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ABSTRACT

The rise of Large Language Models (LLMs) has revolutionized numerous do-
mains, yet these models still exhibit weakness in understanding structured tab-
ular data. Although the growing context window promises to accommodate a
larger volume of table contents, it does not inherently improve the model’s ability
to understand the underlying structure and semantics of tabular data. To bridge
the semantic gap between Text and Table, we propose TNT, a table-language
model that features multimodal table representations to empower LLMs to ef-
fectively and efficiently abstract structure-enriched semantics from tabular data.
TNT also introduces a scalable and efficient training pipeline, featuring novel
self-supervised tasks, to integrate abstract tabular knowledge into the language
modality. Extensive experimental results on NL2SQL demonstrate a much bet-
ter table understanding of TNT, which achieves up to 14.4% higher execution
accuracy compared with traditional text-based table representations.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has reshaped the landscape of deep learn-
ing (Brown et al., 2020; Touvron et al., 2023). Researchers have been actively exploring extend-
ing LLMs’ capabilities to process images, videos, and audio, broadening their applicability across
diverse domains (Liu et al., 2023; Hu et al., 2024; Zhan et al., 2024; Chen et al., 2023). Tabular
data, given its ubiquity and unique application value, has also attracted increasing interest from the
community (Ruan et al., 2024; Lu et al., 2024b; Fang et al., 2024). However, the special properties
and structures of tabular data pose distinct challenges for LLMs, raising a fundamental question:
How well can LLMs truly understand tabular data?
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Figure 1: Performance of GPT-3.5 Turbo on SPI-
DER-Realisitc with different sets of cell values se-
rialized into the prompt.

To investigate this, we focus on NL2SQL, a piv-
otal task in table understanding where LLMs
translate natural language queries into SQL,
given a specific database (Pourreza & Rafiei,
2023; Gao et al., 2024; Dong et al., 2023). It
requires an abstract semantic understanding of
relational tables and often serves as an interface
between LLMs and tables in mainstream table-
related methods (Cheng et al., 2023; Ye et al.,
2023; Jiang et al., 2023b; Wang et al., 2024).
To harness LLM for tabular tasks, a straightfor-
ward yet common strategy is to serialize each
column with its name, data type, attributes, and sample cell values, into prompts (Li et al., 2024b;
Pourreza & Rafiei, 2023). However, we find that based on such naive representation, current LLMs
struggle to form a robust and consistent understanding of comprehensive table semantics. As
shown in Figure 1, model performance varies significantly with different cell value selections, rather
than generally benefiting from a comprehensive understanding of the given tables (Figure 1). It sug-
gests that the model resorts to flat context mapping rather than real table structure-aware semantic
comprehension – an issue also noted in prior work (Li et al., 2024d; Yang et al., 2022).
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Such a phenomenon drives us to rethink the limitations of text-based table serialization (Zhang et al.,
2024; Li et al., 2024c), which can be summarized into three key aspects: 1) Structural Incompat-
ibility: The bi-dimensional structure of tabular data is inherently misaligned with the sequential,
autoregressive nature of language models, making LLMs less sensitive to structure-related patterns
within its context; 2) Redundancy: Common serialization methods for tabular data are highly token-
inefficient, especially when dealing with large tables or databases, leading to huge computational
overhead and potential performance degradation due to long contexts; 3) Bias: Serializing poten-
tially uncurated table schemas along with a limited number of cell values into the prompt can cause
the model to overfit to the local information presented in the context, leading to an incorrect or
incomplete understanding of the table’s semantics.

To bridge this gap and make LLMs better table readers, we believe that a better table representation is
needed — one that can abstract the structure-enriched semantics of original tables. Although earlier
works have explored learning table representations with smaller models like BERT and BART (Yin
et al., 2020; Liu et al., 2022b), these approaches are less competitive today due to their limited lan-
guage understanding capabilities. Drawing inspiration from Multimodal Large Language Models
(MLLMs) that integrate features from various modalities with text features (Liu et al., 2023; Bai
et al., 2023; Lu et al., 2024a), we introduce TNT, a novel framework that empowers LLMs to extract
and reason over high-level representations of tabular data, treating tabular inputs as a distinct modal-
ity. As depicted in Figure 3, TNT comprises three components: a structure-aware Table Encoder,
which captures the abstract semantics of tabular contents and converts it into compact embeddings
through a bi-dimensional architecture; a Table-Language Adaptor, which maps these embeddings
into the LLM’s textual space using learnable queries (Bai et al., 2023; Tong et al., 2024); and an
LLM decoder, which performs multimodal table reasoning on downstream tasks.

The proposed tabular representation method introduces another critical challenge: How can we ef-
fectively train and align these embeddings-based representations so that they not only encode valu-
able tabular information but are also interpretable and usable by the LLM? To address this, TNT fol-
lows a three-stage training strategy: Encoder Pre-training, Table-language Feature Alignment,
and Instruction Tuning. In the encoder pre-training stage, we introduce column-wise contrastive
learning, allowing the Table Encoder to learn general column semantics using unlabeled tables. For
feature alignment, we create two synthetic table-language interleaved datasets, supplemented by
adaptations of existing datasets (Nan et al., 2022; Pasupat & Liang, 2015; Parikh et al., 2020), to
teach the LLMs how to leverage column embeddings to address textual instructions. Finally, in
the instruction tuning stage, we fine-tune the model using labeled data to enhance its instruction-
following capability for specific downstream tasks. For better clarity, we will focus on the NL2SQL
task as a concrete example, which can also serve as an interface in other general table-related tasks.

Our main contributions are threefold:

• (Insights) We highlight the limitations of LLMs in understanding structured tabular data,
introducing novel representations to enhance the understanding on abstract table semantics.

• (Methodology) We propose TNT, a multimodal framework, along with an efficient training
pipeline, paving the way towards scalable, structure-enriched table semantics learning.

• (Experiments) We conduct extensive experiments on NL2SQL under challenging setups
that resemble real-world tables, to verify the effectiveness and generalizability of TNT.

2 MOTIVATION

Understanding table content matters. As discussed above, current LLMs struggle to fully inter-
pret serialized tabule contents, while their comprehension often relies heavily on hand-crafted meta-
information (e.g., column names, descriptions, foreign keys) (Sui et al., 2024a). However, we argue
that such meta-information is insufficient and unreliable to provide comprehensive table semantics,
whereas a structure-aware understanding of tabular contents is essential for developing a complete
and accurate grasp of table semantics (Yin et al., 2020). A common challenge in real-world tables
is that they usually come with uncurated schemas, where column names may be ambiguous, while
detailed descriptions are missing. For instance, abbreviations are frequently used as column names,
yet their meanings can vary depending on the context. Some tables may even include non-semantic
placeholders as column names (Figure 2). In such cases, understanding table structure and fully
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Figure 3: Overall architecture of TNT. The Table Encoder generates cell embeddings from input
tables, which are aggregated at the column level by the Adaptor to be further utilized by LLM.

Id A1 A2 A3 A4
101 F 20 164 57

102 M 20 175 64

103 M 21 180 70

Identifier| Gender| Age| Height(cm)| Weight(kg)

70.0%⬇

48.7%⬇

(a) (b)

Actually refer to…

Figure 2: (a) Table with non-semantic column names.
(b) Performance on SPIDER-Realistic, where SFT
LLAMA3 uses a text-based table representation.

interpreting the patterns and interrelation-
ships within its contents (i.e., abstract ta-
ble semantics) are key to accurate table
understanding. This not only reduces the
model’s reliance on concrete manual anno-
tations but also enhances its robustness and
overall table comprehension. However, as
shown in Figure 2, LLMs struggle to under-
stand the serialization of tables with non-
semantic schemas, which is the gap that
TNT aims to fill.

LLMs need better table representations. Although prior studies have explored learning table
representations (Yin et al., 2020; Liu et al., 2022b; Reimers & Gurevych, 2019), each has limi-
tations to present a generalized form of table-modality knowledge that can be effectively utilized
by LLMs. Given the constraints of text-based representations discussed above, we believe that an
effective and alignable table representation should ensure: 1) Structure-awareness. Considering
the bi-dimensional structure of tabular data, a comprehensive and robust table representation should
capture semantics across cell, row, column, and table dimensions while being invariant to permuta-
tions of rows and columns. 2) Expressive Efficiency. To handle tables of varying sizes, an effective
table representation should also be capable of appropriately abstracting and compressing table infor-
mation based on proper semantic segmentation, to ensure expressive efficiency for better utilization
by LLMs. 3) Cross-table Generalizability. An effective and robust table representation should not
only be able to encode table-specific information but also incorporate common tabular knowledge
to ensure generalizability across different tables, thus better enhancing LLMs’ abstract table under-
standing. To satisfy these requirements, our paper introduces a dedicated model architecture that
progressively derives column-wise semantics, coupled with a specialized training strategy to enable
the model to learn effective table representations that can be seamlessly aligned with LLMs.

3 ARCHITECTURE

As illustrated in Figure 3, TNT is an end-to-end table-language model consisting of three compo-
nents: 1) the Table Encoder, which generates structure-enriched semantic embeddings based on
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the input tables; 2) the Table-Language Adaptor, which further aggregates the output embeddings
from Table Encoder and aligns them with textual features; and 3) the Large Language Model
(LLM), which leverages the high-level table representations and reasons within the bi-modal space.

Table Encoding. Tables consist of heterogeneous cells that are formally independent yet logically
organized. To more effectively abstract and encode this type of semantics, we introduce a Table
Encoder, taking the unique structural characteristics of tabular data into consideration. Formally, let
T = [c11, . . . , c1n; . . . , cmn] represent a table with m rows and n columns, where cij denotes the
cell content in the i-th row and j-th column. The Table Encoder starts with a sentence transformer
Φ to extract semantic representations from each cell, transforming the variable-length cell contents
into uniform, compact “cell tokens”:

E(T) = [Φ(c11), . . . ,Φ(cmn)] ∈ Rm×n×d, (1)
where d is the dimension of each cell embedding. These cell embeddings are then passed through
a stack of bi-dimensional attention modules (Zhu et al., 2023; Somepalli et al., 2021), where they
interact with other relevant cells to capture global structural semantics:

E′(T) = 2D-Attn(E(T)) ∈ Rm×n×d. (2)
Within each module, BERT-style bi-directional attention (Devlin et al., 2019) is applied first along
each row and then along each column. This alternating attention mechanism enables the model
to capture both the distributional properties within individual columns and the interrelationships be-
tween columns. To maintain the permutation invariance of (relational) tables, positional embeddings
are intentionally excluded from these bi-dimensional attention modules.

Remark. Similar to the role of a vision encoder in a Vision-Language Model (VLM) (Liu et al.,
2022a; Bai et al., 2023; Tong et al., 2024), the Table Encoder leverages tabular knowledge acquired
through large-scale pre-training (discussed in later sections) to transform the input table into a series
of cell embeddings that encapsulate the structure-enriched global semantics of the table, analogous
to patch embeddings in image encoding. These cell embeddings serve as the fundamental informa-
tive units, which can be aggregated to form more compact and comprehensive table representations.

Table-Language Adaption. Given the varying sizes of tables, the cell embeddings derived from
the Table Encoder can be highly redundant and are not naturally aligned with the textual inputs of
LLMs. Therefore, aggregation and alignment are needed to make a more effective and efficient
utilization of these embeddings. To ensure expressive efficiency under appropriate semantic seg-
mentation, we introduce an Adaptor g, to aggregate cell embeddings at the column level, as columns
are considered the fundamental units that define a table’s semantics. Specifically, g performs cross-
attention between k learnable queries (Bai et al., 2023; Tong et al., 2024; Li et al., 2023c) and cell
embeddings from each column, transforming cell embeddings from tables with an arbitrary number
of rows (m) into fixed-length (k), column-wise compact representations that are aligned with the
LLM’s embedding dimensionality (d′). The embedding of i-th column can be derived by:

C(T)i = g([E′(T)1i, . . . ,E
′(T)mi]) ∈ Rk×d′

. (3)
Being jointly trained with the LLM on table-language interleaved data, the Adaptor generates rep-
resentations that can be more effectively processed and interpreted by the specific LLM, thereby
enhancing its reasoning and generation capabilities for downstream tasks.

Dynamic Context Integration. In TNT, we differentiate between the abstract semantics that can
be represented by column embeddings and other table information involving concrete details (eg.,
column names and foreign keys), which are inherently sequential and better preserved in text form
to ensure precise generation by the LLM. To effectively integrate both embedding-based and textual
representations, we adapt a widely used prompt template (Li et al., 2024b; Yin et al., 2020; Pourreza
& Rafiei, 2023), transforming it into a hybrid table representation:

“table tab name, columns=[tab name.col name(<col emb>|dtype|if primary key)]” .

During inference, the respective column embeddings are dynamically inserted into the specified slots
at the LLM’s embedding layer. This hybrid representation relieves the Table Encoder from loss-
lessly compressing all table details, while still providing the LLM with valuable high-level insights.
It seamlessly combines the abstraction of column embeddings with the specificity of text-based in-
formation, resulting in a more comprehensive and expressive table representation.
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Figure 4: (a) Overall training process of TNT. (b) Detailed depiction of column-wise contrastive
learning. e+ and e− denote positive and negative samples w.r.t. e, respectively.

4 TRAINING

Similar to other MLLMs, the training logic of TNT falls into three parts: 1) Encoder Pre-training,
where we introduce a novel column-wise contrastive learning objective to independently train the
Table Encoder on large-scale raw table data, enabling it to acquire general tabular knowledge; 2)
Feature Alignment, where we leverage multi-task table-language interleaved data to establish a
conceptual linkage between tabular and textual features; and 3) Instruction Tuning, where we fine-
tune the model on task-specific labeled data, to improve TNT’s instruction-following capability for
targeted downstream applications.

Data. To support large-scale training in Stages 1 and 2, we collect a dataset D of 86, 046 high-
quality business tables from various domains, including finance, education, and medicine, ensuring
broad coverage of the complexity and diversity of real-world tables. To facilitate modality fusion,
we incorporate table-language interleaved data from existing benchmarks, including FetaQA (Nan
et al., 2022), WikiTableQuestion (Pasupat & Liang, 2015), and ToTTo (Parikh et al., 2020).

4.1 COLUMN-WISE CONTRASTIVE LEARNING

Humans naturally identify patterns within columns and distinguish differences between columns,
which represents the most essential and general form of table semantics. Inspired by this, we employ
contrastive learning to explicitly guide the Table Encoder to extract features that unify the intra-
column semantics while differentiating between columns, using only unlabeled tables in a schema-
independent manner. As shown in Figure 4, we first apply random row sampling on each table
Ti within the mini-batch, creating two snapshots, Si and S′

i, which share the same schema but have
different cell contents. The Table Encoder then generates an embedding pool P consisting of column
embeddings from each snapshot in the mini-batch. During contrastive learning, positive pairs are
formed by the embeddings from the same columns across the two snapshots. Following Chen et al.
(2020a), we maximize the similarity between positive pairs while minimizing the similarity of other
negative pairs using the InfoNCE loss (more details provided in Appendix B.3), which is defined as:

Lcont(τ, P ) = − 1

|P |
∑
e∈P

log
exp(e⊤e+/τ)∑

e′∈P\{e} exp(e
⊤e′/τ)

, (4)
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where e+ is the embedding of the same column as e but from a different snapshot, and τ is the
temperature. This strategy drives the model to learn discriminative and context-aware column em-
beddings, capturing the unique semantics of each column within a specific schema.

4.2 MULTI-TASK FEATURE ALIGNMENT

In the pre-training stage, the Table Encoder acquires general tabular knowledge through self-
supervised learning on large-scale raw tables. However, without alignment on task-driven data,
these pre-trained representations often lack interpretability, making it challenging to provide valid
information for LLMs’ reasoning and generation. To bridge the gap between tabular and linguistic
elements within the embedding space, we curate a multi-task table-language interleaved dataset and
jointly train the Table Encoder and Adaptor in conjunction with a specific backbone LLM.

We extracted a subset of tables from D to create training samples for two synthetic tasks: ① Column
Prediction — predicting which column a given cell value belongs to, and ② Cell Prediction —
identifying which cell value corresponds to a given column. Solving these tasks requires the model
to utilize the information captured in the column embeddings to recognize distributional patterns
and interrelationships between columns. To promote reasoning based on column embeddings rather
than schema-dependent signals, we manually anonymize 50% of the column names, preventing
overfitting on schema-specific cues and fostering a more generalized table comprehension.

To further increase data diversity, we also adapt FetaQA (Nan et al., 2022), WikiTableQuestion (Pa-
supat & Liang, 2015), and ToTTo (Parikh et al., 2020) into formats suitable for training column
embeddings, resulting in three adapted tasks: ③ Question Generation — generating a question on
based on a given answer from a specific table, ④ Table Titling — creating a brief title for a given
table, and ⑤ Row Summarization — summarizing the content of a specific row. To align with our
goal of semantic table understanding, we ensure that these outputs maintain an appropriate level of
abstraction by minimizing their reliance on detailed cell values. In total, we curate 292, 235 samples
for feature alignment. Detailed statistics are provided in Appendix B.2.

4.3 INSTRUCTION TUNING

Although we employ diverse prompt templates during the feature alignment stage, some loss of
general instruction-following capabilities in the LLM is still inevitable. Therefore, to refine the
LLM’s comprehension of column embeddings and ensure optimal performance in downstream tasks,
we further unfreeze the backbone LLM and conduct supervised fine-tuning using finely labeled data.
To optimize training efficiency, only the Adaptor and LLM are trained during this stage.

5 A MULTIMODAL PERSPECTIVE

From the introduction above, we can see that TNT integrates several design principles inspired by
existing MLLMs, including: 1) A Structure-optimized Encoder: Like Vision Transformers with
special partitioning and 2D positional embeddings (Caron et al., 2021), TNT utilzes a Table Encoder
with a specialized bi-dimensional attention mechanism that directly captures the row-column struc-
tures in tabular data. 2) Hierarchical Feature Extraction: The cell-to-column feature extraction
in TNT mirrors the hierarchical feature process in vision and text models, (e.g., patch-to-image and
work-to-sentence) (Bai et al., 2023; Reimers & Gurevych, 2019). This approach combines local
details with global features while achieving token efficiency. 3) Scalable Encoder Pre-training:
Previous works that apply common MLM or contrastive learning to tabular data (Zhu et al., 2023;
Wang & Sun, 2022) typically impose high requirements on table curation, thereby limiting their gen-
eralizability. The proposed column-wise contrastive learning objective is instead resilient to most
table variations and can well generalize to a broader range of tables, showing greater potential in
scalability. 4) Knowledge Injection via Modal Fusion: Incorporating additional modalities breaks
the limitations of homogenized input processing in uni-modal LLMs from both architectural and
training perspectives, which cannot be accomplished by language-driven tuning-based methods.

In summary, our work provides a pioneering validation of the feasibility of integrating tabular and
textual modalities. We hope to offer a perspective from tabular data for future efforts to unify all
data modalities. More discussions are in Appendix E.
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Table 1: Comparative results between TNT and variants using traditional text-based table representa-
tions on datasets with non-semantic column names. Best performance on each setup is highlighted.

Backbone Method
Dev Test DK Realistic

EM EX EM EX EM EX EM EX

LLAMA3-8B-Instruct
(AI@Meta, 2024)

Original 12.8 21.9 18.3 40.5 11.6 31.0 7.1 14.2
SFT 30.9 31.7 43.1 50.5 21.7 30.8 19.1 17.9
TNT 46.0 44.6 51.4 59.9 36.3 44.7 35.6 32.3

MISTRAL-7B-Instruct
(Jiang et al., 2023a)

Original 8.5 17.9 14.0 33.9 6.2 23.2 5.1 7.9
SFT 32.8 32.5 44.2 52.4 23.6 33.8 20.5 16.9
TNT 43.1 42.6 51.4 57.4 34.0 41.7 36.8 32.9

CODELLAMA-7B-Instruct
(Rozière et al., 2023)

Original 9.1 22.5 17.9 39.8 8.6 29.0 6.7 12.0
SFT 32.1 32.6 43.1 51.7 24.3 33.1 21.5 20.9
TNT 39.3 40.1 47.9 56.6 31.4 39.6 32.5 28.9

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. In this paper, we evaluate TNT on the task of NL2SQL. We adopt three prevalant
datasets, SPIDER (Yu et al., 2018), SPIDER-DK (Gan et al., 2021a), and SPIDER-Realistic (Deng
et al., 2021). SPIDER is a large-scale cross-domain NL2SQL dataset containing 10, 181 annotated
questions that correspond to 5, 693 distinct SQL queries and 200 multi-table databases with seman-
tic column names. It is divided into three folds: training, development, and test sets. We reserve
data (including tables) in development and test sets for evaluation, ensuring they are unseen during
training (Xie et al., 2024; Qu et al., 2024). SPIDER-DK and SPIDER-Realistic are more challenging
variants of the original SPIDER dataset. SPIDER-DK emphasizes the importance of domain knowl-
edge, while SPIDER-Realistic removes explicit mentions of column names in the questions.

Ideally, robust table understanding should not overly depend on the quality of column names (i.e.,
whether they are meaningful or not). To assess the models’ abilities to understand table contents
independently of column names, we create a non-semantic version of each dataset, in which 80%
of the column names are anonymized. This modification forces the models to leverage structural
and contextual clues within table contents, rather than relying on direct meanings of column names,
to accurately infer the meaning of each column and thereby generate correct answers.

Metrics. Consistent with prior work (Xie et al., 2024; Qu et al., 2024), we evaluate our framework
using two metrics: Exact Set Match Accuracy (EM) and Execution Accuracy (EX). EM measures the
exact match between keywords in the predicted SQL query and the gold query, while EX compares
the execution results of the predicted SQL query with that of the ground truth SQL query on some
database instances, which provides a more precise estimate of the model’s performance. We use the
official test suite from Zhong et al. (2020) for evaluation.

Implementation Details. The Table Encoder integrates a sentence transformer initialized with
all-MiniLM-L6-v2 (Wang et al., 2020), a lightweight BERT-based text encoder. We set the number
of learnable queries k in the Adaptor to 5, which yields the most robust performance empirically.
We evaluate TNT using three mainstream open-source LLMs: LLAMA3-8B-Instruct (AI@Meta,
2024)1, MISTRAL-7B-Instruct (Jiang et al., 2023a)2, and CODELLAMA-7B-Instruct (Rozière et al.,
2023)3 as backbone models (results are based on LLAMA3-8B-Instruct unless otherwise specified).
To ensure a fair comparison, we set the decoding temperature to 0 to eliminate randomness during
evaluation. Instruction tuning is conducted on the training set of SPIDER. More detailed setups are
provided in Appendix B. The code is available at: https://github.com/llong-cs/tnt.

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
3https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
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Table 2: Comparative results on standard NL2SQL benchmarks with semantic column names.

Backbone Method
Dev Test DK Realistic

EM EX EM EX EM EX EM EX

LLAMA3-8B-Instruct
(AI@Meta, 2024)

Original 34.0 54.1 32.5 58.0 29.5 50.8 25.6 54.7
SFT 73.0 71.5 71.9 77.8 57.4 63.7 63.4 59.6
TNT 73.2 72.7 72.6 79.0 58.5 65.4 66.1 62.6

MISTRAL-7B-Instruct
(Jiang et al., 2023a)

Original 26.5 46.7 26.2 53.7 21.5 46.7 21.9 35.6
SFT 69.7 68.2 68.6 75.6 50.7 58.7 64.2 57.3
TNT 72.4 71.3 70.1 78.6 57.9 63.6 64.0 59.1

CODELLAMA-7B-Instruct
(Rozière et al., 2023)

Original 29.0 51.2 31.0 59.7 24.9 51.0 26.6 38.6
SFT 65.7 65.0 64.7 72.6 53.3 58.9 53.3 54.5
TNT 66.2 66.2 65.3 73.5 54.3 60.6 56.7 55.5

6.2 OVERALL PERFORMANCE

Effectiveness on Structure-aware Semantic Understanding of Table Contents. While humans
can effortlessly interpret a table even with ambiguous or irrelevant column names, traditional LLMs
often struggle under these conditions. To demonstrate the proposed multimodal representation pro-
vides LLM with insights on abstract table semantics, we evaluate its performance against the original
and fine-tuned versions of backbone LLMs on datasets with non-semantic column names, providing
no sample cell values but column embeddings. As shown in Table 1, TNT dominantly outper-
forms all the baselines on both metrics, achieving up to 16.5% higher EM and 14.4% higher EX.
These results indicate that TNT can derive insights from the structure-enriched semantics in col-
umn embeddings, accurately recognizing the distributional patterns within each column and their
interrelationships, thereby inferring the reference of each column for precise SQL generation. This
demonstrates TNT’s strengths as a robust table interpreter, going beyond mere schema parsing.

Generalizability across Various Setups. We further assess the generalizability of TNT using
standard academic NL2SQL benchmarks. As shown in Table 2, TNT consistently surpasses the
baselines across most benchmarks for all backbone LLMs, demonstrating strong generalizability.
These results indicate that even when table schemas are semantically informative, a deeper structure-
enriched semantic understanding of table contents provides additional insights. This underscores the
value of extracting abstract semantic features from table contents using high-level column embed-
dings, which are not effectively represented through text-based approaches. Additionally, we ob-
serve slight variations in performance gains between instruction-tuned LLMs and code-tuned LLMs,
which may be attributed to differences in their generalizability, thereby affecting the effectiveness
of feature alignment. We leave further optimization of the backbone models for future work.

6.3 ABLATION STUDIES

TNT involves a multi-stage training pipeline, therefore, we conduct ablation experiments to evaluate
the significance of each stage. Specifically, we remove each training step independently from TNT
and assess the resulting impact on the model performance. As shown in Table 3, removing any of the
three training stages leads to a notable performance decline (up to -23.4%), underscoring the unique
and essential contributions of each stage: 1) Encoder Pre-training (PT) equips the model with a
foundational tabular knowledge through cross-table self-supervised learning. Without this explicit
guidance for distinguishing column semantics, the embeddings risk overfitting to spurious task-
specific patterns and less diverse tables, resulting in less generalizable and informative embeddings.
As shown in Figure 5, without PT, TNT shows a sharper decline in the loss during feature alignment
under the same learning rate, suggesting that it may be exploiting shortcuts instead of building
a robust understanding of table semantics. 2) Multi-task Feature Alignment (FA) bridges the
gap between tabular and textual features with table-language interleaved data. Skipping FA and
proceeding directly to instruction tuning significantly weakens the robust integration between Table
Encoder and LLM, due to the lack of data diversity. 3) The final stage, Instruction Tuning (IT), is
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Table 3: Ablation results on training process.

Col Emb PT FA IT Dev Test

✓ ✓ ✓ 36.0 55.8
✓ ✓ ✗✓ ✓ 31.9 53.4
✓ ✓ ✓ 21.2 39.2
✗ ✓ 31.7 50.5
✓ ✓ ✓ ✓ 44.6 59.9
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Figure 5: Loss curve during feature alignment.

critical for enhancing the model’s instruction-following ability, without which the model is not able
to generate informed responses even when the earlier stages provide strong column embeddings.

6.4 FURTHER ANALYSIS

Table 4: EX Accuracy with different forms
of learnable representations on non-semantic
SPIDER.

Method Dev Test

SFT LLAMA3-8B-Instruct 31.7 50.5
SFT (w/ Soft Prompts) 30.4 51.5
TransTab (Wang & Sun, 2022) 23.7 33.0
CM2 (Ye et al., 2024) 17.6 39.2
TNT 44.6 59.9

Column embeddings are not soft prompts. Due
to the introduction of additional learnable parame-
ters, one may question whether the column embed-
dings function merely as soft prompts rather than be-
ing truly tied to table semantics. To address this con-
cern, we compare TNT with LLMs fine-tuned with
soft prompts, using the same number of learnable
parameters as TNT during instruction tunings. As
shown in Table 4, the introduction of soft prompts
do not bring significant performance boost, likely
because they do not contribute to understanding ta-
ble semantics but instead focus on enhancing the
model’s task-specific abilities, which are already
largely addressed by instruction tuning. We also
evaluate the effect of other embedding-based table representations, such as TransTab (Wang & Sun,
2022) and CM2 (Ye et al., 2024), while both approaches show poor alignment with the backbone
LLM. Results above highlight that the column embeddings introduced in TNT not only genuinely
capture high-level abstractions of table contents, but also are well alignable in conjunction with
LLMs for effective reasoning and comprehension.

Table 5: EX Accuracy on SPIDER-Dev with different numbers (#) of example values.

Dataset Method #=0 #=1 #=3 #=5 #=20

Semantic
Original 54.1 57.0 57.6 57.0 57.0
SFT 71.5 73.1 73.5 72.3 71.8
TNT (#=1) – 74.0 –

Non-semantic
Original 21.9 37.7 39.9 38.4 37.8
SFT 31.7 46.8 47.5 46.9 46.0
TNT (#=1) – 51.5 –

Column embeddings tell more than serialized contents. We make further comparisons between
our hybrid representations and traditional text-only representations. Specifically, we analyze the
impact of serializing different numbers of sample cell values into the prompt. To minimize po-
tential side effects from changing the prompt template, we include a minimal number of example
values (#=1) in TNT. Three key observations emerge from Table 5: 1) Incorporating tabular content
generally improves model performance, indicating the significance of table contents. 2) However,
model performance does not consistently correlate with the number of cell values included, as LLMs
with limitations in structural understanding, struggle to fully comprehend large volumes of table
contents. Worse still, incorporating cell values result in a longer context length, which can nega-
tively impact model performance, making the optimization on text-based table representations even

9
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harder. 3) For TNT, using just one example value achieves the best performance across all variants,
highlighting that compact column embeddings, which are structure-enriched and more semantically
interpretable, provide insights beyond serialized table contents. This demonstrates the effectiveness
of column embeddings in enhancing the model’s ability to process and reason over table contents in
a more token-efficient manner, overcoming the limitations of text-based approaches.

Table 6: Effects of combining TNT with
other techniques on SPIDER-Test.

Method EX

TNT
(LLAMA3-8B-based)

+ SF 79.6
+ CC 84.3
+ SC 80.9

Compatibility Analysis. Regarding the potential of
TNT, we demonstrate that the proposed column embed-
dings are highly compatible with common prompting
techniques used in existing NL2SQL methods. As shown
in Table 6, we integrate techniques such as Schema Fil-
tering (SF) (Li et al., 2024b), Code Correction (CC) (Sun
et al., 2023), and Self-Consistency (SC) (Pourreza &
Rafiei, 2023) into TNT, all of which led to noticeable
improvements. We can even approach methods that are
based on closed-source LLMs like GPT-4 (Gao et al.,
2024; Sui et al., 2024b) (86.6%) and GPT-3.5 (Dong
et al., 2023) (82.3%), with a much smaller backbone LLM, such as LLAMA3-8B. This, to some
extent, also suggests that the structure-enriched semantics captured by column embeddings provide
unique value that cannot be effectively substituted by text-based prompting techniques alone.

7 RELATED WORK

Tabular Prompt Design. Harnessing LLMs for tabular tasks first requires converting tabular data
into a format compatible with text-based inputs. A common method is to serialize tables into formats
like Markdown, JSON, or XML (Fang et al., 2024; Singha et al., 2023; Sui et al., 2024a). However,
prior study reveals that even minor changes, such as row permutations, can lead to substantial per-
formance fluctuations (Liu et al., 2024), indicating that LLMs lack a consistent understanding of
table structures. Additionally, due to context length limitations, feeding all table contents into the
LLM is often impractical. Some methods retain only schema information (Pourreza & Rafiei, 2023;
Gao et al., 2024), which may hinder generalizability. Retrieval or compression methods selectively
include critical table content based on predefined rules, which mitigate context constraints (Herzig
et al., 2020; Li et al., 2024b). Nevertheless, these strategies, like other prompt-based methods, still
fail to overcome the fundamental limitations of LLMs in comprehending structured data.

Tabular Training. Table tuning focuses on improving (open-source) LLMs’ understanding of ta-
bles with a substantial volume of table-related data. For example, Table-GPT (Li et al., 2024c)
employs a synthesis-followed-by-augmentation strategy to create datasets for table tuning, while
TableLlama (Zhang et al., 2024) uses real-world datasets for instruction tuning on LLAMA2. While
effective, these methods still face architectural limitations. Pre LLM-era methods have explored
learning table representations with adapted architectures with special positional embeddings (Maj-
mundar et al., 2022; Yin et al., 2020), attention mechanisms (Zhu et al., 2023; Somepalli et al., 2021)
or decoding strategies (Liu et al., 2022b), and special learning objectives, including masking (Yin
et al., 2020; Herzig et al., 2020), corrupting (Huang et al., 2020) and contrastive learning (Wang &
Sun, 2022; Ye et al., 2024). However, these methods typically lack enough generalizability and the
reasoning and generation prowess of modern LLMs, which reduces their applicability.

8 CONCLUSION

In this paper, we present TNT, a multimodal framework with novel table representations that en-
hance LLMs’ ability to comprehend structure-enriched semantics from tabular data. TNT features a
tailored architecture optimized for tabular structures, along with training strategies specifically de-
signed for effective table understanding. Extensive experiments on the NL2SQL task demonstrate
significant performance gains, achieving up to 14.4% higher execution accuracy, underscoring its
effectiveness in semantic understanding of tabular data. Our work paves the way toward an effective
modality fusion between tabular and textual data. We hope it provides valuable insights for future
research.

10
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REPRODUCIBILITY STATEMENT

The implementation details of TNT are outlined in Section 6.1 and further elaborated in Appendix B.
Due to copyright and privacy restrictions, some proprietary table data used in our training process
cannot be publicly released. However, users can train the model within the same framework using
their own table data. A derivative table expert model is available at https://github.com/
tablegpt/tablegpt-agent.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, pp. 9630–
9640. IEEE, 2021. URL https://doi.org/10.1109/ICCV48922.2021.00951.

Guo Chen, Yin-Dong Zheng, Jiahao Wang, Jilan Xu, Yifei Huang, Junting Pan, Yi Wang, Yali
Wang, Yu Qiao, Tong Lu, and Limin Wang. Videollm: Modeling video sequence with large
language models. CoRR, abs/2305.13292, 2023. URL https://doi.org/10.48550/
arXiv.2305.13292.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple frame-
work for contrastive learning of visual representations. In ICML, volume 119 of Proceedings of
Machine Learning Research, pp. 1597–1607. PMLR, 2020a. URL http://proceedings.
mlr.press/v119/chen20j.html.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. In ICLR.
OpenReview.net, 2020b. URL https://openreview.net/forum?id=rkeJRhNYDH.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang Wang.
Hybridqa: A dataset of multi-hop question answering over tabular and textual data. In
EMNLP (Findings), volume EMNLP 2020 of Findings of ACL, pp. 1026–1036. Association

11

https://github.com/tablegpt/tablegpt-agent
https://github.com/tablegpt/tablegpt-agent
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://doi.org/10.48550/arXiv.2308.12966
https://doi.org/10.48550/arXiv.2308.12966
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/ICCV48922.2021.00951
https://doi.org/10.48550/arXiv.2305.13292
https://doi.org/10.48550/arXiv.2305.13292
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=rkeJRhNYDH


Published as a conference paper at ICLR 2025

for Computational Linguistics, 2020c. URL https://doi.org/10.18653/v1/2020.
findings-emnlp.91.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Binding
language models in symbolic languages. In ICLR. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=lH1PV42cbF.

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and
Matthew Richardson. Structure-grounded pretraining for text-to-sql. In NAACL-HLT, pp.
1337–1350. Association for Computational Linguistics, 2021. URL https://doi.org/10.
18653/v1/2021.naacl-main.105.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186. As-
sociation for Computational Linguistics, 2019. URL https://doi.org/10.18653/v1/
n19-1423.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Lu Chen, Jinshu Lin, and
Dongfang Lou. C3: zero-shot text-to-sql with chatgpt. CoRR, abs/2307.07306, 2023. URL
https://doi.org/10.48550/arXiv.2307.07306.

Xi Fang, Weijie Xu, Fiona Anting Tan, Ziqing Hu, Jiani Zhang, Yanjun Qi, Srinivasan H. Sen-
gamedu, and Christos Faloutsos. Large language models (llms) on tabular data: Prediction,
generation, and understanding - A survey. Trans. Mach. Learn. Res., 2024, 2024. URL
https://openreview.net/forum?id=IZnrCGF9WI.

Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-
domain text-to-sql generalization. In EMNLP, pp. 8926–8931. Association for Computational
Linguistics, 2021a. URL https://doi.org/10.18653/v1/2021.emnlp-main.702.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Woodward, John H. Drake, and
Qiaofu Zhang. Natural SQL: making SQL easier to infer from natural language specifications.
In EMNLP (Findings), pp. 2030–2042. Association for Computational Linguistics, 2021b. URL
https://doi.org/10.18653/v1/2021.findings-emnlp.174.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou. Text-
to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145, 2024. URL https://www.vldb.org/pvldb/vol17/p1132-gao.
pdf.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian Martin
Eisenschlos. Tapas: Weakly supervised table parsing via pre-training. In ACL, pp. 4320–4333.
Association for Computational Linguistics, 2020. URL https://doi.org/10.18653/
v1/2020.acl-main.398.

Yuchen Hu, Chen Chen, Chao-Han Huck Yang, Ruizhe Li, Chao Zhang, Pin-Yu Chen, and Engsiong
Chng. Large language models are efficient learners of noise-robust speech recognition. In ICLR.
OpenReview.net, 2024. URL https://openreview.net/forum?id=ceATjGPTUD.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar S. Karnin. Tabtransformer: Tabular
data modeling using contextual embeddings. CoRR, abs/2012.06678, 2020. URL https:
//arxiv.org/abs/2012.06678.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023a. URL
https://doi.org/10.48550/arXiv.2310.06825.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen. Structgpt: A general
framework for large language model to reason over structured data. In EMNLP. Association
for Computational Linguistics, 2023b. URL https://doi.org/10.18653/v1/2023.
emnlp-main.574.

12

https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2307.07306
https://openreview.net/forum?id=IZnrCGF9WI
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://openreview.net/forum?id=ceATjGPTUD
https://arxiv.org/abs/2012.06678
https://arxiv.org/abs/2012.06678
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574


Published as a conference paper at ICLR 2025

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to SQL: are we fully ready? [experiment, analysis \u0026 benchmark ]. Proc. VLDB Endow., 17
(11):3318–3331, 2024a. URL https://www.vldb.org/pvldb/vol17/p3318-luo.
pdf.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. RESDSQL: decoupling schema linking and
skeleton parsing for text-to-sql. In AIII, pp. 13067–13075. AAAI Press, 2023a. URL https:
//doi.org/10.1609/aaai.v37i11.26535.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proc. ACM Manag. Data, 2(3):127, 2024b. URL https://doi.org/10.1145/
3654930.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen
Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-
Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM already serve
as A database interface? A big bench for large-scale database grounded text-to-sqls. In
NeurIPS, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/
hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_
Benchmarks.html.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-
image pre-training with frozen image encoders and large language models. In ICML, volume 202
of Proceedings of Machine Learning Research, pp. 19730–19742. PMLR, 2023c. URL https:
//proceedings.mlr.press/v202/li23q.html.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table fine-tuned GPT for diverse table tasks.
Proc. ACM Manag. Data, 2(3):176, 2024c. URL https://doi.org/10.1145/3654979.

Shujie Li, Liang Li, Ruiying Geng, Min Yang, Binhua Li, Guanghu Yuan, Wanwei He, Shao Yuan,
Can Ma, Fei Huang, and Yongbin Li. Unifying structured data as graph for data-to-text pre-
training. Trans. Assoc. Comput. Linguistics, 12:210–228, 2024d. URL https://doi.org/
10.1162/tacl_a_00641.

Aiwei Liu, Xuming Hu, Li Lin, and Lijie Wen. Semantic enhanced text-to-sql parsing via iteratively
learning schema linking graph. In KDD, pp. 1021–1030. ACM, 2022a. URL https://doi.
org/10.1145/3534678.3539294.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurIPS, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
TAPEX: table pre-training via learning a neural SQL executor. In ICLR. OpenReview.net, 2022b.
URL https://openreview.net/forum?id=O50443AsCP.

Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with large lan-
guage models. In NAACL-HLT, pp. 450–482. Association for Computational Linguistics, 2024.
URL https://doi.org/10.18653/v1/2024.naacl-long.26.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng
Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong
Ruan. Deepseek-vl: Towards real-world vision-language understanding. CoRR, abs/2403.05525,
2024a. URL https://doi.org/10.48550/arXiv.2403.05525.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. Large language model for table
processing: A survey. CoRR, abs/2402.05121, 2024b. URL https://doi.org/10.48550/
arXiv.2402.05121.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of schema
linking? text-to-sql in the age of well-reasoned language models. CoRR, abs/2408.07702, 2024.
URL https://doi.org/10.48550/arXiv.2408.07702.

13

https://www.vldb.org/pvldb/vol17/p3318-luo.pdf
https://www.vldb.org/pvldb/vol17/p3318-luo.pdf
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
https://proceedings.mlr.press/v202/li23q.html
https://proceedings.mlr.press/v202/li23q.html
https://doi.org/10.1145/3654979
https://doi.org/10.1162/tacl_a_00641
https://doi.org/10.1162/tacl_a_00641
https://doi.org/10.1145/3534678.3539294
https://doi.org/10.1145/3534678.3539294
http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.48550/arXiv.2403.05525
https://doi.org/10.48550/arXiv.2402.05121
https://doi.org/10.48550/arXiv.2402.05121
https://doi.org/10.48550/arXiv.2408.07702


Published as a conference paper at ICLR 2025

Kushal Majmundar, Sachin Goyal, Praneeth Netrapalli, and Prateek Jain. MET: masked encoding for
tabular data. CoRR, abs/2206.08564, 2022. URL https://doi.org/10.48550/arXiv.
2206.08564.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
Kryscinski, Hailey Schoelkopf, Riley Kong, Xiangru Tang, Mutethia Mutuma, Ben Rosand, Is-
abel Trindade, Renusree Bandaru, Jacob Cunningham, Caiming Xiong, and Dragomir R. Radev.
Fetaqa: Free-form table question answering. Trans. Assoc. Comput. Linguistics, 10:35–49, 2022.
URL https://doi.org/10.1162/tacl_a_00446.

Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi
Yang, and Dipanjan Das. Totto: A controlled table-to-text generation dataset. In EMNLP, pp.
1173–1186. Association for Computational Linguistics, 2020. URL https://doi.org/10.
18653/v1/2020.emnlp-main.89.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
ACL, pp. 1470–1480. The Association for Computer Linguistics, 2015. URL https://doi.
org/10.3115/v1/p15-1142.

Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: decomposed in-
context learning of text-to-sql with self-correction. In NeurIPS 2023, 2023.
URL http://papers.nips.cc/paper_files/paper/2023/hash/
72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan Ö. Arik. CHASE-SQL: multi-path
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Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
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Table 7: Detailed statistics of model architecture and computational overhead per inference.

# Learnable
Parameters

Table Encoder Adaptor LLM (LLAMA3-8B-Instruct)
102,910,464 68,734,976 8,030,261,248

Computational
Overhead (ms)

Table Encoding Feature Alignment Decoding
36.49977 2.37205 693.60648

A LIMITATIONS AND FUTURE WORK

Due to computational constraints, our experiments are conducted on open-source LLMs with ap-
proximately 7B parameters. We anticipate further enhancing TNT by scaling up the training data
and evaluating it on more comprehensive benchmarks (e.g., NL2Code) or more table structures (e.g.,
hierarchical tables) to fully explore its potential. We also hope our work can bring insights to other
research focused on enhancing LLMs’ ability to understand other forms of structured data.

B IMPLEMENTATIONS DETAILS

B.1 ARCHITECTURE DETAILS

We provide detailed statistics on the number of learnable parameters in each component of TNT
and their computational overhead during inference in Table 7. The results show that the additional
learnable parameters and computational overhead introduced by TNT are minimal, indicating that
TNT maintains high efficiency while enhancing table understanding.

B.2 TRAINING SETUPS

When it comes to the training details, during the column-wise contrastive learning stage, we pre-
train the Table Encoder on the dataset of 86, 046 tables for 20 epochs, using a batch size of 64 and
a constant learning rate of 10−4. For multi-task feature alignment, the Table Encoder is connected
to a downstream LLM through the Adaptor. In this stage, we freeze the LLM and only train the
Table Encoder and Adaptor on multi-task data for a single epoch with a batch size of 1024. A
cosine learning rate scheduler is used, with a maximum learning rate of 5 × 10−5, a minimum
learning rate of 10−6, and a warmup ratio of 0.05. Lastly, the instruction tuning for all methods is
performed on the training set of SPIDER for 2 epochs with a batch size of 128. We use a cosine
learning rate scheduler with a maximum learning rate of 3 × 10−6, no minimum learning rate,
and a warmup ratio of 0.05. Additionally, a weight decay coefficient of 0.1 is applied. For all
training stages, we use the AdamW optimizer with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The
input embeddings of the decoder are always truncated to a maximum length of 4096. Baseline
implementations follow the setups described in previous works (Li et al., 2024b; Gao et al., 2024).
All models are trained on 8 A100 GPUs with 80GB of memory. Note that we did not specifically
optimize the training hyperparameters; thus, the above configuration may not yield the absolute
optimal model performance. We provide detailed statistics about the training data used in the Feature
Alignment stage in Table 8.

B.3 DETAILS OF COLUMN-WISE CONTRASTIVE LEARNING

In this section, we provide a detailed explanation of the calculation of the contrastive loss in Equa-
tion 4. During column-wise contrastive learning, we first apply random row sampling on each table
Ti in the mini-batch to generate two snapshots, Si and S′

i, which maintain the same schema but
differ in cell content. Corresponding columns in the two snapshots are denoted as ci and c′i. The
Table Encoder then processes each snapshot to produce column embeddings, which are further nor-
malized using a projection head. This process yields an embedding pool P consisting of column
embeddings from each snapshot, across every tables in the mini-batch. Next, we construct positive
pairs by matching column embeddings from the same column but different snapshots (i.e., ci and
c′i), while embeddings from other columns (which can belong to any tables in the minibatch) in P
form negative pairs for a given embedding e. We use e+ to denote column embedding that can

17



Published as a conference paper at ICLR 2025

Table 8: Details of multi-task pre-training data.

Task Data Sources # Description Example Prompt Template

Column
Prediction

D (Synthetic) 50, 000 Predict which col-
umn is the cell value
in the given row
from.

Given the following database schema:

<database prompt>

Suppose there is a row: [<cell value>,

<cell value>, <cell value>, ...]

Which column is the cell value

<cell value>most likely from? Answer

with the corresponding column name only.

Cell
Prediction

D (Synthetic) 50, 000 Predict which cell
value is from the
given column.

Given the following database schema:

<database prompt>

Which cell value in [<cell value>,

<cell value>, ...] is most likely from

column <col name>?

Answer with the corresponding cell value

name only.

Question
Generation

FetaQA,
WikiTableQuestion

20, 935 Ask a question based
on the given answer.

Given the following database schema:

<database prompt>

Please propose a relevant question which

can be answered with <answer>.

Table
Titling

ToTTo 85, 613 Provide a brief intro-
duction of the given
table.

Given the following database schema:

<database prompt>

Suppose the table above is from a web

page, please write an introductory title

for this table.

Row
Summarization

ToTTo 85, 687 Provide a brief
summarization of
the given row.

Given the following database schema:

<database prompt>

Please summarize the following rows in one

sentence (the columns may be shuffled).

<row>

Total - 292, 235 - -

w/o PT

w/ PT

Figure 6: Distributions of column embeddings on SPIDER-Dev, produced by TNT with pre-training
and TNT without pre-training.

form a positive pair with e. Then, we use Equation 4 to maximize the cosine similarity between
positive pairs and minimize it between negative pairs. To further enhance the model’s learning, we
implement a hard negative sampling strategy within each batch. This strategy prioritizes selecting
columns from the same table or database, which are superficially similar and thus harder to dis-
tinguish. By focusing on these challenging negatives, the model is encouraged to extract nuanced
features and capture table-specific global characteristics, thereby improving its robustness and un-
derstanding of column semantics. In this way, we observe that the effectiveness of column-wise
contrastive learning and feature alignment heavily depends on the quality of the tables, partic-
ularly their diversity and the average number of columns per table.
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C ADDTIONAL EXPERIMENTS

C.1 EMBEDDING VISUALIZATION

We visualize the distribution of output column embeddings generated by TNT and TNT without
pre-training. As shown in Figure 6, embeddings of different columns produced by TNT without
pre-training appear to be more clustered and less discriminative, indicating that, in the absence of
pre-training, the column embeddings are prone to overfitting homogeneous task-specific patterns
during Feature Alignment and Instruction Tuning. This results in less informative and less valuable
embeddings, reducing their effectiveness in enhancing the LLM’s table understanding.

C.2 CORRESPONDENCE BETWEEN COLUMN EMBEDDINGS AND COLUMN SEMANTICS

Table 9: EX Accuracy with different forms of
learnable representations.

Method Dev Test

SFT 31.7 50.5
SFT (w/ Soft Prompts) 30.4 51.5
TNT (w/ Random Col Embs) 34.6 54.4
TransTab (Wang & Sun, 2022) 23.7 33.0
CM2 (Ye et al., 2024) 17.6 39.2
TNT 44.6 59.9

We also compare TNT with a variant that uses
random column embeddings, where the embed-
dings in each slot have a 30% probability of not
corresponding to the actual column names. As
shown in Table 9, the effectiveness of TNT is
significantly reduced when using mismatched
column embeddings, as these embeddings fail
to capture valid column semantics and instead
mislead the model’s reasoning. This demon-
strates that the semantics of each column em-
bedding are closely linked to the actual contents
in the corresponding columns, which explains
why column embeddings help the LLM reason
more effectively over table semantics.
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Table 10: Performance of TNT BIRD-dev. The reported metric is execution accuracy.

Method BIRD-dev (w/o knowledge ) BIRD-dev (w/ knowledge)

Original (QWEN2.5-7B) 18.97 31.42
SFT (QWEN2.5-7B) 28.49 44.07
TNT (QWEN2.5-7B) 31.42 49.28
ChatGPT 24.05 37.22

Table 11: Performance of TNT adapted to an agent workflow on WikiTQ and TabFact. The reported
metrics in both benchmarks are accuracy (%).

Method WikiTQ TabFact

TNT (QWEN2.5-7B) 61.42 77.80
Text-to-SQL (GPT-3.5) 52.90 64.71
Binder (GPT-3.5) 56.74 79.17
Dater (GPT-3.5) 52.81 78.01
Chain-of-Table (GPT-3.5) 59.94 80.20

C.3 ADDITIONAL BENCHMARKS

To better demonstrate the generalizability of our method, we follow the same model architecture
and training recipe introduced in previous sections (but with different training data) to extend TNT
to other general tabular tasks. Specifically, we first evaluate TNT and corresponding variants on
BIRD-dev (Li et al., 2023b). BIRD, unlike Spider, emphasizes advanced SQL syntax, the use of
external knowledge, and SQL efficiency. Achieving SoTA performance typically requires strong
code generation capabilities – often gained through large-scale pre-training on code data – or com-
plex pipeline designs (Li et al., 2024a; Maamari et al., 2024; Pourreza et al., 2024; Li et al., 2024b),
which are beyond the tabular representation focus of our work. Despite that, from the results in
Table 10 we can still observe a significant improvement by leveraging better table representations
with TNT, which demonstrates its generalizability on challenging tasks. Additionally, following
a code/SQL-driven agent workflow similar to the ones introduced in Wu et al. (2024); Rajkumar
et al. (2022), we further extend TNT to a broader set of tabular tasks, including TableQA, fact ver-
ification, numerical reasoning, and data analysis. We evaluate it on TableBench (Wu et al., 2024),
HybridQA (Chen et al., 2020c), FEVEROUS (Aly et al., 2021), TabFact (Chen et al., 2020b), and
WikiTQ (Pasupat & Liang, 2015), compared with additional baselines (Wu et al., 2024; Rajkumar
et al., 2022; Cheng et al., 2023; Ye et al., 2023; Wang et al., 2024). Experimental results on WikiTQ
and TabFact (some of the numbers are reported from Wang et al. (2024)) in Table 11 show that TNT
achieves performance on par with SoTA methods without any task-specific prompting tricks or com-
plex pipeline designs. Notably, TNT is based on a 7B open-source LLM, whereas other baselines
are built on GPT-3.5. Evaluation on other benchmarks shows a similar result in Table 12.

Table 12: Performance of TNT adapted to an agent workflow on TableBench, HybridQA, and
FEVEROUS.

Method TableBench (PoT@1) HybridQA (Acc) FEVEROUS (Acc)

TableLLM (LLAMA3.1-8B) 25.80 27.61 42.30
TableLLM (LLAMA3-8B) 31.96 27.35 51.50
TableLLM (QWEN2-7B) 21.05 27.12 20.10
TableLLM (CODEQWEN-7B) 26.39 20.14 46.90
TableLLM (DEEPSEEK-7B) 28.39 19.53 18.39
QWEN2.5-Instruct-7B 22.58 51.13 63.30
QWEN2.5-Coder-7B 16.15 51.10 60.70
TNT (QWEN2.5-7B) 36.64 53.17 78.05
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Table 13: Performance of TNT variant compared with SoTA methods on the Spider leaderboard.

Method Spider-test (EX)

TNT + LLAMA3-8B + Code-Correction 84.3
MiniSeek (Anonymous) 91.2
DAIL-SQL + GPT-4 + Self-Consistency (Gao et al., 2024) 86.6
DAIL-SQL + GPT-4 (Gao et al., 2024) 86.2
DIN-SQL + GPT-4 (Pourreza & Rafiei, 2023) 85.3
C3 + ChatGPT + Zero-Shot (Dong et al., 2023) 82.3
RESDSQL-3B + NatSQL (Li et al., 2023a; Gan et al., 2021b) 79.9

C.4 ADDITIONAL METHOD COMPARISONS

In this section, we provide additional method comparisons between TNT variants and other SoTA
methods on the Spider leaderboard. Results in Table 13 show that TNT shows competitive perfor-
mance with simple prompting techniques and a relatively small-scale model.

D CASE STUDY

To more intuitively demonstrate the effect of TNT, we summarized cases where the standard SFT
model failed but TNT succeeded. The differences between the two models are primarily reflected
in four areas: schema linking, column hallucination, content matching, and content reasoning.
Representative examples are shown in Figure 8. Notably, the SFT LLAMA3-Instruct model, lacking
a strong understanding of database contents, often struggles to align SQL conditional statements
with the actual database representations. As illustrated by Figure 7, TNT consistently outperforms
the SFT model on critical keywords such as “SELECT” and “WHERE”, which are essential for show-
casing the model’s schema linking capabilities. Besides, the SFT model frequently fails to recognize
special representations in the database, such as using “T” to denote “True” in the bottom-right ex-
ample. It may also hallucinate column names that do not exist in the schema. These phenomena
highlight the SFT model’s weak grasp of the overall structural understanding of tables.

E A MULTIMODAL PERSPECTIVE (ELABORATED)

From the above introduction, we can see that TNT integrates several design principles inspired by
existing MMLMs, including:

A Structurally-Designed Encoder. Similar to how Vision Transformers (ViT) in VLMs utilize
image partitioning and 2D positional embeddings (), TNT leverages a Table Encoder with a spe-
cialized two-dimensional attention mechanism that directly captures the unique structural properties
of tables. This approach better encodes row-column correspondences, leading to more accurate
semantic representations of the table’s contents.

Progressive Feature Extraction. Existing MMLMs typically follow a hierarchical encoding pro-
cess (e.g., from patch to image, from word to sentence) (), which integrates local details with global
features while maintaining token efficiency. TNT follows a similar strategy by first using the Ta-
ble Encoder to produce cell-level embeddings that capture structure-enriched semantics and then
aggregating these embeddings through an Adaptor into compact and token-efficient column-level
representations.

Scalable Encoder Pre-training. Achieving scalable pre-training requires robust training objec-
tives that handle diverse input quality. Previous works that apply common MLM or contrastive
learning to tabular data () typically impose high requirements on table curation, thereby limiting
their generalizability. To address this, we propose a novel column-wise contrastive learning objec-
tive that imposes no constraints on the semantic clarity of column names or the presence of explicit
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Q: Which city has most number of arriving flights?

Gold: SELECT T1.City FROM AIRPORTS AS T1 JOIN 
FLIGHTS AS T2 ON T1.AirportCode = T2.DestAirport 

GROUP BY T1.City ORDER BY count(*) DESC LIMIT 1

Pred 1: SELECT T1.city FROM airports AS T1 JOIN 
flights AS T2 ON T1.AirportCode = T2.DestAirport 

GROUP BY T2.DestAirport ORDER BY count(*) DESC 

LIMIT 1

Pred 2: SELECT T1.city FROM airports AS T1 JOIN 
flights AS T2 ON T1.airportcode = T2.destairport 

GROUP BY T1.city ORDER BY count(*) DESC LIMIT 1

I. Schema Linking

III. Content Matching

II. Column Hallucination

IV. Content Reasoning

Q: Which model of the car has the minimum 
horsepower?

Gold: SELECT T1.Model FROM CAR_NAMES AS T1 JOIN 
CARS_DATA AS T2 ON T1.MakeId = T2.Id ORDER BY 

T2.horsepower ASC LIMIT 1

Pred 1: SELECT Model FROM cars_data ORDER BY 
Horsepower ASC LIMIT 1

Pred 2: SELECT Model FROM car_names AS T1 JOIN 
cars_data AS T2 ON T1.MakeId = T2.Id ORDER BY 

Horsepower ASC LIMIT 1

Q: What is the average GNP and total population 
in all nations whose government is US territory?

Gold: SELECT avg(GNP) , sum(population) FROM 
country WHERE GovernmentForm = "US Territory"

Pred 1: SELECT avg(GNP), sum(Population) FROM 
country WHERE GovernmentForm = "US territory"

Pred 2: SELECT avg(gnp), sum(population) FROM 
country WHERE governmentform = "US Territory"

Q: What is the official language spoken in the 
country whose head of state is Beatrix?

Gold: SELECT T2.Language FROM country AS T1 JOIN 
countrylanguage AS T2 ON T1.Code = T2.CountryCode 

WHERE T1.HeadOfState = "Beatrix" AND 

T2.IsOfficial = "T"

Pred 1: SELECT T1.Language FROM countrylanguage AS 
T1 JOIN country AS T2 ON T1.CountryCode = T2.Code 

WHERE T2.HeadOfState = "Beatrix" AND 

T1.IsOfficial = "Official"

Pred 2: SELECT T1.Language FROM countrylanguage AS 
T1 JOIN country AS T2 ON T1.CountryCode = T2.Code 

WHERE T2.HeadOfState = "Beatrix" AND 

T1.IsOfficial = "T"

Id, MPG, Cylinders, Edispl, Horsepower, Weight, Accelerate, Year

Figure 8: Case study on Dev. Pred 1 is from SFT LLAMA3-Instruct and Pred 2 is from TNT.

inter-column relationships. This makes it more suitable for scaling across larger and more diverse
tabular datasets.

Knowledge Injection via Modal Fusion. Different modalities of data have distinct characteristics
and require different approaches for effective understanding. Introducing additional modalities al-
lows us to integrate the modality-specific comprehension capabilities of custom-designed encoders
with the superior language understanding and reasoning abilities of LLMs. This multimodal inte-
gration helps overcome the limitations of homogenized input processing in uni-modal LLMs and is
fundamentally distinct from traditional tuning-based methods. We argue that this approach is more
cost-efficient and offers a higher potential for performance improvements.

F LIMITATIONS OF EXISTING TABLE REPRESENTATION LEARNING

1) Structure-awareness. Some methods directly model serialized tabular data using language mod-
els (Liu et al., 2022b), resorting to a linear comprehension that fails to capture the structural informa-
tion inherent in tables. 2) Expressive Efficiency. Some methods model the table content along with
other contexts, producing token-level embeddings (Ye et al., 2024). However, these embeddings
often lack a coherent hierarchical structure to be compressed effectively, which become fragmented
and lack efficiency on larger tables. 3) Generalizability. Prevalant tabular pre-training objectives,
such as Masked Language Modeling (Zhu et al., 2023) and Column Name Prediction (Yin et al.,
2020), rely on associations between cells or between cells and column names. However, they strug-
gle to generalize to tables with more heterogeneous and noisy elements. Lacking any of the above
characteristics undermines the effectiveness of table representations, while TNT achieves a balance
with a dedicated model architecture and tailored training strategy. To address these issues, TNT in-
troduces a dedicated model architecture that progressively derives column-wise semantics, coupled
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with a specialized training strategy to enable the model to learn effective table representations that
can be seamlessly aligned with LLMs.
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