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ABSTRACT

This paper introduces a cost-efficient active learning (AL) framework for classi-
fication, featuring a novel query design called candidate set query. Unlike tradi-
tional AL queries requiring the oracle to examine all possible classes, our method
narrows down the set of candidate classes likely to include the ground-truth class,
significantly reducing the search space and labeling cost. Moreover, we leverage
conformal prediction to dynamically generate small yet reliable candidate sets,
adapting to model enhancement over successive AL rounds. To this end, we in-
troduce an acquisition function designed to prioritize data points that offer high
information gain at lower cost. Empirical evaluations on CIFAR-10, CIFAR-100,
and ImageNet64x64 demonstrate the effectiveness and scalability of our frame-
work. Notably, it reduces labeling cost by 42% on ImageNet64x64.

1 INTRODUCTION

Deep neural networks owe much of their success to large-scale annotated datasets (Deng et al.,
2009b; Kirillov et al., 2023; OpenAI, 2023; Radford et al., 2021). Scaling datasets is crucial for
improving both of their performance (Hestness et al., 2017; Zhai et al., 2022) and robustness (Fang
et al., 2022). However, the resources demanded for manual annotation pose a significant bottleneck,
particularly in fields requiring expert input like medical data. In response to these challenges, cost-
efficient methods for dataset collection, such as semi-automatic labeling (Kim et al., 2024; Qu et al.,
2024; Wang et al., 2024), synthetic data generation (Liu et al., 2019; Tran et al., 2019), and active
learning (AL) (Ash et al., 2020; Kirsch et al., 2019; Sener & Savarese, 2018; Settles, 2009; Sinha
et al., 2019; Wang & Ye, 2015) have been studied.

This paper investigates AL for classification, where a training algorithm selects informative samples
from the data pool and queries annotators for their class labels within a limited budget. We focus
on improving the design of annotation queries, emphasizing their critical role. To be specific, we
consider image classification of L classes. In a conventional design of query, an annotator is asked
to choose a class in the list of L classes. Here, the effort needed to review the entire class list and
identify the correct class increases as the list size L increases; according to an information-theoretic
analysis (Hu et al., 2020), the cost of choosing among L options is log2 L. To address this issue
of growing annotation cost, recent studies (Hu et al., 2020; Kim et al., 2024) employ a 1-bit query
design asking annotators to check if the top-1 model prediction is correct. While this simplifies and
speeds up annotation, it produces weak supervision incompatible with standard classification loss
functions, necessitating specialized losses and algorithms like contrastive loss and semi-supervised
learning techniques.

We propose candidate set query (CSQ), a novel AL query design that remains cost-efficient with
increasing classes and integrates seamlessly with existing loss functions. CSQ presents the annotator
with an image and a narrowed set of candidate classes, which is likely to include the ground-truth
class. If the ground-truth class is within these candidates, the annotator selects from this smaller
group; otherwise, they select from the remaining classes. This query approach can reduce labeling
costs by reducing the search space required for annotation, particularly effective in scenarios with
a wide range of classes where the search space for the annotator would be extensive. Fig. 1(left)
compares CSQ with the conventional query in AL for classification to show its efficiency.
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Figure 1: Conventional query versus CSQ. (left) While the conventional query presents all possi-
ble options to annotators, CSQ leverages the knowledge of model to offer narrowed options that
are likely to include the true label, thereby reducing the annotation time. (right) By conducting a
user study on 40 participants, we demonstrate that the labeling cost increases logarithmically to the
candidate set size, which closely aligns with the information theoretic cost suggested by Hu et al.
(2020) with a correlation coefficient of 0.97. Note that as the labeling cost increases per sample, the
overall labeling cost increases significantly when multiplied by the total number of labeled samples.
Further details of the user study are provided in Sec. 4.2 and Appendix A.

In the CSQ framework, the design of the candidate set is crucial for its effectiveness. Too many
candidates unnecessarily increase the labeling costs. On the other hand, too few candidates are
likely to omit the ground-truth class, requiring additional queries to identify the true class among
the remaining classes, which can sometimes be more expensive than the conventional query. To
enhance the effectiveness of the CSQ framework, we propose to construct candidate sets guided
by prediction uncertainty from a trained model using conformal prediction (Angelopoulos et al.,
2023). Conformal prediction aims at constructing a set of predictions including the true class, where
each set is properly sized based on the certainty of the model about the input. This strategy enables
flexible adjustment of the candidate set for each sample, expanding it for an uncertain sample to
include the true label and shrinking it for more certain one to reduce the labeling cost. Furthermore,
we optimize the level of certainty in conformal prediction to minimize the labeling cost for each
round. Therefore, this candidate set construction adapts to the increasing accuracy of the model
over successive AL rounds, refining the candidate set as the model improves.

Last but not least, we propose a new acquisition function designed to maximize the cost efficiency of
CSQ. Conventional acquisition functions in AL are designed to favor samples with high estimated
information gain, assuming uniform annotation costs across all samples. On the other hand, in CSQ,
the labeling cost for each sample varies according to the size of its candidate set. Thus, we propose
an acquisition function that evaluates samples based on the ratio of estimated information gain to
labeling cost. Specifically, we combine the conventional acquisition function score, which indicates
the estimated information gain, with the estimated cost derived from the candidate set, favoring
samples that maximize information gain per unit cost. This cost-efficient acquisition function can
incorporate with any sample-wise acquisition score, ensuring the selection of both informative and
cost-efficient samples.

The proposed method achieved state-of-the-art performance on CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), and ImageNet64x64 (Chrabaszcz et al., 2017). We verify the
effectiveness and robustness of CSQ through extensive experiments with varying datasets, acquisi-
tion functions, and budgets. Notably, CSQ achieves the same performance as the conventional query
on ImageNet64x64 at only 42% of the cost, showing its scalability. Ablation studies demonstrate
that both our candidate set construction and sampling strategy contribute to the performance. Fur-
ther, the necessity of CSQ is demonstrated by a user study involving 40 participants. In short, the
main contribution of this paper is four-fold:

• We propose a novel query design for active learning, where the annotator is presented with an
image and a narrowed set of candidate classes that are likely to include the ground-truth class.
This approach, termed CSQ, significantly reduces labeling cost by minimizing the search space
the annotator needs to explore.
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• To maximize the advantage of CSQ, we propose to utilize conformal prediction to dynamically
generate small yet reliable candidate sets optimized to reduce labeling costs, adapting to the
evolving model throughout successive AL rounds.

• We propose a new acquisition function that prioritizes data points expected to have high infor-
mation gain relative to their labeling costs, enhancing cost-efficiency.

• The proposed framework achieved state-of-the-art performance on diverse image recognition
datasets, CIFAR-10, CIFAR-100, and ImageNet64x64, showing its effectiveness and generaliz-
ability.

2 RELATED WORK

Acquisition functions in AL. AL is a well-established problem Settles (2009); Dasgupta (2011);
Hanneke et al. (2014) that focuses on selectively querying the most informative samples for anno-
tation to maximize model performance within a limited budget. To assess informativeness, vari-
ous acquisition functions have been proposed, considering either the uncertainty of model predic-
tions (Asghar et al., 2017; He et al., 2019; Ostapuk et al., 2019; Fuchsgruber et al., 2024), diversity
in feature space (Sener & Savarese, 2018; Sinha et al., 2019; Yehuda et al., 2022), or both (Ash
et al., 2020; Hwang et al., 2022; Wang & Ye, 2015; Wang et al., 2019). Disagreement-based AL and
its variants are supported by rigorous theoretical learning guarantees (Hanneke et al., 2014; Krish-
namurthy et al., 2019). Recent studies have demonstrated that the choice of acquisition functions
depends on the budget, with uncertainty being more suitable for a high budget and typicality for a
low budget (Hacohen et al., 2022; Hacohen & Weinshall, 2023a). In addition, a look-ahead acqui-
sition function that considers nearby samples simultaneously (Kim et al., 2024) and the selection
of easily flip-flopped samples (Cho et al., 2024) have also been proposed. However, these methods
assume that all samples require the same cost and select samples based solely on the amount of
information. We point out that the cost required for each sample can vary and prioritize selecting
samples that offer the most information considering their cost.

Conformal prediction (CP). CP enables us to quantify uncertainty in predictions with associated
confidence levels (Shafer & Vovk, 2008). Recent advances in CP empower classifiers to generate
predictive sets that include the true label with a probability chosen by the user (Angelopoulos et al.,
2020). Additionally, in the field of AL, nonconformity measurements from CP are employed in the
acquisition function to select informative samples (Matiz & Barner, 2020). In contrast, we utilize
CP not only to develop a cost-efficient acquisition function but also to design an efficient candidate
set query reducing the labeling cost.

Efficient query design. Designing efficient annotation queries reduces the annotation costs of craft-
ing datasets. In various computer vision tasks, diverse types of queries have been investigated, in-
cluding conventional classification queries (Hacohen & Weinshall, 2023b) requiring a specific class,
one-bit queries (Hu et al., 2020) asking for yes or no answers, multi-class queries (Hwang et al.,
2023) identifying all classes within a set of multiple instances, and correction queries (Kim et al.,
2024) utilizing pseudo labels from the model. However, existing queries remain stagnant in their
predefined forms regardless of the model’s performance improvement in successive AL rounds. The
proposed candidate set query is cost-efficient while provides complete supervision which can be
integrated seamlessly with existing loss functions.

3 PROPOSED METHOD

We consider general classification tasks such that for input x and a categorical variable y ∈ Y =
{1, 2, . . . , L}, a model parameterized by θ predicts the class of the input as argmaxy∈Y Pθ(y|x).
We study an active learning (AL) scenario conducted over R rounds. In each round r, a budget of
B samples is actively selected from the unlabeled data pool X using an acquisition function. This
actively selected set Ar is then labeled by an annotator to form the labeled dataset Dr with labeling
cost Cr, and is used to update the model. Let θr denote the model trained on the accumulated labeled
data up to round r,

⋃r
i=0 Di. Our goal is to maximize the performance of θr, while minimizing the

accumulated cost
⋃r

i=0 Ci. The key aspect of the proposed method is the candidate set query (CSQ),
which reduces Cr by narrowing the set of candidate classes presented to annotators. For simplicity,
we omit the round index r from θr in the remainder of this section.
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Algorithm 1 Active learning with candidate set query
Require: The number of active learning rounds R, round-wise budget B, unlabeled data pool X , randomly

sampled initial labeled dataset D0.
1: Train the initial model θ0 on D0.
2: for r = 1, 2, . . . , R do
3: Select the top B samples Ar ⊂ X with highest acquisition scores gcost(x). ▷ Sec. 3.3
4: Construct cost-efficient candidate set Ŷ (x) for each x ∈ Ar . ▷ Sec. 3.2
5: Query annotator for label y of x ∈ Ar using candidate set Ŷ (x) to form Dr .
6: Get model θr trained on

⋃r
i=0 Di.

7: end for
8: return Final model θR.

In the following, we first introduce candidate set query (CSQ) and discuss its efficiency in labeling
cost (Sec. 3.1). Then, we present a method to construct a candidate class set based on the prediction
uncertainty of a trained model for a given sample (Sec. 3.2). Lastly, we introduce an acquisition
function designed to consider cost efficiency as well as information gain (Sec. 3.3). The overall
pipeline of the CSQ framework is summarized in Algorithm 1.

3.1 CANDIDATE SET QUERY

Candidate set query (CSQ) for an instance x is associated with a (non-empty) candidate set Ŷ (x) ⊆
Y such that 1 ≤ |Ŷ (x)| ≤ L. CSQ first asks the annotator to choose the ground-truth class in Ŷ (x)

(if exists) or to verify the absence of the ground-truth label in Ŷ (x), i.e., the annotator is first asked
to pick an option out of (k+ 1) choices, where k = |Ŷ (x)|. Only if the absence of the ground-truth
class in the candidate set is verified, the annotator is further asked to select the ground-truth class
from the remaining ones Y \ Ŷ (x). To analyze the cost of CSQ, following the information-theoretic
cost model (Hu et al., 2020) and our empirical study in Table. 1, we assume that the cost of choosing
an option out of k many candidates is log2 k. Then, the labeling cost Γ(x, y, Ŷ (x)) of CSQ for input
x, ground-truth label y, and candidate set Ŷ (x) can be obtained as:

Γ(x, y, Ŷ (x)) =

{
log2(k + 1) if y ∈ Ŷ (x)

log2(k + 1) + log2(L− k) otherwise
. (1)

The conventional query in AL is a special case of CSQ where Ŷ (x) = Y , and it is inefficient since
the annotator must search through the entire set of size L with a cost of log2 L. The following
theorem reveals the condition under which the expected cost of CSQ offers an improvement over
that of the conventional query.
Theorem 3.1. Assume the information-theoretic cost model (Hu et al., 2020) of selecting one out
of L possible options to be log2 L. Let L ≥ 2 be the number of classes, k = |Ŷ (x)|, and α be the
probability that the candidate set Ŷ (x) does not include the ground-truth class of instance x. For
the expected cost of conventional query Ccon and that of candidate set query Ccsq, if

log2(k + 1)

log2 L
< 1− α , (2)

then Ccsq(L,x, α) < Ccon(L,x).

Proof. Recalling the definition of α, we have Ccsq(L,x, α) = (1 − α) log2(k + 1) + α{log2(k +
1) + log2(L − k)} from Eq. (1). As L − k < L, the cost ratio of Ccsq(L,x, α) to Ccon(L,x) for
instance x is induced as:

Ccsq(L,x, α)

Ccon(L,x)
=

log2(k + 1) + α log2(L− k)

log2 L
<

log2(k + 1)

log2 L
+ α . (3)

Although we adopt the cost model from Hu et al. (2020), Theorem 3.1 holds for any cost model that
increases monotonically with the number of options.
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Remark 3.2. If we constrain all candidate set sizes k to be fixed, then 1 − α corresponds to the
top-k accuracy pk of the model. Therefore, when pk ≥ logL(k + 1), CSQ consistently offers an
improvement over the conventional query. For example, in datasets such as CIFAR-10 (L = 10),
CIFAR-100 (L = 100), and ImageNet (L = 1000), if the model has a top-1 accuracy (i.e., k = 1)
of at least 30.1%, 15.1%, and 10.0% respectively, then CSQ always provides an improvement.

The above proof and remark demonstrate that under moderate conditions, CSQ is more efficient than
the conventional query. As described in Eq. (3), the cost of CSQ decreases as both α and k become
smaller. However, since k and α are inversely related, balancing the trade-off between α and k
is essential to fully leverage CSQ. Also, fixing candidate set sizes as in Remark 3.2 is suboptimal
because it does not consider the uncertainty of individual samples. In the following section, we
introduce our candidate set construction method, which both reflects the uncertainty of each sample
and automatically balances the trade-off between α and k.

3.2 CONSTRUCTION OF COST-EFFICIENT CANDIDATE SET

As shown in Eq. (1) and Theorem 3.1, a candidate set needs to be both small and accurate in covering
the ground-truth class. To do so, we propose using conformal prediction (Romano et al., 2020) to
get a reliable and cost-optimized prediction set using the trained model θ of the previous round.

Calibration set collection. Conformal prediction requires a labeled set for calibration that has not
been used during the model training phase; this set must follow the same distribution as the target
data for prediction (Vovk et al., 1999; Angelopoulos et al., 2023). To achieve this, we randomly
select ncal samples from the actively selected data Ar and annotate them within the given budget to
form Dcal = {(xi, yi)}ncal

i=1. The calibration set Dcal is used for conformal prediction and candidate
set optimization, which will be explained in the following sections. Note that Dcal also contributes
to model training after candidate set construction.

Candidate set construction from conformal prediction. Using θ from the previous round and
calibration set Dcal randomly sampled from Ar, we obtain the sequence of conformal scores s :=
{si}i∈[ncal]

, where si := 1 − Pθ(yi | xi) for (xi, yi) ∈ Dcal. Then we obtain the (1 − α) empirical

quantile Q̂(α) of s, which is given as,

Q̂(α) := min
s∈s

{
s :

1

ncal

∑
s′∈s

(
1[s′ ≤ s]

)
≥ ⌈(ncal + 1)(1− α)⌉

ncal

}
, (4)

where α ∈ (0, 1) is an error rate hyperparameter, ⌈·⌉ is a ceiling function and 1[·] is an indicator
function. We note that Q̂(α) indicates that at least 100× (1− α)% of the scores s are smaller than
Q̂(α). Then, we define the candidate set for an unlabeled instance x as follows:

Ŷθ(x, α) =
{
y : Pθ(y|x) ≥ 1− Q̂(α), y ∈ Y

}
. (5)

Previous study (Vovk et al., 1999; Angelopoulos et al., 2023) proved that the presented candidate set
includes the correct label with the probability greater than 1− α, which is given as,

P
(
y ∈ Ŷθ(x, α)

)
≥ 1− α . (6)

This candidate set design reflects the uncertainty of each sample and is tailored to the improved
model across successive AL rounds. More detailed procedure of conformal prediction is explained
in Sec. C.

Cost-optimized candidate set construction. Although conformal prediction aims at adjusting can-
didate set Ŷθ(x, α) to fit the condition of α as in Eq. (6), it does not take into account the size k of
the candidate set. The efficiency of CSQ improves as both α and the candidate set size k decrease,
as shown in Eq. (3). Since α and k are inversely related, finding an optimal hyperparameter α to
reduce the labeling cost is not straightforward. Hence, we optimize pha to minimize labeling cost
for the calibration set Dcal for further improvement of CSQ efficiency. To be specific, α is optimized
by

α∗ := argmin
α∈(0,1)

∑
(x,y)∈Dcal

Γ(x, y, Ŷθ(x, α)) , (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where Γ(x, y, Ŷθ(x, α)) is the labeling cost in Eq. (1). By optimizing α in this way, we utilize
conformal prediction to construct candidate sets in a more cost-efficient manner, as the error rate is
tailored to minimize the expected labeling cost for each round. Notably, if we define the corner case
Ŷθ(x, 0) = Y , CSQ includes the conventional query at α = 0 within the search space for α∗. This
makes CSQ is at least as efficient as, and often more efficient than, the conventional query.

Note that to construct the candidate set query, the calibration set Dcal is required to calculate (1−α∗)
quantile in Eq. (4). Thus, when getting annotations of Dcal in the calibration set collection step,
candidate set query of the current round cannot be applied. To avoid this circular dependency, the
quantile from the previous round is used when labeling Dcal.

3.3 COST-EFFICIENT ACQUISITION FUNCTION

Since the labeling cost of each sample varies in CSQ, we propose to consider the cost for active
sampling. We implement an acquisition function that evaluates samples based on the ratio of the
estimated information gain to the estimated labeling cost. The information gain is quantified using
one of the well-established acquisition scores from prior research. Specifically, we adopt methods
such as BADGE (Ash et al., 2020) and entropy, although our approach can incorporate any acqui-
sition scoring function. Given a conventional acquisition score gscore(x), the proposed cost-efficient
acquisition function gcost is given as,

gcost(x) :=
(1 + gscore(x))

d

log2(k + 1) + α∗ log2(L− k)
, (8)

where d is a hyperparameter adjusting the influence of gscore(x) and α∗ is an optimized error rate
hyperparameter obtained by Eq. (7). The denominator is an expected cost derived from our cost
model (Eq. (1)), considering two cases: the correct label is included or excluded from the candidate
set, which is (1− α∗) log2(k + 1) + α∗ {log2(k + 1) + log2(L− k)}. This expected cost assumes
the candidate set to include the ground-truth class with probability of 1−α∗, which is supported by
the coverage guarantee in Eq. (6). We normalize gscore to [0, 1], as any existing acquisition score can
be employed for gscore(x).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our method is evaluated using three image classification datasets: CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and ImageNet64x64 (Chrabaszcz et al., 2017).
CIFAR-10 comprises 50K training and 10K validation images across 10 classes. CIFAR-100 con-
tains the same number of images as CIFAR-10, but with 100 classes. ImageNet64x64 is a downsam-
pled version of ImageNet (Deng et al., 2009a) with a resolution of 64× 64, which consists of 1.2M
training and 50K validation images with 1000 classes. Following previous studies, we evaluate a
model using the validation split of each dataset.

Implementation details. For CIFAR-10 and CIFAR-100, we adopt ResNet-18 (He et al., 2016)
as a classification model. We train it for 200 epochs using AdamW (Loshchilov & Hutter, 2019)
optimizer with an initial learning rate of 1e−3, decreasing by a factor of 0.2 at epochs 60, 120, and
160. We apply a weight decay of 5e−4 and a data augmentation consists of random crop, random
horizontal flip, and random rotation. For ImageNet64x64, we adopt WRN-36-5 (Zagoruyko, 2016),
and train it for 30 epochs using AdamW optimizer with an initial learning rate of 8e−3. We apply
a learning rate warm-up for 10 epochs from 2e−3. After the warm-up, we decay the learning rate
by a factor of 0.2 every 10 epochs. We adopt random horizontal flip and random translation as data
augmentation. For all the datasets, we use Mix-up (Zhang et al., 2018), where a mixing ratio is
sampled from Beta(1, 1). The hyperparameter d in Eq. (8) is set to 1.0, 0.5, and 1.2 for cost-efficient
entropy sampling on CIFAR-10, CIFAR-100, and ImageNet64x64, respectively. For cost-efficient
BADGE sampling, d is set to 1.1 for CIFAR-10 and 1.2 for CIFAR-100. Also, we set the size of
calibration dataset ncal to 500 for CIFAR-10 and CIFAR-100, and 5K for ImageNet64x64.

Active learning protocol. For CIFAR-10, we conduct 10 AL rounds of consecutive data sampling
and model updates, while for CIFAR-100, we perform 9 AL rounds. In both cases, the per-round

6
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Figure 2: Accuracy (%) versus relative labeling cost (%) for conventional query (CQ) and candidate
set query (CSQ) with different acquisition functions: CQ using Random, Entropy, and BADGE,
and CSQ using Random and cost-efficient sampling. CSQ approches (blue lines) consistently out-
performs the CQ baselines (red lines) by a significant margin across various budgets, acquisition
functions, and datasets.

Table 1: The results of the user study showing the annotation time (second) and accuracy (%) for
the same images with varying size of class options (candidate set). This result demonstrates that a
small candidate set improves both labeling efficiency and accuracy.

Size of candidate set 4 8 16 32

Annotation time (s) 69.4±13.8 91.5±27.3 116.9±29.6 166.9±30.8

Accuracy (%) 100.0±0.0 98.5±3.2 99.5±1.5 95.5±5.2

budget is 6K images. For ImageNet64x64, we conduct 16 AL rounds with a per-round budget of
60K images. The detailed budget configuration for the three datasets is shown in Table 3. In the
initial round, we randomly sample 1K images for CIFAR-10, 5K images for CIFAR-100, and 60K
images for ImageNet64x64. In each round, the model is evaluated based on two factors: its accuracy
(%) on the validation set, and the annotation cost required to train it. The annotation cost is defined
as a relative labeling cost (%) compared to the cost of labeling the entire training set using the
conventional query, given by N log2 L, where N is the size of the entire training set, and L is the
number of classes. We conduct all experiments with three independent trials with different random
seeds and report the mean and standard deviation to ensure reproducibility.

Baseline methods. We compare the proposed candidate set query (CSQ) with the conventional
query (CQ) in combination with various sampling strategies. Following the established sampling
strategies in previous AL studies, we employ random sampling (Rand), entropy-based sampling
(Ent), and BADGE sampling (BADGE) (Ash et al., 2020). Cost(Ent) indicates the proposed cost-
efficient sampling (Eq. (8)) combined with the entropy acquisition function, and Cost(BADGE) is
the one combined with BADGE. We denote the combination of the query and sampling method
with ‘+’, i.e., CSQ+Rand is a candidate set query with random sampling.

4.2 EXPERIMENTAL RESULTS

Candidate set query vs. Conventional query. In Fig. 2, we compare the performance of candidate
set query (CSQ) with the conventional query (CQ) on CIFAR-10, CIFAR-100, and ImageNet64x64
with different acquisition functions. CSQ approaches consistently outperforms the CQ approaches
across various acquisition functions and datasets, demonstrating the general effectiveness of our
method. Notably, CSQ reduce the labeling cost of CQ by 56%, 43%, and 42% CIFAR-10, CIFAR-
100, and ImageNet64x64, respectively. This is promising as it shows that the same volume of labeled
data can be obtained at roughly half the cost, without introducing any label noise or sample bias.
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(a) CIFAR-10
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(b) CIFAR-100
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(c) ImageNet64x64

Figure 3: Average size of the candidate set and accuracy (%) of our method with cost-efficient
entropy sampling in varying rounds on CIFAR-10, CIFAR-100, and ImageNet64x64. Our candidate
set design adapts to the increasing accuracy of the model over successive AL rounds, reducing it as
the model improves.
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(a) Contribution of each component
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(b) Impact of calibration set size

Figure 4: (a) Contribution of each component of our method, measured by Accuracy (%) versus
relative labeling cost (%) (left), and relative labeling cost (%) versus AL rounds (right) on CIFAR-
100. The result compare the full method (CSQ+Cost(Ent)), the method without acquisition func-
tion in Eq. (8) (CSQ+Ent), without α optimization in Eq. (7), where α is fixed to 0.1 (CSQ(Fixed
α)+Ent), and without CSQ (CQ+Ent). All components of our method lead to steady performance
improvement over varying rounds. (b) Relative labeling cost (%) at fifth round with varying calibra-
tion set sizes ncal in Eq. (4) on CIFAR-100. The dashed line indicates the relative labeling cost (%)
of the baseline (CQ+Ent). Our method demonstrates robustness to the change in calibration set size.

Notably, the performance gain of CSQ increases as the model improves, as it is tailored to improved
model.

Empirical evidence for Theorem 3.1. We empirically demonstrate that the conditions for Theo-
rem 3.1 are met. First, we verify the information-theoretic annotation cost assumption through a
user study with 40 annotators. Each group of 10 annotators labels 20 queries with candidate set
sizes of 4, 8, 16, and 32. Details are provided in Appendix A. Table 1 shows that smaller candidate
sets improve both labeling efficiency and accuracy. The results also align closely with theoretical
costs, as shown in Fig. 1(right). Next, we demonstrate that the proposed CSQ effectively reduces
both the candidate set size k and error rate α throughout the AL rounds. As shown in Fig. 3b, after
the first round, CSQ achieves a sufficiently small k and continues to reduce it as accuracy improves.

4.3 ABLATION STUDIES

Contribution of each component. Figure 4a demonstrates the contribution of each component
in our method across varying AL rounds: candidate set query (Eq. (5)), cost optimization of α
(Eq. (7)), and the proposed acquisition function (Eq. (8)). The results show consistent performance
improvements from each component in every round. The performance gap between CQ+Ent and
CSQ(α = 0.1)+Ent verifies the efficacy of proposed CSQ framework, which provides the largest
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(c) GT inclusion rate

Figure 5: Impact of the candidate set design evaluated on CIFAR-100 using conventional query
with all classes (Conventional), top-1 prediction from model (Top1), top-10 prediction from model
(Top10), our method with conformal prediction with fixed α = 0.1 (Conformal(α = 0.1)), and
the smallest top-k prediction sets always including ground-truth class (Oracle). For comparison,
the same entropy sampling is used, ensuring that while labeling costs vary, the accuracy per round
remains consistent to isolate the effect of candidate set design. (a) The proposed method constantly
outperforms the baselines in accuracy (%) relative to labeling cost (%). (b) Our design achieves
greater reduction in labeling cost compared to baselines. (c) Our candidate set effectively includes
the ground-truth class in over 90% of cases (= 1− α), even when model accuracy low.

improvement. The gap between CSQ(α = 0.1)+Ent and CSQ+Ent shows the impact of α opti-
mization, offering modest but steady gains across rounds. Finally, the gap between CSQ+Ent and
CSQ+Cost(Ent) shows the effectiveness of our acquisition function, particularly from 4 to 6 rounds.

Impact of calibration set size. In Fig. 4b, we evaluate the relative labeling cost (%) at the fifth round
with varying calibration set sizes ncal in Eq. (4) to assess its impact on the performance on CIFAR-
100. A larger ncal may improve the accuracy of conformal prediction and α optimization but is less
efficient in terms of labeling cost. As shown in Fig. 4b our method shows robust performance, only
varying less than 2%p as the calibration set size changes from 0.1K to 2K. Even with a calibration
set size of just 100, our method significantly outperforms the baseline reducing the cost by 18%p.

Impact of conformal prediction for candidate set design. Figure 5 illustrates the effectiveness
of conformal prediction (Conformal (α = 0.1)) for candidate set construction on CIFAR-100, com-
pared to baselines: Conventional (using all classes), Top1 (top-1 prediction), Top10 (top-10 pre-
dictions), and Oracle (smallest top-k set always containing the ground truth). Note that Oracle
represents an unattainable upper bound requiring knowledge of the ground truth. For consistency,
we fixed α = 0.1 in Eq. (5). Figures 5a and 5b show that conformal prediction consistently re-
duces labeling cost compared to the baselines. While Top10 is effective in the early rounds and
Top1 becomes more efficient as the model improves, our method adapts throughout and outperforms
all baselines in every round. Figure 5c demonstrates that with α = 0.1, our method includes the
ground-truth class in over 90% of cases, aligning with Eq. (6), while the top-k baselines show lower
inclusion rates, especially in early and middle rounds. This demonstrates that conformal prediction
effectively adjusts candidate set sizes based on sample uncertainty, ensuring ground-truth inclusion
and improving labeling efficiency.

Impact of cost-optimized candidate set construction. In Fig. 6, we present the impact of cost-
optimized candidate set construction as in Eq. (7), evaluated on CIFAR-100 using entropy sampling,
in terms of relative labeling cost (%). As shown in Fig. 6a, the proposed optimization consistently
reduces labeling cost across all rounds by selecting the optimal α = α∗. In Fig. 6b, the magenta dia-
monds indicate how the most cost-effective α changes with each active learning round, showing that
labeling costs vary significantly depending on the chosen α. Our method enhances cost efficiency
by selecting the optimal α∗ (cyan diamonds) in each round through cost optimization, leading to
more efficient candidate sets.

Qualitative result of constructed candidate sets. In Fig. 7, we present qualitative results showing
input images and their corresponding candidate sets on ImageNet64x64. Thanks to the conformal
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Figure 6: Impact of cost-optimized candidate set construction as in Eq. (7), evaluated on CIFAR-100
with entropy sampling. (a) Relative labeling cost (%) versus AL rounds with different error rate α
and the α∗ selected by the proposed cost optimization (Eq. (7)). (b) Relative labeling cost per round
(%) versus α across varying AL rounds. Labeling cost is measured as the ratio compared to labeling
all images in a single round using the conventional query. The magenta diamond represents the true
optimal α minimizing the cost for sampled data, while the cyan diamond represents the α∗ selected
from Eq. (7). The dashed line indicates the baseline cost from the conventional query.
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Figure 7: Qualitative results of input images and their corresponding candidate sets constructed
from our method in fifth round on ImageNet64x64. The ground-truth class is highlighted in red
(best viewed in color).

prediction, the proposed method allows for flexible adjustment of the candidate set for each sample.
For certain samples (Fig. 7(left)), the candidate set is reduced to minimize labeling cost, while for
uncertain samples (Fig. 7(right)), the candidate set is expanded to include the true label.

5 CONCLUSION

We propose candidate set query (CSQ), a cost-efficient active learning framework for classification.
By narrowing down candidates likely to include the ground-truth class, our approach significantly
reduces labeling costs. To manage varying candidate set sizes, we introduce a novel acquisition
function that balances performance gain with labeling cost. Experiments on CIFAR-10, CIFAR-100,
and ImageNet64x64 show that CSQ significantly reduces labeling costs, demonstrating its potential
for efficiently scaling large annotated datasets.

Limitation and Future work. One limitation is that the proposed acquisition function lacks theoret-
ical guarantee for label complexity (Dasgupta, 2011; Hanneke et al., 2014) at this point. Establishing
a theoretical understanding to quantify the cost required to achieve a target performance remains an
interesting direction for future work. Also, although our acquisition function shows improvements
over baselines, it relies on hyperparameter d to balance the trade-off between cost and informative-
ness. If gscore(x) could measure the true influence (Koh & Liang, 2017) on accuracy, setting d = 1
in Eq. (8) would optimize cost per influence, potentially yielding an optimal acquisition function.
However, improving gscore(x) is beyond the scope of this work.
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6 REPRODUCIBILITY STATEMENT

We have included the source code for our experiments as part of the supplementary material. De-
tailed instructions on loading datasets and running the code to reproduce the experiment results are
provided in Appendix B. The training configurations, active learning settings, and hyperparameter
details are discussed in Sec. 4.1.
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A DETAILS OF USER STUDY

(b) Example queries in CIFAR-100

Q. Select the class that corresponds to the image.

(a) Questionnaire with four candidates 𝑘 = 4

Figure 8: Questionnaire and examples used in the user study. (a) Each question contains an instruc-
tion, an image, and a set of candidates. In this case, the candidate set size is 4. (b) We utilize 20
images in CIFAR-100, each with a resolution of 128 x 128 pixels.

We conduct a user study to examine how the size of a candidate set, k in Sec. 3.1, affects the
annotation time in practice. Figure 8 presents examples of the questionnaires and all images used
in our user study. To facilitate easy comparison with the theoretical costs (Hu et al., 2018), we set
the candidate set sizes to 4, 8, 16, and 32. To be specific about Figure 8, we use CIFAR-100 images
resized to 128× 128 using super resolution1 to enhance visibility for annotators. We first randomly
select 20 classes in CIFAR-100 and choose one image per class to organize the questionnaires. For
small-sized candidate sets, we ensure the inclusion of the ground truth by randomly trimming around
it when generating the candidate sets.

We divide 44 annotators into four groups of 11 for each candidate set size to perform labeling tasks.
To account for potential outliers, we exclude the results of the annotators whose time taken deviates
the most from the average time in each group. Table 2 shows that as the candidate set size increases,
the time per query increases and the accuracy decreases. In addition, on the right side of Table 2, a
comparison between the experimental costs and theoretical costs reveals a significant correlation of
0.97.

Table 2: User study for different sizes of candidate set query.

k Total time (s) Time per query (s) Accuracy (%) Experimental Theoretical

4 69.4±13.8 3.47±0.69 100.0±0.0 2.0 2
8 91.5±27.3 5.20±1.36 98.5±3.2 2.6 3
16 116.9±29.6 6.94±1.48 99.5±1.5 3.4 4
32 166.9±30.8 8.35±1.54 95.5±5.2 4.8 5

B IMPLEMENTATION DETAILS AND CONFIGURATION

Table 3 presents the configuration of our main experiments for each dataset. In all experiments,
we fixed the per-round budget, which limits the number of annotated instances per active learning
(AL) round. Given this budget constraint, we compute the labeling cost for each AL round to assess
labeling efficiency.” The batch size for CIFAR-10 and CIFAR-100 was determined to 128, while
that for ImageNet64x64 is set to 128. We normalized the input image to ensure the stability of the

1https://www.kaggle.com/datasets/joaopauloschuler/cifar100-128x128-resized-via-cai-super-resolution
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training. We trained our classification model on CIFAR-10 and CIFAR-100 using NVIDIA RTX
3090 and on ImageNet64x64 using 4 NVIDIA A100 GPUs in parallel. The training requires about
5 GPU hours for CIFAR-10 and CIFAR-100, and about 1.5 GPU days for ImageNet64x64.

Table 3: Detailed dataset and budget configuration for the proposed scenario.

Dataset L log2L Size Cost of full label # of rounds Per-round budget

CIFAR-10 10 3.322 50K 166.1K 10 6K
CIFAR-100 100 6.644 50K 332.2K 9 6K

ImageNet64x64 1000 9.966 1.2M 12.7M 16 60K

Code. This part demonstrates the reproducibility of our work by providing comprehensive details
on the source code release. We have made available the entire framework, which includes the data
sampling method, evaluation procedures, and the overall training pipeline. Our aim is to ensure
that other researchers can easily replicate and build upon our results. To get started with running
the code, please refer to the script.sh file. This script contains the necessary commands and
instructions to execute our experiments seamlessly. To better understand our proposed method, you
can examine the Python script al/strategy_dtopk.py. This file includes the implementation
details of our active learning strategies, particularly candidate set suery design. Furthermore, our
code can run on CIFAR-10, CIFAR-100 2, and ImageNet64x64 3, which are available online. Note
that you can modify the running configuration such as dataset, sampling method, and budget through
command-line arguments.

C ADDITIONAL CLARIFICATION ON CANDIDATE SET CONSTRUCTION

The detailed procedure of computing Q̂(α) in Eq. (4). We begin with computing the conformal
scores s for the calibration dataset Dcal. For each data point (xi, yi) ∈ Dcal, the conformal score is
defined as:

si := 1− Pθ(yi | xi), for i = 1, 2, · · · , ncal , (9)

where ncal = |Dcal|. Using these scores, we define the empirical distribution function Fn(s), which
measures the proportion of scores less than or equal to a given value s. Formally, Fn(s) is expressed
as:

Fn(s) =
1

ncal

ncal∑
i=1

1[si ≤ s] , (10)

where 1[·] is an indicator function. The (1 − α) empirical quantile is then defined as the smallest
score si such that the proportion of scores satisfying si ≤ s is at least (1 − α). Mathematically,
this is given as mini∈[ncal] {Fn(si) ≥ 1− α}, where [ncal] = {1, 2, · · · , ncal}. To ensure robustness
under limited sample sizes, we adjust (1 − α) into ⌈(ncal + 1)(1 − α)⌉/ncal when defining Q̂(α),
which is defined as:

Q̂(α) := min
i∈[ncal]

{
Fn(si) ≥

⌈(ncal + 1)(1− α)⌉
ncal

}
. (11)

Note that Eq. (11) is equivalent to Eq. (4).

D DISCUSSION ON HANDLING OUTLIERS AND ANOMALOUS DATAPOINTS

Dealing with out-of-distribution (OOD) data points showing high uncertainty scores has been a
chronic issue in active learning and may affect the efficiency of candidate set query (CSQ). Recent
open-set active learning approaches (Du et al., 2021; Kothawade et al., 2021; Ning et al., 2022;
Park et al., 2022; Yang et al., 2024) tackle this by filtering out OOD samples during active sampling

2https://www.cs.toronto.edu/˜kriz/cifar.html
3https://patrykchrabaszcz.github.io/Imagenet32/
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(a) Impact of d on CIFAR-100
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(b) Impact of d on ImageNet64x64

Figure 9: Sensitivity of the labeling cost to the hyperparameter d in Eq. (8), evaluated on CIFAR-
100 and ImageNet64x64 with CSQ+Cost(Ent). We report the relative labeling cost (%) for various
values of d at a specific active learning round. The blue diamond marks the d value used in the main
experiments. (a) Results for CIFAR-100 at the eighth round. (b) Results for ImageNet64x64 at the
sixth round. We report results for ImageNet64x64 using only a single random seed.

using an OOD classifier. Our CSQ framework integrates seamlessly with these methods, focusing
on labeling in-distribution (ID) samples to prevent cost inefficiencies.

However, as OOD classifiers are not flawless, some OOD samples may still be selected. One ad-
vantage of our method is its ability to leverage the calibration set to capture information about such
mixed OOD samples. This enables adjustments such as increasing the OOD classifier threshold to
exclude more OOD-like data or incorporating the OOD ratio into the alpha optimization process
in Eq. (7). Optimizing the combination of OOD and ID classifier scores within the calibration set or
designing better OOD-aware queries presents promising future research directions.

E IMPACT OF HYPERPARAMETER d

Impact of informativeness-cost balancing hyperparameter d. The hyperparameter d in our ac-
quisition function (Eq. (8)) balances the trade-off between labeling cost and the informativeness of
a selected sample, requiring both factors to be considered. We provide a comprehensive analysis
showing the trend of performance in accuracy with varying d values over AL rounds for CIFAR-10,
CIFAR-100, and ImageNet64x64 in Fig. 10. In CIFAR-10 (Fig. 10a), both accuracy and labeling
cost remain robust to the change of d, varying only 0.5%p in accuracy. In CIFAR-100 (Fig. 10b),
the overall performance is still insensitive yet slightly increasing as d decreases. On the other hand,
in ImageNet64x64 (Fig. 10c), the performance decreases as d increases until it reaches 2.0. Re-
garding that a larger d prioritizes more uncertain samples, this result aligns with recent observations
that uncertainty-based selection performs better in scenarios with larger labeling budgets (Hacohen
et al., 2022).

Guidelines for selecting proper hyperparameter d. We provide the following guidelines for set-
ting d. For datasets with fewer than 100 classes, d values between 0.3 and 1.0 may be effective, as
they ensure robustness on simple datasets like CIFAR-10 and reduce labeling costs on more com-
plex datasets like CIFAR-100. For larger datasets closer in scale to ImageNet, exploring d ≥ 1.0
can help further improve the model performance.

F COMPARISON WITH SIFTING OUT BASELINE FOR CANDIDATE SET
CONSTRUCTION

Figure 11 compares the candidate set construction method of our candidate set query (CSQ) with
a baseline (CSQ-sift) that sifts out classes with softmax values below 0.1 × 1/C, where C is the
number of classes, across AL rounds, using entropy and BADGE (Ash et al., 2020) sampling on
CIFAR-100. The results show that CSQ is more cost-efficient, reducing relative labeling cost by
7.2%p compared to CSQ-sift at the ninth round even with entropy sampling, favoring samples with
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(c) ImageNet64x64

Figure 10: Accuracy (%) versus relative labeling cost (%) with varying hyperparameter d in Eq. (8)
across AL rounds, evaluated on CIFAR-10, CIFAR-100 and ImageNet64x64 with CSQ+Cost(Ent).
For our main experiments, we set d = 1.0, d = 0.5, and d = 1.2, for CIFAR-10, CIFAR-100, and
ImageNet64x64, respectively.
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Figure 11: Accuracy (%) versus relative labeling cost (%) for candidate set query (CSQ) and baseline
that sifts out classes with softmax values below 0.1 × 1/C (C: number of classes, CSQ-sift), using
Entropy and BADGE sampling. CSQ approches (blue lines) consistently outperforms the CSQ-sift
baselines (green lines) across various budgets and acquisition functions.

uniform softmax values. When paired with BADGE, a more advanced diversity-aware acquisition
function, CSQ shows additional cost savings.

CSQ also offers a key advantage over the heuristic variant (CSQ-sift) by providing a theoretical guar-
antee of including the correct class, enabling the use of our acquisition function. This acquisition
function further enhances cost-efficiency.

G COMPATIBILITY BETWEEN CANDIDATE SET CONSTRUCTION AND
UNCERTAIN SAMPLES

Figure 12 compares CSQ and conventional query (CQ) on CIFAR-100 with entropy-based sampling
(Ent) and our acquisition function with entropy measure (Cost(Ent), Eq. (8)) across AL rounds, with
a fixed number of samples per round.
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Figure 12: Comparison of candidate set query (CSQ) and conventional query (CQ) on CIFAR-100
with entropy sampling (Ent) and cost-efficient entropy sampling (Cost(Ent)) varying AL rounds. A
fixed number of samples are selected at each AL round. (a) Accuracy (%) versus relative labeling
cost (%) showing the accuracy per cost. (b) Accuracy (%) versus AL rounds showing the accuracy
varies with the number of samples. Note that the lines of CQ+Ent and CSQ+Ent completely overlap,
as they use the same sampling method. (c) Relative labeling cost (%) versus AL rounds.

Our acquisition function provides superior accuracy per cost. The comparison between
CSQ+Cost(Ent) and CSQ+Ent demonstrates that the proposed acquisition function reduces label-
ing costs with only a marginal accuracy trade-off.

Candidate set query (CSQ) can reduce labeling costs even for uncertain samples. The compar-
ison between CQ+Ent and CSQ+Ent demonstrates that CSQ effectively reduces labeling costs, even
with uncertainty-based sampling methods like entropy sampling. This shows that CSQ can narrow
down annotation options even for uncertain samples. Note that CSQ+Ent shows the same accuracy
as CQ+Ent, since they used the same sampling method.

H EXPERIMENTS IN LANGUAGE DOMAIN

Dataset. The R52 dataset (Lewis, 1997) is a subset of the Reuters-21578 (Lewis, 1997) news col-
lection, specifically curated for text classification tasks. It comprises documents categorized into
52 distinct classes, with a total of 9,130 documents. The dataset is divided into 6,560 training doc-
uments and 2,570 testing documents. Each document is labeled with a single category, and the
categories are selected to ensure that each has at least one document in both the training and test-
ing sets. This structure makes the R52 dataset particularly suitable for evaluating text classification
models.

Implementation details. We adopt an SVM model (Cortes, 1995) with sigmoid kernel for clas-
sification. We conduct 11 AL rounds of consecutive data sampling and model updates, where the
per-round budget is 600. The hyperparameter d for our acquisition function is set as 1.2. In the
initial round, we randomly sample 300 samples. In each round, the model is evaluated based on
three factors: its accuracy (%) and Micro-F1 (%).

Figure 13 presents a comparison of candidate set query (CSQ) and conventional query (CQ) on
the text classification dataset (R52) with random sampling (Rand), entropy sampling (Ent), and our
acquisition function with entropy measure (Cost(Ent), Eq. (8)) across AL rounds. CSQ approaches
consistently outperform the CQ baselines by a significant margin across various budgets and acquisi-
tion functions. Especially at round 10, CSQ+Rand reduces labeling cost by 65.6%p compared to its
conventional query baseline. The result demonstrates that the proposed CSQ framework generalizes
to the text classification domain.
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Figure 13: Comparison between conventional query (CQ) and candidate set query (CSQ) with ran-
dom sampling (Rand), entropy sampling (Ent), and cost-efficient entropy sampling (Cost(Ent) on
text classification task with R52 dataset. (a) Accuracy (%) versus relative labeling cost (%). (b)
Micro-F1 (%) versus relative labeling cost (%). CSQ approches (blue lines) consistently outperform
the CQ baselines (red lines) by a significant margin across various budgets and acquisition functions.
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Figure 14: Comparison between conventional query (CQ) and candidate set query (CSQ) with Prob-
Cover sampling (ProbCover) and cost-efficient ProbCover sampling (Cost(ProbCover) on CIFAR-
100 dataset with AL rounds. CSQ approches (blue lines) consistently outperform the CQ baselines
(red lines) by a significant margin across various budgets.

I CANDIDATE SET QUERY PAIRED WITH ADVANCED AL ACQUISITION
FUNCTIONS

We present additional experiments using ProbCover (Yehuda et al., 2022) sampling. ProbCover
leverages self-supervised features for the entire training dataset to construct a weighted digraph,
where the edge weights represent pairwise distances. It selects the sample with the highest out-
degree for annotation. When the graph is depleted, it switches to random sampling from the unla-
beled pool.

Figure 14 compares CSQ and CQ on CIFAR-100 with ProbCover sampling and cost-efficient Prob-
Cover sampling (Cost(ProbCover)), across AL rounds. CSQ approaches consistently outperform the
CQ baselines across various budgets and acquisition functions. In particular, the proposed method
reduces labeling cost and improves accuracy at the same time; reducing labeling cost by 18.2%p
and improving accuracy by 1.2%p at round 6. This result suggests that the proposed method can
seamlessly incorporate advanced AL acquisition functions.
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Figure 15: Comparison between conventional query (CQ) and candidate set query (CSQ) with en-
tropy sampling (Ent) and the proposed acquisition function with entropy measure (Cost(Ent) on
CIFAR-100 with label noise across AL rounds with varying noise level: (a) Noise rate of 0.05. (b)
Noise rate of 0.1. The proposed CSQ+Cost(Ent) consistently outperforms CSQ+Ent across various
AL rounds and noise rates.

J EXPERIMENTS ON REAL-WORLD DATASETS

Experiment on datasets containing label noise. We evaluate the candidate set query (CSQ) frame-
work on CIFAR-100 with noisy labels, simulating a scenario where human annotators misclassify
images into random classes with a noise rate ϵ. This is modeled using a uniform label noise (Frénay
& Verleysen, 2013) with ϵ set to 0.05 and 0.1. Note that this scenario is unfavorable for CSQ, as a
misclassifying annotator would reject the actual true label even if the candidate set includes it.

Figure 15 compares CSQ and conventional query (CQ) on CIFAR-100 with noisy labels using en-
tropy sampling (Ent) and our acquisition function with entropy measure (Cost(Ent)) across 2, 6, and
9 rounds.

Despite the disadvantageous scenario, our method (CSQ+Cost(Ent)) reduces labeling cost compared
to the baseline (CQ+Ent) across varying AL rounds and noise rates. At round 9, CSQ+Cost(Ent)
achieves cost reductions of 33.4%p and 27.4%p at noise rates of 0.05 and 0.1, respectively. It
also consistently outperforms the baseline in terms of accuracy per labeling cost, demonstrating the
robustness of CSQ.

Additionally, CSQ has the potential to reduce label noise, as narrowing the candidate set can lead to
more precise annotations. Our user study (Table 1) shows that reducing candidate set size improves
annotation accuracy, suggesting that CSQ can further enhance performance by reducing label noises.

Experiment on datasets containing class imbalances. Figure 16 compares candidate set query
(CSQ) and conventional query (CQ) on CIFAR-100-LT (Cui et al., 2019), a class-imbalanced version
of CIFAR-100, using entropy sampling (Ent), and our acquisition function with entropy measure
(Cost(Ent)) across AL rounds. The experiments use imbalance ratios (i.e., ratios between the largest
and smallest class sizes) of 3, 6, and 10. Note that the maximum AL rounds vary with the imbalance
ratio due to dataset size, with a maximum of 4 rounds for ratios of 3 and 6, and 6 rounds for a ratio
of 10.

The result shows that our method (CSQ+Cost(Ent)) reduces labeling cost compared to the baselines
(CQ+Ent) by significant margins across varying AL rounds and imbalance ratios. Specifically, at
round 4, CSQ+Cost(Ent) achieves cost reductions of 31.1%p and 29.2%p at imbalance ratios of 6 and
10, respectively. In terms of accuracy per labeling cost, CSQ+Cost(Ent) consistently outperforms
the baseline, demonstrating the robustness of the CSQ framework in class-imbalanced scenarios.
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Figure 16: Comparison between conventional query (CQ) and candidate set query (CSQ) with en-
tropy sampling (Ent) and the proposed acquisition function with entropy measure (Cost(Ent) on
CIFAR-100-LT, a version of CIFAR-100 with class imbalance, across AL rounds with varying im-
balance level: (a) Imbalance ratio of 3. (b) Imbalance ratio of 6. (c) Imbalance ratio of 10. The
proposed approach (CSQ+Cost(Ent)) consistently outperforms the baseline (CSQ+Ent) across vari-
ous AL rounds and noise rates. Note that the maximum AL rounds vary with the imbalance ratio
due to dataset size, with a maximum of 4 rounds for ratios of 3 and 6, and 6 rounds for a ratio of 10.
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