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Abstract

We study the Quality of Service Degradation (QoSD) problem, in which an adver-
sary perturbs edge weights to degrade network performance. This setting arises in
both network infrastructures and distributed ML systems, where communication
quality, not just connectivity, determines functionality. While classical methods
rely on combinatorial optimization, and recent ML approaches address only re-
stricted linear variants with small-size networks, no prior model directly tackles
the QoSD problem under nonlinear edge-weight functions. This work proposes
Hephaestus, a self-reinforcing generative framework that synthesizes feasible
solutions in latent space, to fill this gap. Our method includes three phases: (1)
Forge: a Predictive Path-Stressing (PPS) algorithm that uses graph learning and ap-
proximation to produce feasible solutions with performance guarantee, (2) Morph:
a new theoretically grounded training paradigm for Mixture of Conditional VAEs
guided by an energy-based model to capture solution feature distributions, and (3)
Refine: a reinforcement learning agent that explores this space to generate progres-
sively near-optimal solutions using our designed differentiable reward function.
Experiments on both synthetic and real-world networks show that our approach
consistently outperforms classical and ML baselines, particularly in scenarios with
nonlinear cost functions where traditional methods fail to generalize.

1 Introduction

We consider the problem of degrading path-based system performance through minimal, stealthy
perturbations over a set of weighted connections. Formally, let a directed graph G = (V,E) with
|V | = n nodes and |E| = m edges, represent a system of interacting components, where each
i-th edge is associated with a non-decreasing weight function fi : N0 → R+. A perturbation
x = (x1, x2, . . . , xm) ∈ N|E| is used to increase edge weights where the new i-th edge weight
becomes fi (xi)∀i ∈ [m]. We also refer to xe as the budget allocated to increase the weight of
edge e to fe(xe). Given a set of critical source-target pairs K = {(s1, t1) , . . . , (sk, tk)}, maximum
perturbation budgets (box constraints) b = (b1, b2, . . . , bm) ∈ Nm and a threshold T ∈ R+, the goal
is to find the lowest-cost perturbation x such that every shortest path between (si, ti) ∈ K exceeds T .
We formulate this problem, also called Quality of Service Degradation (QoSD) [1] as the following
constrained optimization:

min
x∈Nm

∥x∥1

subject to: SPG (si, ti;x) ≥ T ∀ (si, ti) ∈ K
0 ≤ xi ≤ bi, xi ∈ Z+ ∪ {0} ∀i ∈ [m]

(1)

where SPG(s, t;x) =
∑
e∈ρ̈s,t fe(xe) denotes the length of the shortest path ρ̈s,t from s to t, under

perturbation x. QoSD is an NP-complete problem [1]. Note that the total path cost in SPG(s, t;x) is
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determined by the edge functions fi(xi), rather than directly by xi. Although xi ∈ Z+ ∪ {0}, the
problem is not an Integer Program (IP) in general, since the cost functions fi(xi) may be nonlinear
(e.g., quadratic convex or log-concave). Intuitively, the QoSD problem seeks a perturbation x that
“stress” global system paths beyond their functional thresholds, not merely their connectivity, while
remaining subtle at the local level.

This problem arises in many real-world systems, from networked infrastructures to machine learning,
where performance depends not just on connectivity but on effective communication. In blockchain,
for example, transactions must reach all miners promptly to maintain consensus; targeted delays can
disrupt synchronization and increase the risk of forks [2, 3, 4, 5]. The same story applies to traffic
control systems [2, 6, 7, 8, 9], where attackers can manipulate signal timing to induce congestion and
delay key routes. In Graph Neural Networks (GNN) [10, 11], stealthy perturbing edge weights or
node features can distort message passing and harm predictive performance. In all these settings, (i)
the system functionality is compromised, regardless of its connectivity, making all state of the art
(SOTA) methods focusing on structural failures ineffective; and (ii) attacks are stealthily distributed
across the network, making local defenses ineffective. These characteristics make QoSD a natural
and general framework for modeling such vulnerabilities.

Despite its compact formulation, this problem presents several challenges: First, the objective is
non-submodular and becomes more complex under nonlinear edge functions such as quadratic or log-
concave costs, making greedy or relaxation-based methods ineffective. Second, feasibility checking
is expensive: every update to x requires recomputing global shortest paths for all pairs in K—a
bottleneck for large graphs or many constraints. Third, the solution space is exponentially large as
the number of perturbation vectors grows exponentially with the number of edges, making the search
for quality solutions intractable. These challenges limit the applicability of classical optimization
and learning methods, thus calling for scalable alternatives capable of handling a large number of
path-based constraints with complex edge dynamics.

To address these challenges, we propose Hephaestus, a three-phase Forge-Morph-Refine generative
framework for solving QoSD at scale under both linear and nonlinear edge functions. The framework
begins with Forge, generating diverse feasible solutions using our shortest-path attention-based
Predictive Path-Stressing (PPS) algorithm, which efficiently approximates global path constraints and
addresses both scalability and feasibility checking. We next employ Morph, a mixture-of-generative-
experts model guided by an Energy-Based Model (EBM), which allows deterministic expert expansion
to approximate arbitrarily complex multimodal distributions over combinatorial solution spaces.
Finally at Refine, a reinforcement learner refines the generated candidates in the latent space using a
differentiable reward function, enabling smooth and efficient optimization. As a result, for any unseen
graph that shares structural characteristics with those observed during training, the RL agent can
quickly select appropriate latent variables and decode them into high-quality solutions—effectively
addressing the challenge of intractability over large combinatorial spaces.

Overall, our key contributions are summarized as follows:

• We propose Hephaestus, the first end-to-end, generative self-reinforcing framework for QoSD
that unifies feasibility search, solution modeling, and optimization into a scalable pipeline capable
of handling non-linear costs and large path constraints.

• Theoretically, we provide (i) an approximation guarantee for PPS, a corner stone of Forge, that
bounds the cost of the generated solutions relative to the optimum, (ii) a convergence analysis for
Energy-Based Model guided mixture training that avoids intractable normalizing constants for
Morph, and (iii) a proof that policy refinement in the latent space can be directly performed via
gradient ascent, enabling near-optimal solution tuning in Refine with RL.

• Extensive experiments on both synthetic and real-world networks demonstrate that Hephaestus
consistently outperforms classical and ML baselines. Ablation studies further validate the
complementary role of each phase in improving overall performance, especially under nonlinear
cost regimes where traditional methods fail to generalize.

2 Related Work

Network Interdiction. The QoSD problem was first introduced by Nguyen and Thai [1]. It models
a novel form of soft network interdiction, where attackers degrade end-to-end performance by
increasing edge weights without explicitly disrupting topological connectivity. This contrasts sharply
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with classical hard interdiction [12, 13, 14, 2], which assume complete removal of nodes or edges
to disrupt flow or connectivity under budget constraints. These classical settings are less realistic
in stealthy or infrastructure-constrained environments. Until recently, Stackelberg routing games
under logit-based attacker response models [15] adopt a bounded-rational view of adversaries and
optimize defender strategies probabilistically over sensitive nodes. While conceptually related to soft
disruption, these models differ significantly from QoSD: they focus on node-based protection, rely
on attacker stochasticity, and do not generalize to continuous edge-based disruptions.

Possible Solving Methods. Nguyen and Thai [1] proposed three approximation algo-
rithms—Adaptive Trading (AT), Iterative Greedy (IG), and Sampling Algorithm (SA)—for solving
the QoSD problem. These methods support both linear and nonlinear fe but guarantee performance
only in the linear case and treat source-target pairs independently, leading to less efficient budget
spending. In contrast, Hephaestus leverages a PPS algorithm with guarantees for both settings.
This foundation enables the training of a self-reinforcing generative model that captures structural
correlations across source-target pairs, resulting in more globally effective degradation strategies.

On the other hand, QoSD can be reformulated as an ILP in the special case when weight function fe(.)
is linear, making recent ML techniques for integer and mixed-integer linear programs (ILPs/MILPs)
[16, 17, 18, 19] applicable to this setting. One direction integrates ML into solver heuristics [20,
21, 22], such as branching [23], separation [24, 25], and cut selection [26, 27]. Another focuses on
learning to generate heuristic solutions [28, 29, 30, 31, 32, 33]. Notably, the Predict-and-Search (PS)
framework [34, 35] leverages solvers such as Gurobi [36] or SCIP [37] to generate label solutions
during training. At inference time, it predicts initial solutions, which are then refined using the same
solvers, following the predict-then-optimize paradigm [38, 39, 40]. In contrast, DiffILO [41] relaxes
ILPs into differentiable surrogate objectives and optimizing them end-to-end via gradient descent,
enabling unsupervised training without solver-generated labels, but only works effectively with small
to medium ILP. Hephaestus fundamentally differs from these approaches by directly handling
both linear and non-linear weight functions—including quadratic-convex and log-concave—without
relying on solvers, allowing it to scale to large graphs with many constraints.

3 Hephaestus
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Figure 1: Given a graph dataset, we train SPAGAN to predict shortest path costs and guide PPS to
generate feasible solutions across varying thresholds, forming a Pretrained Solution Dataset. Then, an
EBM approximates the underlying solution distribution, while a Mix-CVAE learns to closely match
this distribution. Once the Mix-CVAE converges, an RL agent modifies latent samples, which are
decoded into lower-cost solutions. The top-k high-reward samples are added back to the Solution
Dataset to retrain both the EBM and Mix-CVAE in future episodes, enabling continual improvement.

We present our Hephaestus framework, illustrated in Figure 1, which consists of three phases:
(1) Forge: Feasible Solution Generation, (2) Morph: Energy-Guided Generative Modeling, and
(3) Refine: Latent Policy Optimization. In Forge, we use SPAGAN [42] to estimate shortest-path
costs and guide our Predictive Path Stressing (PPS) algorithm, which generates feasible solutions
(or perturbations) to QoSD and forms a pre-trained solution set Dsol. The Morph phase trains an
Energy-Based Model (EBM) [43, 44] on Dsol for guiding a Mixture-of-Conditional VAEs (Mix-
CVAE) to approximate the underlying solution feature distribution. To improve coverage, new
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CVAE [45, 46, 47] experts are dynamically added in regions of EBM where Mix-CVAE shows high
modeling error. In the final phase Refine, a reinforcement learning agent operates in the latent space
of Mix-CVAE to refine latent variables and synthesize better solutions. These new samples are
iteratively added back into Dsol, allowing both EBM and Mix-CVAE to improve over time.

3.1 Forge: Feasible Solution Generation

Training a strong generative model in Morph requires a high-quality dataset of feasible solutions x,
as the model can only learn to produce effective solutions if the training data itself covers a wide
range of valid perturbations with low budgets. However, generating such data is challenging: for each
pair (s, t), the QoSD objective is often non-submodular and the number of feasible paths having cost
shorter than T can be extremely large, making it computationally expensive to enumerate or verify
them all. To tackle this challenge, we design a hybrid ML-approximation algorithm that leverages a
trained shortest-path attention model to guide the approximation search. We begin with a dataset of
graphs Dgraph = {Gi = (Vi, Ei)}Ni=1 representing diverse sampled network topologies. For each Gi,
we define a collection of target node pairsKi = {(sj , tj)}j , from which shortest path estimations will
be drawn. To this end, we train a Shortest Path Graph Attention Network (SPAGAN) [42], denoted by
Fθ : (G, s, t,x) 7→ d̂s,t, where Fθ takes as input a graph G = (V,E) and a source-target pair (s, t),
and outputs a real-valued estimate d̂s,t ∈ R+ of the shortest-path distance between s and t under
baseline weight function fe. The model Fθ is trained using a supervised regression loss (i.e Huber
Loss [48, 49]) over mini-batches of path distances from subgraphs, where ground truth distances
are obtained via exact computation (i.e Dijkstra algorithm [50]). By training over a diverse set of
subgraphs extracted from the graph, the model learns transferable embeddings that capture structural
priors and efficiently generalize to large graphs, enabling solution verification in unseen instances.

Once Fθ is trained, we use it to guide the search for diverse solutions x. Specifically, we pro-
pose a PPS algorithm to iteratively search adversarial perturbations that elevate the predicted
path length d̂s,t(x) of each pair (s, t) beyond a given threshold T . Unlike traditional approx-
imation methods [1] that require costly repeated computation of exact paths, PPS leverages
the efficiency of Fθ to estimate marginal gains in violation potential and guides the pertur-
bation accordingly. Let P denote the current set of shortest paths under perturbation x, i.e.,
P = {ρ̈s,t | (s, t) ∈ K, Fθ(G, s, t;x) < T} where Fθ(G, s, t,x) ≈

∑
e∈ρ̈s,t fe(xe) returns the

predicted shortest path length under x, if Fθ is well trained. To quantify the progress of x, we define
the potential function C(P,x) =

∑
ρ̈s,t∈P min (T,Fθ(G, s, t,x)). Each iteration of PPS selects an

edge e ∈ E and an increment ∆xe ∈ N that maximizes the predicted gain-to-cost ratio:

(e∗,∆∗) = arg max
e∈E, ∆∈[1,be−xe]

C(P,x+∆ · 1e)− C(P,x)
∆

(2)

where 1e is the standard basis vector corresponding to edge e, and be is the upper budget bound for
that edge. After determining (e∗,∆∗), perturbation is updated via x← x+∆∗ ·1e∗ , and the path set
P is recomputed via Fθ . This process is repeated until almost all node pairs (s, t) ∈ K are predicted
to have path lengths exceeding the target threshold, i.e., C(P, x) ≥ |P |T − ϵ̄, where ϵ̄ is an input
parameter. For each graph Gi ∼ Dgraph, the PPS algorithm is executed independently across a set
of QoS thresholds T = {T1, . . . , TM} and pairs K = {K1, . . . ,KM}, producing a corresponding
set of feasible perturbations {x(i)

K,T |K ∈ K, T ∈ T }. The resulting pretrained solution dataset is

thus formalized as Dsol = {(Gi,K, T,x(i)
K,T )|Gi ∈ Dgraph,K ∈ K, T ∈ T } which forms the basis

of the Morph phase (Section 3.2). For notational simplicity, we refer to each element of Dsol as a
training instance (G,K, T,x), representing a specific degradation scenario and having a guarantee:
Theorem 1. (PPS Ratio) Let h = ⌈T/wmin⌉, where wmin = mine∈E we. Assume that the set E is
chosen from E such that Pr[E∗ ⊆ E ] = a, where E∗ is the set of edges of the optimal solution and
a ∈ (0, 1) is a constant. Given a parameter ϵ̄ > 0, then running PPS on E yields a solution x such
that C(P, x) ≥ |P |T − ϵ̄ and E[∥x∥1] ≤ (1+ h ln(n) + lnT + ln(1/ϵ̄))OPT/a. (Proof in Appx B.1)

Theorem 1 ensures that every solution generated by PPS achieves a provably bounded cost relative to
the optimum. Such quality assurance is critical: the generative model introduced in Morph will be
trained purely on Dsol, thus its quality directly determines the generative capacity and generalization
performance. Without such theoretical grounding, the learned latent distribution could diverge or
collapse around suboptimal patterns.
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3.2 Morph: Energy-Guided Generative Modeling

Given the pre-trained solution set Dsol from the Forge phase, Morph aims to model the underlying
pattern of high-quality solutions through the conditional distribution p(x | c), where the condition
c = [G,K, T ] encodes the graph, the set of critical node pairs, and the threshold context. Since the
true distribution p is unknown, we approximate it using a conditional generative model Ω(x | c) that
can generate feasible solutions for an arbitrary [G,K, T ] instance. To achieve this, we implement Ω
as a Mixture of Conditional VAEs (Mix-CVAEs), denoted Ω = [Ω0, . . . ,ΩN ], where each expert Ωi
consists of an encoder Pψ and a decoderMϕ. For a given training pair (x, c), the encoder produces
a latent posterior q̃ψ(z | x, c), and the decoder reconstructs the input via p̃ϕ(x | z, c), forming the
mapping Ωi(x, c) =Mϕ(Pψ(x, c)) =Mϕ ◦ Pψ. We train each CVAE expert by maximizing the
evidence lower bound (ELBO) [46] on samples (G,K, T,x) ∼ Dsol:

LELBOΩi = Eq̃ψ log p̃ϕ(x | z, c)−KL[q̃ψ(z | x, c) ∥ p̃ϕ(z | c)] (3)

where the first term encourages accurate reconstruction of x, and the second regularizes the latent
representation z ∈ Rd to align with a context-aware prior. After training, new solutions can be
generated by sampling z ∼ p̃ϕ(z | c) and decoding via x̃ =Mϕ(z, c).

Mode-Seeking Problem. Since optimizing the ELBO is merely an indirect way to minimize the
reverse KL divergence, this objective often encourages the learned distribution p̃ϕ(x | c) to focus
on the dominant modes that appear most frequently in the dataset {xi}. However, if p(x) is truly
multimodal [51], a single expert Ωi can exhibit mode-seeking behavior [52]—i.e., it may ignore rare
but critical regions of p(x | c). More severely, we do not even know which regions of p are not being
captured by the CVAE Ωi, since the true form of p is unknown.

Energy-Based Guidance for Generative Modeling. To address the above limitation, we introduce an
Energy-Based Model (EBM) [44] defined as q(x) = 1

Z exp (−E(x)/τ), where E(x) is a learnable
energy function, τ > 0 is a temperature parameter controlling the sharpness of the distribution and
the normalizing constant function Z =

∫
X exp (−E(x)/τ) dx ensures q(x) is a valid probability

distribution. Unlike CVAE, EBM makes no strong parametric assumptions about the form of the true
distribution p(x); instead, it defines a flexible energy landscape shaped directly by the energy values.
We thus employ an EBM q(x) as a surrogate for the true—but unknown—distribution p(x), and aim
to learn q by minimizing minq∈Q KL (p(x) ∥ q(x)), where Q denotes the feasible family of EBMs
parameterized by E(x). Simultaneously, we train the generative model Ω(x) (e.g., a Mix-CVAEs)
to match q(x) by minimizing the KL divergence minΩ∈E KL (q(x) ∥Ω(x)), where E represents
the feasible set of generative distributions realizable by our model class. Ideally, when the two KL
divergences become zero, then p(x) = q(x) = Ω(x), or indirectly Ω(x) = p(x).

However, a single C-VAE may only capture a dominant mode of the distribution q(x) as we mentioned
earlier. To ensure comprehensive coverage, we monitor the density gap between the EBM and the
current generative model via the log-ratio function χ(x) = log q(x)/Ω(x). Whenever χ(x) > δ for
some threshold δ > 0, we interpret this region as underrepresented by the current C-VAE model Ω,
and dynamically add a new C-VAE expert ΩN+1(x) specialized to this region, forming a new Mixture
of C-VAE Ω′. This expert is integrated into the mixture through a gating mechanism, ensuring that
the overall generative model incrementally improves its coverage of high-density regions in q(x),
and thereby indirectly approximates the true data distribution p(x) (See Figure 2) .
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Figure 2: At each iteration, the generative model Ω(x) adds an expert in regions where the log-ratio
χ(x) = log (q(x)/Ω(x)) exceeds δ, thereby covering more of q(x). Meanwhile, q(x) adapts to align
with p(x). As the steps progress, q(x) increasingly approximates p(x), and Ω(x), augmented by new
experts, converges to q(x), ultimately yielding p(x) ≈ q(x) ≈ Ω(x).

Theorem 2. (Expert Augmentation Efficiency): Suppose there exists a constant ϵ > 0 such that
Pp(x){χ(x) > δ} ≥ ϵ; on the region {x : χ(x) > δ}, a new expert ΩN+1(x) is added with gating
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weight α(x) = 1{χ(x) > δ}a0 ( 0 < a0 ≤ ā < 1) and trained to satisfy ΩN+1(x) ≥ c q(x) for
some c ∈ (0, 1); then the updated mixture Ω′(x) = α(x) ΩN+1(x) + (1 − α(x)) Ω(x) satisfies
KL(q∥Ω′) ≤ KL(q∥Ω)− γ(δ, ϵ), where γ(δ, ϵ) = a0(δ+ log c) ϵ0 > 0 and ϵ0 > 0 is a lower bound
on
∫
χ(x)>δ

q(x)dx. (Proof in Appendix B.2)

From Theorem 2, we observe that each time a new expert is added, KL(q∥Ω′) is reduced by at least
γ(δ, ϵ) relative to the previous KL(q∥Ω). Since the initial KL divergence with only one expert is
finite, repeatedly augmenting the mixture with new experts allows us, in the limit of infinitely many
experts without sacrificing the computational cost [53, 54], to drive the KL(q∥Ω′) to zero on Dsol.
However, directly computing KL(p(x)∥q(x)) and KL(q(x)∥Ω(x)) is highly challenging in practice,
as it requires evaluating the normalization constant Z of the EBM. Estimating Z typically involves
Markov Chain Monte Carlo (MCMC) [55], which becomes extremely expansive during the EBM
training. Fortunately, as we will show next, there is no need to compute Z.
Theorem 3. (Normalization Free Function) The objective function minq maxΩ{KL(p∥q) −
KL(Ω∥q)} is normalizing free and is independent of Z. (Proof in Appendix B.3)

Per Theorem 3, we completely avoid the need to compute Z by reformulating the problem as a
minimax objective, where the normalizing constant cancels out in the difference of KL divergences:

min
q∈Q

max
Ω∈E
{KL(p∥q)−KL(Ω∥q)} (4)

Any terms involving logZ appear in both KL(p∥q) and KL(Ω∥q), and hence exactly cancel each
other out. This cancellation frees us from having to perform expensive MCMC estimates of Z, yet
still allows the EBM q to guide the generative model Ω effectively.

Minimax Optimization. From Equation 4, the EBM is optimized by minimizing the difference
between the expected energy under the data distribution and the expected energy under the Mix-
CVAE model distribution minθ Ep(x)[Eθ(x)]−EΩ(x)[Eθ(x)] (minimax derivation in Appendix B.3).
To stabilize training and ensure that energy values remain bounded, we incorporate a commonly-
used regularization term [43] based on the squared energies γ

(
Ep(x)[Eθ(x)2] + EΩ(x)[Eθ(x)

2]
)

where γ > 0 is a regularization coefficient. For a Mix-CVAE approximating an EBM, we modify
the standard ELBO to incorporate EBM guidance during expert training. Specifically, based on
Equation 3, we define a guided objective LguideΩi

= LELBOΩi
+ λ · Ep̃ϕ(z|c)

[
Eθ
(
p̃ϕ(x | z, c)

)]
, where

the added term penalizes low-quality samples in high-energy (i.e., low-density) regions under the
energy-based model qϕ(x) ∝ exp(−Eθ(x)).

3.3 Refine: Latent Policy Optimization

Once the Mix-CVAE Ω has successfully captured the true solution distribution, similar inputs
(consisting of x, G, K, and T ) that lead to similar-quality solutions are mapped to nearby points in
the continuous latent space. This property makes the search and optimization process more efficient.
In Refine, we train an RL agent with a policy π to blend and explore that latent space, aiming to
generate solutions that are better than those in the original pretrained dataset Dsol. These newly
discovered solutions are then added back into Dsol, reinforcing their feature patterns and making it
easier to retrain the generative model in future iterations. The optimization of policy π over the latent
space is formulated as a Markov Decision Process (MDP) [56],M def

= (S,A,Γ,R). This includes
(i) a finite sets of states S , (ii) a finite set of actionsA, (iii) a transition distribution Γ (s′ | s, a) where
s, s′ ∈ S, a ∈ A and (iv) a reward functionR : S ×A → R. We specify each component as follows:

State (s ∈ S) : A state is defined by latent representations si = (zi, c) for zi = Pψ (xi, c) and
xi ∈ Dsol

ep , where zi ∈ Rd is the latent vector produced by the encoder Pψ from the input data xi.

Action (a ∈ A): An action ai = (µi, σi) is a vector of two components: µi ∈ Rd (predicted mean)
and σi ∈ Rd (predicted scale). The modification vector δi = σi ·ϵnoise+µi, where ϵnoise ∼ N (0, I),
and the latent vector is updated as ẑi = zi + δi.

Transition Dynamics (Γ): When an action ai = (µi, σi) is taken, a new state si+1 = (zi+1, c),
where zi+1 = ẑi, is then formed.

Reward Function (R): Given zi+1, the decoderMϕ decodes it into a solution x̂i+1 = {x1, . . . , xm}.
To make optimization smoother, we apply a soft transformation to each element: x̄j = log(1 + exj )
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where xj ∈ x̂i+1 to produce a smooth vector x̄i+1. Moreover, instead of using a binary feasibility
label (feasible or not) for each pair (s, t) ∈ S, we define a smooth total feasibility score over all pairs:

𭟋(G,K, x̂i+1) =
∑

(s,t)∈K

1

1 + exp (−ζ · (Fθ(G, s, t; round(x̂i+1))− T ))
. (5)

Here, for each pair (s, t), ζ controls how sharply the score changes near the threshold T . If the
predicted path cost slightly exceeds T , the sigmoid quickly pushes the score closer to 1. This
formulation ensures that 𭟋(G,S, x̂i+1) provides a continuous and differentiable reward signal, which
is more suitable for optimizing the RL policy. Finally, our reward function is defined as:

R(xi+1) = 𭟋(G,K, x̂i+1)− κ · log(1 + ∥x̄i+1∥1). (6)
This reward formulation balances two objectives: the first term encourages the generation of solution
vectors by pushing the predicted path cost above T , while the second term, weighted by κ, penalizes
excessive budget usage, thus promoting stealth and cost-effectiveness. We intentionally keep the cost
penalty relatively small so that the RL agent focuses primarily on finding a valid solution (i.e, only
increasing weights) before optimizing cost. In what follows, we show several properties of our dense
reward function which make the RL training process much easier.
Lemma 1. (Differentiable Reward Function) Let Fθ : X → R be differentiable on an open set
X ⊂ Rm. The reward functionR(x) is differentiable on X . (Proof in Appendix B.4)
Theorem 4. (Reward Estimation Consistency) Assume that Ω has converged properly, for any
perturbed latent vector ẑi := zi + ϵ̂ · ∇ziR(Mϕ(zi, c)) with small ϵ̂ > 0, we haveR (x̂i) > R (xi),
where x̂i =Mϕ(ẑi, c). (Proof in Appendix B.5)

Specifically, by Theorem 4, small perturbations in the latent code zi following the gradient of
the reward, yield strictly higher returns. Since the reward R(x) is differentiable (Lemma 1), we
can perform gradient ascent [57] directly in latent space as in Equation 6. Concretely, starting
from zi, we iterate ẑi ← zi + ϵ̂ · ∇ziR(Mϕ(zi, c)) until convergence to z∗i leading to next state
si+1 = (zi+1 = ẑ∗i , c). The resulting latent offset δ̂i = ẑi − zi together with σi defines a feasible
action ãi = (δ̂i, σi). This warm-start procedure mitigates inefficient random exploration in the early
stages and accelerates convergence by guiding policy π towards locally optimal regions. Once the
model reaches sufficient reward levels, we allow it to autonomously explore and exploit the latent
space using standard reinforcement learning frameworks, leveraging efficient exploration strategies
from the RL literature [58, 59, 60]. See Appendices A and C for the full algorithm and its analysis.

Inference Process. Given a new instance problem, policy π iteratively modifies a random latent
vector z in latent space to maximize the reward defined in Equation 6. However, it is not guaranteed
that the decoded solution x̂ from Mϕ(z) is valid. To address this, we introduce a feasibility
refinement algorithm called PPS-I, a variant of the PPS algorithm. Unlike PPS, which relies on the
learned estimator Fθ(·; x̂) for the approximation of the shortest path, PPS-I replaces it with the exact
calculation of the shortest path using Dijkstra’s algorithm to ensure 100% feasibility. This yields
a = 1 in the ratio stated in Theorem 1. Moreover, with a strong Mix-CVAE Ω, the initial solution
x̂ produced by π is often close to valid, significantly minimizing the refinement overhead of PPS-I.
Implementation details and analysis of PPS-I are provided in Appendix A4.

4 Experiments

Settings. We evaluate the effectiveness and scalability of Hephaestus on synthetic and real-world
networks under varying QoSD thresholds. For synthetic graphs, we generate Erdős–Rényi topologies
with n = 1024 nodes, varying edge density l, fixed threshold T = 20, and |K| = 10 critical pairs.
Real-world datasets include Email [61], Gnutella [62], RoadCA [63], and Skitter [64], covering
diverse scales and domains. For each, we sample 50 critical pairs, compute their maximum baseline
shortest-path length, and set T to 140%–260% of this value to normalize degradation difficulty across
topologies. Dataset statistics are in Appendix C.1. For training the entire Hephaestus framework in
both synthetic and real networks, we generate a large corpus of graphs with varying architectures (e.g.,
Barabási-Albert, Erds-Rényi, and Watts-Strogatz), as well as diverse edge densities and thresholds,
while keeping the number of nodes consistent with those in the testing graphs.

Baselines. We compare Hephaestus with a range of baselines, including classical approximation
methods and learning-based IP solvers. Approximation baselines include Adaptive Trading (AT),
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Iterative Greedy (IG), and Sampling Algorithm (SA) from [1], which offer varying trade-offs between
cost-effectiveness, concavity handling, and scalability. For learning-based IP methods, we evaluate
three SOTA methods for ILP: DIFFILO [41], Predict-and-Search [34], and L-MILPOPT [25], which
combine neural predictors with ILP solvers like Gurobi. Baseline solutions are refined using Gurobi
with a 3000s timeout—tripled from the original setup. For large networks (e.g., RoadCA, Skitter),
we extend this to 6000s and enable ‘MIPFocus=1‘ [41, 65, 66] with heuristics to prioritize feasibility.
This setup is crucial, as exact solving often leads to long runtime or memory errors in large networks.
In constrast, our method employs PPS-I to ensure 100% feasible refinement without relying on exact
solvers, while still achieving significantly faster performance due to its approximate nature. Note that
we excluded a diffusion-based generative solver (e.g., the Gurobi-guided diffusion model [67]) due
to its scalability issues in large-scale constrained combinatorial optimization problems, particularly
over graphs with millions of nodes. In particular, this approach requires costly iterative sampling
using a series of VAE models, with 100 denoising steps for Denoising Diffusion Implicit Model
(DDIM) [68] and 1000 steps for Denoising Diffusion Probabilistic Model (DDPM) [69], making
them computationally impractical to evaluate in large-scale setups such as RoadCA or Skitter.

Edge Weight Function Settings. We evaluate methods under three types of fe(x) representing
different degradation dynamics: (i) Linear: fe(x) = ℵ(x), modeling uniform delay per unit cost;
(ii) Quadratic Convex: fe(x) = ℵ(x2), capturing congestion effects with rapidly increasing cost;
and (iii) Log Concave: fe(x) = ℵ(lnx), modeling diminishing returns as in error-rate degradation.
ML-based IP solvers operate only under linear functions, so we compare all methods in this setting,
including the exact solver. For convex and concave settings, only the approximation methods and
Hephaestus are applicable. Notably, Gurobi fails on the Log Concave case due to the non-convex
feasible region induced by logarithmic constraints, and is excluded from that evaluation.
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(c) Log Concave
Figure 3: Our solution quality on the testing synthetic graph with varying density is evaluated under
Linear, Quadratic Convex, and Log-Concave functions. ML-based ILPs are compared with the
best-performing approximation baseline AT for Linear weights but excluded for the other two due to
incompatibility; exact solver also does not support Log-Concave.

Email Gnutella RoadCA Skitter

Method 140% 180% 220% 260% 140% 180% 220% 260% 140% 180% 220% 260% 140% 180% 220% 260%

Adaptive Trading 2653 5460 8226 9675 3528 6613 8528 10656 12651 16972 23504 32935 367026 903278 1739299 3018467
Iterative Greedy 2673 5458 8258 9713 3537 6626 8564 10674 13782 17830 24076 33127 389415 915682 1983011 3125008
Sampling Alg. 4363 9249 14665 17290 4200 7775 14920 16427 23742 43822 70823 90166 597239 1789237 2871248 6294921
DIFFILO 2621 5308 8303 9695 3490 6662 8619 10987 11043 17161 24031 32976 350397 902366 1724336 3012839
Predict & Search 2654 5421 8458 9701 3645 6808 8839 11364 11196 18084 24967 33954 358937 929115 1849725 3197237
L-MILPOPT 2651 5462 8486 9811 3615 6922 9185 11772 12069 19302 25310 34866 360994 931678 1901972 3220155
Exact Solver 2570 5268 7968 9318 3383 6402 8211 10073 — — — — — — — —
Ours 2647 5329 8206 9601 3497 6511 8376 10495 9276 14415 20186 27699 255789 658727 1258765 2199372

Table 1: Performance of Hephaestus and baselines on four real datasets at different thresholds T
under Linear edge weight function setting. The best is highlighted in bold excluding exact solution.
For RoadCA and Skitter dataset, ML-based methods can only use Gurobi with heuristic mode.

Solution Quality Evaluation. On the synthetic dataset, Hephaestus achieves the lowest total cost in
all graph densities, outperforming AT and closely matching the exact solver (Figure 3-Linear). This is
because Hephaestus uses various solutions from the PPS algorithm to train ΩΘ which learns where
the budget should be spent effectively. As a result, Hephaestus often spends budgets on common
edges that affect multiple source-target pairs. In contrast, even the best approximation algorithm in
baselines, AT, cannot provide better solution than Hephaestus as it handles each pair independently,
which can lead to spending on edges that do not help other pairs.
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Learning-based methods also exhibit the same behavior, resulting in solutions that are worse than ours.
DiffILO spreads budget too widely to fix constraint violations because it relaxes binary decisions
into soft probabilistic variables, while Light-MILPopt splits the graph, which breaks global structure
and leads to redundant spending. Predict-and-Search depends on Gurobi-generated labels: if these
are poor, it cannot refine them due to a narrow search space. For the Quadratic Convex (QC) and
Log Concave scenarios, all IP-based ML methods become inapplicable, and even the exact solver
(Gurobi) is only able to handle the QC case. Our method continues to outperform the approximation
algorithms in both settings. Appendix C.8 shows that Hephaestus with PPS-I consistently achieves
higher solution quality and faster runtime compared to ML-based baselines refined with Gurobi.

Across the four real-world networks under thresholds T ∈ {140%, 180%, 220%, 260%}, the advan-
tage of Hephaestus becomes more evident, especially on larger graphs. As shown in Table 1, ours
consistently achieves the lowest total budget at the highest threshold T = 260%. On large-scale
networks where exact solvers are no longer applicable, Hephaestus achieves the most significant im-
provements. Specifically, it reduces total cost by 28.1% on Skitter and 16.8% on RoadCA compared to
the second-best method, DIFFILO. On medium-scale graphs like Gnutella, Hephaestus outperforms
DIFFILO by 4.5% at the highest threshold, and is only marginally behind it (by 7 units) at the lowest
threshold. On the smaller Email network, ours achieves a 1.0% improvement over DIFFILO at the
highest threshold and is only 1% worse at the lowest. Due to space limitations, we refer readers
to Appendix C.7 for more detailed comparisons of Hephaestus with other baselines on Quadratic
Convex and Log Concave cost functions on real datasets.

(a) 3-Expert (b) 5-Expert (c) 7-Expert (d) 9-Expert

Figure 4: Comparison between the distribution from the EBM and the distribution from the Mix-
CVAE with varying numbers of experts on a synthetic dataset with maximum density. Increasing the
number of experts improves mode coverage and alignment with the target EBM distribution.

Figure 5: An example of conditional latent space visualization via UMAP [70] for the trained Mix-
CVAE on the same synthetic graph and pairs but different thresholds. Points represent latent vectors
z, colored by threshold T . Clear clustering shows the latent space captures meaningful patterns.

Impact of Expert Addition in Mix-CVAE guided by EBM. We seek to determine whether Mix-
CVAE, when guided by the EBM and augmented with additional experts via our method, can fully
capture the distribution induced by the EBM. Figure 4 empirically demonstrates the effectiveness of
our expert expansion strategy. As the number of experts in Ω increases from 3 to 9, the distribution of
generated samples (orange curves) increasingly aligns with the energy-based target distribution (blue
curves). Notably, the generated distribution progressively captures more modes and exhibits a better
approximation of both the shape and spread of the underlying the target EBM. This improvement
verifies that expert addition enables Mix-CVAE to overcome mode collapse and better reflect the true
multimodal structure of the solution space p(x | c). Figure 5 further corroborates this benefit via latent
space visualization. Using UMAP projections of latent variables z sampled across different thresholds
in the same synthetic network, we observe clear cluster formation corresponding to structural and
contextual variations. These clusters become more evident as more experts are added, implying
that the augmented latent space encodes richer semantic distinctions. This structured separation is
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critical for downstream reinforcement learning in Phase 3, where the agent explores the latent space
to synthesize stronger attacks. Readers are referred to Appendix C for more ablation experiments.

5 Conclusion

In this paper, we introduced Hephaestus, a generative mixture model for assessing network QoS
under adversarial budget constraints. By combining predictive path stressing with self-improving
generative learning, it captures structural vulnerabilities and generalizes across network scales. Exper-
iments on synthetic and real-world graphs show that our framework outperforms both approximation
and learning-based baselines in cost, feasibility, and scalability. These results highlight the potential
of generative modeling with structured latent search for scalable network topology optimization.

6 Discussion

Limitations. While the proposed learning-based framework performs well on QoSD problems, it still
has some key limitations. In theory, the overall architecture can be extended to other combinatorial
optimization tasks on graphs, as long as suitable solvers or estimators are available to support
gradient-free training and iterative refinement. However, its success relies on the quality of the
initial solutions, which are used to train the generative model. Specifically, the framework depends
on having a reasonably good approximation algorithm to produce the initial dataset in Forge. In
addition, the model’s ability to generalize to unseen network instances is influenced by two important
factors. First, it depends on how well the GNN-based estimator (such as SPAGAN) can generalize
when predicting shortest-path costs on new graphs. Second, it relies on the quality of the graph
representation that is used as input to the conditional generative model. If the estimator or the
encoder fails to capture meaningful structural features, the overall performance both in terms of
feasibility and cost may degrade. Future research could improve generalization by incorporating
graph-invariant features, training on more diverse graph distributions, or using more expressive
graph-based foundation models.

Broader Impact. This work proposes a learning-based framework for solving Quality of Service
Degradation (QoSD) problems in large-scale networks, with the potential to influence both algorithmic
research and practical applications in infrastructure security, communication planning, and critical
network vulnerability assessment. By combining generative modeling, energy-based guidance, and
reinforcement learning, the framework offers a scalable alternative to traditional combinatorial solvers,
enabling approximate yet effective solutions for computationally intractable tasks. This approach
can assist network designers and operators in stress test systems, proactively identifying fragile
components, and evaluating resilience under adversarial or high-load scenarios. It also provides a
reusable architecture for structured optimization over graphs, which could benefit domains such as
transportation, power grids, and supply chain logistics.
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material.
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densities, the paper reports the average performance over 20 independent trials per instance,
as stated in Appendix C. However, it does not include error bars, standard deviations, or
confidence intervals.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4 provides timeout settings for baselines (e.g., 3000s–6000s for
Gurobi), and Appendix C includes compute specifications and other individual experiment
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics. All experiments
are conducted on publicly available or synthetic datasets. No human subjects or personally
identifiable data were involved.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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societal impacts of the work performed?
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11. Safeguards
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Answer: [NA]
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
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URL.
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• For existing datasets that are re-packaged, both the original license and the license of
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: They are provided with documentation and instructions in the supplemental
material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve any crowdsourcing or human subject experi-
ments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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8 DETAILS OF HEPHAESTUS

8.1 Hephaestus Main Framework

Algorithm 1: Hephaestus Main Framework

Input: Initial graph dataset Dgraph, set of critical pairs K, set of thresholds T , hyperparameters
for all components.

Output: Trained Hephaestus model (SPAGAN Fθ, EBM q, Mix-CVAE Ω, RL agent π), and
ability to generate near-optimal solutions x∗ for new QoSD instances.

// Initialize storage for solutions
1 Dsol ← ∅
// –- Phase 1: Forge –-

2 (Fθ,D
sol
initial)← Forge(Dgraph,K, T )

3 Dsol ← Dsol ∪Dsol
initial

// –- Phase 2: Morph –-
4 (q,Ω)← Morph(Dsol)
// –- Phase 3: Refine (Iterative Self-Reinforcement) –-

5 for each episode e = 1, . . . , Emax_episodes do
6 Top-K-Solutions← Refine(q,Ω, π,Dsol,Fθ)

7 Dsol ← Dsol ∪ Top-K-Solutions // Augment solution dataset
8 if e mod Eretrain_freq == 0 then
9 Periodically retrain Morph with augmented data (q,Ω)← Morph(Dsol)

10 π ← Finalize RL Agent Training from collected experiences
11 Return Fθ, q,Ω, π

The pseudocode for the main framework of Hephaestus encapsulates a full pipeline for solving the
QoS Degradation (QoSD) problem through a self-reinforcing generative approach. The algorithm
begins by initializing an empty solution set (line 1) and entering the Forge phase (line 2), where it
trains a Shortest Path Graph Attention Network (SPAGAN) to approximate shortest-path costs, and
then runs the Predictive Path Stressing (PPS) algorithm to generate diverse, feasible perturbation
solutions across multiple graphs, thresholds, and critical source-target pairs. These solutions are
collected into a pretrained dataset Dsol (line 3), which is then assigned as the foundation training set
for the next phase, Morph (line 4).

In Morph (line 4), an Energy-Based Model (EBM) is trained to estimate the underlying solution
density, and a Mixture of Conditional VAEs (Mix-CVAE) is optimized to match this density, with new
experts dynamically added to cover poorly modeled regions. Finally, the Refine phase (starting from
line 6) trains an RL agent to explore and optimize in the latent space of the Mix-CVAE, improving
solution quality while maintaining feasibility. Furthermore, after each episode, the best performing
(highest reward) solutions are added back to Dsol, and for all Eretrain_freq episodes, the generative
model (q,Ω) is periodically re-trained on this augmented dataset (lines 10-11), allowing continual
improvement and adaptation. The framework outputs all trained components: SPAGAN, EBM,
Mix-CVAE, and RL policy—to synthesize near-optimal QoSD solutions on new graphs (line 12).

8.2 Forge

The Forge phase is responsible for constructing an initial dataset of feasible QoSD perturbation
solutions using a graph-learned approximation method. It begins by training an SPAGAN, denoted
Fθ , on the provided set of input graphs Dgraph (Line 2). This model learns to efficiently approximate
the shortest-path costs under varying edge perturbations. An empty set Dsol

new is initialized to store
solutions (Line 3). Then, for every graph Gi in the dataset (Line 4), and for every configuration of
critical source-target pairs K ∈ K and thresholds T ∈ T (Lines 5–6), the PPS is executed to produce
a perturbation vector x(i)

K,T (Line 7). This vector is expected to increase all relevant shortest path costs
past the threshold T , using SPAGAN as an efficient surrogate for shortest path cost estimation. Each
resulting solution instance is then added to the solution set Dsol

new (Line 8), preserving its associated
graph, set of critical pairs, and threshold. Once all iterations are complete, the function returns both
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the trained SPAGAN model and the newly constructed dataset of feasible perturbations (Line 10),
which will serve as the training base for the Morph phase.

Algorithm 2: Forge

1 Procedure Forge(Dgraph,K, T )
2 Fθ ← Train_SPAGAN(Dgraph) // Train SPAGAN for path cost estimation
3 Dsol

new ← ∅ ;
4 for each graph Gi ∈ Dgraph do
5 for each critical pair configuration K ∈ K do
6 for each threshold T ∈ T do
7 x

(i)
K,T ← PPS(Gi,K, T,Fθ, {fe},b) ;

8 Dsol
new ← Dsol

new ∪ {(Gi,K, T,x
(i)
K,T )} ;

9 Return (Fθ,D
sol
new)

8.3 SPAGAN Training

This procedure describes the supervised training for SPAGAN, used to approximate shortest-path
distances between node pairs in a graph. The function begins by initializing the SPAGAN model
Fθ (Line 2), which is parameterized to learn over graph-structured input. For a fixed number of
training epochs, the model is iteratively updated (starting from line 3). During each epoch, the
algorithm samples mini-batches of data—each consisting of a graph G, a source-target pair (s, t), and
the corresponding ground-truth shortest-path distance true_dist, typically computed via Dijkstra’s
algorithm (Line 5). For each instance, the model predicts the baseline shortest-path cost d̂s,t using the
sub-graph (Line 6). The prediction error is measured using the Huber loss function, which provides
robustness to outliers and smooth gradients (Line 7). The model parameters are then updated using
backpropagation (Line 8), allowing the network to gradually learn a transferable representation of
graph structure and path dynamics. Once training converges, the fully trained SPAGAN model Fθ is
returned (Line 9) to be used in Forge for shortest path estimation.

Algorithm 3: SPAGAN Training with Subgraph Sampling

1 Procedure Train_SPAGAN(Dgraph)
2 Initialize SPAGAN model Fθ ;
3 Dsubgraph ← ExtractSubgraphs(Dgraph) ; // Generate training subgraphs from

full graphs
4 for each training epoch do
5 for each batch (Gsub, s, t, true_dist) from Dsubgraph do
6 d̂s,t ← Fθ(Gsub, s, t,0) // Predict baseline shortest path on subgraph
7 loss← HuberLoss(d̂s,t, true_dist) ;
8 Update Fθ parameters using backpropagation ;

9 Return Trained Fθ

8.4 Predictive Path Stressing (PPS)

Solving the QoS Degradation (QoSD) problem is computationally challenging due to the exponential
number of feasible paths and the non-submodular nature of the objective function under nonlinear
edge costs. To mitigate these challenges, PPS avoids enumerating all feasible paths and instead
incrementally constructs a feasible perturbation vector x ∈ N|E|, using shortest-path predictions from
a pretrained SPAGAN model Fθ. Unlike exact methods, PPS relies entirely on SPAGAN to both
determine shortest paths and estimate their costs under perturbation. The algorithm starts from an
initial perturbation xinitial (Line 2), and constructs a set Kviolate of source-target pairs whose predicted
path costs, given by Fθ(G, s, t;x), fall below threshold T (Line 3). For each violating pair, it obtains
the corresponding shortest path ρs,t using the SPAGAN shortest-path predictor (Lines 6–8). A soft
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potential function is defined as: C(P,x) =
∑
ρs,t∈P min(T,Fθ(G, s, t;x)), which serves as a proxy

to measure gap to feasibility (Lines 13–14). While C(P,x) remains less than the relaxed threshold
|P | · T − ϵ̄, the algorithm performs updates by selecting the edge e∗ and increment ∆∗ that lead
to the greatest increase in potential per budget unit (Lines 10–24). This is computed by evaluating
each candidate update x′ and recomputing the potential function C(P,x′) using SPAGAN predictions
(Lines 17–20), without requiring explicit path enumeration or cost function evaluations. Once the
optimal update is applied (Line 24), the algorithm checks whether the potential function C(P,x)
has exceeded the soft feasibility threshold |P | · T − ϵ̄. If so, the set of violating pairs is refreshed
by recomputing their shortest paths and corresponding predicted costs using SPAGAN (Line 25).
The process repeats until all pairs satisfy the constraint Fθ(G, s, t;x) ≥ T , at which point the final
perturbation vector x is returned (Line 27).

Algorithm 4: Predictive Path Stressing (PPS)
1 Procedure PPS(G = (V,E),K, T, {fe},b,xinitial,Fθ)

Input: Graph G = (V,E), target pairs K, threshold T , edge cost functions {fe}, budget box
b, initial vector xinitial, trained SPAGAN Fθ

Output: Feasible adversarial budget vector x such that estimated path cost∑
e∈ρs,t fe(xe) ≥ T for all (s, t) ∈ K

2 x← xinitial ;
3 Kviolate ← {(s, t) ∈ K |

∑
e∈ρs,t fe(xe) < T, ρs,t = SPAGANPath(Fθ, G, s, t;x)} ;

4 while Kviolate ̸= ∅ do
5 P ← ∅ ;
6 foreach (s, t) ∈ Kviolate do
7 ρs,t ← SPAGANPath(Fθ, G, s, t;x) ;
8 P ← P ∪ {ρs,t} ;

// Evaluate soft potential function
9 C(P,x)← 0 ;

10 while C(P,x) < |P | · T − ϵ̄ do
11 (e∗,∆∗, δmax)← (None,None,−∞) ;
12 EP ←

⋃
ρ∈P ρ ;

13 foreach ρs,t ∈ P do
14 C(P,x)← C(P,x) + min(T,Fθ(G, s, t,x)) ;
15 foreach e ∈ EP do
16 for ∆ = 1 to be − xe do
17 x′ ← x+∆ · 1e ;
18 C(P,x′)← 0 ;
19 foreach ρs,t ∈ P do
20 C(P,x′)← C(P,x′) + min(T,Fθ(G, s, t,x

′))

21 δ ← C(P,x′)−C(P,x)
∆ ;

22 if δ > δmax then
23 (e∗,∆∗, δmax)← (e,∆, δ) ;

// Apply optimal update
24 x← x+∆∗ · 1e∗ ;

// Update violating pairs using SPAGAN
25 Kviolate ← {(s, t) ∈ K |

∑
e∈ρs,t fe(xe) < T, ρs,t = SPAGANPath(G, s, t;x)} ;

26 Return x

8.5 Morph

The Morph phase is designed to model the distribution of high-quality QoSD solutions using a
generative framework guided by energy-based learning. Intuitively, the goal is to make the Energy-
Based Model (EBM) qθ approximate the true, but unknown, solution distribution as closely as
possible. To do this, the EBM is trained to assign low energy (i.e., high likelihood) to real solutions
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xreal ∼ Dsol, effectively pulling its density toward regions with meaningful feasible solutions. At the
same time, it is encouraged to assign high energy (i.e., low likelihood) to generated (fake) samples
xfake ∼ Ω, which come from the current generative model Ω. This adversarial learning setup drives
the EBM away from areas the generator covers poorly, creating pressure that helps both models
evolve: the EBM becomes more selective, and the generator learns to cover harder regions.

Algorithm 5: Morph

1 Procedure Morph(Dsol)
2 Initialize EBM qθ and Mix-CVAE Ω = [Ω0, . . . ,ΩN ] (initially N = 0 for first expert) ;
3 for each minimax training iteration k = 1, . . . ,Kmax_morph do

// Update EBM qθ
4 Sample (xreal, c) from Dsol ;
5 Sample zfake ∼ p̃ϕ(z|c) (from any expert Ωi);
6 xfake ←Mϕ(zfake, c) (from current Ω’s decoderMϕ);
7 Lq ← E(xreal,c)∼Dsol [Eθ(xreal)]−Exfake∼Ω[Eθ(xfake)]+γ(E[Eθ(xreal)

2]+E[Eθ(xfake)
2]);

Update parameters θ of EBM to minimize Lq;
// Update Mix-CVAE Ω

8 Sample (xreal, c) from Dsol ;
9 LΩ ← 0;

10 for each expert Ωi = (P(i)
ψ ,M(i)

ϕ ) ∈ Ω do
11 zencoded ← P(i)

ψ (xreal, c) ;
12 LELBOΩi

← Ez∼q̃
ψ(i) (z|xreal,c)[log p̃ϕ(i)(xreal | z, c)]−KL[q̃ψ(i)(z |

xreal, c) ∥ p̃ϕ(i)(z | c)]
13 Sample zprior ∼ p̃ϕ(i)(z | c) ;

14 xgenerated ←M(i)
ϕ (zprior, c) ;

15 LguideΩi
← LELBOΩi

+λ ·Eθ(xgenerated) // Penalize high energy generations
16 LΩ ← LΩ + LguideΩi

// Potentially use gating weights here

17 Update Mix-CVAE parameters ψ, ϕ for all experts to minimize LΩ ;
// Expert Addition Strategy

18 if k (mod Kcheck_expert) == 0 then
19 Sample xcheck from Dsol or generate from current Ω;
20 χ(xcheck)← log(qθ(xcheck)/Ω(xcheck|ccheck)) // Density ratio
21 if χ(xcheck) > δexpert_add and current number of experts < Nmax then
22 Add a new CVAE expert ΩN+1 to Ω ;
23 Initialize/Train ΩN+1 (e.g., focused on data from regions where χ > δexpert_add or

re-train mixture) ;
24 N ← N + 1;

25 Return (Trained qθ, Trained Ω)

Formally, the algorithm starts by initializing both the EBM qθ and a mixture of Conditional VAEs
Ω = [Ω0, . . . ,ΩN ], starting with one single expert (Line 2). Each minimax training iteration proceeds
in two stages. First, the EBM is updated by contrasting energy scores between real samples and
generated ones. Fake samples are produced by sampling a latent vector zfake ∼ p̃ϕ(z | c) from the
prior of any expert and decoding it via decoderMϕ of Ω (Lines 4–6). The EBM loss pushes energy
lower on real samples and higher on generated ones, with variance-based regularization to stabilize
training (Line 7), and the parameters θ are updated accordingly (Line 8).

Next, the generative model Ω is updated (Lines 10–17). For each expert Ωi, the encoder maps real
inputs to latent space, and the decoder reconstructs the solution. The training objective combines
the standard ELBO which promotes good reconstruction and posterior–prior alignment—with an
energy penalty term (Line 15). This penalty uses the EBM to discourage high-energy generations,
i.e., samples that lie in unrealistic or undersampled regions. The total loss LΩ aggregates across
all experts and is minimized to improve the generative model’s coverage of low-energy regions
(Line 16). To adaptively expand model capacity, the algorithm includes a periodic expert addition
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strategy (Lines 21–28). Every Kcheck_expert steps, it evaluates whether the current mixture Ω underfits
any region of the solution space using a density ratio test: χ(x) = log(qθ(x)/Ω(x | c)). If this
score exceeds a threshold δexpert_add, indicating insufficient generative density, a new CVAE expert is
added and trained specifically on that difficult region. This enables the generator to incrementally
cover diverse and potentially multimodal distributions. The process continues until the maximum
number of experts is reached or training ends. Finally, Morph returns both the trained EBM and the
mixture-based generative model.

8.6 Refine

Algorithm 6: Refine

1 Procedure Refine(q,Ω, π,Dsol,Fθ)
Input: Energy model q, generative model Ω, RL policy π, solution dataset Dsol, SPAGAN

estimator Fθ

Output: Top-K refined feasible solutions with low cost
2 Initialize S̄new ← ∅ // Storage for solutions generated in this episode
3 for each RL training step s = 1, . . . , Smax do
4 Sample instance (G,K, T,x) from Dsol ;
5 c← [G,K, T ] // Context input
6 zcurrent ← Pψ(x, c) // Encode current solution into latent space
7 for each step t = 1, . . . ,Tmax do
8 (µt, σt)← π(state(zcurrent, c)) // Sample action
9 ϵ ∼ N (0, I) ;

10 δt ← µt + σt · ϵ // Perturb latent
11 znext ← zcurrent + δt ;
12 x̂←Mϕ(znext, c) // Decode to solution
13 x̄← log(1 + ex̂) // Soft transform for reward

// Evaluate feasibility score via SPAGAN approximation
14 fscore←

∑
(sp,tp)∈K

1
1+exp(−ζ(Fθ(G,sp,tp;round(x̂))−T ))

// Compute reward (Eq. 6)
15 Rt ← fscore− κ · log(1 + ∥x̄∥1)
16 Store transition ((zcurrent, c), (µt, σt), Rt, (znext, c)) in replay buffer ;
17 Update policy π using replay buffer (e.g., PPO, DDPG, gradient-ascent, etc.) ;
18 zcurrent ← znext ;
19 if Rt ≥ Rthresh or t = Tmax then
20 xrefined ← PPS-I(G,K, T, x̂) // Ensure 100% feasibility
21 S̄new ← S̄new ∪ {(G,K, T,xrefined)} ;
22 Break

// Select best K solutions based on true cost
23 Sort S̄new in ascending order of ∥xrefined∥1 ;
24 Select top K entries as S̄topK ;
25 Return S̄topK

This algorithm implements a single episode of the Refine phase, which performs latent-space opti-
mization via reinforcement learning to improve solution quality for the QoSD problem. The goal
is to generate low-cost, feasible perturbation vectors by guiding a latent policy network using a
differentiable reward structure. The algorithm begins by initializing an empty buffer S̄new to store
high-quality solutions generated during the episode (Line 2). At each RL training step (Line 3),
an instance (G,K, T,x) is sampled from the solution dataset Dsol, and the corresponding context
vector c = [G,K, T ] is constructed (Line 5). The current solution x is encoded into latent space
via the encoder Pψ of any CVAE expert Ωi ∈ Ω to yield zcurrent (Line 6). An RL trajectory is then
simulated over Tmax steps (Line 7). At each step t, the RL agent samples an action at = (µt, σt)
from the policy network given the current state (Line 8), and applies a stochastic perturbation to the
latent vector using Gaussian noise ϵ ∼ N (0, I) (Lines 9–10). The next latent state znext is computed
and decoded into a candidate perturbation vector x̂ using the decoderMϕ (Lines 11–12). A soft
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transformation x̄ = log(1+ ex̂) is then applied to allow stable reward evaluation (Line 13). To assess
the quality of the decoded solution, a feasibility score is computed based on SPAGAN’s predictions
of shortest path costs for each critical pair (Line 14), followed by a differentiable reward Rt that
penalizes excessive cost via a logarithmic budget term (Line 16). The resulting transition is stored in
a replay buffer, and the RL policy is updated using any standard algorithm such as PPO, DDPG, or
curiosity-driven exploration (Lines 17). The latent vector is then updated for the next step (Line 18).
If the reward exceeds a predefined threshold Rthresh or the trajectory reaches the time limit (Line 19),
the decoded solution is passed through PPS-I (Line 20) to continue refine and ensure exact feasibility.
The resulting solution is stored in S̄new (Line 21), and the trajectory is terminated (Line 22). After all
episodes are completed, the algorithm ranks the refined solutions by their true cost ∥xrefined∥1 (Line
23), selects the top-K best ones (Line 24), and returns them as the output of the refinement episode
(Line 25). These solutions are later fed back into the self-reinforcement loop, improving both the
generative model and the energy function in subsequent iterations.

8.7 Inference Process

Algorithm 7: Inference Process
1 Procedure Inference(Gnew,Knew, Tnew,Ω, π,Fθ)

Input: New instance (Gnew,Knew, Tnew), trained Ω, π,Fθ

Output: Near-optimal feasible solution x∗
final

2 cnew ← [Gnew,Knew, Tnew] ;
3 Sample initial latent vector zinit (e.g., from Ω’s prior p̃ϕ(z|cnew) or encode a heuristic

solution) ;
4 z∗ ← zinit ;

// RL agent refines latent vector for the new instance
5 for k = 1, . . . ,Kinference_steps do
6 Action a = (µ, σ)← π(state(z∗, cnew)) // RL policy acts on current latent

state
7 ϵnoise ∼ N (0, I) // Exploration or deterministic if σ is small
8 δ ← σ · ϵnoise + µ ;
9 z∗ ← z∗ + δ ;

10 xraw ←Mϕ(z
∗, cnew) (Decoder from Ω) ;

11 x∗
final ← PPS-I(Gnew,Knew, Tnew,xraw) // Final refinement for feasibility

12 Return x∗
final

In Algorithm 7, the inference process of the Hephaestus framework aims to generate near-optimal,
feasible solutions on a new unseen QoSD instance (Gnew,Knew, Tnew) using the trained models Ω,
π, and Fθ. The goal is to leverage the learned latent-space generator and RL policy to efficiently
synthesize a high-quality perturbation vector without needing to re-run the full training pipeline. The
process begins by constructing the context vector cnew = [Gnew,Knew, Tnew] (Line 2). An initial latent
vector zinit is then obtained either by sampling from the prior of the trained Mix-CVAE p̃ϕ(z | cnew)
(Line 3). This serves as the starting point for iterative improvement. The current latent solution is set
to z∗ = zinit (Line 4). To refine this latent vector, the trained RL policy π is applied iteratively (Lines
5–9). At each step k, the policy takes the current latent state and produces an action a = (µ, σ),
which defines a mean and uncertainty over latent perturbations (Line 6). A Gaussian perturbation δ
is sampled and applied to the latent vector z∗, gradually steering the solution toward more feasible
and lower-cost regions (Lines 9–10). This process continues either for a fixed number of inference
steps Kinference_steps or until the reward (implicitly computed within the policy) stabilizes. After
refinement, the latent code z∗ is decoded into a raw perturbation vector xraw using the decoderMϕ

of the generative model Ω (Line 10). To ensure full feasibility, this vector is passed through the PPS-I
post-processing module (Line 11), which guarantees that the final solution x∗

final satisfies the QoSD
constraints. The final output is then returned (Line 12).

8.8 Predictive Path Stressing - Inference (PPS-I)

This procedure describes PPS-I, a variant of the Predictive Path Stressing (PPS) algorithm that retains
the same iterative update mechanism over shortest-path constraints. However, PPS-I differs from
PPS in two key aspects. First, instead of relying on SPAGAN predictions, it uses Dijkstra’s algorithm
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to compute exact shortest paths ρs,t and evaluates their true costs using the nonlinear edge functions
fe(xe), as shown in Lines 7, 8 and 27. This guarantees correctness under arbitrary cost functions
but incurs higher computational overhead. Second, PPS-I accepts a non-zero initial perturbation
vector xinitial as input (Line 3), allowing it to continually refine approximate solutions produced by
learning-based modules rather than starting from scratch. The rest of the logic—computing soft
potential (Lines 13–15), evaluating marginal gain for candidate updates (Lines 16–23), and selecting
optimal edge increments (Line 26)—remains structurally similar to PPS. The set of violating pairs
is refreshed using recomputed exact shortest paths (Line 27), and the process continues until full
feasibility is achieved.

Algorithm 8: Predictive Path Stressing - Inference (PPS-I)
1 Procedure PPS-I(G = (V,E),K, T, {fe},b,xinitial)

Input: Graph G = (V,E), critical pairs K, threshold T , edge cost functions {fe}, budget
bounds b, initial solution xinitial

Output: Feasible budget vector x such that
∑
e∈ρs,t fe(xe) ≥ T for all (s, t) ∈ K

2 x← xinitial ;
3 Kviolate ← {(s, t) ∈ K |

∑
e∈ρs,t fe(xe) < T, ρs,t = DijkstraPath(G, s, t;x)} ;

4 while Kviolate ̸= ∅ do
5 P ← ∅ // Shortest paths for current violations
6 foreach (s, t) ∈ Kviolate do
7 ρs,t ← DijkstraPath(G, s, t;x) ;
8 P ← P ∪ {ρs,t} ;

// Evaluate potential function
9 C(P,x)← 0 ;

10 while C(P,x) < |P | · T − ϵ̄ do
11 (e∗,∆∗, δmax)← (None,None,−∞) ;
12 EP ←

⋃
ρ∈P ρ ;

13 foreach ρs,t ∈ P do
14 cρ ←

∑
e∈ρs,t fe(xe) ;

15 C(P,x)← C(P,x) + min(T, cρ) ;
16 foreach e ∈ EP do
17 for ∆ = 1 to be − xe do
18 x′ ← x+∆ · 1e ;
19 C(P,x′)← 0 ;
20 foreach ρs,t ∈ P do
21 c′ρ ←

∑
e′∈ρs,t fe′(x

′
e′) ;

22 C(P,x′)← C(P,x′) + min(T, c′ρ) ;

23 δ ← C(P,x′)−C(P,x)
∆ ;

24 if δ > δmax then
25 (e∗,∆∗, δmax)← (e,∆, δ) ;

// Apply optimal update
26 x← x+∆∗ · 1e∗ ;

// Update violating pairs
27 Kviolate ← {(s, t) ∈ K |

∑
e∈ρs,t fe(xe) < T, ρs,t = DijkstraPath(G, s, t;x)} ;

28 Return x

9 THEOREMS AND PROOFS

9.1 Predictive Path Stressing Algorithm Ratio

Theorem 1 (PPS Ratio) Let h = ⌈T/wmin⌉, where wmin = mine∈E we. Assume that the set E is
chosen from E such that Pr[E∗ ⊆ E ] = a, where E∗ is the set of edges of the optimal solution and
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a ∈ (0, 1) is a constant. Given a parameter ϵ̄ > 0, then running the Predictive Path Stressing algorithm
on E yields a solution x such that C(P, x) ≥ |P |T − ϵ̄ and E[∥x∥1] ≤ (1+h ln(n)+lnT+ln(1/ϵ̄))

a OPT

Proof. Recall that C(P, x) =
∑
p∈P min

(
T,
∑
e∈p fe(xe)

)
and thus C(P, ·) is monotone. Denote xi

is the partial solution after iteration i of the algorithm, ei is the edge added to the solution in iteration
i with xei = ji and u(ei, ji) be a vector we add to the solution xi in the i-th iteration.

Since the Predictive Path Stressing algorithm selects, in each iteration i, the edge e that maximizes the
marginal gain per unit cost, given by C(P,xi+u(e,ji))−C(P,xi)

ji
. If E∗ ⊆ E , this value is at least as large

as the average marginal gain per unit cost in the optimal solution given by
|P |T−C(P,xi)

OPT . Therefore,
given the solution xi−1, we have

C(P, xi)− C(P, xi−1)

ji
=
C(P, xi−1 + u(ei, ji))− C(P, xi−1)

ji
(7)

≥ |P |T − C(P, x
i−1)

OPT
(8)

=⇒ C(P, xi)− C(P, xi−1) ≥ ji
OPT

(|P |T − C(P, xi−1). (9)

Therefore,

E
[
C(P, xi)− C(P, xi−1)|xi−1

]
(10)

≥ E
[
Pr[E∗ ⊆ E ] · ji

OPT
(|P |T − c(P, xi−1)) + (1− Pr[E∗ ⊆ E ]) · 0|xi−1

]
(11)

≥ E
[ aji
OPT

(|P |T − c(P, xi−1)) | xi−1
]
. (12)

By taking expectation over xi−1, we obtain

E
[
C(P, xi)− C(P, xi−1)

]
≥ E

[ aji
OPT

(|P |T − C(P, xi−1))
]
. (13)

Re-arranging the above inequality gives:

E
[
|P |T − C(P, xi)

]
≤ E

[
|P |T − (C(P, xi−1) +

aji
OPT

(
|P |T − C(P, xi−1)

)
)
]

(14)

≤ E
[ (
|P |T − C(P, xi−1)

)
− aji

OPT

(
|P |T − C(P, xi−1)

) ]
(15)

= E
[
(1− aji

OPT
)
(
|P |T − C(P, xi−1)

) ]
. (16)

Let t is the number iteration. By applying the inequality (16) iteratively over these t iterations, we
obtain the following:

E
[
|P |T − C(P, xt)

]
≤ E

[
|P |T

t∏
i=1

(
1− aji

OPT

)]
≤ E

[
|P |T

t∏
i=1

exp

(
− aji
OPT

)]
(using 1− z ≤ e−z)

≤ E
[
|P |T exp

(
−
a
∑t
i=1 ji

OPT

)]
≤ E

[
|P |T exp

(
−a∥xt∥1

OPT

)]
.
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By the terminal condition of the algorithm, C(P, xt) ≥ |P |T − ϵ̄ and C(P, xt−1) < |P |T − ϵ̄ so we
have

ϵ̄ ≤ |P |T − C
(
P, xt−1

)
≤ |P |T · exp

(
−a∥xt−1∥

OPT

)
(17)

⇐⇒ |P |T · exp
(
−a∥xt−1∥1

OPT

)
≥ ϵ̄ (18)

⇐⇒ exp

(
−a∥xt−1∥1

OPT

)
≥ ϵ̄

|P |T
(19)

⇐⇒ a∥xt−1∥1
OPT

≤ ln
( |P |T

ϵ̄

)
(20)

⇐⇒ ∥xt−1∥1 ≤
OPT

a
ln
( |P |T

ϵ̄

)
. (21)

Besides, from the inequality (13), we also have (in expectation)

C
(
P, xt−1

)
+

ajt
OPT

(
|P |T − C

(
P, xt−1

))
≤ C

(
P, xt

)
(22)

⇐⇒ ajt
OPT

(
|P |T − C

(
P, xt−1

))
≤ C

(
P, xt

)
− C

(
P, xt−1

)
(23)

⇐⇒ ajt
(
|P |T − C

(
P, xt−1

))
≤ OPT

(
C
(
P, xt

)
− C

(
P, xt−1

))
(24)

=⇒ ajt ≤ OPT (Since |P |T − C
(
P, xt−1

)
> C (P, xt)− C

(
P, xt−1

)
) (25)

=⇒ jt ≤
OPT

a
. (26)

The set P of feasible paths can be upper bounded in terms of the maximum path length and the number
of nodes. In particular, the number of edges of a feasible path is upper-bounded by h =

⌈
T
wmin

⌉
(since

each edge has weight at least wmin), the number of feasible paths of the is upper-bounded by nh. We
therefore have:

E[∥x∥1] = E[∥xt−1∥1] + E[jt] ≤
OPT

a
+

OPT ln
(

|P |T
ϵ̄

)
a

(27)

≤ OPT

a

(
1 + ln

( |P |T
ϵ̄

))
(28)

≤ OPT

a

(
1 + ln

(nhT
ϵ̄

))
(29)

≤ OPT

a

(
1 + h ln(n) + lnT + ln(

1

ϵ̄
)
)

(30)

which completes the proof. See Remarks 1 and 2 for how our ratio generalizes to both linear and
non-linear cases, and how the performance behaves when model Jθ accurately estimates the exact
value.

Remark 1. (Approximation ratio when fi is integer-valued). In Theorem 1, if fi is integer-valued
for i ∈ [m] and we set ϵ̄ ∈ (0, 1), then running the Predictive Path Stressing algorithm on E yields a
feasible solution x, i.e, C(P, x) = |P |T such that E[∥x∥1] ≤ (1+h ln(n)+lnT )

a OPT

Remark 2. If PPS selectes all edges in the optimal solution, i.e, Pr[E∗ ⊆ E ] = 1, then running
the Predictive Path Stressing algorithm on E yields a solution x such that C(P, x) ≥ |P |T − ϵ̄ and
E[∥x∥1] ≤ (1 + h ln(n) + lnT + ln(1/ϵ̄))OPT

9.2 Expert Augmentation Efficiency

Theorem 2 (Expert Augmentation Efficiency): Suppose there exists a constant ϵ > 0 such that
Pp(x){χ(x) > δ} ≥ ϵ; on the region {x : χ(x) > δ}, a new expert ΩN+1(x) is added with
gating weight α(x) = 1{χ(x) > δ}a0 (0 < a0 < 1) and trained to satisfy ΩN+1(x) ≥ c q(x) for
some c ∈ (0, 1); then the updated mixture Ω′(x) = α(x) ΩN+1(x) + (1 − α(x)) Ω(x) satisfies
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KL(q∥Ω′) ≤ KL(q∥Ω)− γ(δ, ϵ), where γ(δ, ϵ) = a0(δ + log c) ϵ0 > 0 and ϵ0 > 0 is a lower bound
on
∫
χ(x)>δ

q(x)dx.

Proof. In the regions where χ(x) = log q(x)
Ω(x) and χ(x) > δ, we add a new expert ΩN+1(x) and

extend the gating network so that its output becomes:

w′
i(x), i = 0, 1, . . . , N + 1, with

N+1∑
i=0

w′
i(x) = 1. (31)

Without loss of generality and for analysis purposes, we form a new mixture by taking a convex
combination of the old mixture and the new expert:

Ω′(x) = α(x) ΩN+1(x) +
(
1− α(x)

)
Ω(x). (32)

We choose the gating function α(x) to focus on regions where χ(x) > δ. In particular, we set:

α(x) = 1{χ(x) > δ} a(x), (33)

and for simplicity we take a(x) = a0 for those x with χ(x) > δ where 0 < a0 < 1. Next, we
consider the KL divergence between q(x) and the original mixture Ω(x),

KL(q∥Ω) =
∫
q(x) log

q(x)

Ω(x)
dx, (34)

and the KL divergence between q(x) and the updated mixture Ω′(x),

KL(q∥Ω′) =

∫
q(x) log

q(x)

Ω′(x)
dx

=

∫
q(x) log

q(x)

α(x) ΩN+1(x) + (1− α(x)) Ω(x)
dx

=

∫
q(x) log q(x)− q(x) log

[
α(x) ΩN+1(x) + (1− α(x)) Ω(x)

]
dx

≤
∫
q(x)

[
log q(x)− α(x) log ΩN+1(x)− (1− α(x)) log Ω(x)

]
dx

=

∫
q(x) log q(x) dx−

∫
q(x)α(x) log ΩN+1(x) dx−

∫
q(x)(1− α(x)) log Ω(x) dx.

(35)

We can achieve the above because the logarithm is concave (and thus − log is convex), Jensen’s
inequality implies that:

log Ω′(x) = log
(
α(x) ΩN+1(x) +

(
1− α(x)

)
Ω(x)

)
≥ α(x) log ΩN+1(x) +

(
1− α(x)

)
log Ω(x)

(36)

=⇒ − log Ω′(x) ≤ −α(x) log ΩN+1(x)− (1− α(x)) log Ω(x).

=⇒ −
∫
q(x) log Ω′(x) dx ≤ −

∫
q(x)α(x) log ΩN+1(x) dx−

∫
q(x)(1− α(x)) log Ω(x) dx.

(37)

Recall that the KL divergence between q and Ω is defined as:
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KL(q∥Ω) =
∫
q(x) log

q(x)

Ω(x)
dx

=

∫
q(x) log q(x) dx−

∫
q(x) log Ω(x) dx.

(38)

Similarly, for the updated mixture Ω′(x), we have the following.

KL(q∥Ω′) =

∫
q(x) log

q(x)

Ω′(x)
dx

=

∫
q(x) log q(x) dx−

∫
q(x) log Ω′(x) dx.

(39)

If we subtract the original divergence from the new one, the terms involving
∫
q(x) log q(x) dx

cancel, leaving:

KL(q∥Ω′)−KL(q∥Ω) =
[∫

q(x) log q(x) dx−
∫
q(x) log Ω′(x) dx

]
−
[∫

q(x) log q(x) dx−
∫
q(x) log Ω(x) dx

]
= −

∫
q(x) log Ω′(x) dx+

∫
q(x) log Ω(x) dx.

(40)

KL(q∥Ω′)−KL(q∥Ω) ≤
[
−
∫
q(x)α(x) log ΩN+1(x) dx−

∫
q(x)(1− α(x)) log Ω(x) dx

]
+

∫
q(x) log Ω(x) dx

= −
∫
q(x)α(x) log ΩN+1(x) dx−

∫
q(x)(1− α(x)) log Ω(x) dx

+

∫
q(x) log Ω(x) dx

= −
∫
q(x)α(x)

[
log ΩN+1(x)− log Ω(x)

]
dx.

(41)

This completes the derivation. We have shown that the difference in the KL divergence between q
and the updated mixture Ω′ and that between q and the original mixture Ω is bounded above by:

KL(q∥Ω′)−KL(q∥Ω) ≤ −
∫
q(x)α(x) [log ΩN+1(x)− log Ω(x)] dx. (42)

Notice that on the region where χ(x) ≤ δ, the indicator in α(x) is zero, so we only integrate over the
region where χ(x) > δ. Setting α(x) = a0 on that region, we obtain:

KL(q∥Ω′)−KL(q∥Ω) ≤ −a0
∫
χ(x)>δ

q(x) log
ΩN+1(x)

Ω(x)
dx. (43)

Now, for any x with χ(x) > δ, we have log q(x)
Ω(x) > δ so that q(x)Ω(x) > exp(δ). Suppose further that the

new expert is designed such that, on this region, ΩN+1(x) ≥ c q(x), where c ∈ (0, 1) is a constant.
Then it holds that:

ΩN+1(x)

Ω(x)
≥ c q(x)

Ω(x)
> c exp(δ). (44)
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Taking logarithms gives:

log
ΩN+1(x)

Ω(x)
≥ δ + log c. (45)

Thus, if we let:

η =

∫
χ(x)>δ

q(x) dx, (46)

and assume (through technical equivalence between q(x) and p(x)) that η ≥ ϵ0 > 0, then we obtain:∫
χ(x)>δ

q(x) log
ΩN+1(x)

Ω(x)
dx ≥ (δ + log c) ϵ0.

Therefore, the reduction in KL divergence satisfies:

KL(q∥Ω′)−KL(q∥Ω) ≤ −a0 (δ + log c) ϵ0.

Defining:
γ(δ, ϵ) = a0 (δ + log c) ϵ0,

We conclude that:
KL(q∥Ω′) ≤ KL(q∥Ω)− γ(δ, ϵ),

which shows that the addition of the new expert decreases the KL divergence by at least γ(δ, ϵ) > 0.
Thus, this completes our proof.

Corollary 3 (Effectiveness of Expert Addition and Gating Retraining). Suppose that at each iteration,
a new expert is added in regions where the discrepancy χ(x) > δ, and the gating network is retrained
using a softmax function that produces a convex combination of expert outputs. The updated mixture
then takes the form Ω(t+1)(x) =

∑N+1
i=0 w′

i(x)Ωi(x), where the new gating weights w′
i(x) are

derived from a softmax layer.

We have that the loss function for the gating network, defined as the KL divergence

Lg (ςg) =
∫
q(x) log

q(x)∑N+1
i=0 w′

i (x; ςg) Ωi(x)
dx

is Lg-smooth and µg-strongly convex in a neighborhood of the optimal parameter ς∗g . Then, if
we update the gating parameters via gradient descent with a learning rate small enough to ensure
convergence, the KL divergence between the target distribution q(x) and the current mixture Ω(t)(x)
decreases by at least a fixed amount γ > 0 at each iteration. That is,

KL
(
q∥Ω(t+1)

)
≤ KL

(
q∥Ω(t)

)
− γ

As a result, the sequence of mixtures
{
Ω(t)(x)

}
converges to q(x), in the sense that

lim
t→∞

KL
(
q∥Ω(t)

)
= 0, so Ω(t)(x)→ q(x) almost everywhere.

Finally, if q(x) is a good approximation of the true target distribution p(x)-for example, because it
comes from a properly trained energy-based model-then the mixture also converges to p(x). In the
limit, we obtain the desired equilibrium where

Ω(x) = q(x) = p(x),

showing that the mixture model has successfully learned the target distribution through iterative
refinement.

Proof: After the new expert is added, the gating network is retrained using a softmax layer that
produces new weights
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w′
i(x) =

exp(f ′i(x))∑N+1
j=0 exp(f ′j(x))

, i = 0, . . . , N + 1,

so that the updated mixture becomes

Ω′(x) =

N+1∑
i=0

w′
i(x) Ωi(x).

We define the gating network’s loss as the KL divergence

Lg(ςg) =
∫
q(x) log

q(x)∑N+1
i=0 w′

i(x; ςg) Ωi(x)
dx.

Because softmax produces a convex combination, the mapping x 7→
∑N+1
i=0 w′

i(x; ςg) Ωi(x) is convex
in the gating weights. Under the assumptions that Lg is Lg-smooth and µg-strongly convex near the
optimum ς∗g , we update the parameters by gradient descent:

ς(t+1)
g = ς(t)g − ηg∇ςgLg(ς(t)g ).

By standard results, the error in the gating network decreases as

∥ς(t+1)
g − ς∗g∥2 ≤

(
1− ηg(2µg − ηgL2

g)
)
∥ς(t)g − ς∗g∥2,

ensuring convergence provided the learning rate ηg is chosen sufficiently small. As the gating network
converges, the new mixture Ω′(x) =

∑N+1
i=0 w′

i(x; ςg) Ωi(x) becomes an even better approximation
of q(x), reinforcing the reduction in KL divergence we established earlier. If this process of detecting
regions where χ(x) > δ, adding a new expert, and retraining the gating network is repeated iteratively,
we obtain a sequence of mixtures {Ω(t)(x)} for which

KL(q∥Ω(t+1)) ≤ KL(q∥Ω(t))− γ(δ, ϵ).

Thus, by repeated application, we ensure

lim
t→∞

KL(q∥Ω(t)) = 0.

Assuming that q(x) is a good proxy for p(x) (due to proper training of the EBM), it follows that

Ω(t)(x)→ q(x) and ultimately Ω(t)(x)→ p(x),

establishing the desired Nash equilibrium p(x) = q(x) = Ω(x).

9.3 Normalization Free Function

Theorem 3 (Normalization Free Function): The objective function minq maxΩ{KL(p∥q) −
KL(Ω∥q)}, is normalizing free which is independent with Z.
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Proof. By definition, the KL divergence between p(x) and q(x) is KL(p∥q) =
∫
p(x) log p(x)

q(x) dx.

Since q(x) =
exp(−E(x)

τ )
Z , we can rewrite it as:

KL(p∥q) =
∫
p(x) log

p(x)

q(x)
dx

=

∫
p(x)

(
log p(x)− log q(x)

)
dx

=

∫
p(x) log p(x) dx−

∫
p(x) log q(x) dx

=

∫
p(x) log p(x) dx−

∫
p(x)

log
exp

(
−E(x)

τ

)
Z

 dx
=

∫
p(x) log p(x) dx−

∫
p(x)

[
−E(x)

τ
− logZ

]
dx

=

∫
p(x) log p(x) dx+

1

τ

∫
p(x)E(x) dx+ logZ

∫
p(x) dx

=

∫
p(x) log p(x) dx+

1

τ

∫
p(x)E(x) dx+ logZ,

Similarly, the KL divergence between Ω(x) and q(x) is:

KL(Ω∥q) =
∫

Ω(x) log
Ω(x)

q(x)
dx

=

∫
Ω(x) log Ω(x) dx−

∫
Ω(x) log q(x) dx

=

∫
Ω(x) log Ω(x) dx−

∫
Ω(x)

[
−E(x)

τ
− logZ

]
dx

=

∫
Ω(x) log Ω(x) dx+

1

τ

∫
Ω(x)E(x) dx+ logZ

∫
Ω(x) dx

, =

∫
Ω(x) log Ω(x) dx+

1

τ

∫
Ω(x)E(x) dx+ logZ

The difference between the two KL divergences is then:

KL(p∥q)−KL(Ω∥q) =

[∫
p(x) log p(x) dx+

1

τ

∫
p(x)E(x) dx+ logZ

]

−

[∫
Ω(x) log Ω(x) dx+

1

τ

∫
Ω(x)E(x) dx+ logZ

]

=

∫
p(x) log p(x) dx−

∫
Ω(x) log Ω(x) dx

+
1

τ

∫
p(x)E(x)− 1

τ

∫
Ω(x)E(x) dx.

=

∫
p(x) log p(x) dx−

∫
Ω(x) log Ω(x) dx︸ ︷︷ ︸

Entropy Different

+
1

τ

{
Ep[Eθ(x)]− EΩ[Eθ(x)]

}
Notice that the logZ terms cancel, so the difference is independent of Z.

Corollary 4 (Reduction to Energy Expectation Difference) Under the setting of Theorem 3, the
minimax objective

min
θ

max
q

{
KL
(
p∥q
)
− KL

(
Ω∥q

)}
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is equivalent (up to additive and multiplicative constants independent of θ) to

min
θ

[
Ex∼p

[
Eθ(x)

]
− Ex∼Ω

[
Eθ(x)

]]
.

Proof. By Theorem 3 we have:

KL(p∥q)−KL(Ω∥q) =
∫
p(x) log p(x) dx−

∫
p(x) log q(x) dx−

(∫
Ω(x) log Ω(x) dx (47)

−
∫

Ω(x) log q(x) dx
)

(48)

=

∫
p(x) log p(x) dx−

∫
Ω(x) log Ω(x) dx+

∫ [
Ω(x)− p(x)

]
log q(x) dx

(49)

=

∫
p(x) log p(x) dx−

∫
Ω(x) log Ω(x) dx︸ ︷︷ ︸

C

(50)

+

∫ [
p(x)− Ω(x)

](
−1

τ
Eθ(x)− logZ

)
dx (51)

= C +
1

τ

∫ [
p(x)− Ω(x)

]
Eθ(x) dx

(
since

∫ [
p(x)− Ω(x)

]
dx = 0

)
(52)

= C +
1

τ

(
Ex∼p

[
Eθ(x)

]
− Ex∼Ω

[
Eθ(x)

])
. (53)

Since adding the constant C and scaling by 1/τ do not affect the location of the minimizer in θ, it
follows that

argmin
θ

{
KL(p∥q)−KL(Ω∥q)

}
= argmin

θ

{
Ep[Eθ(x)]− EΩ[Eθ(x)]

}
,

which establishes the claimed reduction.

9.4 Differentiable Reward Function

Lemma 1 Let Fθ : X → R be differentiable on an open set X ⊂ Rm. The reward functionR(x) is
differentiable on X .

Proof. Let Fθ(G, s, t;x) be a neural estimator of shortest-path cost from source node s to target node
t, parameterized by θ. Define the reward function as:

R(x) =
∑

(s,t)∈K

£ (Fθ(G, s, t;x)− T )︸ ︷︷ ︸
Smooth feasibility Term

−κ · log (1 + ∥Υ(x)∥1)︸ ︷︷ ︸
Soft Cost Penalty Term

where £(z) = 1
1+e−ζz

is a sigmoid function with slope parameter ζ > 0, Υ(x) = log (1 + ex),
applied coordinate-wise, and T > 0 is the feasibility threshold, and κ > 0 is a regularization
hyperparameter. We aim to show that R(x) is continuously differentiable on any open domain
X ⊂ Rm. First, the estimator Fθ is a deep graph neural network constructed as a composition of L
differentiable layers:

Fθ = fL ◦ fL−1 ◦ · · · ◦ f1

where each fi may involve affine maps, ELU activations, attention mechanisms, and message-passing
steps, all of which are differentiable. Hence, by the chain rule, Fθ(G, s, t; ·) is differentiable on X .
For each (s, t) ∈ K, define:
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£s,t(x) := £ (Fθ(G, s, t;x)− T ) .

Since Fθ is differentiable and £(z) is smooth ( C∞ ) on R with £′(z) = ζ · £(z) · (1− £(z)), it
follows from the chain rule that £s,t(x) is differentiable:

∇£s,t(x) = £′ (Fθ(G, s, t;x)− T ) · ∇Fθ(G, s, t;x).

Summing over all (s, t) in K, we obtain:

𭟋(x) :=
∑

(s,t)∈K

£s,t(x)

which is a finite sum of differentiable functions and therefore differentiable onX . Let Υ : Rm → Rm
be the vector-valued softplus function such as:

Υ(x) := [log (1 + ex1) , . . . , log (1 + exm)]

where each component Υi (xi) is differentiable, with:

Υ′
i (xi) =

exi

1 + exi
= £ (xi)

Hence Υ ∈ C∞ (Rm), and so the map x 7→ ∥Υ(x)∥1 =
∑m
i=1 Υi (xi) is also differentiable as a finite

sum of differentiable functions. Now we consider the scalar penalty Λ(x) := log (1 + ∥Υ(x)∥1).
Because Υi (xi) > 0 for all xi, we have ∥Υ(x)∥1 > 0, and log(1 + u) is smooth on (0,∞). Hence,
by the chain rule:

∇Λ(x) = 1

1 + ∥Υ(x)∥1
· ∇

(
m∑
i=1

Υi (xi)

)

which is well-defined and continuous on Rm. Putting both together that 𭟋(x) =
∑

(s,t)∈K £s,t(x)

and Λ(x) = log (1 + ∥Υ(x)∥1) is both differentiable. Therefore, the reward function R(x) =
𭟋(x)− κ · Λ(x) is differentiable on any open set X ⊂ Rm, i.e.,R ∈ C1(X).

This concludes the proof.

9.5 Reward Estimation Consistency

Theorem 4 (Reward Estimation Consistency) Assume that Ω has converged properly, for any
perturbed latent vector ẑi := zi + ϵ̂ · ∇ziR(Mϕ(zi, c)) with small ϵ̂ > 0, we haveR (x̂i) > R (xi),
where x̂i =Mϕ(ẑi, c).

Proof. To prove this theorem, we first prove that for a well-converged ΩΘ, Mϕ is Lipschitz-
continuous.

Consider the decoderMϕ : Rd → RP composed of N layers. For j = 1 to N − 1, each layer
computes:

hj = qj(hj−1) = ReLU(Wjhj−1 + bj),

where h0 = zi ∈ Rd, Wj ∈ Rdj×dj−1 , and bj ∈ Rdj . The output layer computes:

xi =Mϕ(zi) = qN (hN−1) =WNhN−1 + bN ,

with WN ∈ RP×dN−1 and bN ∈ RP .

To prove thatMϕ is Lipschitz continuous, consider two inputs zi, ẑi ∈ Rd. We aim to show:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤ K∥zi − ẑi∥,

where K is a finite constant.
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Starting from the output layer:

∥Mϕ(zi)−Mϕ(ẑi)∥ = ∥qN (h
(zi)
N−1)− qN (h

(ẑi)
N−1)∥

= ∥WNh
(zi)
N−1 + bN −WNh

(ẑi)
N−1 − bN∥

= ∥WN (h
(zi)
N−1 − h

(ẑi)
N−1)∥

≤ ∥WN∥2∥h(zi)N−1 − h
(ẑi)
N−1∥,

where ∥WN∥2 denotes the spectral norm of WN .

For each hidden layer j = N − 1 down to 1:

∥h(zi)j − h(ẑi)j ∥ = ∥qj(h
(zi)
j−1)− qj(h

(ẑi)
j−1)∥

= ∥ReLU(Wjh
(zi)
j−1 + bj)− ReLU(Wjh

(ẑi)
j−1 + bj)∥

≤ ∥Wjh
(zi)
j−1 −Wjh

(ẑi)
j−1∥ (since ReLU is 1-Lipschitz)

≤ ∥Wj∥2∥h(zi)j−1 − h
(ẑi)
j−1∥.

By recursively applying these inequalities, we obtain:

∥h(zi)j − h(ẑi)j ∥ ≤

(
j∏

k=1

∥WN−k+1∥2

)
∥h(zi)0 − h(ẑi)0 ∥ =

(
j∏

k=1

∥WN−k+1∥2

)
∥zi − ẑi∥.

At the output layer:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤ ∥WN∥2∥h(zi)N−1 − h
(ẑi)
N−1∥.

Substituting the recursive bound:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤

 N∏
j=1

∥Wj∥2

 ∥zi − ẑi∥.
Define K =

∏N
j=1 ∥Wj∥2. To ensure K is finite, we enforce bounds (Layer Normalization) on the

spectral norms: ∥Wj∥2 ≤ sj , where sj are finite constants. Then:

K ≤
N∏
j=1

sj .

If we choose sj = s ≤ 1 for all j, then K ≤ sN ≤ 1, which is finite. Therefore,Mϕ is Lipschitz
continuous with Lipschitz constant K, satisfying:

∥Mϕ(zi)−Mϕ(ẑi)∥ ≤ K∥zi − ẑi∥.

Thus, we finished proving thatMϕ is Lipschitz-continuous. Given ΩΘ is well converged, withMϕ

being Lipschitz continuous and differentiable, a small learning rate ϵ̂ induces a small change in latent
vector zi which results in a small change in the data point xi reconstructed by C-VAE. We can use
the first-order Taylor expansion for small ∆zi = ẑi − zi :

x̂i =Mϕ (ẑi) ≈Mϕ (zi) + JMϕ
(zi) ·∆zi

where JMϕ
(zi) is the Jacobian matrix ofMϕ at zi.

From the update rule:

∆zi = ẑi − zi = ϵ̂ · ∇ziR(xi)
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Thus, the change in xi is:

x̂i − xi ≈ JMϕ
(zi) ·∆zi = ϵ̂ · JMϕ

(zi) · ∇ziR(xi)

Since xi =Mϕ (zi), by the chain rule, we have:

∇ziR(xi) = J⊤
Mϕ

(zi) · ∇xiR(xi)

Therefore:

x̂i − xi ≈ ϵ̂ · JMϕ
(zi) · J⊤

Mϕ
(zi) · ∇xiR(xi)

Let Z = JMϕ
(zi) · J⊤

Mϕ
(zi), which is a positive semi-definite matrix. Thus:

x̂i − xi ≈ ϵ̂ · Z · ∇xiR(xi)

Using a first-order Taylor expansion of r around xi :

∆R = R(x̂i)−R(xi) ≈ ∇xiR (xi)
⊤
(x̂i − xi)

Substituting x̂i − xi, we obtain:

∆R ≈ ϵ̂ · ∇xiR (xi)
⊤
Z · ∇xiR (xi)

Since Z is positive semi-definite and ϵ̂ > 0 :

∆R ≥ 0

More specifically, ∆R = 0 if and only if ∇xiR (xi) = 0. Otherwise,R > 0. Therefore, under the
given conditions and for a sufficiently small ϵ̂ :

R (x̂i) > R (xi)

This completes the proof.

Remark 3 (Trade-off between Lipschitz control and expressiveness). Imposing strict Lipschitz
constraints on the decoder Mϕ, for instance by enforcing ∥Wj∥2 ≤ sj for all layers so that∏N
j=1 sj ≤ K, guarantees global smoothness but inevitably limits the network’s representational

capacity. Such strong spectral normalization can suppress high-frequency components essential
for accurate reconstruction, leading to degradation in performance. Hence, while a boundedMϕ

ensures stability, it often sacrifices fine-grained generative fidelity.

Remark 4 (Local Lipschitz behavior on latent support). In practice, it is not necessary to enforce
a global Lipschitz constraint across all decoder layers. The decoderMϕ only needs to be locally
Lipschitz over the high-density region of the latent prior p(z) = N (0, I). Formally, there exists a
constant Llocal > 0 such that for any z1, z2 within Ω = {z | p(z) > ϵ},

∥Mϕ(z1)−Mϕ(z2)∥ ≤ Llocal∥z1 − z2∥.

This localized smoothness naturally emerges from the VAE objective, which regularizes qψ(z|x)
toward p(z) and thereby aligns nearby z’s with semantically close reconstructions.
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9.6 Safe Ball In Latent Space

Assumption 1 (Edge–cost Lipschitz). Each edge function fe is Le–Lipschitz on [0, be] and

Lf := max
e∈E

Le. (A1)

Assumption 2 (Estimator Uniform Error). The SPAGAN surrogate satisfies

0 ≤
∣∣Jθ(G, s, t;x)− SPG(s, t;x)

∣∣ ≤ εspa, ∀ (s, t),x. (A2)

Proposition 2 (Safe Ball In Latent Space). Let x⋆ =Mϕ(z⋆, c) be feasible and denote the true
safety margin by ∆̄ = min(s,t)∈K

[
SPG(s, t;x⋆)− T

]
> 0. Assume a well trained SPAGAN’s error

is uniformly bounded by εspa(0 ≤ εspa < ∆̄). With h = ⌈T/wmin⌉, Lf = maxe Le, m = |E|, and
decoder-Lipschitz constant LM, every latent vector z satisfying

∥∥z − z⋆∥∥2 ≤ ∆̄− εspa

hLf
√
mLM

is decoded to x =Mϕ(z, c) for which Jθ(G, s, t;x) ≥ T−2ϵspa for all (s, t) ∈ K; Thus, exploration
within this latent ball guarantees provable safety and restores near full feasibility.

Proof. We begin by recalling DecoderMϕ : Rd→Rm (with m = |E|) is globally LM-Lipschitz

∥Mϕ(z1, c)−Mϕ(z2, c)∥2 ≤ LM∥z1 − z2∥2, ∀z1, z2 ∈ Rd. (54)

With wmin := mine we, let h :=
⌈
T/wmin

⌉
so every shortest path ρ̈ under threshold T satisfies

|ρ̈| ≤ h. For any two perturbations x,x′ and any (s, t) ∈ K, we have:

∣∣SPG(s, t;x)− SPG(s, t;x
′)
∣∣ = ∣∣∣∑

e∈ρ̈
fe(xe)−

∑
e∈ρ̈

fe(x
′
e)
∣∣∣

≤
∑
e∈ρ̈

Le|xe − x′
e|

≤ hLf ∥x− x′∥1

≤ hLf
√
m ∥x− x′∥2.

(55)

Switch to the estimator using assumption A2 and by applying the triangle inequality, which states
|a+ b+ c| ≤ |a|+ |b|+ |c|, we have:
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∣∣Jθ(s, t;x)− Jθ(s, t;x⋆)
∣∣ = ∣∣∣Jθ(s, t;x)− SPG(s, t;x)︸ ︷︷ ︸

a

+SPG(s, t;x)− SPG(s, t;x⋆)︸ ︷︷ ︸
b

+ SPG(s, t;x⋆)− Jθ(s, t;x⋆)︸ ︷︷ ︸
c

∣∣∣
≤
∣∣Jθ(s, t;x)− SPG(s, t;x)

∣∣︸ ︷︷ ︸
≤ εspa

+
∣∣SPG(s, t;x)− SPG(s, t;x⋆)

∣∣︸ ︷︷ ︸
true–cost gap

+
∣∣SPG(s, t;x⋆)− Jθ(s, t;x⋆)

∣∣︸ ︷︷ ︸
≤ εspa

≤εspa +
∣∣SPG(s, t;x)− SPG(s, t;x⋆)

∣∣ + εspa

= 2εspa +
∣∣SPG(s, t;x)− SPG(s, t;x⋆)

∣∣
≤2εspa + hLf

√
m
∥∥Mϕ(z, c)−Mϕ(z⋆, c)

∥∥
2

≤2εspa + hLf
√
mLM ∥z − z⋆∥2

=⇒ −
∣∣Jθ(s, t;x)− Jθ(s, t;x⋆)

∣∣ ≥ −(2εspa + hLf
√
mLM ∥z − z⋆∥2)

(56)

The initial solution x∗ is feasible with a true safety margin ∆̄ that SPG (s, t;x∗) ≥ T+∆̄. Moreoever,
from Assumption 2, we have

|Fθ (G, s, t;x∗)− SPG (s, t;x∗)| ≤ ϵspa
⇐⇒ −ϵspa ≤ Jθ (G, s, t;x∗)− SPG (s, t;x∗) ≤ ϵspa

(57)

From this compound inequality, we are interested in the left-hand side to find a lower bound for
Fθ (G, s, t;x∗) :

− ϵspa ≤ Jθ (G, s, t;x∗)− SPG (s, t;x∗)

⇐⇒ Fθ (G, s, t;x∗) ≥ SPG (s, t;x∗)− ϵspa
⇐⇒ Fθ (G, s, t;x∗) ≥ T + ∆̄− ϵspa

(58)

Since the proposition states the condition ∥z − z⋆∥2 ≤ ∆̄−ϵspa
hLf

√
mLM

and we know that

h, L−f,
√
m,LM are all positive, this implies hLf

√
mLM ∥z − z⋆∥2 ≤ ∆̄− ϵspa, hence:

Jθ(G, s, t;x) ≥ Jθ (G, s, t;x∗)− |Jθ(G, s, t;x)− Jθ (G, s, t;x∗)|
(Note: since A ≥ B − |A−B|)
≥ (T + ∆̄− ϵspa)− |Jθ(G, s, t;x)− Jθ (G, s, t;x∗)|

(Note: Substituting the lower bound for Jθ(G, s, t;x∗))

≥ (T + ∆̄− ϵspa)−
(
2εspa + hLf

√
mLM ∥z − z⋆∥2

)
(Note: Substituting the upper bound for |Jθ(x)− Jθ(x∗)|)
= T + ∆̄− ϵspa − 2εspa − hLf

√
mLM ∥z − z⋆∥2

= T + ∆̄− 3ϵspa − hLf
√
mLM ∥z − z∗∥2

≥ T + ∆̄− 3ϵspa − (∆− ϵspa)
(Note: Since − hLf

√
mLM ∥z − z∗∥2 ≥ −(∆− ϵspa))

= T + ∆̄− 3ϵspa −∆+ ϵspa
= T − 2ϵspa

(59)

This completes the proof.
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10 DETAILS EXPERIMENTS AND ABLATION STUDIES

This section provides comprehensive details of our experimental setup, evaluation metrics, and abla-
tion studies. We aim to assess both the effectiveness and generalizability of the proposed Hephaestus
framework across a range of real-world network topologies and baselines. The experiments are
designed to evaluate performance from multiple perspectives: solution feasibility, budget efficiency,
scalability, and training dynamics. In addition, ablation studies are conducted to isolate the contri-
butions of key architectural components—including the SPAGAN-based path estimator, mixture of
generative experts, and reinforcement-based refinement—and to examine how each contributes to the
overall performance. We also detail the hyperparameter choices, compute infrastructure, and exact
solver setups used for benchmarking.

10.1 Dataset Details

Table2 provides detailed statistics of the real-world network datasets used in our experiments, each
chosen to represent different structural and functional properties. The Email network is a directed
communication graph among 1,005 individuals with 25,571 edges and a diameter of 7, capturing
organizational email interactions characterized by strong community structures. The Gnutella dataset
represents a decentralized peer-to-peer file-sharing system from August 2002. It contains 6,301
nodes and 20,777 directed connections, with a small diameter of 9 and low clustering, reflecting its
unstructured topology. The RoadCA network is a large-scale undirected graph of California’s road
infrastructure with approximately 1.96 million nodes and 2.77 million edges, and an unusually large
diameter of 849—typical of sparse, planar transportation networks. Finally, the Skitter dataset models
the Internet at the autonomous system (AS) level using traceroute data, comprising 1.7 million nodes
and 11.1 million directed edges with a diameter of 25. This dataset captures the hierarchical structure
of inter-AS connectivity. Collectively, these datasets span a wide spectrum of scales, densities, and
network types, forming a comprehensive benchmark for evaluating the scalability and generalizability
of Hephaestus and its baselines.

Table 2: Statistics of real network datasets used in experiments.
Data Type Nodes Edges Diameter
Email Directed 1,005 25,571 11
Gnutella Directed 6,301 20,777 9
RoadCA Undirected 1.96 M 2.77 M 849
Skitter Directed 1.7 M 11.1 M 25

10.2 Hyperparameter Settings

In Table 3, we provide a detailed summary of the hyperparameters used across the three core phases
of the Hephaestus framework: Forge, Morph, and Refine. These settings were chosen through
extensive trial runs and empirical tuning to identify the best-performing configurations. The selected
values aim to ensure training stability, strong generalization across diverse graph instances, and
consistent performance throughout the pipeline.

In Forge, we train the SPAGAN model to estimate shortest-path costs efficiently. After trying several
network configurations, we found that using 5 layers of Graph Attention Networks (GAT), each with
512 hidden units and 8 attention heads, gave reliable results on a wide range of graph structures.
The ELU activation function was chosen because it helps avoid the dead neuron problem that can
happen with ReLU, especially during early stages of training. For the learning rate, we tested multiple
values and observed that 5× 10−4 consistently led to stable convergence within 3000 epochs. Larger
learning rates often made training unstable, while smaller ones slowed down progress too much.
When choosing a loss function, we initially experimented with mean squared error (MSE), but
observed that it was highly sensitive to a few long-path outliers, which harms the overall learning
process. To address this, we adopted the Huber loss, which combines the benefits of MSE and MAE
(Mean Absolute Error): it behaves quadratically for small errors to ensure smooth optimization and
transitions to a only linear penalty for large errors. This property allowed us to reduce the influence
of extreme outliers while still penalizing them, resulting in more stable convergence and improved
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Table 3: Hyperparameter Settings.

Component/Phase Parameter Value

Phase 1: Forge
SPAGAN (Fθ) Network Architecture 5 Shortest Path GAT layers, 512 units, 8 heads

Activation Function ELU
Learning Rate (α) 5× 10−4

Optimizer Adam
Adam β1, β2 (0.9, 0.999)
Batch Size 256
Training Epochs 3000
Loss Function Huber Loss
Max per-edge budget (be) T

Phase 2: Morph
EBM (q(x)) Network Architecture 6 MLP layers, 512 units

Activation Function Swish
Learning Rate (αEBM ) 2× 10−4

Optimizer Adam
Regularization (γ̂) 1.0
Batch Size (EBM Update) 256
Training Iterations (Minimax) 50000

Mix-CVAE (Ω) Latent Dimension of each CVAE (d) 128
Encoder Architecture GAT Encoder + MLP
Decoder Architecture MLP Decoder
Activation Function LeakyReLU
Learning Rate (αΩ) 8× 10−4

Optimizer Adam
Batch Size (CVAE Update) 256
Initial Experts (Ninit) 1
Max Experts (Nmax) 9
Expert Add Threshold (δ) 0.425
KL Weight (βKL) 0.1
Prior N (0, I)

Phase 3: Refine
RL Agent (π) Policy/Value Net Arch. 4 MLP layers, 256 units

Activation Function LeakyReLU
Learning Rate (αRL) 1× 10−4

Optimizer Adam
Discount Factor (γRL) 0.99
Reward Smoothness (ζ) 5.0
Reward Cost Weight (κ) 0.05
Gradient Ascent Step (ϵ̂GA) 2× 10−3

RL Training Episodes 50000
Top-K Solutions 10
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predictive accuracy across diverse graph instances. The maximum per-edge budget be = T defines
the allowable range of perturbations and ensures that a feasible solution always exists for any input
graph. Specifically, by assigning xe = T to every edge e ∈ E, the cost of any path becomes at
least T , thus trivially satisfying the QoSD constraint. This choice guarantees feasibility without
loss of generality, while still leaving many rooms for the model to explore more efficient and sparse
perturbations to reduce total perturbation cost. Finally, we used a batch size of 256, which provided
reliable gradients while fitting comfortably within GPU memory during training.

In Morph, the EBM is a 6-layer MLP with 512 units and Swish activation, which improves smoothness
of the learned energy surface. The EBM is trained with a learning rate of 2 × 10−4, using a
minimax schedule for 50,000 iterations, along with regularization term γ̂ = 1.0 to prevent gradient
explosion. For the Mix-CVAE, a latent dimension of 128 was sufficient to model the diverse structure
of perturbations, while the encoder incorporates graph context via GAT layers. The KL weight
βKL = 0.15 balances reconstruction and latent regularization. We initialize with a single expert and
allow expansion up to 9 experts, adding new CVAEs when the density ratio χ > 0.425, indicating
insufficient coverage by existing experts.

In Refine, we implement policy π as a 4-layer MLP with 256 units per layer and LeakyReLU
activations which helps mitigate vanishing gradients. It commonly occur during late-stage training
when the model begins to converge and reward differences become minimal. A conservative learning
rate of 1 × 10−4 was selected to ensure policy stability, while a discount factor of 0.99 promotes
long-term planning over greedy improvements. The reward shaping parameters ζ = 5.0 and κ = 0.05
control the smoothness of feasibility and cost feedback, respectively. We perturb the latent vector
with a small gradient ascent step ϵ̂GA = 2 × 10−3 to explore reward-improving directions, and
retain the top-10 feasible solutions per episode to enrich the training buffer. We follow the model
architecture of PPO based on works [71, 72, 73]

Hardware Specification. All experiments were conducted on a workstation equipped with an Intel
Core i9-14900K CPU, 192 GB RAM, and 2× NVIDIA RTX 4090 GPUs (total 48 GB VRAM).
While the GPUs played a critical role in training the SPAGAN, Mix-CVAE, and RL components
efficiently, the large RAM and CPU core count were especially important for evaluating exact solvers
like Gurobi and approximation algorithms. In particular, we relied on Gurobi to refine and benchmark
outputs from baseline methods such as DIFFILO, Predict-and-Search, and L-MILPOPT, etc. These
refinement steps often required solving large-scale ILPs with huge number of constraints and integer
variables, where runtime and memory bottlenecks were significant. Thus, the high-performance CPU
and 192 GB RAM were essential for verifying solution quality and feasibility in our exact evaluation
pipeline.

Gurobi Heuristic Setup (Important). To assess the quality of learned solutions and evaluate
optimality under exact conditions, we use Gurobi as a ground-truth solver. However, solving the
full QoSD problem exactly is highly challenging at scale due to the exponential number of potential
constraints. Recall h =

⌈
T

wmin

⌉
denotes the maximum number of edges in any feasible path, where

T is the budget threshold and wmin is the minimum edge weight. Since each path can consist of at
most h edges, and the graph contains n nodes, the total number of feasible paths is upper-bounded by
nh. This results in an exponentially large constraint space in the corresponding MILP formulation.
This issue is especially severe when the threshold T is high, since a larger number of short paths
remain feasible. In our experiments, we observed that Gurobi consistently fails to solve problem
instances with more than 10,000 nodes at maximum density when all feasible paths are explicitly
enumerated under medium T .

To address this scalability bottleneck, we adopt a heuristic strategy based on sampling for Gurobi
refinement, which we refer to as Gurobi-Heuristic. Instead of enumerating all paths, we iteratively
sample the current shortest paths between critical source-target pairs—using Dijkstra—and enforce
path constraints only on these sampled paths. Gurobi then solves the reduced problem and updates
the edge weights accordingly. This process is repeated: new shortest paths are sampled under the
updated perturbation x, and the solver is rerun. The iteration stops once no newly sampled path
violates the threshold constraint T , thereby ensuring feasibility without needing to enumerate the
full exponential set of feasible paths shorter than T . This strategy is crucial for making it feasible to
refine the solutions produced by any ML-based method—including Hephaestus or baselines such as
DIFFILO and Predict-and-Search—on large-scale graphs. Without it, exact refinement via Gurobi
would be computationally infeasible due to the overwhelming number of constraints. To further
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improve performance under such settings, Gurobi is configured with heuristic-oriented parameters
including ‘Heuristics=0.5‘, ‘MIPFocus=1‘, and full multi-threading support.

10.3 SPAGAN Generalization
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Figure 6: Predictive Accuracy Across Different Graph Sizes.
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Figure 7: Predictive Accuracy Across Different Graph Topologies.

In our framework, SPAGAN model (Fθ) plays a vital role in Forge, where it serves as a fast and
accurate estimator of shortest-path costs. These estimates directly support the Predictive Path
Stressing (PPS) algorithm in generating initial feasible perturbation vectors without requiring full
shortest-path solver calls. Therefore, we want to evaluate the generalization capability of SPAGAN,
by designing two sets of experiments using synthetic graphs. The first examines how well the model
scales across different graph sizes, while the second investigates its performance across distinct graph
structures.

To test scalability, we trained SPAGAN on Erdős–Rényi (ER) graphs with 1,000 nodes at maxi-
mum density, and then evaluated its predictions on ER graphs with larger sizes—2,000 and 3,000
nodes—also at maximum density. Figures 6 and 7 show the results. The scatter plots in Figure 6 (a–c)
compare SPAGAN’s predictions with ground-truth shortest-path distances obtained via Dijkstra’s
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algorithm. In all cases, the predicted values closely follow the diagonal (Predicted = True), indicating
high prediction accuracy. The corresponding error histograms in Figure 7 (a–c) further support this,
with prediction errors concentrated around zero and minimal high-magnitude deviations, suggesting
both low bias and low variance.

In the second evaluation, to evaluate SPAGAN’s ability to generalize across different graph topologies,
we fixed the training on ER graphs with 1,000 nodes and tested the model on two structurally distinct
types: Barabási–Albert (scale-free) and Watts–Strogatz (small-world), each with the same node
count. As shown in Figures 6 and 7, SPAGAN’s predictions remain highly accurate. The scatter
plots in Figure 7 (a–c) continue to show strong alignment between predicted and true path costs,
and the histograms in Figure 7 (a–c) maintain the same error concentration pattern seen in the
size generalization study. Taken two evaluations together, these results demonstrate that SPAGAN
is capable of generalizing effectively across both varying graph sizes and structural types. Its
predictive accuracy and stability under diverse conditions make it a reliable and efficient surrogate
for shortest-path estimation within the broader Hephaestus framework.

10.4 Robustness to SPAGAN Errors and Exact-Path Safeguard

10.4.1 Exact-Path Feasibility Check and Safeguard (PPS-I)

Let G = (V,E) be a weighted directed graph, where each edge e ∈ E has a perturbed weight
fe(xe) determined by the allocated budget xe from the perturbation vector x ∈ R|E|

≥0 . Given a set of
source–target pairs K = {(si, ti)}mi=1 and a threshold T > 0, we define the overall feasibility rate of
a perturbation x as

Feas(x) :=
1

m

m∑
i=1

1{SPG(si, ti;x) ≥ T} ,

where the shortest-path length under perturbation x is given by SPG(s, t;x) =
minρ∈P(s,t)

∑
e∈ρ fe(xe). PPS-I takes any candidate x (from PPS or RL) and performs: (i) compute

dx(si, ti) for all pairs via Dijkstra; (ii) while dx(si, ti) < T for any i, identify a shortest path ρ⋆
and increment {xe}e∈ρ⋆ by the minimum amount to push dx(si, ti) to T . This yields a final x̂ with
Feas(x̂) = 1.

Proposition (Guarantee of PPS-I). Let K be the set of QoSD pairs with threshold T > 0, and let
the per-pair slack under a perturbation x be

slackx(s, t) = max{0, T − SPG(s, t;x)},
with total slack S(x) =

∑
(s,t)∈K slackx(s, t). Assume every edge-weight function fe(·) is non-

decreasing and locally Lipschitz, with a positive lower bound on its incremental gain:

fe(xe + 1)− fe(xe) ≥ cmin > 0.

Then, for any initial perturbation x, PPS-I returns an updated x̂ such that SPG(s, t; x̂) ≥ T for all
(s, t) ∈ K, thereby ensuring 100% feasibility. Moreover, the total additional cost is bounded by

∥x̂∥1 − ∥x∥1 ≤ 1
cmin

S(x).

Proof. At each iteration, PPS-I selects a violating pair (s, t) with SPG(s, t;x) < T , extracts its exact
shortest path ρ⋆ under current x, and increases budgets on edges e ∈ ρ⋆ by the smallest nonnegative
increments ∆xe such that∑

e∈ρ⋆

[
fe(xe +∆xe)− fe(xe)

]
≥ T − SPG(s, t;x).

Since each fe is non-decreasing, all shortest-path lengths are non-decreasing under the update. Hence
the total slack S(x) =

∑
(u,v)∈K max{0, T − SPG(u, v;x)} strictly decreases whenever there is a

violation. Because K is finite and slack is bounded below by 0, PPS-I must terminate in finitely many
steps at some x̂ with S(x̂) = 0, i.e., SPG(s, t; x̂) ≥ T for all (s, t) ∈ K.

We now relate the total increase in edge weights to the increase in budgets. From the discrete lower
bound assumption

fe(xe + 1)− fe(xe) ≥ cmin,
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each unit increase of xe increases the corresponding edge cost by at least cmin. For multiple steps,
we can sum this inequality ∆xe times:

fe(x̂e)− fe(xe) =
∆xe−1∑
j=0

[
fe(xe + j + 1)− fe(xe + j)

]
≥

∆xe−1∑
j=0

cmin = cmin(x̂e − xe).

This simply means that fe grows at least linearly with slope cmin. In other words, the function lies
above a line of slope cmin passing through (xe, fe(xe)). Summing this inequality over all edges
yields ∑

e∈E

[
fe(x̂e)− fe(xe)

]
≥ cmin

∑
e∈E

(x̂e − xe) = cmin∥x̂− x∥1.

The left-hand side represents the total increase in edge weights caused by all PPS-I updates. By
construction, this cumulative increase cannot exceed the initial total slack S(x), since S(x) quantifies
exactly the total amount of shortest-path length that must be compensated to reach feasibility. Hence

cmin∥x̂− x∥1 ≤ S(x) ⇒ ∥x̂∥1 − ∥x∥1 ≤ S(x)
cmin

.

Dually, the incremental upper bound (by Lipschitz) implies

fe(x̂e)− fe(xe) ≤ Cmax (x̂e − xe) ⇒
∑
e∈E

[
fe(x̂e)− fe(xe)

]
≤ Cmax ∥∆x∥1.

To eliminate the initial violations, the cumulative increase of shortest-path lengths must be at least
the total deficit one needs to fill, which is lower-bounded by the initial total slack:∑

e∈E

[
fe(x̂e)− fe(xe)

]
≥ S(x).

Therefore,

S(x) ≤ Cmax ∥∆x∥1 ⇒ ∥x̂∥1 − ∥x∥1 ≥
S(x)

Cmax
.

It gives us the desired sandwich bound S(x)
Cmax

≤ ∥x̂∥1 − ∥x∥1 ≤ S(x)
cmin

, together with guaranteed
feasibility at termination.

10.4.2 Robustness to SPAGAN Prediction Noise

The purpose of this experiment is to evaluate the robustness of HEPHAESTUS under imperfect
shortest-path predictions produced by SPAGAN. In real-world deployment, SPAGAN may encounter
topologies or edge-weight distributions not seen during training, leading to degraded path estimates
that could cascade through subsequent stages of the pipeline. Hence, it is crucial to quantify how
such prediction noise affects overall feasibility, cost efficiency, and the effectiveness of our safeguard
module PPS-I.

To model degraded SPAGAN predictions, we inject independent zero-mean noise with rate η ∈
{30%, 10%, 5%} into SPAGAN-estimated shortest-path scores during PPS and RL decision-making.
Let d̃(s, t) denote the SPAGAN-predicted distance, we perturb it as d̃η(s, t) = d̃(s, t) + ϵs,t, where
ϵs,t is sampled to achieve the target noise level (calibrated on the validation split). We then evaluate:
(i) PPS (greedy optimization on noisy estimates); (ii) RL refinement in latent space (also using noisy
estimates for reward shaping); and (iii) PPS-I, which applies exact post-check correction via Dijkstra
to guarantee feasibility. We report feasibility rate (%) over m = 50 source–target pairs and the total
perturbation budget cost.

From Table 4 (with m=50 source–target pairs), we observe four key findings:

1. PPS degrades under noisy predictions: Feasibility drops by up to 22% (e.g., RoadCA with 30%
noise), and cost increases by about 20% as perturbation budgets are misallocated to irrelevant
edges.
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Table 4: Sensitivity to SPAGAN noise and exact-path safeguard (PPS-I). We report feasibility (%)
and total cost after each stage; PPS-I also shows wall-clock fix time (s) for the exact Dijkstra-based
correction.

Dataset Noise PPS Feas. PPS Cost RL Feas. RL Cost PPS-I Feas. PPS-I Cost PPS-I Time

Email 30% 90.0 3284 94.0 2911 100.0 3005 20.2
10% 94.0 3185 96.0 2759 100.0 2802 15.7
5% 96.0 3157 98.0 2640 100.0 2712 6.1
0% 100.0 3091 100.0 2691 100.0 2691 0.0

RoadCA 30% 78.0 13730 86.0 10985 100.0 11061 214.8
10% 88.0 12556 92.0 10148 100.0 10795 137.2
5% 92.0 12123 94.0 9892 100.0 9907 48.6
0% 100.0 11283 100.0 9184 100.0 9277 0.0

2. RL refinement recovers performance: RL improves feasibility and reduces cost over PPS by
leveraging gradient signals in latent space. For instance, on the RoadCA dataset with 30% noise,
RL improves feasibility from 78% to 86% and reduces cost from 13,730 to 10,985.

3. PPS-I ensures 100% feasibility in all cases: Regardless of SPAGAN noise level, PPS-I con-
sistently restores feasibility via exact Dijkstra-based correction. This confirms the pipeline’s
correctness guarantee.

4. Cost penalty of PPS-I is modest: Even in the worst case (RoadCA, 30% noise), the PPS-I
cost increases by only ∼19% relative to the ideal (0% noise) case i.e., 11,061 vs. 9,277, while
feasibility remains perfect.

10.5 Resilience to Weak Initial Data

This experiment aims to assess the system’s ability to recover from weak or suboptimal initial data and
to validate whether the latent-space refinement mechanism truly corrects, rather than amplifies, early-
stage imperfections. In other words, we examine the self-reinforcing capability of the Morph–Refine
loop under noisy or incomplete initialization. Our framework is explicitly designed to mitigate
the influence of suboptimal or noisy solutions generated in the early phase. Unlike heuristic post-
processing, our refinement operates entirely in the latent space, where a reinforcement-learning (RL)
agent optimizes a differentiable reward that reflects both feasibility and cost efficiency. Consequently,
even if the initial perturbation samples from the PPS stage are imperfect, the refinement progressively
corrects them rather than propagating the errors.

To validate this behavior, we conduct a cycle-level robustness experiment. After each refinement
cycle, the top-k highest-reward latent samples are added back to the pre-trained solution set Dsol,
forming a self-reinforcing feedback loop between the Morph (Mix-CVAE) and Refine (RL) phases.
This feedback mechanism provides two benefits:

(i) Mix-CVAE retraining incorporates improved latent samples, enriching the coverage of
feasible solution modes.

(ii) The RL policy learns on an increasingly structured latent manifold, enabling it to discover
even better perturbations in subsequent cycles.

On Email with T=260%, the improvement saturates after roughly five refinement cycles, yielding a
total cost reduction of ∼ 18.5%. On the larger-scale RoadCA dataset, cost reductions continue to
increase even after eight cycles, peaking at over ∼ 26% under high thresholds. These results confirm
that HEPHAESTUS remains robust to weak or noisy initial data, and that the latent-space feedback
loop effectively improves data quality over successive cycles.

Table 5 reports the relative cost reduction (%) across refinement cycles under varying feasibility
thresholds T . Both Email and RoadCA datasets exhibit clear monotonic improvements, showing that
later cycles consistently achieve higher-quality perturbations.
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Table 5: Cycle-level improvement in cost reduction (%) across thresholds T . The values represent
budget savings relative to the initial solution (Cycle 0).

Dataset Cycle T=140% T=180% T=220% T=260%

Email 0 0.00 0.00 0.00 0.00
1 4.01 5.25 6.82 7.95
2 8.67 10.15 12.44 14.21
3 10.86 12.50 15.03 17.88
4 11.07 12.97 15.58 18.04
5 11.23 13.11 15.98 18.52

RoadCA 0 0.00 0.00 0.00 0.00
1 7.01 8.55 10.11 11.58
2 10.91 12.98 15.03 17.34
3 12.83 15.21 17.85 20.19
4 15.67 17.89 20.45 22.87
5 17.42 19.53 22.10 24.53
6 18.27 20.33 22.98 25.66
7 18.51 20.76 23.42 26.09
8 18.61 20.89 23.54 26.21

Figure 8: Evolution of Total Budget during the Refine phase (RL agent training)
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10.5.1 RL Convergence Behavior under Different Problem Scales

To analyze how the RL policy behaves across different problem scales, we provide detailed train-
ing statistics on two real-world datasets: Email (1005 nodes, 25,571 edges) and RoadCA (1.96M
nodes, 2.77M edges). Both experiments are conducted using clean SPAGAN predictions to isolate
convergence dynamics.

Table 6: Training-phase convergence statistics on datasets of different scales. We report feasibility,
expected total budget, and reward over three distinct training stages.

Email RoadCA
Training Phase Feas. (%) Expected Total Budget Reward Feas. (%) Expected Total Budget Reward

Stage 1: Feasibility Search Behavior
Episodes 0 - 5K 80.0→ 100 1921.65→ 15147.21 201.44→ 551.95
Episodes 0 - 10K 40.0→ 100 2641.58→ 64453.49 545.37→ 2348.62

Stage 2: Cost Optimization Behavior
Episodes 5K - 15K 98.0± 2 15147.21→ 2697.84 551.95→ 874.72
Episodes 10K - 35K 98.0± 2 64453.49→ 9265.72 2348.62→ 3975.03

Stage 3: Convergence
Episodes 15K - 50K 98.0± 2 2697.84± 17 874.72± 14
Episodes 35K - 50K 98.0± 2 9265.72± 49 3975.03± 37

As shown in Table 6, training proceeds in three stages based on episode count. In Stage 1 (Episodes
0–5K / 0–10K), the policy rapidly improves feasibility (maximizing term 1 of reward function) from
80% to 100% (Email) and from 40% to 100% (RoadCA), demonstrating its ability to learn constraint
satisfaction from scratch. In Stage 2, the focus shifts to cost optimization (term 2 of reward function):
total budget drops significantly from 15147.21 to 2697.84 on Email, and from 64453.49 to 9265.72
on RoadCA, while feasibility remains approximately 98%. Finally, in Stage 3, the reward and cost
metrics converge with low variance, e.g., on RoadCA, reward stabilizes at 3975.03 ± 37 and budget
at 9265.72 ± 49, confirming stable convergence even in large-scale settings.

10.6 Comparison with Alternative Latent Optimization Strategies

A central motivation for the HEPHAESTUS framework is that reinforcement learning (RL) can
effectively optimize latent representations beyond what static or population-based methods can
achieve. To verify this, we conduct controlled comparisons against two alternative latent optimization
strategies: Bayesian Optimization (BO) and Evolutionary Strategies (ES). This experiment aims
to evaluate whether the RL-based refinement phase indeed provides superior sample efficiency,
scalability to higher latent dimensions, and robustness to noisy SPAGAN predictions.

Each method is evaluated on the Gnutella dataset under varying latent dimensionalities d, reporting
the final perturbation cost (lower is better) and feasibility rate (%). All evaluations are conducted
using clean SPAGAN predictions (i.e., without additional noise) for a fair comparison.

Table 7: Comparison between RL-based refinement and alternative latent-space optimization strate-
gies. Lower cost indicates better efficiency.

Method Latent Dim. d Final Cost ↓ Feas. Rate ↑
PPS (no refinement) – 4118 100%

RL (Ours) 16 3435 100%
64 3419 100%

Bayesian Opt. (BO) 16 3590 98%
28 4055 52%

Evolutionary Strat. (ES) 16 3612 94%
64 3598 98%
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Table 8: Comparison of RL and ES under different levels of SPAGAN noise. All experiments are
conducted on the Gnutella dataset with latent dimensions d ∈ {16, 64}. Lower cost indicates better
performance, and higher feasibility denotes stronger robustness.

Method Latent Dim. d SPAGAN Noise (%) Final Cost ↓ Feas. Rate ↑
PPS – 0 4118 100%

5 4221 96%
10 4318 92%
30 4392 86%

RL (Ours) 16 0 3435 100%
5 3596 98%
10 3714 92%
30 3832 86%

64 0 3419 100%
5 3550 98%
10 3668 96%
30 3775 92%

Evo. Strat. (ES) 16 0 3612 94%
5 3798 91%
10 3945 87%
30 4201 81%

64 0 3598 98%
5 3756 95%
10 3912 91%
30 4187 85%

We observe that BO performs well only in low-dimensional latent spaces (d ≤ 30) but suffers from
severe sample inefficiency and surrogate modeling errors as dimensionality increases. ES scales
better but converges slowly, often resulting in suboptimal costs. In contrast, our RL-based refinement
achieves both the lowest final cost and full constraint satisfaction (100% feasibility) across all latent
dimensions. This confirms that the policy-gradient–based refinement is more robust and sample-
efficient than model-based (BO) or population-based (ES) strategies, especially in high-dimensional
latent manifolds.

Robustness under Noisy SPAGAN Predictions. To further evaluate the resilience of these methods,
we extend the comparison to noisy settings by injecting controlled levels of perturbation into SPA-
GAN’s path predictions (5%, 10%, and 30%). This additional test closes the loop with the robustness
discussion in Section 10.4.2 and examines how optimization strategies behave when their latent
objectives are corrupted by upstream model uncertainty.

From these results, we observe that Evolutionary Strategies are more sensitive to SPAGAN prediction
noise, likely due to their strong reliance on the quality of the pre-trained solution set Dsol generated
during the Forge phase. In contrast, our RL-based refinement maintains both higher feasibility and
lower cost under noise, demonstrating stronger robustness across latent dimensions and noise levels.

10.7 Energy Distribution Convergence during Minimax Training

The objective of this experiment is to evaluate how well the generative model Mix-CVAE (Ω) can
progressively align its generated samples with the energy distribution implicitly defined by the
Energy-Based Model (EBM) during adversarial co-training. Specifically, we aim to assess whether,
as training proceeds, Ω learns to generate samples that lie in low-energy regions—those that the EBM
assigns to real data. Since the true data distribution is unknown and cannot be visualized directly,
we rely on the EBM’s energy outputs as a surrogate for this alignment. The hypothesis is that if Ω
successfully learns the real data distribution, the energy distributions of fake (generated) and real
samples will gradually converge.

53



(a) Step 8 (b) Step 32 (c) Step 64 (d) Step 128 (e) Step 256

Figure 9: Energy histograms comparing real versus fake data across minimax training. The x-axis
denotes the energy score assigned by the Energy-Based Model (EBM), while the y-axis indicates
the frequency of samples observed at each energy level. Real data samples (blue), drawn from the
ground-truth dataset Dsol, typically have low energy values and cluster near zero on the left of the
x-axis, reflecting the EBM’s preference for them. Fake data samples (orange), generated by the
Mix-CVAE Ω, initially have higher energies but gradually shift leftward as training progresses. This
convergence of the two distributions indicates that Ω is learning to generate samples that align more
closely with the EBM’s learned energy landscape.

Figure 9 illustrates this convergence process by plotting energy histograms over five key training
steps. Real data from the dataset Dsol are shown in blue (low energy region on left-side in x-axis),
while fake data sampled from Ω are shown in orange on the right side. At early stages such as Step 8
and Step 32, there is a significant contrast: the EBM assigns low energy to real samples, which are
densely concentrated near the left of the histogram, while fake samples occupy much higher energy
regions, reflecting their low realism. As training progresses (Steps 64 and 128), the two distributions
begin to overlap, indicating that Ω is learning to produce more realistic outputs that better match the
EBM’s learned energy profile. By Step 256, the energy distributions of real and fake samples nearly
coincide, suggesting that Ω has successfully learned to generate samples that the EBM considers
indistinguishable from real data. This result highlights a key insight: although the EBM is explicitly
trained to minimize energy for real data and maximize it for generated data, the Mix-CVAE generator
gradually catches up. Initially, it produces unrealistic, high-energy samples, but through adversarial
feedback, it learns to synthesize low-energy (high-quality) solutions. Thus, we demonstrates that the
generator effectively "chases" the moving energy boundary set by the EBM and ultimately converges
to regions of high data likelihood.

10.8 Latent Space Visualization

Figure 10: Conditional Latent Space Visualization via UMAP for the trained Mix-CVAE, conducted
on the same synthetic graph but under varying threshold values T across different edge weight
functions: Linear, Quadratic (Convex), and Log-Concave. Each point represents a latent vector z
corresponding to a solution, colored by the associated threshold T . The structure of the latent space
reveals how the model differentiates solution representations under changing constraints and cost
dynamics, with clustering patterns indicating sensitivity to the underlying threshold conditions.

In this experiment, the goal is to assess whether the latent space learned by the conditional generative
model (Mix-CVAE) meaningfully captures different constraints T on the same graph. Specifically, we
visualize the latent vectors z using UMAP projections to examine whether different threshold values
T result in separable or clustered embeddings—an indicator of successful conditional representation
learning. Figure 10 shows the latent space organization when Mix-CVAE is trained and evaluated on
the same synthetic graph but under three different edge weight functions: Linear, Quadratic (Convex),
and Log-Concave. Across all three subfigures, we observe clear gradient-based separation and distinct
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Figure 11: Conditional Latent Space Visualization for the trained Mix-CVAE under the Linear weight
function setting. Each point represents a latent vector z corresponding to a generated solution, colored
by either the input graph type or the threshold T . The presence of distinct clusters or separable
regions in the latent space suggests that the model captures meaningful variations related to graph
structure and problem-specific constraints, indicating successful conditional encoding.

clusters aligned with increasing values of T . This pattern suggests that the generative model is
sensitive to threshold constraints and learns to organize the latent space accordingly. Interestingly, the
separation structure varies with the cost function type: Linear produces smooth band-like transitions,
while Log-Concave shows more localized clustering, potentially reflecting its sharper cost escalation
characteristics.

Figure 11 complements this analysis by testing Mix-CVAE on real-world graphs (Email, Gnutella,
RoadCA, Skitter) under the same linear edge cost setting. Again, latent vectors are visualized and
colored by threshold. Across different graph topologies, we still consistently observe separable
clusters and gradual transitions in z-space with respect to T , indicating that the generative model
generalizes across input graphs and captures structural information relevant to feasibility under
constraints. In particular, datasets with greater structural diversity (e.g., Skitter and RoadCA) exhibit
more complex spatial patterns, highlighting the model’s ability to encode both graph topology and
constraint semantics.

10.9 Impact of Expert Addition in Mix-CVAE

The goal of this experiment is to evaluate the effect of adding more experts in the Mix-CVAE
architecture on modeling capability and final solution quality. Figures 12, 14, and 15 together provide
a comprehensive view of how the number of experts (3, 5, 7, 9) influences the generative model’s
ability to approximate the true solution distribution and optimize budget outcomes.

(a) 3-Expert (b) 5-Expert (c) 7-Expert (d) 9-Expert

Figure 12: Comparison between the distribution from the EBM and the distribution from the Mix-
CVAE with varying numbers of experts on a synthetic network with maximum density. Increasing
the number of experts improves mode coverage and alignment with the target EBM distribution.

Impact of Expert Addition on Generative Modeling. Figures 12 and 13 compare the energy
distributions of real solutions (as evaluated under the EBM) and fake samples generated by the
Mix-CVAE across both synthetic and real network settings. When only 3 experts are used, the
generated samples show poor alignment with the real data distribution, evidenced by noticeable
discrepancies between the orange (Mix-CVAE) and blue (EBM) bars. As the number of experts
increases, this alignment improves significantly—indicating that the model is better able to capture
the underlying modes and structure of the target distribution. This validates the core motivation
behind expert addition: increasing the number of experts enhances the model’s capacity to represent
multimodal solution spaces. Furthermore, Figure 14 provides additional insight by visualizing the
latent space of the trained Mix-CVAE via UMAP on synthetic graphs. Each point represents a latent
vector z colored by its corresponding threshold T . With more experts, the latent space becomes more
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Figure 13: Impact of adding experts on real-world networks. From top to bottom: results on Email,
Gnutella, RoadCA, and Skitter networks.

organized, exhibiting distinct clusters that correspond to different threshold levels. This structured
separation suggests that the model is learning to conditionally represent diverse solution modes,
improving both interpretability and the quality of generated samples.

Figure 14: An example of conditional latent space visualization for the trained Mix-CVAE on the
same synthetic graph and pairs but different thresholds. Points represent latent vectors z, colored by
threshold T . Clear clustering shows the latent space captures meaningful patterns.

Impact of Expert Addition on Total Cost. To evaluate whether the improved modeling capacity
from adding more experts in Mix-CVAE leads to better optimization outcomes, we analyze its
effect on the total budget required to solve QoSD instances. Figure 15 directly illustrates this
downstream impact by plotting the average total budget (in log scale) achieved across a range of
graph densities (from sparse to dense) under three distinct edge weight functions: Linear, Quadratic
Convex, and Log Concave. We observe a consistent trend: increasing the number of experts from
3 to 9 leads to a progressive reduction in the final budget required to satisfy the QoSD constraint
across all edge weight settings. The gap between configurations becomes more pronounced as
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(c) Log Concave
Figure 15: Impact of adding of experts (3, 5, 7, and 9) on the resulting total budget across varying
graph densities, testing on the synthetic graph under (a) Linear, (b) Quadratic Convex, and (c) Log
Concave edge weight functions.

graph density increases, where solution spaces become more complex and multimodal. Notably,
the 9-expert model consistently outperforms the others, achieving the lowest budgets—especially
under nonlinear edge weight functions like Log Concave and Quadratic Convex. This confirms
that enhanced expressiveness in the generative model enables better exploration and exploitation of
feasible regions in the solution space.

These results demonstrate a clear benefit of the expert addition strategy: as the number of experts
increases, Mix-CVAE becomes more capable of capturing diverse solution modes, which directly
improves solution quality. The budget savings are especially significant under higher density graphs,
where the optimization problem is inherently harder and requires stronger modeling capacity to
discover high-quality solutions.

10.10 Performance under Non-Linear Edge Weight Functions

The main paper presents only performance comparisons on real-world networks under the linear
weight function, where the QoSD problem can be reformulated as an ILP and solved exactly. This
section will show performance of Hephaestus in real networks under non-linear edge weight settings
where such reformulations are no longer tractable for existing ML-based or optimization baselines.
Specifically, Table 9 evaluates the Quadratic Convex setting, where each edge weight follows the form
fe(xe) = ℵ(x2). This convex formulation rapidly increases edge cost as budget increases, meaning
that even small increases in budget can suffice to surpass the threshold T . Fortunately, the latest
versions of Gurobi support solving quadratic objectives, hence, an exact solver is still included in
this setting for benchmarking. In contrast, Table 10 examines the Log-Concave case, where the edge
weight is defined as fe(xe) = ℵ(lnx). This class of function is much slower to grow, so achieving a
total cost above T often requires significantly more budget per edge. Importantly, Gurobi and other
solvers do not support log-concave objectives natively in mixed-integer formulations, making exact
optimization infeasible. Therefore, only approximation methods—Adaptive Trading (AT), Iterative
Greedy (IG), Sampling Algorithm (SA)—and our method Hephaestus are reported in Table 10.

Email Gnutella RoadCA Skitter

Method 140% 180% 220% 260% 140% 180% 220% 260% 140% 180% 220% 260% 140% 180% 220% 260%

Adaptive Trading 1933 4261 6647 7771 1558 3267 5842 7518 7747 12080 18761 29821 290772 714634 1637765 2743321
Iterative Greedy 1978 4301 6697 7825 1942 3635 7561 9774 7888 13893 19369 32049 347454 889621 1967255 3173690
Sampling Alg. 3687 8835 12532 16384 2803 4609 12670 15126 16271 28856 55014 60716 521783 1580349 2478424 5741999
Exact Solver 1907 4198 6491 7646 1497 3077 5499 7051 — — — — — — — —
Hephaestus 1944 4256 6602 7711 1529 3126 5631 7327 4955 9253 14107 20493 171157 493507 979447 1716357

Table 9: Performance of HEPHAESTUS and baselines on four real datasets at different thresholds T .
The best is highlighted in bold excluding exact solution. (Convex)

Performance under Quadratic Convex fe: In Table 9 (Quadratic Convex), Hephaestus consistently
achieves the lowest total cost among all approximation methods. On smaller graphs like Email and
Gnutella, its performance is often close to the exact solver when available, while on larger graphs
like RoadCA and Skitter, where the exact solver fails to run—Hephaestus still maintains strongest
performance compared with remaining available baselines, highlighting its scalability and robustness
to nonlinear cost functions.
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Email Gnutella RoadCA Skitter

Method 140% 180% 220% 260% 140% 180% 220% 260% 140% 180% 220% 260% 140% 180% 220% 260%

Adaptive Trading 3309 7595 12872 14759 6589 10897 15268 21147 20218 29266 46248 69457 1130533 4191546 6931595 9697272
Iterative Greedy 3473 7706 13095 16042 6639 11571 16092 21491 21301 30389 48197 71405 1339904 5174196 8753831 10111558
Sampling Alg. 4404 9589 15218 18336 7980 13957 19632 23286 38427 68553 95579 128118 5621568 7373689 10220892 15464201
Hephaestus 3188 7320 10942 12318 6403 10754 13949 19110 17299 27242 42311 64796 424188 1115779 2608813 7064231

Table 10: Performance (Total Attack Budget) of HEPHAESTUS and approximation baselines on four
real datasets under Log Concave edge weights. Lower is better. Best approximation/HEPHAESTUS
result is bolded. Exact Solver fails to run.

Performance under Log Concave fe: Table 10 (Log Concave) further highlights Hephaestus’
scalability and generality. Despite there is no longer a ground-truth solver, Hephaestus consistently
outperforms AT, IG, and SA across all thresholds and network sizes. The gap in total budget becomes
particularly significant for larger graphs and higher thresholds, as approximation methods struggle to
effectively navigate the slow growth dynamics of the log-concave function. By contrast, Hephaestus’s
generative-refinement framework allows it to adapt to the more complex shape of the cost landscape.

These findings validate that Hephaestus remains highly effective in settings where other solvers
or learning-based methods are inapplicable. Moreover, the results underscore the flexibility of
Hephaestus across diverse graph structures, ranging from small, sparse email networks to mas-
sive Internet-scale topologies like Skitter. Moreover, unlike many existing learning-based meth-
ods—such as DIFFILO or Predict-and-Search—which are designed specifically for linear cost
functions, Hephaestus is built to work across a wide range of cost models. This is possible because
it separates the learning of solution structures (e.g., which paths to attack) from the specific form of
fe (e.g., linear, quadratic, log-concave). In fact, owing to its generative modeling approach in latent
space, Hephaestus does not rely on any particular formula for how edge costs increase, hence, can
handle different types of cost functions without needing to change its architecture. This flexibility
makes Hephaestus more practical for real-world use, where both the structure of the network and
how costs behave can vary significantly from one case to another.

10.11 Soundness of the Reward Function

Recall that the reward function used in the Refine phase of Hephaestus is defined as follows:

R (xi+1) = 𭟋 (G,K, x̂i+1)︸ ︷︷ ︸
(i) Smooth feasibility term

−κ · log (1 + ∥xi+1∥1)︸ ︷︷ ︸
(ii) Soft cost penalty term

(60)

(a) Graph 1000 (b) Graph 3000 (c) Graph 5000
Figure 16: Evolution of Total Budget during the Refine phase (RL agent training)

This reward formulation encourages policy π to generate solutions that are both feasible (increasing
the sigmoid-based term for all critical pairs (s, t)) and efficient (penalizing a large total budget using
the second term). The key idea is to guide the policy to find a balance between maximizing feasibility
and minimizing the total cost.

In Figure 17, we show how the total budget evolves over training episodes across three different edge
weight settings: Linear, Quadratic Convex, and Log-Concave. A noteworthy observation across all
plots is that the budget initially increases sharply during the early training phase, especially visible
in episodes 0–3000. This behavior can be explained as: at this stage, the RL agent has not yet
learned effective policies and instead prioritizes feasibility, attempting to push more critical paths
above the required threshold T , often by over-allocating budget. This is aligned with the feasibility
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(b) Quadratic Convex
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Figure 17: Evolution of Total Budget during the Refine phase (RL agent training)
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(b) Quadratic Convex
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(c) Log Concave
Figure 18: Evolution of Feasible Solution quality (blue, left axis) and Agent Reward (red, right axis)
over training episodes.

curve in Figure 18 (a–c), where the smooth feasibility skyrockets during the same initial phase,
confirming that the agent is successfully raising path costs. As training continues and the feasibility
nears saturation (close to a value of 10, meaning that the total cost of the shortest paths for all 10
target pairs exceeds the threshold T ), we begin to observe a transition: the agent shifts focus toward
reducing the overall budget while preserving feasibility. This can be seen in Figure 17(a), where from
episode 3000 onwards, the total budget starts to steadily decline. Correspondingly, Figure 18(a) shows
that feasibility remains stable, indicating that the agent is successfully optimizing the second term
of the reward without sacrificing the first. However, a particularly interesting phenomenon occurs
around episode 7000. As the agent becomes increasingly focused on minimizing the cost penalty, it
temporarily neglects feasibility. This is reflected in Figure 18(a) as a sharp dip in smooth feasibility
around that episode, suggesting some paths have dropped below the threshold. Simultaneously, Figure
17(a) shows a sudden plunge in total budget, confirming that the policy has aggressively reduced edge
weights to cut cost. Eventually, the agent corrects this behavior. Realizing that dropping feasibility
lowers the total reward, the policy re-adjusts — it selectively increases the budget on critical edges to
recover feasibility, while continuing to reduce less impactful edges. This adaptive dynamic is exactly
what the reward function is designed to elicit: the policy explores aggressively, corrects when needed,
and eventually converges to a high-feasibility, low-cost solution.

This self-regulating behavior is consistent across Quadratic Convex (Figure 10b/11b) and Log-
Concave (Figure 10c/11c) settings, although the trajectory is slightly more gradual in the latter
due to the slower cost escalation of log-concave functions. The reward curves (in red, Figure 11)
grow monotonically across all cases, confirming that the policy is indeed optimizing the reward
function effectively. Overall, these experiments confirm the soundness of the reward design. It
provides a useful training signal that balances feasibility and efficiency, and encourages intelligent
exploration–exploitation dynamics during learning.

10.12 Relative optimal gap convergence

The goal of this experiment is to evaluate how effectively and efficiently each method approaches
the optimal solution in terms of total budget, using relative optimal gap as the key metric. This gap
quantifies the percentage deviation from the best-known solution, where lower values indicate better
performance and zero denotes exact optimality. As observed in the Figure 19, existing learning-based
baselines, such as L-MILPOPT, Predict-and-Search, and DiffILO—require post-processing using an
exact solver like Gurobi to reduce their optimality gap. While this refinement phase eventually helps
those methods converge, it often takes several thousand seconds and incurs substantial computational
cost. In contrast, Hephaestus with Gurobi refinement (red curve) starts with high-quality initial
solutions, thanks to the expressiveness of Mix-CVAE, and rapidly converges to zero gap much

59



0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25 L-MILPOPT
Predict & Search
AT
Diffilo
Ours(PPS-I)
Ours(Gurobi)

Figure 19: Convergence comparison of the relative optimal gap across Hephaestus and baseline
methods under the Linear cost setting. The relative optimal gap measures the percentage deviation
from the best-known (optimal) solution, with lower values indicating better performance. Existing
ML-based methods (L-MILPOPT, Predict-and-Search, DiffILO) gradually reduce their gaps over
time through external solver refinement (e.g., Gurobi), but typically require thousands of seconds. In
contrast, Hephaestus with Gurobi (red curve) rapidly converges to zero gap due to its high-quality
initial solutions and efficient generative modeling. Hephaestus with PPS-I (green curve), although
not exact, achieves low gaps in significantly less time, offering a fast and practical alternative.

faster. This demonstrates the synergy between generative modeling and reinforcement learning
in guiding the solution space effectively. Meanwhile, Hephaestus with PPS-I (green curve) does
not reach exact optimality, as PPS-I is an approximation algorithm that does not enforce all path
constraints exhaustively. However, it consistently achieves low optimality gaps in a fraction of
the time compared to exact methods, offering an effective trade-off between solution quality and
efficiency. An interesting observation in the curve is the initial rise in total cost during the first
few seconds, after which the value quickly plateaus. This behavior comes from the fact that the
initial solution generated by the RL policy π—may not fully satisfy all feasibility constraints. PPS-I
then incrementally increases edge budgets based on marginal benefit-to-cost analysis, just enough
to achieve feasibility, and terminates once all critical pairs are satisfied. Thus, this experiment
underscores that Hephaestus is capable of adapting to different computational needs. It delivers
fast approximate results with PPS-I, or provably optimal solutions with Gurobi refinement—while
consistently outperforming existing baselines in both convergence quality and speed.

10.13 Hephaestus with different feasibility refinement

In this section, we want to show performance of Hephaestus under three refinement modes: initial
prediction only (no refinement), refinement via PPS-Inference (PPS-I), and full Gurobi-based refine-
ment. These configurations are compared against classical approximation baselines (AT, IG, SA),
several learning-based approaches (L-MILPOPT, Predict-and-Search, DIFFILO), and the exact solver,
across synthetic Erdős–Rényi graphs with increasing edge density (p = 0.2, 0.5, 1.0). As illustrated
in Table 11, across all densities, Hephaestus ’s initial predictions already yield strong performance,
achieving near-optimal total cost and high feasibility—often outperforming other ML-based methods
even before refinement. When PPS-I is applied, Hephaestus consistently reaches 100% feasibility
with only minor increases in total cost. For instance, at p = 1.0, the PPS-I solution attains 2236 total
budget, just 1.45% above the exact optimum (2204), while completing in only 37 seconds—over 200×
faster than the full exact solver. This efficiency comes from the fact that the latent generative model
already places solutions very close to the feasible region. PPS-I only needs to make slight local adjust-
ments (i.e., increasing budgets on a few critical edges) to push all violated shortest-path constraints
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Table 11: Performance comparison of Hephaestus (Hephaestus) under different refinement strategies
(Initial Prediction, PPS-I, and Gurobi) across varying graph densities and benchmarked against
baselines. The table reports total budget (lower is better), feasibility rate (higher is better), and
running time (in seconds). Results demonstrate that Hephaestus consistently achieves optimal
or near-optimal solutions with significantly lower computation time using PPS-I, while Gurobi
refinement reaches exact feasibility at higher computational cost.

Graph Method Total Budget ↓ Feasibility Rate ↑ Running Time (s) ↓
Density (p)

0.2

AT 163 100.00 44.10
IG 189 100.00 43.23
SA 240 100.00 508.49
L-MILPOPT (Initial Pred.) 462 95.11 15.22
L-MILPOPT (Gurobi) 119 100.00 240.96
P&S (Initial Pred.) 411 95.52 34.57
P&S (Gurobi) 119 100.00 716.31
DIFFILO (Initial Pred.) 386 92.78 28.31
DIFFILO (Gurobi) 119 100.00 412.64
Hephaestus (Initial Pred.) 119 100.00 12.98
Hephaestus (PPS-I) 119 100.00 13.72
Hephaestus (Gurobi) 119 100.00 198.22
Exact Solver 119 100.00 921.18

0.5

AT 856 100.00 147.38
IG 992 100.00 144.46
SA 1260 100.00 2409.83
L-MILPOPT (Initial Pred.) 2735 84.17 37.56
L-MILPOPT (Gurobi) 639 100.00 1503.01
P&S (Initial Pred.) 2158 82.91 86.43
P&S (Gurobi) 630 100.00 4476.94
DIFFILO (Initial Pred.) 2027 88.36 70.78
DIFFILO (Gurobi) 630 100.00 2579.00
Hephaestus (Initial Pred.) 631 99.12 21.95
Hephaestus (PPS-I) 637 100.00 24.00
Hephaestus (Gurobi) 630 100.00 1238.88
Exact Solver 630 100.00 5757.38

1.0

AT 2288 100.00 298.00
IG 2471 100.00 350.33
SA 3238 100.00 8113.90
L-MILPOPT (Initial Pred.) 8573 78.12 175.08
L-MILPOPT (Gurobi) 2237 100.00 5070.23
P&S (Initial Pred.) 8549 78.36 172.85
P&S (Gurobi) 2204 100.00 4836.18
DIFFILO (Initial Pred.) 7095 83.01 141.55
DIFFILO (Gurobi) 2204 100.00 3919.23
Hephaestus (Initial Pred.) 2215 98.18 28.77
Hephaestus (PPS-I) 2236 100.00 37.12
Hephaestus (Gurobi) 2204 100.00 2218.16
Exact Solver 2204 100.00 8127.64
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above threshold T . Thus, PPS-I acts as a lightweight yet effective refinement method, ideal for
scenarios where runtime is critical but small optimality gaps are acceptable. When exact optimality
is required, combining Hephaestus with Gurobi refinement yields the best possible solution (zero
optimality gap) in all cases. Importantly, due to the strong initialization from Mix-CVAE and RL,
Gurobi converges significantly faster than from scratch—demonstrating the value of learning-based
warm starts even for traditional solvers. Compared to L-MILPOPT, Predict-and-Search, and DIF-
FILO, which depend heavily on post-hoc Gurobi refinement and suffer from lower feasibility in their
initial outputs, Hephaestus stands out by producing feasible or near-feasible solutions immediately.
This results in better cost-feasibility tradeoffs and reduced reliance on expensive solver calls.
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