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Abstract
Building scalable models to learn from diverse,
multimodal data remains an open challenge. For
vision-language data, the dominant approaches
are based on contrastive learning objectives that
train a separate encoder for each modality. While
effective, contrastive learning approaches intro-
duce sampling bias depending on the data aug-
mentations used, which can degrade performance
on downstream tasks. Moreover, these methods
are limited to paired image-text data, and cannot
leverage widely-available unpaired data. In this
paper, we investigate whether a large multimodal
model trained purely via masked token prediction,
without using modality-specific encoders or con-
trastive learning, can learn transferable representa-
tions for downstream tasks. We propose a simple
and scalable network architecture, the Multimodal
Masked Autoencoder (M3AE), which learns a
unified encoder for both vision and language data
via masked token prediction. We provide an em-
pirical study of M3AE trained on a large-scale
image-text dataset, and find that M3AE is able to
learn generalizable representations that transfer
well to downstream tasks. We demonstrate the
scalability of M3AE with larger model size and
training time, and its flexibility to train on both
paired image-text data as well as unpaired data.

1. Introduction
With the rapid advances in neural architectures [41] and
hardware performance, self-supervised pre-training has
made tremendous progress in natural language processing
(NLP) and vision [17, 10, 2, 3]. The underlying idea, often
referred as masked token prediction, is conceptually sim-
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ple: the model learns to predict a removed portion of the
data. Masked token prediction has enabled highly successful
methods for pre-training in NLP and vision, including Trans-
former [41], GPT [3], BERT [10], and MAE [17]. These
pre-trained representations have been shown to generalize
well to various downstream tasks.

Driven by these successes, there has been significant interest
in improving visual representation learning by training on
large and diverse multimodal datasets that contains both
images and text. These datasets, such as CC12M [4] and
YFCC100M [36], are often much more scalable than explic-
itly labeled datasets such as ImageNet [9], and the diverse
language data can provide rich supervision to train more
generalizable representations.

The dominant paradigm for multimodal pre-training is
cross-modal contrastive learning, such as CLIP [30] and
ALIGN [22]. These methods show that cross-modal con-
trastive learning models, trained on giant corpora of paired
image-and-text, can generalize well to various downstream
tasks. Despite these progresses, a major limitation for con-
trastive learning is that it requires paired image-and-text data
and therefore cannot leverage widely available unpaired data.
In addition, contrastive learning based methods use separate
encoders for image and text, making it difficult to access
information from different modalities at the same time.

To address the above limitations for visual representation
learning, we propose a simple and scalable architecture
called the multimodal masked autoencoders (M3AE) for
learning a single unified model on large image and lan-
guage data, without using modality-specific encoders or
contrastive learning. Based on MAE [17], M3AE is trained
purely via masked token prediction. Our key idea is to treat
an image-and-text pair as a long sequence of tokens con-
sisting of embeddings of image patches and text. M3AE
is trained simply by masking random patches of the input
image and language tokens, and learning to reconstruct the
masked pixels and text.

In this paper, we provide an empirical study of M3AE
trained on the multimodal CC12M [4] dataset, and find
that M3AE is able to learn generalizable representations
that transfer well to downstream tasks such as image clas-
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Figure 1. Multimodal masked autoencoder (M3AE) consists of an encoder that maps language tokens and image patches to a shared
representation space, and a decoder that reconstructs the original image and language from the representation.

sification and out-of-distribution detection. We find that
multimodal pre-training of M3AE on CC12M achieves sig-
nificantly higher performance on the ImageNet-1k linear
classification benchmark [33] compared to pre-training on
images only (MAE). Our strong results for M3AE demon-
strate the generalization benefits of multimodal training for
learning transferable representations across datasets.

Surprisingly, we find that M3AE performs best when we ap-
ply a high mask ratio (75%) on language, while in contrast,
language models like BERT [10] conventionally use a low
mask ratio (15%) because language data are highly semantic
and information-dense. We hypothesize that M3AE benefits
from a higher mask ratio on text because it enforces a better
joint understanding of vision and language during masked
token prediction. We also provide qualitative analysis show-
ing that the learned representation incorporates meaningful
information from both image and language. Furthermore,
we demonstrate the scalability of M3AE with larger model
size and training time, as well as its flexibility to train on
both paired image-text data as well as unpaired data.

2. MultiModal Masked Autoencoder (M3AE)
In this section we introduce our method, multimodal masked
autoencoder (M3AE). M3AE consists of an encoder that
maps image and language to representation space, and a de-
coder that reconstructs the original image and language from
the representation. We summarize the main architecture and
training process of M3AE in Figure 1.

Image-language masking. The first step of M3AE is to
combine the language and image input into a single se-
quence. Following standard natural language processing
practice [10], we tokenize the input text into a sequence of
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Figure 2. Comparison of M3AE, MAE, and CLIP on ImageNet.
M3AE significantly outperforms MAE. M3AE can flexibly lever-
age a combination of paired image-text data and unpaired image
only data. All models are ViT-B. MAE and M3AE are pretrained
on CC12M for 100 epochs.

discrete tokens. For image input, we divide it into regular
non-overlapping patches of pixels, following the practice of
ViT [12]. Text tokens and image patches are then concate-
nated into a single sequence.

For patches and tokens, we sample s random subset without
replacement from a uniform distribution, and mask (i.e.,
remove) the remaining ones. A high masking ratio is ap-
plied to both text tokens and image patches, in order to
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eliminate information redundancy and make a sufficiently
difficult task that cannot be easily solved by extrapolation
from visible neighboring patches and tokens.

M3AE encoder. The M3AE architecture consists of two
networks: an encoder and a decoder. The encoder is a large
Transformer, following the architecuture of ViT [12] and
BERT [10]. The encoder takes only unmasked (visible) lan-
guage tokens and image patches as input. For language
tokens, we first convert it into learnable embedding vectors
and then apply 1D positional encodings, following the stan-
dard practice [10]. For image patches, we use a learnable
linear projection to convert them to image embeddings that
have the same dimension as the language embeddings, and
then apply 2D positional encodings, following the practice
of MAE [17]. In order to distinguish the two different modal-
ities, we add two learnable vectors that represent language
and images respectively to the corresponding modalities’
embeddings. We call these ”modality type encodings”. Ad-
ditionally, a learnable CLS embedding [10] is prepended to
the beginning of the sequence. The combined language and
image embeddings are then processed by a series of Trans-
former blocks to obtain the final representation. Although
the input consists of long sequences of image patches and
text tokens, we can still train very large Transformer en-
coders efficiently because the same only operates on a small
subset (e.g., 25%) of the full set.

M3AE decoder. Following MAE [17], we use a lightweight
Transformer-based decoder on the full set of tokens con-
sisting of (i) encoded visible image patches, (ii) encoded
visible text tokens, and (iii) mask tokens. Each mask token
is a shared, learned vector that indicates the presence of a
missing patch or token to be predicted. We add positional
embeddings to all tokens in this full set in order to encode
location information in mask tokens. We also add a different
set of modality type embeddings to visible tokens, similar to
the encoder. After the decoder Transformer, we apply two
linear projection output heads to compute the reconstruc-
tion. The image output head projects the decoder output
corresponding to image patches to the same dimension as
pixels in the original image patches. The language output
head projects the decoder output of language to token logits.
These output heads are then used for supervision during the
self-supervised training of M3AE.

Self-supervised training of M3AE. Our M3AE recon-
structs the input by predicting the pixel values for masked
image patches and the token probabilities for masked lan-
guage tokens. For image reconstruction, we compute the
mean squared error (MSE) between the reconstructed and
original images in the pixel space. For language reconstruc-
tion, we apply the cross entropy loss between the recon-
structed and original text. Our loss is a weighted sum of
the image loss and the text loss. Similar to MAE [17] and

BERT [10], we compute the loss only on the masked image
patches and language tokens. Since M3AE processes image
and language data uniformly by combining them into a sin-
gle sequence, a natural advantage for our model is that it can
be trained with the exact same loss on a mixture of paired
and unpaired data, significantly extending the applicabil-
ity of our model beyond what is possible with contrastive
learning.

3. Experiments
In this section, we study the representation quality of M3AE.
We aim to answer the following questions in our experi-
ments: (1) Can M3AE learn generalizable visual representa-
tions that transfer well to downstream tasks? (2) Does the
learned representation incorporate meaningful information
from both images and language? (3) Does M3AE scale well
with model size and training time?

To answer these questions, we first pre-train the M3AE
model on a diverse image-and-language dataset and evalute
its performance for downstream classification and out-of-
distribution detection. We further evaluate the scalability of
the model with respect to training epochs and model size.
Finally, we provide a detailed ablation study and qualitative
analyses to inspect the quality of the learned representations.

3.1. Experiment Setup

Pre-training datasets. M3AE is trained on Conceptual
12M (CC12M) [4]. The original dataset images are pro-
vided in the form of internet URLs. Note that due to some
expired URLs and non-English captions, we did not obtain
the complete data in the dataset. For language data, we use
the BERT tokenizer to tokenize the text. We provide more
details about data preprocessing in Section C.1.

Downstream datasets. We assess model performance in
a wider variety of distributions and tasks. We evaluate the
image encoder transferability on ImageNet [33]. We report
top-1 validation accuracy of a single 256×256 crop.

Network architectures. Following MAE, we use ViT [12]
as the model architecture and consider three different sizes
of ViT for the M3AE image and text encoder. We use the
original ViT-B/16 and ViT-L/16 architectures [12] for our
encoder, as well as ViT-S/16 [37] which is comparable to
ResNet-50 in FLOPs and parameters. Following MAE [17],
our decoder is lightweight and has 8 blocks of width 512.
More details can be found in Section C.3.

Pre-training setup. For comparison with MAE, we train
our model from scratch for the same number of epochs. The
loss weights of image prediction and text prediction are set
to 1 and 0.5. The mask ratio for image and text are both set
to 0.75. Refers to Section C.4 for more details.
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Downstream evaluation setup. We evaluate our model
transferability by performing linear classification on frozen
features, i.e., the pre-trained image encoder is fixed and
serves as a feature extractor. After feature extraction, we
train the linear classifier with the AdamW [27] optimizer
as the same in He et al. [17]. More details can be found
in Section C.5

Epoch Scaling 25 50 100

M3AE 62.9 64.1 64.8

MAE 47.8 50.1 55.2

Model Scaling ViT-S ViT-B ViT-L

M3AE 38.2 58.2 64.1

MAE 32.1 44.2 50.1

Table 1. Top. ViT-L/16 with longer pre-training schedules
(25/50/100 epochs). Bottom. Comparing ViT model variants
of different capacities (ViT-S/B/L). All models are pre-trained for
50 epochs. We see that M3AE scales well with model size and
training epochs, outperforming MAE in every setting.

3.2. Results

ImageNet Classification. We evaluate performance on Im-
ageNet under the linear classification setting. Linear classi-
fication, also called linear probing, is a standard evaluation
method used to evaluate unsupervised or self-supervised
representations. A randomly initialized final classification
layer is trained while all other model weights are frozen.

Figure 2 shows the results of linear classification. We report
the results of ViT-B trained on ImageNet and CLIP [30]
pre-trained on CC12M from prior work [37, 29].To study
the flexibility of M3AE, we remove the text for a portion of
image-text pairs, i.e., 30% of paired image-text examples
means 70% of CC12M image-text pairs become images
only. A lower percentage of paired image-text data contains
less information and therefore makes the task more difficult,
since the model has to infer the relation between visual and
language concepts based on limited paired data.

The comparison between M3AE and the baselines are shown
in Figure 2. M3AE significantly outperforms MAE by
nearly 10 percent. CLIP is a strong baseline based on cross-
modal contrastive learning. While it achieves higher accu-
racy than M3AE, it is less flexible than our model since it
can only use paired image-text data. In contrast, M3AE can
leverage both paired image-text and unpaired image data
without modifying the training procedure, as shown in Fig-

Text mask ratio 0.15 0.5 0.75 0.9

Accuracy 53.3 62.5 64.1 62.6

Table 2. Comparing M3AE with different text mask ratio. We see
that M3AE performs the best with a surprisingly high text mask
ratio of 75%.

ure 2, giving our model strong potential to leverage a diverse
combination of unpaired single modality and multi-modal
data. Notably, with M3AE pre-training, even adding 10%
noise to the text annotation leads to a significant boost in
accuracy over MAE (53.3% vs 45.2%).

We make an important note that the linear classification
performance of MAE pre-trained on CC12M is much lower
than MAE pre-trained on ImageNet, and we hypothesize
that such a difference is caused by the large domain gap
between the two datasets. To confirm this hypothesis, we
pre-trained a ViT-L MAE on ImageNet for 800 epochs using
the same hyperparameters on top of our implementation, and
obtained 73.5% accuracy on linear classification, which ex-
actly matches the original reported performance [17]. Thus,
while our results cannot be directly compared to the original
MAE results [17] pre-trained on ImageNet due to distribu-
tion mismatch, they demonstrate the strengths of multimodal
training of M3AE for learning transferable representations
across datasets.

Model scaling and epochs scaling. We also investigate the
scaling behavior of M3AE with more training epochs and
larger Transformer models. We note that because CC12M is
10 times larger than ImageNet-1K, the number of gradient
steps in 100 epochs of pre-training corresponds to around
800 epochs on ImageNet-1K. Table 1 show holding model
size fixed (ViT-B/16) and training for longer as well as train-
ing different model sizes for an extended training schedule
(50 epochs). Our results indicate that M3AE scales well
with both longer training and larger models.

Ablation on text mask ratio. We also investigate the per-
formance of M3AE under various text mask ratios. Table 2
shows holding the image patch mask ratio fixed (75%) and
training for various text mask ratios. Surprisingly, the re-
sults indicate that M3AE benefits from a high text mask ratio
(50%-90%), contrary to BERT [10] whose typical masking
ratio is 15%. We believe that this is the result of joint train-
ing of two modalities of data, where the masked language
prediction can make use of information from both the visible
language tokens and image patches.

4. Conclusion and Future Work
In this paper, we propose M3AE, a simple but effective
model that learns multimodal representations from image
and language without the need for contrastive objectives. We
show that by pre-training with diverse image and language
data, our model can learn shared representations that gen-
eralize well to downstream tasks. Due to its flexibility and
scalability, M3AE is especially suitable for learning from
extremely large-scale datasets, and we envision that such
pre-trained models can be broadly applicable in many practi-
cal downstream tasks, such as visual reasoning [11], dialog
systems [1] and language guided image generation [31, 32].
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A. Additional Experiments and Analysis
Out-of-distribution detection. Some prior work demonstrated self-supervised learning approaches significantly improve
OOD detection performance [19, 20, 13], where their self-supervised pre-training heavily relies on domain-specific data
augmentations. We expect MAE to perform well on OOD benchmarks and want to study how M3AE performs compared
with MAE.

We consider the difficult near-OOD as this is a more challenging and realistic problem; many methods can achieve high
AUROC on the easier far-OOD benchmarks, but do not perform as well in near-OOD tasks. The results are shown in Figure 3,
M3AE outperforms MAE in terms of both Mahalanobis outlier score [24] and max over softmax score [18].
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Figure 3. Out-of-distribution detection results on CIFAR-100 (in-distribution) and CIFAR-10 (out-of-distribution). Upper shows results
based on Mahalanobis outlier score, M3AE achieves 71.4% which is higher than MAE’s 69.0%. Lower shows results based on max over
softmax score, M3AE achieves 78.5% which is also higher than MAE’s 77.2%.

Visualization of cross-modal attention weights. We are interested in what M3AE captures in multimodal attention weights.
To do so, we visualize the M3AEencoder attention between a given text token and all image patches, as well as the attention
between a given image patch and all text tokens [43] in Figure 5 and Figure 4. M3AE learns to attend relevant concepts in
both image and text, showing that our model is able to infer relations between visual and language concepts.

Figure 4. Visualization of attention between a given image patch and all text tokens on CC12M dataset The highlighted rectangle is the
image patch for which we visualize the attention. Denser color of the text denotes higher attention. The visualization suggests that M3AE
encoder is able to attend to the correct words corresponding to the image patch.
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the author taking an elephant riding lesson. photo by < person >. view of tiger head from the side

Figure 5. Visualization of attention between a given text token and image patches on CC12M dataset. The text token for which we
visualize the attention is bolded. We see that the M3AE encoder is able to attend to the correct objects.

Clustering analysis of representation. We perform t-SNE [40] visualizations of the learned representation of M3AE and
MAE for 10 classes on ImageNet validation set in Figure 6. Compared to MAE, M3AE successfully clusters together
images that correspond to the same semantic label.

MAE M3AE

tench
garden spider

killer whale
kuvasz

ice bear
guenon

bicycle-built-for-two
crash helmet

hard disc
mortar

Figure 6. t-SNE visualization for learned representations of 10 classes on ImageNet validation set. Left is MAE and right is M3AE. The
representation of M3AE clusters much stronger together with the semantic labels compared to MAE representations.

Reconstruction visualization. We are interested in the reconstruction quality of pretrained M3AE. We randomly sample
examples from CC12M and the validation set of ImageNet and show the results in Figure 7. In each reconstructed image,
we include original unmasked tokens for better visual quality. We observe that our model infers holistic reconstructions
across CC12M and ImageNet datasets, indicating it has learned numerous concepts.

B. Related work
Self-supervised representation learning via reconstruction After the introduction of Transformers [41], self-supervised
language modeling has made substantial progress in recent years. After pre-training on a large amount of unlabeled data with
reconstruction loss, Large-scale Transformer language models like BERT [10] and GPT [3] are highly successful in learning
representations that generalize well to various downstream tasks. Taking inspiration from the success in NLP, research
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Figure 7. Masked image reconstruction on ImageNet validation images (top) and CC12M (bottom). For each triplet, we show the
ground-truth (left), the masked image (mid) and our M3AE reconstruction (right).

have proposed a wide variety of self-supervision method [5, 12, 2, 17]. iGPT [5] that operates on sequences of pixels and
reconstruct the unknown pixels. ViT [12] studies masked patch prediction for self-supervised learning. BEiT [2] proposes
to predict discrete tokens [38, 31]. MAE [17] proposes to randomly mask patches of the input image and reconstruct the
missing pixels. Heavily inspired by MAE and BERT, our M3AE brings together image and language data and learns a
shared representation for both modalities by applying a unified masked patch and token prediction objective.

Self-supervised representation learning via contrastive objectives Besides reconstruction, another major paradigm for
self-supervised learning is contrastive learning, which models similarity and dissimilarity between two or more views of
images or texts [14, 7, 16, 39, 15, 42]. SimCSE [14] proposes constructing positive sentence pair through applying Dropout.
SimCLR [6] studies applying random image augmentation for contrastive learning. Contrastive learning often rely heavily
on data augmentation and can therefore introduce bias during training. Our M3AE does not rely on contrastive objectives so
it can be applied without data augmentation.

Joint learning for language and image Learning representations for a single modality has high importance as it extracts
semantic formation from the raw data of modality. Learning a joint representation for several modalities is challenging since
it requires alignment between semantic information from different modalities, of which the information contained may vary
drastically. Specifically, learning joint representation for vision and language has been a long standing problem in artificial
intelligence. Recently, CLIP [30] successfully tackled this challenge by leveraging contrastive learning over a large dataset of
aligned text-image pairs. Several works followed this idea, further improving the joint representation. BLIP [25] used noisy
web data by bootstrapping the captions with synthetic ones. SLIP [29] learned a joint representation by combining CLIP [30]
and SimCLR [6] techniques and leveraging both a paired dataset, and a much larger image-only dataset. DeCLIP [26]
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utilized more image-text pairs collected from CLIP [30] by adding multiple self-supervised techniques. Inspired by BERT,
other methods study cross-modal matching loss [8, 28, 34, 35, 44]. FLAVA [34] employs both contrastive and multimodal
training objectives on paired and image-only datasets. Perceiver [21] proposes cross-attention to combining language and
image modalities. CoCa [44] combines cross-modal contrastive learning and autoregressive caption prediction. Our M3AE
models provides a simple but effective alternative for learning joint representations by processing language tokens and
image patches through a shared encoder-decoder architecture. We train our model with masked token reconstruction loss,
eliminating the need to handle each modality separately.

C. Implementation Details
C.1. Pre-training datasets

Conceptual 12M (CC12M)1 [4] contains approximately 12M of image-text pairs, the original dataset images are provided in
the form of internet URLs. Note that due to some expired URLs and non-English captions, we did not obtain the complete
data in the dataset.

C.2. Downstream datasets

We evaluate the image encoder transferability on ImageNet [33]. We report top-1 validation accuracy of a single 256×256
crop. We evaluate evaluate out-of-distribution detection on CIFAR-100 and CIFAR-10 datasets [23]. Table 3 provides the
detailed information of these datasets.

DATASET Classes Train size Test size Evaluation metric
CIFAR10 10 50,000 10,000 Accuracy
CIFAR100 100 50,000 10,000 Accuracy
ImageNet 1000 1, 281, 167 50,000 Accuracy

Table 3. Details of downstream datasets

C.3. Network architectures

Following MAE, we use ViT [12] as the model architecture and consider three different sizes of ViT for the M3AE image
and text encoder. The model consists of a stack of standard Transformer blocks [41], and each Transformer block consists of
a multi-head self-attention and an MLP. We use the original ViT-B/16 and ViT-L/16 architectures [12] for our encoder, as
well as ViT-S/16 [37] which is comparable to ResNet-50 in FLOPs and parameters. Following MAE [17], our decoder is
lightweight and has 8 blocks and a width of 512. As in MAE, since our encoder and decoder have different width, we adopt
a linear projection layer after the encoder to match the dimension. For linear probing, we use the auxiliary CLS token for
training the classifier as done in MAE.

C.4. Pre-training hyperparameters

For the pre-training of M3AE and MAE, we follow the hyperparameters of the original MAE. We keep the optimizer,
learning rate, weight decay the same as the original MAE on ImageNet. The only additional hyperparameters unique to
M3AE are text token mask ratio and text token classification loss weight. We provide all the hyperparameters in Table 4,
where the same hyperparameters are used to train network of all sizes and epochs. The base learning rate corresponds to the
learning rate of 256 batch size, and it is linearly proportionally scaled according to the actual batch size.

C.5. Downstream evaluation hyperparameters

For downstream tasks of linear classification on ImageNet and OOD detection on CIFAR, we use the same hyperparameters
for M3AE and MAE. We list the hyperparameters for ImageNet 1K linear classification in Table 5, and OOD detection for
CIFAR in Table 6

1https://github.com/google-research-datasets/conceptual-12m

https://github.com/google-research-datasets/conceptual-12m
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Hyperparameter M3AE MAE

Optimizer AdamW
Base learning rate 1.5e-4
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.95
Batch size 4096
Learning rate schedule cosine decay
Warmup epochs 5
Image data augmentation RandomResizedCrop
Image patch mask ratio 0.75
Text token mask ratio 0.75 N/A
Text token cross entropy loss weight 0.5 N/A

Table 4. Hyperparameters for pre-training M3AE and MAE on CC12M

Hyperparameter M3AE and MAE

Optimizer LARS
Base learning rate 0.1
Weight decay 0
Optimizer momentum 0.9
Batch size 2048
Learning rate schedule cosine decay
Epochs 90
Warmup epochs 10
Image data augmentation RandomResizedCrop

Table 5. Hyperparameters for linear classification on ImageNet 1K

Hyperparameter M3AE and MAE

Optimizer AdamW
Base learning rate 0.001
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.999
Batch size 1024
Learning rate schedule cosine decay
Epochs 100
Warmup epochs 10
Image data augmentation RandAugment

Table 6. Hyperparameters for fine tuning on CIFAR10.

C.6. Computation Resources

All the experiments are performed on the Google Cloud TPU platform. We implement our model using JAX and parallelize
the large batch training across many TPUs with data parallelism. For all the pre-training, we use batch size 4096. We report
the total amount of compute and the type of resources used in Table 7.

Model ViT-S ViT-B ViT-L
MAE 16.5h (v3-64) 8.5h (v3-128) 11.5h (v3-128)
M3AE 9.5h (v3-128) 5h (v3-256) 10h (v3-256)

Table 7. TPU pod size and compute hours used for training 50 epochs of M3AE and MAE on CC12M.


