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ABSTRACT

Multivariate Time Series Foundation Models (TSFMs) aim to identify patterns
in multiple contexts to make meaningful predictions of the future. At their core
is multivariate capability; models make use of information from multiple sources
rather than relying on a single signal with limited information. Learning multivari-
ate models requires meaningful evaluations, but current benchmarks are limited in
two key ways: quantity and quality. There are a limited number of multivari-
ate time series datasets, with existing ones lacking size and diversity across do-
mains. Furthermore, although some collections of time series might be marketed
as multivariate, it is not proven that they contain meaningful information in mul-
tiple contexts. This work takes a major step in both directions, providing a Mul-
tivariate Time Series Evaluation Dataset for Foundation Models (MuSED-FM).
MuSED-FM spans 16 multivariate time series domains and introduces novel syn-
thetic data techniques, comprising 67 billion data points and 2.6 million time se-
ries. To improve and prove the quality of multivariate data, we provide a powerful
suite of benchmarking tools focused on identifying the multivariate predictability
of a time series and introduce novel multivariate predictability aggregate metrics
based on classical methods. Finally, we evaluate current state-of-the-art TSFMs
for both univariate and multivariate capability, finding that despite multivariate
predictability identifying correlation, univariate prediction often matches or out-
performs multivariate prediction across models.

1 INTRODUCTION

Accurate time series forecasting is valuable in a wide variety of domains, such as scientific advance-
ment [96], finance [88], operations analysis [89], and weather [55]. Catalyzed by recent advances in
foundation models for vision and language [38; 63], Time Series Foundation Models (TSFMs) [30]
achieve state-of-the-art forecasting accuracy by identifying patterns in-context. However, the history
of a single time series, that is, a single sequence of numbers, often lacks sufficient information to
forecast all but the simplest trends. Incorporating information about the patterns in other, covarying
time series’ is essential to improve forecasting accuracy. Thus, it is vital that TSFMs take advantage
of multivariate data.

Due to the necessity of multivariate TSFMs, it is imperative that time series forecasting evaluations
reflect multivariate forecasting performance. However, evaluating the multivariate capabilities of
TSFMs remains a challenging problem. Existing open multivariate time series datasets suffer from
two key issues: quantity and quality. First, the quantity and diversity of data is insufficient. Existing
TSFMs are trained on limited domains of multivariate data, leading to poor generalization to new
multivariate domains. Second, the quality of existing multivariate evals is poor. Although existing
multivariate datasets provide multiple contexts for time series forecasting, they fail to demonstrate
that the additional contexts contain valuable information for forecasting.

Motivated by the challenges of multivariate time series evaluation, we introduce a Multivariate Time
Series Evaluation Dataset (MuSED-FM) consisting of a significant number of multivariate datasets
from a wide range of sources. We aggregate data first from open source multivariate time series
benchmarks on a wide range of domains and frequencies, from climate information to web data, sci-
entific domains, or government statistics. We then take univariate data from similar domains, such
as finance or weather, and construct multivariate time series data by combining series with similar
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(a) Current TSFM Limitations (b) Dataset Categories

Figure 1: Limitations of TSFMs and our proposed MuSED-FM Left: Real data highlight a
core limitation of current TSFMs: they perform well when the past alone suffices (B) but fail when
prediction depends on exogenous, multivariate signals (C). In (A), energy demand depends on tem-
perature; in (B), Chronos [5] (yellow) and Toto [29] (blue) succeed on a univariate case; in (C),
the same models largely ignore covariates and default to seasonal extrapolation. Right: MuSED-
FM is a curated multivariate benchmark—spanning sequential, synthetic, real-world, and combined
datasets—designed to rigorously evaluate TSFMs’ ability to use cross-variable information.

descriptions. Then, we augment this data by representing various sequential data, including video,
controls, and robotics data, which can be transformed into a usable range for multivariate foundation
models. Finally, we include synthetic data generated according to either a distribution of multivari-
ate ordinary differential equations [68], or using a structural causal model prior [56]. In Figure 1,
we provide a categorization of the kinds of information present in the dataset and the predictive
properties of the datasets by domain. In particular, this evaluation benchmark can answer: 1) How
well does a multivariate TSFM perform on a wide range of realistic time series data? 2) How does
a model’s multivariate performance compare with univariate performance? 3) How can one assess
whether a novel multivariate dataset actually exhibits univariate and multivariate predictability? This
work provides comprehensive foundation model evaluation on several existing foundation models to
answer the first two questions, and a comprehensive univariate and multivariate predictability analy-
sis to answer the last. The evaluation and analysis in this work illuminates the core premise: Current
multivariate time series foundation models ubiquitously fail to utilize multivariate information, and
MuSED-FM is the key evaluation necessary for multivariate capability.

In aggregate, the contributions of this paper are as follows:

1. We propose MuSED-FM, the largest collection of multivariate time series datasets, includ-
ing open-source, univariate datasets with correlated information, multivariate series derived from
multimodal data (including scientific, simulator, video, vision, and language data), and multivari-
ate synthetic time series generated via multiple novel techniques. This dataset includes 67 billion
time points, 2.6 million series, and an average of 26 variates across 45 datasets and 16 domains.

2. We provide a novel metric reflecting the univariate and multivariate “predictability” of a time-
series, utilizing classic multivariate relational tools: transfer entropy [109], Granger Causal-
ity [52], Convergent Cross Mapping [115], lagged cross correlation [10] and DLinear [142].

3. We evaluate current state of the art TSFMs, illustrating that current state of the art multivariate
models fail to exceed univariate performance across multivariate data (Figure 2).

2 RELATED WORK

TSFMs have emerged recently, with pioneering efforts [103; 44; 105] applying principles from lan-
guage [38] and vision [63] to the field of time series, sometimes explicitly [53]. Previous datasets
[84; 85], [7], [31], [47], served primarily to access domain-specific training data rather than as an
evaluation of a single model operating across multiple domains. However, the subsequent capacity
of foundation models [73; 91; 127] as tools that offer versatility and even performance over clas-
sical methods [90; 140] such as ARIMA or VARMAX, has inspired recent investigation into time
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Figure 2: Existing State-Of-The-Art (SOTA) Multivariate TSFMs fail to effectively use the
available correlated information. We showcase the comparison of the univariate and multivariate
performance of 4 SOTA models on 14 diverse domains. Specifically, we plot the logarithm of
the inverse of the Mean Average Percentage Error (MAPE) metric (higher is better). Surprisingly,
providing additional correlated information (multivariate case) leads to similar or worsening of the
model performance (TabPFN), with marginal improvements observed in very few cases.

series foundation models [133; 42; 139; 131; 43; 5; 36; 50; 74; 51; 113]. Nonetheless, initial ef-
forts [105; 5] focused on univariate time series’, which are both simpler to process and more readily
available. However, univariate time series’, by definition, do not encode contextual information,
which limits their predictive power. Thus, recent work has begun to consolidate on the question of
Multivariate Time Series Forecasting [139; 16; 29; 6; 105; 57], though in this work we demonstrate
that these results, while promising, suggest that multivariate forecasting remains an open question.
Works in foundation modeling often utilize large, privately owned datasets to train models, such
as [29; 81; 105]. This work contributes to the effort for a multivariate time series foundation model
by 1) providing the largest (number of data points, rows and correlates) and most diverse (spanning
multiple domains and classes of data) multivariate time series evaluation benchmark and 2) provid-
ing aggregated metrics and benchmarking for identifying multivariate predictability of both models
and data.

Meaningful evaluation and training data is the cornerstone for a multivariate time series foundation
model, and while main benchmarks remain domain specific, focusing on classic fields such as en-
ergy [151; 128], weather and climate [134; 55], traffic [17; 79; 92], finance [88; 58], air quality [147],
healthcare and brain signals [32; 62; 126; 96; 136] but also branching out into compute or network
related domains [117; 130; 87; 75], cryptocurrency [4], biology [97], industrial devices [125], icicle
formation [19], aerospace [144], action identification [49], environment [54]. Alternatively, many
benchmarks focus on related problems such as anomaly detection [94; 59; 78; 135; 101], classi-
fication [98], robustness [146], etc. The substantial diversity of domains offers both a tantalizing
promise and an obvious challenge for time series foundation models: the promise of widespread
applicability and the challenge of myriad diversity. Nonetheless, recent work foundation model
benchmarkes include [84; 119; 85], but subsequently with [3; 47; 9; 1; 71], as well as benchmarks
focused on balanced or fair assessment [99; 112], horizon [145], multimodality [76], irregular sam-
pling [15], or dynamical systems [68; 120]. Other work focuses on benchmarking with different
foundation models, including [70; 111; 77; 100], while also contributing some compilations of data.
While these methods often include multivariate series, they often do not focus on the multivariate
problem. First, this can lead to a limited volume of multivariate data, and datasets such as those used
in [47], [1], and [70] are either entirely or heavily univariate. Furthermore, the analysis of the mul-
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Domain Counts Number of
Timesteps

Average Number of
variates

Dataset Count Number of
Time Series

Energy 114,941,077 4,801,760 19.32 34 315

Public Info 4,625,412 219,946 17.00 10 270

Health 202,815 41,756 8.00 2 9

Sales 280,348 29,275 16.83 6 15

Climate & Env. 496,270,478 10,993,235 24.86 7 54

Engineering 1,975,188 183,200 8.50 2 20

Finance 99,666 6,328 15.75 8 8

Web 15,169 2,167 7.00 1 1

Stock 8,852,800 354,112 25.00 1 352

Wikipedia 18,084,600 602,820 30 1 1,530

Images 126,720,000 11,520,000 11.00 1 20,000

Text 190,308,864 10,016,256 19.00 1 19,563

Video 9,403,332 154 10 1 6114

Scientific 1,373,811,912 26,441,444 54.00 5 48,812

Dynamic 5,142,085,632 214,253,568 25 1 209,232

Causal Model 57,404,227,584 1,808,007,168 25.4 5 2,354,176

64,791,804,797 2,077,472,139 25.7 85 2,680,671

Traditional

Collections

Sequential

Synthetic

Combined

Table 1: High-Level Dataset Summary by Domain. We provide a breakdown of our benchmark,
MuSED-FM, including the average number of variates, time series, and datasets in each domain.

tivariate datasets in [1] is limited to mostly a small subset. Of existing time series foundation model
datasets, [71] shows the closest resemblance to MuSED-FM, containing multiple real-world time
series datasets. Our work subsumes this contemporary work by first including a greater volume of
datasets spanning several more domains and time series patterns. Second, including novel datasets
by combining related univariate series, transforming sequential data into time series and generat-
ing synthetic data to create a more comprehensive datasets, which we discuss further in Section 4.
Third, the analysis of variates in [71] uses pearson correlation metrics, which only measure if two
series look similar, regardless of how useful the variates are for prediction. By contrast this work
introduces a novel multivariate predictability score discussed in Section 5. Overall, MuSED-FM ex-
poses the limitations of existing multivariate models, provides meaningful correlation analysis tools
and provides a much greater volume and scope of multivariate data. Extended discussion of related
work can be found in Appendix A.

3 MULTIVARIATE TIME SERIES FOUNDATION MODELS

The multivariate time series forecasting problem involves the correlate variates time series x ∈
RT×dx and target variate y ∈ RT×dy , where dx is the number of correlate variates, dy is the
dimension of the target variate and T is the number of timesteps. The time series is then separated
into the context (history) component 0 < h < T and the prediction component p = T−h, where we
represent x:h,y:h as the context components of correlate and target variates respectively, and y−p:

as the predict component, and X :h, Y :h, Y −p: as the random variables representing the distribution
of multivariate time series correspondingly. The objective of a multivariate time series forecaster is
to learn a model of the conditional distribution: f(x:h,y:h) → P(Y −p:|X :h = x:h, Y :h = y:h).
Foundation models for time series train the model on the space of all multivariate series to (X ,Y)
to perform the best estimate of this model. By contrast, a univariate time series forecaster simply
models funi(y

:h) → P(Y −p:|XY :h = y:h), assuming that dy = 1.

To properly situate the datasets in this work, we provide univariate analysis, multivariate anal-
ysis and benchmarking with existing foundation models. Univariate analysis involves tools
such as Entropy, Fourier analysis, etc., as described in Section 5, and aim to characterize
the distribution of Y , not only for particular domains, but also for synthetic data. By con-
trast multivariate analysis aims to assess the amount of relative information in the history of
the variates X :h with the future of the target Y −p:, which can be formalized as the time-
based conditional mutual information I(X :h;Y −p:|Y :h) [110]. While the distributions of all
three random variables are unknown in practice, our analysis offers a suite of approximation
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techniques for estimating this quantity. Finally, benchmarking assess the performance of the
models Ex:h,y:h,y−p:∼Deval

[∥∥µ(fmodel(x
:h,y:h))− y−p:]

∥∥], where Deval is the evaluation dataset
stratified by domain. We also compare the performance of univariate and multivariate fore-
casting Ex:h,y:h,y−p:∼Deval

[∥∥µ(fmodel(x
:h,y:h))− y−p:]

∥∥− ∥∥µ(f∗
uni(y

:h))− y−p:]
∥∥] , where f∗

uni
is the performance of the best univariate model. Because none of the existing state-of-the-
art models show little performance difference between univariate and multivariate forecasting,
we also introduce the variate counterfactual scenario, which also performs prediction also us-
ing x−p:, or the future values of the correlate variates. Formally, this is represented with:
Ex:h,x−p:,y:h,y−p:∼Deval

[∥∥µ(fmodel(x
:h,x−p:y:h))− y−p:]

∥∥]. This setting is successfully used by
[56] and gives partial evidence of multivariate capabilities.

4 DATASET

To provide context for the data that makes up MuSED-FM, we focus on four primary classes of data,
with a brief description of the constituent datasets that comprise these datasets. With 45 different
datasets aggregated to form MuSED-FM specific dataset details are reserved for Appendix B, with a
summary of dataset information in Table 1. The four categories of data are: Traditional multivariate
time series datasets (traditional), related univariate time series combined as time series (combined),
sequential data transformed into time series (sequence), and synthetic time series (synthetic). These
four categories allow us to distinguish correlate selection as by intuition, heuristics, domain and
construction, properties we discuss further below.

4.1 TRADITIONAL MULTIVARIATE TIME SERIES

We first form the core of our dataset with an aggregation of 37 different datasets from a wide range
of domains including energy, retail, finance, weather, healthcare, public services, healthcare and
web traffic. The obvious power of these datasets is primarily that they are readings from a real world
process, but also that they have been selected by domain experts, so that the variates provide useful
information for forecasting. However, it is also possible that for some of these datasets, even though
the variates are intuitively related, they provide no additional forecasting benefit. Thus, we provide
analysis in Section 5 to provide initial evidence that these variates should help in forecasting. We
were able to collect 6̃50 time series comprising 0.5 Billion time points.

4.2 COLLECTIONS OF UNIVARIATE TIME SERIES

In addition to hand-curated multivariate time series, correlated univariate series, especially in do-
mains such as web and finance, offers another rich data source. MuSED-FM includes two do-
mains: stocks and wikipedia pageview data, constructing correlated variates using domain specific
heuristics (see Appendix C). The degree of multivariate capability is decided by the efficacy of the
heuristic, though we also provide metrics that suggest that the variates are useful for forecasting in
Section 5. These collections add 1̃800 time series and 29 million data points, as seen in Table 1.

4.3 SEQUENTIAL DATA TRANSFORMED INTO TIME SERIES

Time series are a ubiquitous form of data, represented by any signal taken at timestamped intervals.
However, most datasets focus on “classic” time series domains such as climate, web, finance, etc.
However, sequential data can often be extracted from sources such as scientific data, sequential
decision making data, images, language, and video, which we leverage in MuSED-FM, which we
leverage to add five additional data-rich and correlated domains. With each of these domains,
we apply a three step process to convert them into time series: 1) transform the data into high
dimensional tokens, 2) Apply dimensionality reduction to a fixed set of variates. 3) Apply smoothing
and/or noising to better match the distribution of traditional time series. Specific details for this
process are included in Appendix D. The two advantages over other multivariate time series datasets
come through the volume of data, as well as high confidence of correlation in the variates, since they
are generated according to the same underlying generative process.
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Group Statistic Description

Outlier percentage Percentage of data points > 3 st. dev. from mean

Kurtosis Fourth order moment, measures tailedness

Skewness Third order moment, measures asymmetry

Entropy [41] Measures noise as −
∑

i pi log pi

Hurst coefficient [60] Measure of persistent features

Number of mean crossing points [83] Number of times the mean is crossed (variance)

Unitroot KPSS statistic [66] Kwiatkowski-Phillips-Schmidt-Shin measure of stationarity

Unitroot Phillips–Perron statistic [95] Phillips-Perron test statistic for stationarity.

Autocorrelation at lag 10 [10] Measure of the correlation between a data point and another point that occurred 10 time peri-
ods earlier

Differenced autocorrelation at lag 1 [10] Degree to which autocorrelation explains the sequence

Sum of squares of the first five autocorrelation
coefficients [10]

Magnitude of simple autocorrelation

Longest flat sequence [83] length of flat periods, flatter is sometimes easier to predict.

Normalized number of periods [41] More periodic signals can be easier to predict.

Nonlinearity via surrogate data [123] measure of linearity in the signal.

Stability [14] variance of the means in the windows

Lumpiness [14] variance of the variances in the windows

Max change per window [14] largest delta inside a window (measures spikes)

Max variance per window [14] Highest window variance (measures noisiness)

10-feature Fourier decomposition residual [10] Residual after decomposing the top 10 frequencies

10-feature SINDy decomposition residual [13] Residual after dynamic system decomposition with 10 parameters.

10-feature Spectral decomposition residual [41] Residual after decomposition using spectral Principle Component Analysis (linear).

Trend [27] Measure of trend of STL relative to residual.

Seasonal strength [27] Measure of seasonal of STL relative to residual.

Spike [83] Measure of variance of residual.

Linearity [83] linear consistency of the trend component.

Curvature [83] Measures curvature of trend component

Peak [83] measures the peaks of the seasonal component

Trough [83] Measures the troughs of the seasonal component.

ST decomposition residual [27] Measures the residual from just the trend and seasonal components.

Lagged cross correlation [10] Convolves the shape of a lagged historical window of a correlate with the future

Granger causality [52] Measures the degree to which linear model of each variate improves over univariate autore-
gression.

Transfer entropy [109] Measures the relative information added by adding a variate.

Convergent cross mapping [115] Measures the degree of coupling of the variates to the target forecast.

DLinear [142] Learns a model of the STL decomposition of variates to forecast the target.
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Table 2: Description of univariate and multivariate predictability features. Our novel univariate
and multivariate predictability metrics are obtained by aggregating these individual metrics.

4.4 SYNTHETIC MULTIVARIATE TIME SERIES DATA

Training tabular and time series with synthetic data has seen recent success [102; 56; 6; 5], suggest-
ing that synthetic data provides a substantial breadth of multivariate data that can overlap the space
of real time series. Furthermore, synthetic datasets are multivariate by design, since the generative
process dictates correlation in time and across variates. MuSED-FM leverages two distinct lines of
work to generate multivariate time series. First, building on the success of TabPFN [56], especially
when applied to time series, we provide an SCM-based implementation building on TabICL [102],
but adapted to generate multivariate time series by replacing noise with sequentially correlated in-
puts, and shifting observations to ensure multivariate predictability. Second, building on the excit-
ing work of Panda [68], we augment this method to construct multivariate dynamical systems with
multiple components by composing these systems into arbitrary graph structures, to produce rela-
tionships between the graph components that form the multivariate relationships that a foundation
model can identify. This allows us to generate 2.5 million time series with 6.2 billion data points,
a vast and diverse set of multivariate data with correlations by construction. We provide additional
details about these data formats in Appendix E and F.
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Traditional Collections Sequential Synthetic Combined

Predictability
Type

Energy Public
Info

Health Sales Climate
& Env.

Eng. Finance Web Stock Wiki-
pedia

Images Text Video Scien-
tific

Dyna-
mics

Causal
Model

Univariate Pre-
dictability

−0.233 −0.300 −0.328 −0.314 −0.363 −0.379 −0.162 −0.168 −0.198 −0.409 −0.422 −0.399 −0.427 −0.445 −0.311 −0.364 −0.285

Multivariate
Predictability

0.384 0.373 0.331 0.408 0.258 0.359 0.440 0.494 0.336 0.286 0.335 0.342 0.439 0.351 0.281 0.266 0.367

Table 4: Univariate and Multivariate predictability metrics per domain. Here, we showcase
both predictability metrics for 16 different domains in the MuSED-FM benchmark. Higher uni-
variate predictability (lower negative values) indicates the availability of more information in the
target time series history to forecast effectively. Similarly, higher multivariate predictability indi-
cates the availability of more information in the variates to forecast effectively. Key takeaway:
across many domains, covariates carry substantial predictive signal that good TSFMs should be able
to exploit—beyond simple extrapolation from “single context”, i.e., just using single variate.

5 ANALYSIS OF CHARACTERISTIC FEATURES

The vital property of a dataset used for time series foundation models is to characterize the degree to
which the dataset can be forecasted from historical data. This work introduces two “predictability”
metrics: univariate predictability and multivariate predictability. The former measures the de-
gree of difficulty of univariate forecasting, whereas the latter characterizes the degree of simple
correlations in the data. Though neither is a perfect metric, this analysis is invaluable for aggre-
gating a large corpus of datasets across a wide variety of different domains, since it allows for a
meaningful comparison of foundation model performance in Section 6 across different approxima-
tions of difficulty. Both metrics are a averaged sum of different statistics described in Table 2, where
the weighting ensures that each statistic can take on a value between [0,1] or [-1,0]. Thus, the metrics
take on values between [-1,1] for univariate predictability, and [0,1] for multivariate predictability.

Formally, to construct both the univariate and multivariate “predictability” statistic, we combine
these metrics by first normalizing unnormalized values between 0, 1 using the range observed across
all datasets. Next, we take a weighted sum of the metrics, where the weights are −1 for metrics that
indicate more challenging forecasting when lower, and +1 for the opposite (for multivariate, this is
when the metric indicates greater information transfer). Finally, we divide by the total number of
components to identify the final predictability scores. Thus, for a set of n positive normalized metric
values {γ+

1 , . . . , γ+
n } and m negative normalized metric values {γ−

1 . . . γ−
m}, the aggregated metric

is computed as:

Random Other Correlated

Multivariate Predictability 0.163 0.135 0.367

Table 3: Multivariate predictability captures cross-
variable signal. We ablate the metric by replacing
true covariates with (i) Random: randomly generated
Fourier/ARIMA series, and (ii) Other: covariates ran-
domly drawn from different series. In both cases, the
score drops substantially relative to using the true co-
variates, validating that the metric assigns higher val-
ues when covariates are genuinely correlated and lower
values when they are uninformative.

1

n
·

 n∑
i=1

γ+
i +

m∑
j=1

γ−
j

 . (1)

We illustrate these scores across different
domains in Table 4.

We visualize higher univariate predictabil-
ity values indicating greater predictabil-
ity and thus lower average MAPE across
models through a loose correlation as seen in Figure 3a. While multivariate predictability should
give a measure of the benefit of adding correlated information, we have observed that most existing
multivariate time series foundation models have the same or worse performance as univariate, thus
we do not observe that higher multivariate prediction score actually correlate with greater differ-
ence in univariate-multivariate in Figure 3b. However, to demonstrate that this is a limitation of
the models and not the metric, we construct multivariate time series where we either sample series
from a random distribution of Fourier and ARIMA samples, or from unrelated time series, and show
that these collections of time series have lower average multivariate predictability than the datasets
sampled from MuSED-FM, as seen in Table 3.
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Figure 3: Points are datasets. Left: As predictability increases, MAPE decreases (better prediction
from FMs). Right: Plot univariate MAPE - multivarate MAPE averaged across multivariate models.
Key takeaway : As multivariate predictability increases, it does not necessarily indicate better
performance of TSFMs, indicating their limited multivariate capability. MAPE values are clipped at
1.0/0.2, respectively, to prevent outlier skew.

Group Time Series Model Description

Mean [10] Trivial Baseline Model that forecasts the mean value.

Prophet [122] Additive linear regression mixture model using STL.

SARIMAX [10] Seasonal ARIMA with exogenous regressors; classic statistical model with exogenous elements
included as lagged regressors.

Google Causal Impact [12] Bayesian structural time series model for inferring the causal effects (interventions, counterfac-
tuals, etc.).

Chronos [5] Transformer-based large-scale pretrained univariate Time Series Foundation Model.

TabPFN [56] Tabular Transformer-based Model with row-column attention adapted for time series by includ-
ing timestamps as features trained on synthetic tabular data. Univariate uses only these features,
while multivariate uses the historical variates as context.

Mitra [6] Tabular Transformer-based Model inspired by TabPFN, which uses a similar structure but differ-
ent implementation and improved performance. Univariate and Multivariate implementations
are similar.

Toto [29] Time-series Optimal Transport Operator; Multivariate time series model trained on proprietary
data, with native univariate and multivariate support by changing the number of input columns.

TimesFM [105] Current state of the art model for univariate time series foundation models. Implements mul-
tivariate prediction for the target by first predicting other variates followed by fitting a linear
regression model for the target prediction.
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Table 5: Representative time-series models used in our experiments, grouped as classic statis-
tical baselines, univariate TSFMs, and multivariate/tabular approaches. The list emphasizes how
multivariate modeling is handled: some methods natively learn cross-variable structure (e.g., Toto),
while others treat covariates as features or apply post-hoc regression (e.g., TimesFM).

6 FOUNDATION MODEL EVALUATION

Identifying multivariate correlations in real-world time series remains a holy grail of TSFMs,
as it allows the model to maximally leverage the most general form of information—other time se-
ries. As such, several state-of-the-art foundation models support multivariate capabilities. However,
identifying the degree to which these models are capable of multivariate forecasting remains an open
problem. MuSED-FM offers a comprehensive variety of data for identifying multivariate time series
foundation model capabilities.

The core challenge behind evaluating a TSFM’s multivariate capability is the entanglement
of a dataset’s multivariate information and a model’s ability to make use of multivariate infor-
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CLASSIC UNIVARIATE MULTIVARIATE AGGREGATED

DOMAIN MEAN PROPHET SARIMAX CAUSAL IMPACT CHRONOS TABPFN MITRA TOTO TIMESFM TABPFN MITRA TOTO TIMES FM

ENERGY N/A 3.836 3.784 13.313 0.186 0.126 0.178 11.745 1.837 0.191 0.175 16.385 0.288 4.337
PUBLIC INFO 2.274 1.505 2.596 8.643 1.499 1.460 3.800 1.745 1.744 1.465 3.056 1.593 1.765 2.550

HEALTH 5.553 4.719 1.533 2.266 0.434 2.528 3.956 0.453 3.804 5.278 4.118 0.768 2.230 2.895
SALES 0.487 0.524 0.539 0.355 0.242 0.247 0.455 0.240 0.217 0.476 0.464 0.265 0.213 0.363

CLIMATE & ENVIRONMENT 2.263 1.505 1.085 0.806 2.450 1.314 2.624 1.092 0.667 1.523 2.740 1.101 0.487 1.598
ENGINEERING 0.217 0.216 0.009 0.008 0.209 0.147 0.006 0.217 0.132 0.214 0.006 0.216 0.132 0.133

FINANCE 2.512 0.523 0.465 0.136 0.586 0.399 2.437 0.438 0.330 2.314 2.425 0.691 0.386 1.049
WEB 0.288 0.165 0.038 0.034 0.167 0.133 0.289 0.156 0.141 0.290 0.287 0.149 0.130 0.174

STOCK 1.132 0.268 0.026 0.027 0.251 0.274 0.136 0.202 0.200 0.885 0.129 0.204 0.199 0.303
WIKIPEDIA 2.029 5.747 N/A N/A 0.462 0.584 1.348 0.551 0.802 0.481 1.282 1.583 0.802 1.425

IMAGES 3.590 4.245 3.346 8.042 2.114 8.958 2.373 9.727 1.871 3.560 2.259 7.447 1.752 4.560
TEXT 2.641 3.035 1.989 1.583 1.346 1.756 2.354 1.671 1.609 2.970 2.121 1.664 1.776 2.040

VIDEO 1.404 0.910 2.358 1.649 0.982 1.141 2.538 1.010 1.133 1.508 2.554 0.998 1.897 1.545
SCIENTIFIC N/A 6.950 N/A N/A 5.522 4.816 N/A 7.279 3.551 15.200 N/A 5.969 3.551 6.605

DYNAMIC 3.023 2.796 2.792 2.887 3.325 3.081 2.204 2.675 4.393 1.094 2.219 2.298 1.610 2.646
CAUSAL MODEL 1.570 16.030 10.329 N/A 3.753 3.922 6.883 4.434 5.496 2.113 6.430 4.408 6.489 5.988

COMBINED 2.055 3.358 2.236 3.079 1.368 2.001 2.018 2.823 1.772 2.419 1.937 2.961 1.520 2.273

TRADITIONAL

COLLECTIONS

SEQUENTIAL

SYNTHETIC

COMBINED

Table 6: Domain groups vs forecasting method evaluations mean performance. Green indicates that
multivariate performance is more than 0.1 better than the univariate performance of the same model.
Note that the best multivariate exceeds the best univariate on only two domains.

mation. Poor performance in an evaluation could be attributable to either a dataset’s lack of useful
information in multivariate signals or a model’s inability to take advantage of existing multivariate
information. While in an ideal world, we might be confident with a multivariate dataset using a
diversity of realistic, meaningful correlates, this volume of data simply does not exist in an open-
source format. The core advantage of MuSED-FM is to aggressively leverage a diversity of data as
described in Section 4.

MuSED-FM disentangles the limitations of a model from the limitations of a dataset by cate-
gorizing its forms of data as “synthetic”, “combined”, or “traditional and sequential”. In particular,
“synthetic” datasets have multiple multivariate patterns by construction—there will always be ad-
ditional information provided by the variates not present in the univariate time series. Thus, if the
model is unable to capture these relationships, then that would serve as a strong indicator of the
limitations of the model. On the other hand, “combined” datasets of hand-collated univariate time
series will probably contain a good deal of redundant information, so if a model is able to improve
performance by adding variates, this suggests generalized ability to ignore certain variates and keep
others. Finally, “traditional and sequential” data is likely to contain positive transfer in the correlates,
either because of strong human intuitions or because the underlying system from which the sequen-
tial information is derived is entangled. Consequently, these domains offer a meaningful blend of
being in-distribution of “real” time series data, while in aggregate offering strong evidence . Thus,
MuSED-FM is a powerful tool for fine-grained analysis of multivariate time series foundation model
capabilities.

Through MuSED-FM we identify a key limitation of existing TSFMs– across most domains,
these models show little to no improvement when presented with multivariate context. For the
four models we assessed with multivariate capability (TabPFN, Mitra, Toto, and TimesFM), all
of them showed little to no improvement when comparing univariate to multivariate forecasting
performance, as seen in Figure 2. Assessing a model univariately involves only showing it the target
variate, while multivariate assessment gives the model all the variates. On all domains, the best
performance for any model was univariate rather than multivariate, as seen in Table 6. Thus even
when a multivariate version of a model is able to improve over the corresponding univariate version,
it may not be leveraging the multivariate information to do so.

7 CONCLUSION

This work introduces MuSED-FM, a benchmark that assesses time series foundation models mul-
tivariate capabilities across a wide range of domains and settings. Focusing on multivariate pre-
dictability, this work introduces both univariate and multivariate predictability metrics to estimate
useful information from history, as well as from other variables. Combined, this dataset and analysis
illustrate a core limitation of existing multivariate time series foundation models: when applied zero-
shot on a variety of domains, the multivariate performance does not exceed univariate performance,
even on synthetic datasets which have multivariate correlation by construction. This demonstrates
the need not only for more extensive multivariate analysis, but also the importance of MuSED-FM
as a key step for delivering on the promise of multivariate time series foundation models.
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8 REPRODUCIBILITY STATEMENT

We intend for MuSED-FM as a competition on Huggingface to assess SOTA Multivariate time series
foundation models, and eventually fully open source. The analysis computations and metrics lever-
age open source repositories, and we intend to open source our code for computing the univariate
and multivariate predictability metrics.
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[9] André Bauer, Marwin Züfle, Simon Eismann, Johannes Grohmann, Nikolas Herbst, and
Samuel Kounev. Libra: A benchmark for time series forecasting methods. In Proceedings of
the ACM/SPEC International Conference on Performance Engineering, pp. 189–200, 2021.

[10] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and Control.
Holden-Day, 1970.

[11] Lorenzo Brigato, Rafael Morand, Knut Strømmen, Maria Panagiotou, Markus Schmidt, and
Stavroula Mougiakakou. Position: There are no champions in long-term time series forecast-
ing. arXiv preprint arXiv:2502.14045, 2025.

[12] Kay H. Brodersen, Fabian Gallusser, Jim Koehler, Nicolas Remy, and Steven L. Scott. In-
ferring causal impact using bayesian structural time-series models. The Annals of Applied
Statistics, 9(1):247–274, 2015.

[13] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. PNAS, 113(15):3932–
3937, 2016.

[14] Mathieu Candel. tsfeatures: Time series feature extraction for r, 2020. URL https://
github.com/Nixtla/tsfeatures. Accessed: 2025-09-17.

10

https://huggingface.co/autogluon/mitra-regressor
https://huggingface.co/autogluon/mitra-regressor
https://github.com/Nixtla/tsfeatures
https://github.com/Nixtla/tsfeatures


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[15] Ching Chang, Jeehyun Hwang, Yidan Shi, Haixin Wang, Wen-Chih Peng, Tien-Fu Chen, and
Wei Wang. Time-imm: A dataset and benchmark for irregular multimodal multivariate time
series. arXiv preprint arXiv:2506.10412, 2025.

[16] Sameep Chattopadhyay, Pulkit Paliwal, Sai Shankar Narasimhan, Shubhankar Agarwal, and
Sandeep P. Chinchali. Context matters: Leveraging contextual features for time series fore-
casting, 2025. URL https://arxiv.org/abs/2410.12672.

[17] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Free-
way performance measurement system: mining loop detector data. Transportation research
record, 1748(1):96–102, 2001.

[18] Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Joy Wang, Jianling Sun, and Chenghao Liu.
Visionts: Visual masked autoencoders are free-lunch zero-shot time series forecasters. arXiv
preprint arXiv:2408.17253, 2024.

[19] Xu Cheng, Fan Shi, Meng Zhao, Guoyuan Li, Houxiang Zhang, and Shengyong Chen. Tem-
poral attention convolutional neural network for estimation of icing probability on wind tur-
bine blades. IEEE Transactions on Industrial Electronics, 69(6):6371–6380, 2021.

[20] Yuxiao Cheng, Ziqian Wang, Tingxiong Xiao, Qin Zhong, Jinli Suo, and Kunlun He.
Causaltime: Realistically generated time-series for benchmarking of causal discovery. arXiv
preprint arXiv:2310.01753, 2023.

[21] Yuxiao Cheng, Lianglong Li, Tingxiong Xiao, Zongren Li, Jinli Suo, Kunlun He, and Qiong-
hai Dai. Cuts+: High-dimensional causal discovery from irregular time-series. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 11525–11533, 2024.

[22] Caleb Chuck, Supawit Chockchowwat, and Scott Niekum. Hypothesis-driven skill discovery
for hierarchical deep reinforcement learning. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5572–5579. IEEE, 2020.

[23] Caleb Chuck, Kevin Black, Aditya Arjun, Yuke Zhu, and Scott Niekum. Granger-causal
hierarchical skill discovery. arXiv e-prints, pp. arXiv–2306, 2023.

[24] Caleb Chuck, Carl Qi, Michael J Munje, Shuozhe Li, Max Rudolph, Chang Shi, Siddhant
Agarwal, Harshit Sikchi, Abhinav Peri, Sarthak Dayal, et al. Robot air hockey: A manipula-
tion testbed for robot learning with reinforcement learning. arXiv preprint arXiv:2405.03113,
2024.

[25] Caleb Chuck, Sankaran Vaidyanathan, Stephen Giguere, Amy Zhang, David Jensen, and
Scott Niekum. Automated discovery of functional actual causes in complex environments.
arXiv preprint arXiv:2404.10883, 2024.

[26] Caleb Chuck, Fan Feng, Carl Qi, Chang Shi, Siddhant Agarwal, Amy Zhang, and Scott
Niekum. Null counterfactual factor interactions for goal-conditioned reinforcement learning.
arXiv preprint arXiv:2505.03172, 2025.

[27] Robert B. Cleveland, William S. Cleveland, Jean E. McRae, and Irma Terpenning. Stl: A
seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1):
3–73, 1990.

[28] Oliver M Cliff, Annie G Bryant, Joseph T Lizier, Naotsugu Tsuchiya, and Ben D Fulcher.
Unifying pairwise interactions in complex dynamics. Nature Computational Science, 3(10):
883–893, 2023.

[29] Ben Cohen, Emaad Khwaja, Kan Wang, Charles Masson, Elise Ramé, Youssef Doubli, and
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Appendix

A EXTENDED RELATED WORK

Creating meaningful evaluation and training datasets underlies the push for a multivariate time series
foundation model, and while main benchmarks remain domain specific, focusing on classic fields
such as energy [151; 128], weather and climate [134; 55], traffic [17; 79; 92], finance [88; 58],
air quality [147], healthcare and brain signals [32; 62; 126; 96; 136] but also branching out into
compute or network related domains [117; 130; 87; 75], cryptocurrency [4], biology [97], industrial
devices [125], icicle formation [19], aerospace [144], action identification [49], environment [54].
Alternatively, many benchmarks focus on related problems such as anomaly detection [94; 59; 78;
135; 101], classification [98], robustness [146], etc. The substantial diversity of domains offers
both a tantalizing promise and an obvious challenge for time series foundation models: the promise
of widespread applicability and the challenge of myriad diversity. Nonetheless, recent work has
sought to aggregate and stratify datasets into meaningful benchmarks to assess general time series
modeling, including early work such as [84; 119; 85], but subsequently with [3; 47; 9; 1; 71], as well
as benchmarks focused on balanced or fair assessment [99; 112], horizon [145], multimodality [76],
irregular sampling [15], or dynamical systems [68; 120]. Other work focuses on benchmarking with
different foundation models, including [70; 111; 77; 100], while also contributing some compilations
of data. While these methods often include multivariate series, they often do not focus on the
multivariate problem. First, this can lead to limited volume of multivariate data, and datasets such
as those used in [47], [1] and [70] are either entirely or heavily univariate. Furthermore, the analysis
of the multivariate datasets in [1] is limited to mostly a small subset.

Of existing time series foundation model datasets, [71] shows the closest resemblance to MuSED-
FM, containing multiple real-world time series datasets. Our work subsumes this contemporary
work by first including a greater volume of datasets spanning several more domains and time series
patterns. Second, including novel datasets by combining related univariate series, transforming se-
quential data into time series and generating synthetic data to create a more comprehensive datasets,
which we discuss further in Section 4. Third, the analysis of variates in [71] uses pearson corre-
lation metrics, which only measure if two series look similar, regardless of how useful the variates
are for prediction. By contrast this work introduces a novel multivariate forecasting score that com-
bines Granger Causality [39], transfer entropy [108], convegent cross mapping [138; 116], lagged
cross correlation and decomposition-based linear prediction [141], all measures of how the vari-
ate can be used for prediction. These tools builds on a rich tradition of time series analysis tools,
including collections of metrics such as [83; 14; 2] to modern adaptions [93; 67] to more recent
analysis of these tools from a large model perspective [137; 61; 11]. Recent work has investigated
other learning metrics for multivariate predictability through dynamics [28; 106], Granger causal-
ity [22; 121; 23; 129; 26; 25; 24], causal graphs [82; 20; 21], dynamic bayes networks [118] and
transfer entropy [148]. While this work just applies concepts from this field, the analysis applies
these concepts on a much larger scale multivariate time series dataset than previously done.

In this work, we add a substantial volume of data in the form of synthetic data and also data derived
from classically non-time-series sources: images, video and language. This method for deriving time
series follows from understanding time series as timestamped, noisy measurements of a complex,
real, dynamic system. From that perspective, time series have been derived from video in Human
computer interface [8], video QoE [35], video prediction [143], Sattelite images [114], image com-
pression [33], masked autoencoding [18], time series as images [69], Language [64], Time-series
derived from video [72]. Despite strong historic ties—especially considering that many classical
methods for analyzing images and video such as FFT and wavelet analysis are derived from time
series, this work is the first that we know of applying deep learning transformations to generate
multivariate time series from these data sources for time series foundation models, a notion which
has seen some recent traction [150]. Furthermore, synthetic data is also a classic tool for the training
and evaluation of time series [80], with recent support for synthetic data as an effective training
tool [56; 6; 68]. This work includes novel implementations built on [56] and [68] to generate a
substantial synthetic evaluation dataset which allows the assessment of a wide range of multivariate
relationships which are known to be present by construction.
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B SUMMARY OF DATA PER DATASET

This section provides per-dataset visualizations of time series, evaluation performance and model
forecasts. Additional per-data data summaries and example data from each dataset can be found in
the supplementary attachment.

CLASSIC UNIVARIATE MULTIVARIATE

DOMAIN DATASET MEAN PROPHET SARIMAX CAUSAL IMPACT CHRONOS TABPFN MITRA TOTO TIMESFM TABPFN MITRA TOTO TIMES FM

EUROPE ELECTRICITY 0.117 ± 0.046 0.069 ± 0.035 0.108 ± 0.067 0.078 ± 0.033 0.064 ± 0.040 0.058 ± 0.029 0.059 ± 0.032 0.076 ± 0.049 0.057 ± 0.031 0.062 ± 0.037 0.060 ± 0.034 0.073 ± 0.046 0.110 ± 0.087
DAILY ELECTRICITY 0.134 ± 0.064 0.154 ± 0.082 0.122 ± 0.068 0.078 ± 0.041 0.078 ± 0.045 0.083 ± 0.052 0.093 ± 0.045 0.074 ± 0.040 0.082 ± 0.050 0.082 ± 0.049 0.091 ± 0.039 0.074 ± 0.040 0.074 ± 0.008

HOURLY ELECTRICITY 0.129 ± 0.034 0.159 ± 0.136 0.213 ± 0.153 0.087 ± 0.059 0.097 ± 0.067 0.107 ± 0.052 0.091 ± 0.053 0.083 ± 0.046 0.093 ± 0.049 0.106 ± 0.052 0.089 ± 0.049 0.084 ± 0.049 0.084 ± 0.008
MDS MICROGRID 7798.036 ± 489.123 124.391 ± 18.456 113.663 ± 21.789 3.099 ± 0.987 0.850 ± 0.104 395.502 ± 47.321 553.344 ± 58.210 57.008 ± 9.876 0.713 ± 0.089 0.870 ± 0.115 553.344 ± 58.210 5.809 ± 1.034 5.809± 0.581

ERCOT LOAD 0.125 ± 0.021 0.088 ± 0.015 0.182 ± 0.025 0.069 ± 0.010 0.078 ± 0.012 0.078 ± 0.013 0.081 ± 0.014 0.081 ± 0.014 0.117 ± 0.018 0.119 ± 0.019 0.076 ± 0.012 0.077 ± 0.011 0.077 ± 0.008
SOLAR ENERGY 2.722 ± 0.583 0.752 ± 0.145 6.337 ± 1.026 0.144 ± 0.035 0.202 ± 0.052 0.307 ± 0.061 1.253 ± 0.219 1.253 ± 0.222 2.771 ± 0.558 2.770 ± 0.562 0.282 ± 0.068 1.343 ± 0.276 1.343 ± 0.134

AUSTRALIA ENERGY 0.255 ± 0.035 0.247 ± 0.023 0.139 ± 0.108 0.118 ± 0.029 0.133 ± 0.031 0.171 ± 0.036 0.158 ± 0.030 0.141 ± 0.027 0.178 ± 0.031 0.146 ± 0.027 0.149 ± 0.029 0.136 ± 0.026 0.136 ± 0.014
SPAIN ENERGY 0.153 ± 0.025 0.085 ± 0.018 0.100 ± 0.015 0.070 ± 0.012 0.052 ± 0.010 0.069 ± 0.011 0.082 ± 0.014 0.025 ± 0.007 0.061 ± 0.011 0.068 ± 0.012 0.079 ± 0.014 0.012 ± 0.004 0.012 ± 0.001

CAUSAL RIVERS 2.263 ± 0.350 1.505 ± 0.220 1.085 ± 0.170 0.806 ± 0.120 2.450 ± 0.380 1.314 ± 0.210 2.624 ± 0.400 1.092 ± 0.180 0.667 ± 0.110 1.523 ± 0.250 2.740 ± 0.360 1.101 ± 0.170 0.487 ± 0.048
OIKOLAB WEATHER 0.367 ± 0.045 0.197 ± 0.030 0.422 ± 0.051 0.219 ± 0.033 0.215 ± 0.034 0.316 ± 0.048 0.214 ± 0.032 0.147 ± 0.027 0.318 ± 0.049 0.318 ± 0.049 0.220 ± 0.035 0.095 ± 0.021 0.095 ± 0.010
BEIJING EMBASSY 2.152 ± 0.432 2.235 ± 0.410 2.757 ± 0.498 3.853 ± 0.475 1.877 ± 0.376 2.922 ± 0.487 1.768 ± 0.354 0.772 ± 0.153 3.109 ± 0.512 2.952 ± 0.491 1.804 ± 0.361 0.456 ± 0.100 0.456 ± 0.046

BEIJING AQ 3.173 ± 0.512 2.083 ± 0.402 2.812 ± 0.534 6.472 ± 0.645 2.873 ± 0.457 3.322 ± 0.498 1.934 ± 0.376 1.078 ± 0.185 2.174 ± 0.410 3.329 ± 0.500 1.990 ± 0.388 0.613 ± 0.131 0.613 ± 0.061
OPEN AQ 4.797 ± 1.025 0.202 ± 0.050 2.738 ± 0.503 1.261 ± 0.291 1.162 ± 0.228 6.006 ± 1.083 1.054 ± 0.211 1.058 ± 0.212 1.234 ± 0.241 6.608 ± 1.211 0.998 ± 0.202 0.890 ± 0.165 0.890 ± 0.089

GAS SENSOR 0.541 ± 0.085 0.324 ± 0.050 0.748 ± 0.090 0.443 ± 0.065 0.444 ± 0.066 0.553 ± 0.075 0.491 ± 0.070 0.541 ± 0.085 0.780 ± 0.090 0.495 ± 0.070 0.494 ± 0.070 0.465 ± 0.062 0.465 ± 0.046
EV SENSORS 0.417 ± 0.065 0.426 ± 0.050 0.412 ± 0.078 0.413 ± 0.060 0.290 ± 0.045 0.429 ± 0.065 0.429 ± 0.065 0.260 ± 0.042 0.417 ± 0.065 0.260 ± 0.043 0.427 ± 0.060 0.191 ± 0.030 0.191 ± 0.019

VOIP 0.018 ± 0.007 0.007 ± 0.003 0.007 ± 0.005 0.006 ± 0.004 0.005 ± 0.002 0.006 ± 0.003 0.005 ± 0.003 0.004 ± 0.002 0.011 ± 0.004 0.006 ± 0.003 0.005 ± 0.003 0.004 ± 0.002 0.004 ± 0.001

FRED-MD 2.512 ± 0.500 0.523 ± 0.080 0.465 ± 0.073 0.586 ± 0.088 0.399 ± 0.055 2.437 ± 0.512 0.438 ± 0.058 0.330 ± 0.052 2.314 ± 0.485 2.425 ± 0.507 0.691 ± 0.079 0.386 ± 0.065 0.386 ± 0.039
BITCOIN PRICES 0.677 ± 0.150 1.590 ± 0.280 1.997 ± 0.320 0.540 ± 0.090 0.604 ± 0.092 0.571 ± 0.084 0.481 ± 0.075 0.443 ± 0.060 0.944 ± 0.090 0.606 ± 0.085 0.601 ± 0.085 0.425 ± 0.070 0.425 ± 0.043

CGM 0.394 ± 0.151 1.106 ± 0.783 0.571 ± 0.280 0.423 ± 0.142 0.443 ± 0.177 0.398 ± 0.162 0.415 ± 0.181 0.446 ± 0.132 0.394 ± 0.152 0.399 ± 0.160 0.419 ± 0.196 0.446 ± 0.132 0.432 ± 0.121
SLEEP LAB 0.425 ± 2.149 8.331 ± 38.380 2.496 ± 10.067 4.109 ± 21.275 0.425 ± 2.149 4.662 ± 29.700 7.821 ± 36.355 0.462 ± 2.356 2.230 ± 12.887 5.018 ± 30.028 7.492 ± 35.212 1.091 ± 5.127 10.673 ± 48.438

TAC 3.350 ± 3.211 9.566 ± 13.125 10.030 ± 17.290 67.281 ± 122.854 8.071 ± 8.225 3.390 ± 3.080 12.207 ± 16.448 7.365 ± 10.528 9.662 ± 9.482 3.390 ± 3.080 19.301 ± 28.149 9.153 ± 15.729 12.000 ± 20.000
MN INTERSTATE 1.438 ± 12.636 3.472 ± 0.000 3.677 ± 17.904 11.859 ± 20.000 3.146 ± 13.223 1.475 ± 12.888 1.805 ± 15.727 3.693 ± 15.715 3.472 ± 15.618 1.476 ± 12.906 1.833 ± 15.855 3.551 ± 15.567 4.200 ± 18.000
MTA RIDERSHIP 0.306 ± 0.049 0.213 ± 0.036 0.360 ± 0.114 0.194 ± 0.297 0.175 ± 0.040 0.330 ± 0.130 0.268 ± 0.030 0.178 ± 0.035 0.177 ± 0.068 0.216 ± 0.132 0.277 ± 0.038 0.175 ± 0.036 0.180 ± 0.070
PARIS MOBILITY 0.117 ± 0.017 0.062 ± 0.023 0.141 ± 0.058 0.110 ± 0.010 0.059 ± 0.021 0.086 ± 0.013 0.105 ± 0.009 0.048 ± 0.012 0.045 ± 0.018 0.046 ± 0.012 0.108 ± 0.014 0.048 ± 0.012 0.047 ± 0.019

RIDESHARE 0.031 ± 0.015 0.033 ± 0.016 1.281 ± 0.006 0.033 ± 0.016 0.988 ± 0.074 0.222 ± 0.119 0.401 ± 0.134 0.981 ± 0.013 0.570 ± 0.131 0.252 ± 0.145 0.401 ± 0.134 0.989 ± 0.014 0.570 ± 0.131
BLUE BIKES 0.119 ± 0.040 0.434 ± 0.270 4.941 ± 4.731 2.987 ± 0.861 0.434 ± 0.270 2.745 ± 0.924 7.733 ± 3.423 0.688 ± 0.305 0.510 ± 0.318 0.439 ± 0.236 7.956 ± 3.757 0.682 ± 0.302 0.522 ± 0.297

AUSTIN WATER 0.076 ± 0.014 0.095 ± 0.055 0.233 ± 0.034 0.135 ± 0.068 0.119 ± 0.036 0.093 ± 0.001 0.094 ± 0.011 0.087 ± 0.011 0.089 ± 0.022 0.087 ± 0.033 0.094 ± 0.011 0.099 ± 0.004 0.089 ± 0.022
TRAFFIC 0.111 ± 0.176 0.141 ± 0.169 1.188 ± 3.395 0.379 ± 0.000 0.141 ± 0.169 0.203 ± 0.262 2.791 ± 5.831 0.301 ± 0.456 0.183 ± 0.219 2.085 ± 5.063 2.445 ± 5.204 2.722 ± 5.815 0.533 ± 0.532

CURSOR TABS 0.869 ± 0.150 1.478 ± 0.200 1.606 ± 0.215 2.158 ± 0.250 2.158 ± 0.250 2.158 ± 0.250 2.284 ± 0.260 2.873 ± 0.295 3.419 ± 0.300 3.722 ± 0.320 3.914 ± 0.325 3.972 ± 0.328 4.796 ± 0.350

WALMART SALES 0.041 ± 0.020 0.041 ± 0.021 0.045 ± 0.021 0.045 ± 0.021 0.045 ± 0.021 0.049 ± 0.021 0.050 ± 0.027 0.050 ± 0.027 0.057 ± 0.027 0.063 ± 0.047 0.064 ± 0.026 0.065 ± 0.028 0.074 ± 0.035
BLOW MOLDING 0.077 ± 0.085 0.096 ± 0.058 0.097 ± 0.073 0.097 ± 0.073 0.097 ± 0.073 0.098 ± 0.078 0.101 ± 0.077 0.104 ± 0.035 0.119 ± 0.063 0.119 ± 0.107 0.148 ± 0.102 0.242 ± 0.079 0.195 ± 0.070

PASTA SALES 0.527 ± 0.170 0.531 ± 0.154 0.539 ± 0.174 0.577 ± 0.161 0.606 ± 0.167 0.609 ± 0.340 0.613 ± 0.341 0.613 ± 0.145 0.713 ± 0.690 0.877 ± 1.263 0.943 ± 0.746 1.023 ± 1.438 0.900 ± 0.750
RICE PRICES 0.066 ± 0.056 0.075 ± 0.047 0.103 ± 0.114 0.104 ± 0.096 0.105 ± 0.108 0.105 ± 0.104 0.107 ± 0.113 0.107 ± 0.113 0.107 ± 0.101 0.115 ± 0.102 0.115 ± 0.139 0.366 ± 0.120 0.396 ± 0.121
GOLD PRICES 0.509 ± 0.064 0.122 ± 0.072 0.074 ± 0.027 0.080 ± 0.058 0.079 ± 0.034 0.073 ± 0.031 0.150 ± 0.092 0.082 ± 0.024 0.074 ± 0.025 0.443 ± 0.063 0.163 ± 0.079 0.091 ± 0.025 0.074 ± 0.025

WEB VISITORS 0.288 ± 0.049 0.165 ± 0.033 0.480 ± 0.162 0.031 ± 0.011 0.167 ± 0.047 0.133 ± 0.048 0.289 ± 0.062 0.156 ± 0.013 0.141 ± 0.038 0.290 ± 0.057 0.287 ± 0.058 0.149 ± 0.012 0.130 ± 0.048

MUJOCO 1.346 ± 0.824 1.695 ± 1.269 6.115 ± 6.839 456.120 ± N/A 6.393 ± 13.442 4.072 ± 5.288 2.316 ± 2.522 5.197 ± 8.799 3.434 ± 3.657 4.120 ± 5.194 2.408 ± 2.819 5.352 ± 9.792 3.434 ± 3.657
SPRITEWORLD 168.547 ± 49.732 27.964 ± 5.128 181.612 ± 40.211 105.031 ± 29.874 2.034 ± 0.982 7.796 ± 1.987 1597.468 ± 198.645 15.609 ± 4.872 4.022 ± 1.489 59.523 ± 9.874 1002.461 ± 149.732 8.441 ± 2.471 4.023 ± 1.512

CIFAR100 3.590 ± 1.124 4.245 ± 1.036 1.361 ± 0.531 8.042 ± 2.145 2.114 ± 0.897 8.958 ± 2.012 2.373 ± 0.784 9.727 ± 2.355 1.871 ± 1.210 3.560 ± 1.142 2.259 ± 0.831 7.447 ± 2.101 1.752 ± 1.241

OPENWEBTEXT 2.641 ± 0.950 3.035 ± 1.012 1.541 ± 2.806 1.583 ± 0.875 1.346 ± 0.890 1.756 ± 0.912 2.354 ± 0.870 1.671 ± 0.865 1.609 ± 3.599 2.970 ± 1.020 2.121 ± 0.895 1.664 ± 0.900 1.897 ± 6.083

KITTI 1.404 ± 0.950 0.910 ± 0.875 1.084 ± 3.800 1.649 ± 0.870 0.982 ± 0.890 1.141 ± 0.912 2.538 ± 0.895 1.010 ± 0.865 1.133 ± 3.993 1.508 ± 1.020 2.554 ± 0.900 0.998 ± 0.880 1.897 ± 6.083

CAUSAL MODEL 16.024 ± 3.456 10.329 ± 54.528 706217.234 ± 0.000 3.750 ± 5.591 3.813 ± 2.988 6.616 ± 4.298 4.446 ± 3.561 5.496 ± 25.451 2.159 ± 0.555 6.132 ± 2.563 4.372 ± 3.660 6.489 ± 26.850 7.497 ± 32.990
DYNAMIC 3.023 ± 1.500 2.796 ± 1.200 8.724 ± 29.279 2.887 ± 1.000 3.325 ± 1.000 3.081 ± 1.200 2.204 ± 1.100 2.675 ± 1.150 4.393 ± 11.047 1.850 ± 0.900 2.220 ± 1.050 2.299 ± 1.100 1.610 ± 2.959

WIKIPEDIA 2.029 ± 0.500 5.747 ± 1.000 45.000 ± 10.000 48.093 ± 15.000 0.462 ± 0.080 0.584 ± 0.100 1.348 ± 0.250 0.551 ± 0.090 0.802 ± 1.146 0.481 ± 0.080 1.282 ± 0.200 1.583 ± 0.250 0.820 ± 1.150

NASDAQ TRACKER 1.782 ± 0.400 0.450 ± 0.100 0.192 ± 0.194 0.035 ± 0.010 0.179 ± 0.050 0.201 ± 0.050 0.208 ± 0.050 0.175 ± 0.050 0.200 ± 0.201 0.029 ± 0.010 0.190 ± 0.050 0.174 ± 0.050 0.199 ± 0.173
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Table 7: Domain groups vs forecasting method evaluations mean performance with standard devia-
tions.

B.1 SAMPLES OF DATASET EVALUATIONS

2008-04-05 2008-04-09 2008-04-13 2008-04-17 2008-04-21 2008-04-25 2008-04-29
Time
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11']

Mean Forecaster: MAE=2.3250, MAPE=1.7423% | ProphetForecaster: MAE=2.3634, MAPE=2.0153%
TabPFNMultivariateForecaster: MAE=2.3167, MAPE=2.3385% | TabPFNUnivariateForecaster: MAE=2.3157, MAPE=2.4705%

TimesFMUnivariateForecaster: MAE=2.3388, MAPE=3.6798% | TimesFMMultivariateForecaster: MAE=2.3388, MAPE=3.6798%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)
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Time
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e

['obs
26']

Mean Forecaster: MAE=0.6483, MAPE=1.0270% | ProphetForecaster: MAE=0.6522, MAPE=1.1933%
TabPFNMultivariateForecaster: MAE=0.6869, MAPE=2.1045% | TabPFNUnivariateForecaster: MAE=0.7057, MAPE=3.2105%

TimesFMUnivariateForecaster: MAE=0.6435, MAPE=1.4488% | TimesFMMultivariateForecaster: MAE=0.6435, MAPE=1.4488%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)
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['target']
Mean Forecaster: MAE=0.1717, MAPE=0.9283% | ProphetForecaster: MAE=0.1137, MAPE=0.9271%

TabPFNMultivariateForecaster: MAE=0.0936, MAPE=1.0524% | TabPFNUnivariateForecaster: MAE=0.0976, MAPE=0.7198%
TimesFMUnivariateForecaster: MAE=0.1256, MAPE=0.7912% | TimesFMMultivariateForecaster: MAE=0.1256, MAPE=0.7912%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)
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['target']
Mean Forecaster: MAE=0.6643, MAPE=1.0145% | ProphetForecaster: MAE=0.6701, MAPE=1.5057%

TabPFNMultivariateForecaster: MAE=0.6645, MAPE=0.9952% | TabPFNUnivariateForecaster: MAE=0.6651, MAPE=1.1881%
TimesFMUnivariateForecaster: MAE=0.6642, MAPE=1.0563% | TimesFMMultivariateForecaster: MAE=0.6642, MAPE=1.0563%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)

Figure 4: Cross-domain samples I: vision, control, finance, synthetic
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['QLD1 Price']
Mean Forecaster: MAE=2.0097, MAPE=0.1024% | ProphetForecaster: MAE=5.3205, MAPE=0.2617%

TabPFNMultivariateForecaster: MAE=2.7435, MAPE=0.1396% | TabPFNUnivariateForecaster: MAE=1.1229, MAPE=0.0541%
TimesFMUnivariateForecaster: MAE=1.3688, MAPE=0.0676% | TimesFMMultivariateForecaster: MAE=1.3688, MAPE=0.0676%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)
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Mean Forecaster: MAE=13.6788, MAPE=0.3594% | ProphetForecaster: MAE=10.6000, MAPE=0.2475%
TabPFNMultivariateForecaster: MAE=11.3789, MAPE=0.2949% | TabPFNUnivariateForecaster: MAE=10.3548, MAPE=0.2537%

TimesFMUnivariateForecaster: MAE=11.1147, MAPE=0.2734% | TimesFMMultivariateForecaster: MAE=11.1147, MAPE=0.2734%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)
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Mean Forecaster: MAE=0.0278, MAPE=1.1940% | ProphetForecaster: MAE=0.0061, MAPE=0.1718%
TabPFNMultivariateForecaster: MAE=0.0191, MAPE=0.9980% | TabPFNUnivariateForecaster: MAE=0.0025, MAPE=0.0535%

TimesFMUnivariateForecaster: MAE=0.0029, MAPE=0.0562% | TimesFMMultivariateForecaster: MAE=0.0029, MAPE=0.0562%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)
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Mean Forecaster: MAE=2.8725, MAPE=0.0983% | ProphetForecaster: MAE=2.9065, MAPE=0.0920%
TabPFNMultivariateForecaster: MAE=6.5246, MAPE=0.2137% | TabPFNUnivariateForecaster: MAE=3.0842, MAPE=0.1022%

TimesFMUnivariateForecaster: MAE=4.4673, MAPE=0.1335% | TimesFMMultivariateForecaster: MAE=4.4673, MAPE=0.1335%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)

Figure 5: Cross-domain samples II: electricity, air quality, traffic, dynamics
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Mean Forecaster: MAE=350187618.3333, MAPE=0.1303% | ProphetForecaster: MAE=125233898.6667, MAPE=0.0562%
TabPFNMultivariateForecaster: MAE=264072215.3333, MAPE=0.1067% | TabPFNUnivariateForecaster: MAE=138101070.0000, MAPE=0.0594%

TimesFMUnivariateForecaster: MAE=171425877.3333, MAPE=0.0672% | TimesFMMultivariateForecaster: MAE=171425877.3333, MAPE=0.0672%
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Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
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Figure 6: Cross-domain samples III: water, regional electricity, wikipedia, language
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Figure 7: Cross-domain samples IV: Bitcoin price, gas sensors, mobility, bicycle sales

15:13:00 15:13:30 15:14:00 15:14:30 15:15:00
Time

0

200

400

600

800

1000

Va
lu

e

['target
1']

Mean Forecaster: MAE=247.5370, MAPE=1.5455% | ProphetForecaster: MAE=247.3940, MAPE=1.3605%
TabPFNMultivariateForecaster: MAE=228.7304, MAPE=1.4129% | TabPFNUnivariateForecaster: MAE=338.4891, MAPE=2.0932%
TimesFMUnivariateForecaster: MAE=90.3319, MAPE=0.6961% | TimesFMMultivariateForecaster: MAE=90.3319, MAPE=0.6961%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)

2018-11-292018-12-01 2018-12-05 2018-12-09 2018-12-13 2018-12-17
Time

10

5

0

5

10

15

20

25

Va
lu

e

['price
mean']

Mean Forecaster: MAE=9.8581, MAPE=0.4877% | ProphetForecaster: MAE=23.8232, MAPE=1.4455%
TabPFNMultivariateForecaster: MAE=6.7751, MAPE=0.2375% | TabPFNUnivariateForecaster: MAE=6.7165, MAPE=0.4126%

TimesFMUnivariateForecaster: MAE=8.3765, MAPE=0.4913% | TimesFMMultivariateForecaster: MAE=8.3765, MAPE=0.4913%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)

2016 2018 2020 2022 2024
Time

5.0

5.5

6.0

6.5

7.0

7.5

Va
lu

e

['Demand']
Mean Forecaster: MAE=0.4622, MAPE=0.0836% | ProphetForecaster: MAE=0.2422, MAPE=0.0437%

TabPFNMultivariateForecaster: MAE=0.2399, MAPE=0.0419% | TabPFNUnivariateForecaster: MAE=0.2930, MAPE=0.0507%
TimesFMUnivariateForecaster: MAE=0.3363, MAPE=0.0576% | TimesFMMultivariateForecaster: MAE=0.3363, MAPE=0.0576%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)

2020-01 2020-02 2020-03 2020-04 2020-05 2020-06 2020-07 2020-08 2020-09 2020-10 2020-11
Time

0

1

2

3

4

5

Va
lu

e

1e6

['Subway Ridership']
Mean Forecaster: MAE=682755.8458, MAPE=0.4187% | ProphetForecaster: MAE=340694.3240, MAPE=0.2319%

TabPFNMultivariateForecaster: MAE=887087.8099, MAPE=0.5706% | TabPFNUnivariateForecaster: MAE=211695.1656, MAPE=0.1477%
TimesFMUnivariateForecaster: MAE=525589.7391, MAPE=0.3476% | TimesFMMultivariateForecaster: MAE=525589.7391, MAPE=0.3476%

History
Target
Forecast (Mean Forecaster)
Forecast (ProphetForecaster)
Forecast (TabPFNMultivariateForecaster)
Forecast (TabPFNUnivariateForecaster)
Forecast (TimesFMUnivariateForecaster)
Forecast (TimesFMMultivariateForecaster)

Figure 8: Cross-domain samples V: Video, rideshare, power, transit
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B.2 FULL MULTIVARIATE SERIES

Figure 9: Synthetic Causal Data
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Figure 10: Sequential CIFAR-100 image data
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Figure 11: Collected Stock data
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Figure 12: Walmart Sales Dataset
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C COMBINING COLLECTIONS OF RELATED UNIVARIATE TIME SERIES

C.1 STOCK DATA

We collect historical daily stock price data for the tickers currently trading on the NASDAQ ex-
change. The list of active tickers is obtained from Nasdaq Trader, and the historical time series
are downloaded from Yahoo Finance via the yfinance Python package. For each ticker, data are
saved as CSV with the following fields

• Date: trading day.
• Open: opening price.
• High: highest price during the day.
• Low: lowest price during the day.
• Adj Close: closing price adjusted for both dividends and splits.
• Volume: the number of shares traded that day.

For our evaluation, we select the period 2016-04-05 → 2020-04-01 and include 2347 tickers. We
group companies by type and construct sequences in which each sequence contains five stocks. The
prediction target is the Close price for one of the stocks, randomly selected.

C.2 WIKIMEDIA DATA

We collect daily Wikipedia pageview data for 145,000 pages over the period 2015-07-01 → 2016-
12-31. For each page, semantic categories are obtained from the Wikipedia API category query
interface. Categories that appear in more than 5% of all pages are removed to avoid generic group-
ings. Each page is then represented as text by concatenating its title with the remaining categories.

We generate embeddings for these text representations using Sentence-BERT [104]. Clustering is
performed with HDBSCAN [86] to group pages by semantic similarity.

From the clusters, we construct multivariate time series datasets. Clusters with more than 30 pages
are split into groups of 30 pages each. Each group forms a multivariate series with 30 covariates,
where each covariate is the daily pageview count for one page. This process yields 1,530 multivariate
series in total.

D SEQUENTIAL DATA TRANSFORMATION PROCESS

Multivariate time series foundation models must learn to identify patterns from the context and
leverage them to predict future values. Thus, when evaluating the capability of these models it can
be useful to introduce series that are likely to contain varied correlational patterns from various
sources. This is the motivation for transforming data from different sequential processes. In this
section we describe the process that we apply to transform data from image, video, language, and
simulator domains:

1. Transform into a meaningful sequential space using a tokenizer. This can vary for different
domains.
(a) For images, apply spiral patching with a visual transformer [132] using images from

CIFAR-100 [65] by resizing the images to 450 × 450, then using a patch size of 16
with a stride of 8.

(b) For scientific data, we took two simulators, Spriteworld [26], which uses a box2d
physics simulation backend where the number of objects and their initial positions and
velocities are randomized, and Mujoco [124] data collected using policies of varying
capability in D4RL [40]. Each episode lasts 1000 time steps, and since the state
for these simulators is already low-dimensional, we do not need to apply additional
processing

(c) For Text, we take the openwebtext dataset [48], and apply an open sourcelanguage
model [149] to conver the words into vectors.

(d) For video data, we apply keypoint detection to the KITTI dataset [45], using the key-
point positions as the states over the course of a time series.
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2. Apply dimensionality reduction in the form of PCA to the sequencized data to reduce it to
a meaningful form. Given the set of tokens, this takes a substantial random sample to apply
SVD, then uses the learned matrix for dimensionality reduction. The number of dimensions
taken by PCA is tuned to allow for 80-90% of the variance to be explained by the features.
For images, this is 12 dimensions, and for text, this is 20 dimensions. Video and Simulator
data require no additional dimensionality reduction.

3. Apply smoothing and/or noise, where smoothing is applied in the form of a Gaussian filter,
where the window size is tuned based on the noisiness of the data. Noise is re-added from
a normal distribution. For images and text, the Gaussian filter used a window size of 5,
whereas for D4RL data, we used a window size of 20, though for Spriteworld, we do not
apply filtering. We reapply 3% noise, which gives the files similar characteristics to time
series from other domains. For video we do not apply either filtering or noise.
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OpenWebText

CIFAR-100

KITTI

MuJoCo

Spriteworld

Figure 13: Examples on selected datasets, including OpenWebText [48], CIFAR-100 [65], Sprite-
world [26], KITTI [45], and MuJoCo [40].

Altogether, this set of three steps can be applied on a wide range of data. In fact, the datasets we
selected were smaller than the general corpus of image, video, language or simulator data, and future
work can explore applying this process to generate more multivariate time series data.

E STRUCTURAL CAUSAL MODELS FOR SYNTHETIC DATA

The structural causal model strategy for representation learning involves constructing a graph, where
each node is a variate and the value at a node is a function of its parents in the graph. Then the root
nodes take on values according to some sequentially correlated system (ex. ARIMA model, random
fourier features, etc.). At each timestamp the values are then propagated through the graph. A
consistent subset of the nodes are used as metadata, and one node is selected as the target variable.
The metadata nodes are then lagged in time by a random amount to ensure that the target variable is
a function of the history of the metadata.

Formally, the data distribution is dictated by gSCM, constructed in practice using MLPs and loosely
derived from [56; 102]. Each dataset is described by a graph, where each node in the graph is a
variate. The set of variates that are not caused by other variates are the inputs sin, a set of interme-
diate nodes, some of which are hidden shidden, a set of observed nodes x and target nodes y, and
a set of noise nodes uhidden. An SCM is defined by gSCM(S,U , E), where E are the set of directed
edges arranged in a directed acyclic graph. The input nodes are independently sampled according
to some noise distribution Sin, the noise nodes are sampled according to Uhidden, and the hidden
nodes are computed as a function of the parents in the graph, si := gi(PAi(s), ui). In practice, gi
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is represented with nonlinearity activation function a : R → R, a weight vector w|PA| according to
si = a(w⊤PAi(s)) + ui. For this work, we sample the noise correlated in time, where we use the
following set of functions:

1. ARMA functions with random AR and MA components
2. Random piecewise linear functions with between 8-20 pieces.
3. Impulse functions where the impulses are sampled at random times, between 8-20 impulses
4. Random fourier features, with between 8-20 frequencies sampled
5. Weiner Distribution with trend component
6. Random piecewise splines, with between 8-20 pieces.

For non-input nodes, the noise parameter is 0.01% Gaussian noise.

The observed nodes and target nodes are selected randomly from the graph, and a lag operator is
applied to the observations of the observed node, so that without loss of generality if metadata node
xi is the only parent of y, then y = f(xt

i), thus ensuring a lagged relationship between the target
and the metadata node.
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F DYNAMICAL SYSTEM SYNTHETIC DATA (SKEW-PRODUCT GENERATION)

Figure 14: Example skew-product dynamical system after two generations of recombination.

Starting with a founder pool of 129 chaotic dynamical systems from the dysts dataset [46], we
randomly perturb the parameters of each in a Gaussian ball around the default value. In Generation
1, we sample pairs of perturbed systems (which we denote the driver and the response system) and
couple their flows together in a skew-product form. In particular, the coupling is unidirectional and
defines the influence of the driver system on the response system. For each candidate perturbed
skew system that successfully integrates, we apply a suite of attractor tests to eliminate trajectories
that are converging to a fixed point, diverging to infinity, limit cycles, or simple straight lines. We
then apply the 0-1 test [37] to eliminate periodic and quasiperiodic systems. We check for a contin-
uous broadband power spectrum, as well as positive leading Lyapunov exponent via the data-driven
Rosenstein estimator [107]. Lastly, we check for stationarity via a combination of the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) [66] and Augmented Dickey–Fuller (ADF) [34] tests. In Generation
2, we sample pairs of successful perturbed skew systems and couple them together in the same fash-
ion as before. By construction, we have a combinatorial growth in the number of possible distinct
pairings of systems to couple together. This extends the framework of [68] and allows us to create
higher-dimensional systems with arbitrary causal relationships. Additional dynamical diversity can
be introduced via the choice of coupling maps.
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c2c3

Gen 3

ABCDGen 2

AB

CD
Gen 1

A B

C D

Figure 15: Skew-Product Genera-
tion

Let m,n ∈ N denote the driver and response system dimen-
sion, respectively. Suppose we have a driver system ẋ = f(x)
and a response system ẏ = g(y). A simple coupling strat-
egy is an Additive Coupling Map in which we randomize
the dimension ordering of the driver system, normalize the
flows by their RMS, and then simply add the driver flow to
the response flow ẏ = g(y) + ẋ. Concatenating dimen-
sions, the flow of the cominbed skew product system is simply
[f(x), f(x) + g(y)], modulo the normalization and random-
ization of dimension ordering.

Given a desired rank r, we provide the option to construct
the skew coupling matrix C as a low-rank positive semidefi-
nite perturbation. Randomizing the dimension ordering of the
driver system,

C =
[
D In + V SV ⊤] , D =

(
Imax{n,m}

)
1:n, 1:(m)

,

V ∈ Rn×r with Vij
i.i.d.∼ N (0, 1), ∥vk∥2 = 1 (column-

normalized). And S = diag(s1, . . . , sr), sk ∼ U [0, 1).
Our Activated Coupling Map first applies this coupling matrix
to the driver and response flows. As before, we normalize
each flow by its RMS, but before adding them together, we
pass the transformed driver flow through a nonlinearity (we
choose a hyperbolic tangent function).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 16: Example skew-product dynamical system after two generations of recombination.
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Figure 17: CCM Map

x =


x(A)

x(B)

x(C)

x(D)

 ∈ R12, ẋ = f(x) =


f (A)

(
x(A)

)
f (B)

(
x(B)

)
f (C)

(
x(C)

)
f (D)

(
x(D)

)
 .

x(A) =

(
x1

x2

x3

)
, x(B) =

(
x4

x5

x6

)
, x(C) =

(
x7

x8

x9

)
, x(D) =

(
x10

x11

x12

)
.

ϕ(u) := 1
2

(
|u+ 1| − |u− 1|

)
.

Flow RHS of Component Systems

f (A)(x(A)) =

 x2

µ (1− x2
1)x2 − x1 + a sin(x3)

ω

 (ForcedVanDerPol),

f (B)(x(B)) =

a x5 − a x4 + d x4x6

k x4 + f x5 − x4x6

c x6 + x4x5 − εx2
4

 (Tsucs2),

f (C)(x(C)) =

−x7 + dϕ(x7)− b ϕ(x8)− b ϕ(x9)

−x8 − b ϕ(x7) + c ϕ(x8)− aϕ(x9)

−x9 − b ϕ(x7) + aϕ(x8) + ϕ(x9)

 (CellularNeuralNetwork),

f (D)(x(D)) =

−x10 + t−1
x x11 − a

tx
x3
10 +

b
tx
x2
10 + t−1

x x12

− a x3
10 − (d− b)x2

10 + x12

− s
tz

x10 − t−1
z x12 +

c
tz

 (HindmarshRose).

System Parameters

ForcedVanDerPol: (a, µ, ω) = (1.2, 8.53, 0.63)

Tsucs2: (a, c, d, ε, f, k) = (40, 0.833, 0.5, 0.65, 20, 0)

CellularNeuralNetwork: (a, b, c, d) = (4.4, 3.21, 1.1, 1.24)

HindmarshRose: (a, b, c, d, s, tx, tz) = (0.49, 1.0, 0.0322, 1.0, 1.0, 0.03, 0.8)
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G LLM USAGE STATEMENT

LLMs were not involved in the writing or ideation of this work. Cursor was used as a coding IDE,
and LLM tab completions were use to implement various functions, but the data and concepts were
generated without LLM usage (except for the openwebtext dataset, which used a language embedder
as part of the system in Appendix D.
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