy:

αv =
exp(wv)∑

u∈Vy exp(wu)
. (5)

Intuitively, in the training process, a small weight
is expected to be learned for a noisy label word to
minimize its influence on the prediction. Note that
in few-shot setting, we do not conduct calibration
since the probability of a label word can be trained
to the desired magnitude, i.e., P̃M([MASK]=
v|xp) = PM([MASK]=v|xp).

3.4 Verbalizer Utilization
The final problem is how to map the predicted prob-
ability on each refined label word to the decision of
the class label y, i.e., the objective function g of the
knowledgeable verbalizer. Moreover, in few-shot
learning, an additional question is how to optimize
the knowledgeable verbalizer.

Average. After refinement, we can assume that
each label word of a class contributes equally to
predicting the label. Therefore, we use the average
of the predicted scores on Vy as the predicted score
for label y. The predicted label ŷ is

ŷ = argmaxy∈Y

( 1

|Vy|
∑
v∈Vy

P̃M([MASK]=v|xp)
)
. (6)

We use this method in zero-shot learning since
there is no parameter to be trained.

Weighted Average. In few-shot text classifica-
tion, we adopt a weighted average of label words’
scores as the prediction score. We use the refine-
ment weights αi as the weights for averaging. Thus,
the predicted label ŷ is

ŷ= argmaxy∈Y
exp

(
s(y|xp)

)∑
y′ exp

(
s(y′|xp)

) , (7)

where s(y|xp) is

s(y|xp)=
∑
v∈Vy

αv logPM([MASK]=v|xp). (8)

This objective function is suitable for continuous
optimization by applying a cross-entropy loss on
the predicted probability.
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4 Experiments

We evaluate KPT on four text classification datasets
to demonstrate the effectiveness of incorporating
external knowledge into prompt-tuning.

4.1 Datasets and Templates

We carry out experiments on two topic classifica-
tion datasets: AG’s News (Zhang et al., 2015) and
DBPedia (Lehmann et al., 2015), and two senti-
ment classification datasets: IMDB (Maas et al.,
2011) and Amazon (McAuley and Leskovec, 2013).
The statistics of the datasets are shown in Table 2.
The detailed information is in Appendix A.

Name Type # Class Test Size

AG’s News Topic 4 7600
DBPedia Topic 14 70000
Amazon Sentiment 2 10000
IMDB Sentiment 2 25000

Table 2: The statistics of each dataset.

Due to the rich expert knowledge contained, the
manual templates are proven to be competitive
with or better than auto-generated templates (Gao
et al., 2020) even though they are simpler to be
constructed. Therefore we use manual templates
in our experiments. Manual templates are also
more applicable than auto-generated templates in
the zero-shot setting. To mitigate the influence of
different templates, we test KPT under multiple
templates for each dataset. Specifically, we use
four manual templates for each dataset which are
either introduced by (Schick and Schütze, 2020a)
or tailored to fit the dataset. We report both the
average results of the four templates and the results
of the best template. The specific templates we use
for each dataset are in Appendix A.

4.2 Experiment Settings

For the PLM, we use RoBERTalarge (Liu et al.,
2019) for all experiments. For test metrics, we
use Micro-F1 in all experiments. We have different
settings for zero-shot and few-shot experiments.

Zero-shot Experiments. The size of the unla-
beled support set |C̃| is 200. For topic classifica-
tion, threshold for removing rare words are 0.5. For
the sentiment classification dataset, we find that our
sentiment dictionary is of high quality, thus we do
not remove the words based on prior probability.
Since the choices of C̃ will influence the test per-
formance, we repeat 5 times of each experiment in
KPT and PT+CC using different random seeds.

Few-shot Experiments. We conduct 5, 10 and
20-shot experiments. For a k-shot experiment, we
sample k instances of each class from the origi-
nal training set to form the few-shot training set
and sample another k instances per class to form
the validation set. We tune the entire model for
5 epochs and choose the checkpoint with the best
validation performance to test. Since the different
choices of the few-shot training set and validation
set affect the test performance heavily, we repeat
the experiments on 5 random seeds.

Other hyper-parameters for tuning the Roberta
model can be found in Appendix B.

4.3 Baselines

In this subsection, we introduce the baselines
we compare with, including the regular prompt-
tuning, prompt-tuning combined with contextual-
ized calibration, and fine-tuning. We also include
the reported scores of LOTClass and UDA since
they are state-of-the-art of unsupervised and semi-
supervised text classification. However, they use
much more training resource than KPT , which may
lead to unfair comparisons.

Prompt-tuning (PT). The regular prompt-
tuning method wraps an input sentence into a hand-
crafted template. Different from KPT , it uses the
class name as the only label word for each class,
which is adopted by PET and most existing works.
Note that PET uses several other tricks such as
self-training, prompt ensemble, etc. We do not
use any of these tricks since we want to study the
effect of knowledgeable verbalizers alone. These
tricks are orthogonal to our contributions and can
be combined into ours in future work.

Prompt-tuning + Contextualized Calibration
(PT + CC). This approach is the prompt-tuning
combined with the proposed contextualized cali-
bration. We use the same unlabeled support set as
KPT to calculate the contextualized prior of label
words. This baseline is to see how much improve-
ment is made by contextualized calibration instead
of knowledgeable verbalizers. In few-shot learn-
ing experiments, we do not include this baseline
since we find that calibration is less important for
few-shot learning.

Fine-tuning (FT). The traditional fine-tuning
method inputs the hidden embedding of [CLS]
token of the PLM into the classification layer to
make predictions. Note that fine-tuning can not be
applied to the zero-shot setting, since the classifica-
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Method AG’s News DBPedia Amazon IMDB

LOTClass† 82.2 86.0 85.3 80.2

PT 75.1 ± 6.2 (79.1) 67.4 ± 3.6 (71.1) 80.5 ± 9.3 (88.2) 86.4 ± 4.2 (92.5)
PT + CC 80.0 ± 0.8 (81.1) 75.1 ± 5.4 (82.3) 91.1 ± 1.8 (93.7) 90.6 ± 3.1 (93.7)

KPT 83.0 ± 1.7 (85.9) 82.5 ± 4.4 (87.2) 92.5 ± 1.3 (94.7) 91.5 ± 3.0 (94.2)

Table 3: Results of zero-shot text classification. Average results and the variances of four templates are shown. The
results of the best templates are shown in the brackets. Note that for PT+CC and KPT, we repeat each experiment
five times using different random seeds. †means they use different training resources than our setting.

tion layer is randomly initialized.
LOTClass. LOTClass (Meng et al., 2020)

uses a PLM to extract the topic-related words from
the whole unlabeled training corpus. Then it uses
a Masked Category Prediction task to train on the
unlabeled corpus with pseudo labels.

UDA. UDA (Xie et al., 2019) uses a small la-
beled corpus and a large unlabeled corpus. To lever-
age the unlabeled corpus, they use advanced data-
augmentation methods, such as back-translation,
to encourage the consistency of predictions over
augmented data samples.

4.4 Main Results

In this subsection, we introduce the specific results
and provide possible insights of KPT .

Zero-shot. From Table 3, we see that KPT
consistently outperforms PT and PT+CC baselines,
which indicates the effectiveness of our methods.
We achieve superior performance to LOTClass ei-
ther with average performance of all templates or
the best-performance template, even though we
do not leverage the large unlabeled training set.
Specifically, we observe that the performance boost
compared to the baselines in topic classification is
higher than sentiment classification, which we con-
jecture that topic classification requires more exter-
nal knowledge than sentiment classification. While
CC offers huge improvement over PT baseline, the
incorporation of external knowledge improves over
PT+CC up to 7.4 on DBPedia.

Few-shot. From Table 5, we find KPT consis-
tently outperforms baseline method PT, especially
in 5-shot and 10-shot experiments. For 20-shot, we
hypothesis that the number of labeled instances is
enough to optimize the label words’ embeddings
away from their original word embeddings so that
the rich semantics in the knowledgeable verbal-
izer may bring less assistance. However, KPT still
achieves improvement on three datasets. From the
table, we can see that FT is highly unstable in low-
shot regime, but with enough data, e.g., 280 data

points in total for DBPedia, it is superior to the
best template of PT. However, KPT still compares
favorably to FT under this setting. Another notable
feature of KPT is that it achieves significantly low
variances compared with the baseline methods. It
is probably because the ensemble of different label
words provides a more stable training target. Com-
pared with UDA, although we use significantly less
training resource, we are superior to them on AG’s
News and IMDB.

89
90
91
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93

IMDB
Amazon

80
81
82
83

DBPedia
AG s News

0 50 100 150 200 250 300
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70
71
72
73
74
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Figure 2: Size of unlabeled support set C̃ w.r.t. test per-
formance. The points at |C̃| = 0 are the performances
of PMIDC.

Dataset Micro-F1 ∆

AG’s News 86.8 ± 1.1 -0.4
DBPedia 97.8 ± 0.4 -0.2

IMDB 93.2 ± 0.9 -0.1
Amazon 94.5 ± 1.1 0.1

Table 4: The results of KPT using CC in 10-shot learn-
ing. The ∆ column shows the differences between the
model using CC and the model not using CC.

5 Analysis

In this section, we conduct several ablation studies
including the effect of contextualized calibration
and the diversity of predicted label words.

5.1 Effect of Contextualized Calibration on
Zero-shot Learning

Existing methods propose Domain Conditional
PMI (Holtzman et al., 2021) (PMIDC) to calibrate
the distribution, which directly measures the prior
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shot Method AG’s News DBPedia Amazon IMDB

UDA† 86.4 98.6 96.0 88.7

5
FT 37.9 ± 10.0 95.8 ± 1.3 52.1 ± 1.3 51.4 ± 1.4
PT 83.8 ± 3.1 (85.7) 96.5 ± 0.7 (96.8) 92.8 ± 2.0 (94.6) 92.1 ± 2.4 (94.2)

KPT 85.3 ± 0.9 (85.9) 97.2 ± 0.6 (97.4) 93.3 ± 2.0 (94.6) 92.5 ± 2.4 (94.3)

10
FT 75.9 ± 8.4 93.8 ± 2.2 83.0 ± 7.0 76.2 ± 8.7
PT 86.3 ± 1.8 (86.5) 97.1 ± 0.8 (97.5) 94.2 ± 1.2 (94.6) 92.8 ± 1.2 (93.8)

KPT 87.2 ± 0.9 (87.5) 98.0 ± 0.3 (98.1) 94.4 ± 1.1 (94.8) 93.3 ± 0.7 (93.6)

20
FT 85.4 ± 1.8 97.9 ± 0.2 71.4 ± 4.3 78.5 ± 10.1
PT 87.2 ± 1.8 (88.4) 97.5 ± 0.4 (97.6) 94.6 ± 0.9 (94.9) 93.9 ± 1.0 (94.7)

KPT 87.4 ± 0.9 (88.0) 98.0 ± 0.2 (98.1) 95.0 ± 0.4 (95.3) 93.8 ± 1.4 (94.5)

Table 5: Results of few-shot text classification. Average Micro-F1 scores and variances using four templates are
shown. The Micro-F1 scores of the best templates are shown in the brackets. Note that each experiment is repeated
five times using different random seeds. †means they use more training resource than our setting.

probability of label words predicted in the [MASK]
position given the raw template without filling the
template with the instances in the corpus. To com-
pare our method with PMIDC and further assess
how many instances are needed to yield a satisfying
calibration, we draw the impact of the unlabeled
support set’s size |C̃| on the test performance in
Figure 2, and draw the performance of PMIDC at
|C̃| = 0 for comparison. From Figure 2, we find
that |C̃| ∼ 100 is enough to yield a satisfying cali-
bration, and utilizing such a small unlabeled sup-
port set produces much better results than PMIDC.

5.2 Is Calibration Important for Few-shot
Learning?

Although calibration is crucial for the zero-shot
setting, we do not perform calibration for the few-
shot setting because we assume that the posterior
probability of the label words can be trained to
the desired magnitude with only a few training
instances. To verify the assumption empirically,
we try a 10-shot classification with contextualized
calibration. The results and the gap between the
methods with and without calibration are reported
in Table 4, which indicate that contextualized cali-
bration has little impact in the few-shot scenario.

5.3 Diversity of Top Predicted Words

One advantage of KPT is that it can generate di-
verse label words across different granularities. To
specifically quantify such diversity, we conduct a
case study. For the correctly predicted sentences
of a class y, we count the frequency of label words
v ∈ Vy appearing in the top-5 predictions for the
[MASK] position. Then we report the top-15 fre-
quent label words in Figure 3. Due to space limit,
only the results of POLITICS and SPORTS category

of AG’s News are shown. As shown in Figure 3,
a diversity of label words, instead of mainly the
original class names, are predicted. And the pre-
dicted label words cover various aspects of the
corresponding topic. For example, for the topic
POLITICS, the predicted “diplomatic”, “republic”,
“parliament” are related to it from different angles.

0 250 500 750
Frequency

diplomatic
diplomat

parliamentary
occupation

foreign
defence
republic
warfare
political
regional
ministry
international
parliament
defense
presidential

0 200 400 600
Frequency

leagues
teams

football
athletes

baseball
athletic
coach

athletics
sports
basketball

clubs
team
franchise

soccer
athlete

Figure 3: Frequent words appearing in the top-5 predic-
tions. The results for two classes: POLITICS (left) and
SPORTS (right) are drawn.

6 Conclusion

In this paper, we propose KPT , which expands
the verbalizer in prompt-tuning using the external
KB. To better utilize the KB, we propose refine-
ment methods for the knowledgeable verbalizer.
The experiments show the potential of KPT in both
zero-shot settings and few-shot settings. For future
work, there are open questions related to our re-
search for investigation. (1) Sophisticated ways to
select the informative label words in the verbaliz-
ers. (2) Better approaches for combining KB and
prompt-tuning in terms of template construction
and verbalizer design. (3) Incorporating external
knowledge into prompt-tuning for other tasks such
as text generation. We are looking forward to more
novel works in this direction.
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A Datasets and Templates

In this section, we introduce the information of
datasets and the templates we use in detail.

AG’s News. AG’s News is a news’ topic clas-
sification dataset. In this dataset, we follow
PET (Schick and Schütze, 2020a) to design the
templates. However, their best performance pattern
T1(x) = “[MASK] news : x” requires the [MASK]
token to be capitalized, which is not suitable for the
label words in KB. And some of their templates are
not informative and yield low performances. There-
fore, we define four slightly changed templates:

T1(x) = A [MASK] news : x

T2(x) = x This topic is about [MASK].

T3(x) = [ Category : [MASK] ] x

T4(x) = [ Topic : [MASK] ] x

DBPedia. In a DBPedia sample, we are
given a paragraph b paired with a title a, in
which the title is the subject of paragraph. The
task is to determine the topic (or the type) of
the subject. Different from other topic classifi-
cations, the paragraph can emphasize topics that
are different from the title. For example, in a
paragraph about an audio company, the main
paragraph talks about music, albums, etc., but the
correct label is “company” rather than “music”.
Therefore, we define the following templates:

T1(a,b) = a b ã is a [MASK] .

T2(a,b) = a b In this sentence, ã is a [MASK] .

T3(a,b) = a b The type of ã is [MASK].

T4(a,b) = a b The category of ã is [MASK].

where ã means removing the last punctuate in the
title.

IMDB. IMDB is a sentiment classifi-
cation dataset about movie reviews. Sim-
ilar to the template defined in (Schick
and Schütze, 2020a) for sentiment classi-
fication, we define the following template:

T1(x) = It was [MASK] .x

T2(x) = Just [MASK] ! x

T3(x) = x All in all, it was [MASK].

T4(x) = x In summary, the film was [MASK].

Amazon. Amazon is another sentiment classi-
fication dataset , we define the following template:

T1(x) = It was [MASK] .x

T2(x) = Just [MASK] ! x

T3(x) = x All in all, it was [MASK].

T4(x) = x In summary, it was [MASK]”.

Since the test set of amazon is unnecessarily
large for efficient testing, we randomly sample
10,000 samples from the 400,000 test samples to
test, which is proven to have tiny influence on the
performance in our pilot experiments.

B Experimental Settings

We list the hyper-parameters in Table 6. Most of
the hyper-parameters are the default parameters
from Huggingface Transformers4.

Hyper-parameter Value

maximum sequence length 512
warmup steps 500
learning rate 3e-5

maximum epochs 5
adam epsilon 1e-8

Table 6: Hyper-parameter settings.

C Detailed Results

To have a close look at the performance of KPT and
baselines on each template, we report the perfor-
mance of each template on zero-shot and 10-shot
experiments in Table 7.

4https://huggingface.co/transformers/

https://huggingface.co/transformers/
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Shot Method Template ID Agnews DBPedia Amazon IMDB

0

PT+CC

1 81.1 ± 0.2 76.3 ± 0.6 89.2 ± 0.3 88.8 ± 0.1
2 79.3 ± 0.3 82.3 ± 0.6 90.8 ± 0.5 86.6 ± 0.1
3 80.3 ± 0.3 67.5 ± 0.3 90.7 ± 1.7 93.4 ± 0.5
4 79.3 ± 0.2 74.3 ± 0.2 93.7 ± 0.3 93.7 ± 0.3

Avg 80.0 ± 0.8 75.1 ± 0.4 91.1 ± 0.7 90.6 ± 0.3

KPT

1 85.9 ± 0.1 86.5 ± 0.2 91.6 ± 0.0 91.0 ± 0.1
2 82.3 ± 0.4 87.2 ± 0.4 91.4 ± 0.1 87.0 ± 0.2
3 82.5 ± 0.3 78.8 ± 0.2 92.2 ± 0.5 93.8 ± 0.3
4 81.4 ± 0.3 77.8 ± 0.5 94.7 ± 0.1 94.2 ± 0.1

Avg 83.0 ± 0.3 82.5 ± 0.3 92.5 ± 0.2 91.5 ± 0.2

10

PT

1 86.0 ± 2.7 97.1 ± 0.9 94.4 ± 1.2 93.2 ± 0.6
2 85.1 ± 2.0 97.5 ± 0.6 93.6 ± 1.7 91.2 ± 0.5
3 86.9 ± 1.1 97.3 ± 0.7 94.6 ± 0.5 93.2 ± 0.8
4 86.9 ± 1.1 96.7 ± 1.1 94.1 ± 1.0 93.8 ± 0.6

Avg 86.3 ± 1.8 97.1 ± 0.8 94.2 ± 1.2 92.8 ± 1.2

KPT

1 87.4 ± 0.6 97.8 ± 0.3 94.5 ± 1.6 93.5 ± 0.4
2 87.5 ± 0.7 97.9 ± 0.2 93.8 ± 1.3 92.7 ± 0.3
3 86.6 ± 1.1 98.0 ± 0.3 94.8 ± 0.5 93.6 ± 0.4
4 87.1 ± 1.1 98.1 ± 0.2 94.5 ± 0.6 93.5 ± 1.0

Avg 87.2 ± 0.9 98.0 ± 0.3 94.4 ± 1.1 93.3 ± 0.7

Table 7: Results of each template in zero-shot and 10-shot text classification.Not that the variances are small within
different choices of random seeds for the same template in zero-shot learning. In order not to let the differences
across the templates dominate the variances, in the “Avg” row of zero-shot classification, the variance is the average
of the variances of different templates, instead of the variance of all experiments.


