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Abstract

Large scale pretrained language models have001
demonstrated state-of-the-art performance in002
language understanding tasks. Their applica-003
tion has recently expanded into multimodal-004
ity learning, leading to improved representa-005
tions combining vision and language. How-006
ever, progress in adapting language models007
towards conditional Natural Language Gen-008
eration (NLG) has been limited to a single009
modality, generally text. We propose MAn-010
TiS, Multimodal Adaptation for Text Synthesis,011
a general approach for multimodal conditional-012
ity in transformer-based NLG models. In this013
method, we pass inputs from each modality014
through modality-specific encoders, project to015
textual token space, and finally join to form016
a conditionality prefix. We fine-tune the pre-017
trained language model and encoders with the018
conditionality prefix guiding the generation.019
We apply MAnTiS to the task of product de-020
scription generation, conditioning a network021
on both product images and titles to generate022
descriptive text. We demonstrate that MAn-023
TiS outperforms strong baseline approaches on024
standard NLG scoring metrics. Furthermore,025
qualitative assessments demonstrate that MAn-026
TiS can generate human quality descriptions027
consistent with given multimodal inputs.028

1 Introduction029

The use of transfer learning techniques in Natu-030

ral Language Processing (NLP) significantly im-031

proves previous state of the art methods across a032

wide range of NLP tasks (Dai and Le, 2015; Devlin033

et al., 2018; Howard and Ruder, 2018; Radford034

et al., 2019; Brown et al., 2020). In this setting035

a transformer-based language model is pretrained036

on large unlabelled corpra and then fine-tuned on037

supervised data together with a task-related head038

(Devlin et al., 2018). Such approaches are promi-039

nent in Natural Language Understanding (NLU)040

tasks, but remain less explored for text generation.041

Transfer learning methods have recently been 042

applied to the joint learning of multiple modalities, 043

where both image and text based inputs are pre- 044

trained together (Lu et al., 2019; Li et al., 2020; 045

Su et al., 2019b; Chen et al., 2020; Li et al., 2019). 046

In these approaches, learning combined representa- 047

tions of visual and textual data during pretraining 048

instead of task specific training, leads to better se- 049

mantic representations. Due to state-of-the-art per- 050

formance and straightforward downstream training, 051

it is fast becoming the default method for multi- 052

modal tasks like visual question answering, visual 053

entailment, and caption-based image retrieval. 054

A natural extension to this approach would adapt 055

pretrained language models for conditional Natu- 056

ral Language Generation (NLG) with multimodal 057

conditionality. This can be achieved in an encoder- 058

decoder framework where the encoder learns to 059

embed conditionality while the pretrained decoder 060

would modify the generation based on this encod- 061

ing. Earlier work suggests this works well for tasks 062

where generation depends on purely textual infor- 063

mation (Golovanov et al., 2019; Zhang et al., 2019; 064

Song et al., 2019). Recent work used other modal- 065

ities like image or class information Ziegler et al. 066

(2019) to guide the generation of pretrained mod- 067

els. However, that work considered only a single 068

modality and required the introduction of new pa- 069

rameters within the pretrained model that could 070

adversely affect generation capability. 071

In this work, we propose MAnTiS, a general 072

approach to adapt transformer-based language 073

models into multimodal conditional NLG models. 074

We encode each modality type using specific 075

encoders, joined to form a conditionality prefix, 076

with separator tokens delimiting each modality. 077

During fine-tuning the decoder uses the prefix 078

as history and predicts outputs in a continuous 079

fashion. Because the prefix is decoder independent, 080

the generation can be conditionalized towards 081

any modality. We drew inspiration from Kiela 082

1



GenerationMultimodal conditioning data

I2I1

10

+ +

LM Token Embedding LayerImage Encoder

Language Modeling Loss

Masked Multi-Headed Attention

Feed Forward

Add & Norm

Add & Norm

token

position

Img2 Imgm Text1 Text2 Textn Gen1 Gen2 Gen3 Gen4 Gen5

Im

m

… +
T1SEP

0m+1

+ +
T2

1

+ …

SEPTn

n+1n

+ +
G2G1

10

+ +
G4G3

32

+ +
G5

4

+ …

Img1

Decoder 
Transformer

× L

Figure 1: An overview of the MAnTiS architecture. Conditioning images are passed as input through an image
encoder and mapped to textual token space of language model. Input text is encoded using the language model’s
encoder and together with image tokens form the conditionality prefix. The language modeling loss is computed
only for the text tokens. Here m and n represent the number of input images and text tokens respectively and L is
the number of decoder transformer layers.

et al. (2019) which shows that self-supervised083

unimodal transformer models are capable of084

learning context between different modalities085

through supervised learning for classification tasks.086

087

We demonstrate the effectiveness of this ap-088

proach on a fashion captioning dataset (Yang et al.,089

2020), where given a product’s name and image,090

the model generates an e-commerce relevant de-091

scription. We compare generations against compet-092

ing approaches that rely on injecting conditionality093

vectors into pretrained language models. Through094

this, we found that MAnTiS outperforms other095

models. We perform both quantitative and qual-096

itative experiments and show the effectiveness of097

this approach without requiring any complex model098

stitching. Extension of MAnTiS to any modal-099

ity type is straightforward to implement for any100

transformer-based pretrained model. We thus pro-101

vide a strong baseline approach for future transfer102

learning in NLG.103

2 Related Work 104

2.1 Transfer Learning in Multimodal Models 105

Language representation model BERT (Devlin 106

et al., 2018) demonstrated that transformer mod- 107

els trained with masked language modeling and 108

next sentence prediction objective can lead to state- 109

of-the-art performance for a variety of NLU tasks. 110

VilBERT (Lu et al., 2019) extended the approach 111

towards multimodality with separate transformer 112

streams for image and text with cross-modality 113

interaction though co-attention between the two 114

streams. Other methods (Li et al., 2020; Su et al., 115

2019b; Chen et al., 2020; Li et al., 2019) showed 116

that single stream transformer models can learn 117

the relationship between image and text. These 118

models are pretrained on vision and language data, 119

however Kiela et al. (2019) proposed a different 120

approach where a pretrained unimodal (text) BERT 121

model is fine-tuned together with a different modal- 122

ity (image), skipping the multimodal pretraining 123

step. These methods are effective for understanding 124

tasks like classification, but have not been studied 125
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Product Title Product Images Product Description

Denim Parka with
Genuine Fox Fur

Trim

Plush fox fur lining the hood and
sparkling embellishments across
the front bring luxe detail to a
utilitarian-chic parka cut from
pure-cotton Italian denim.

Table 1: A sample entry from the FACAD dataset of fashion products (metadata not shown).

for multimodal conditional generative tasks.126

2.2 Finetuning Natural Language Models for127

Controllability128

Unconditional language models can be adopted129

for text generation tasks such as language trans-130

lation (Edunov et al., 2019), question answering131

(Su et al., 2019a), and summarization (Zhang et al.,132

2019). Other work demonstrates the sufficiency133

of providing the context text as the prefix in guid-134

ing text generation for these tasks (Brown et al.,135

2020; Radford et al., 2019). For example, transla-136

tion models generate translated sentences given the137

source language input presented as prefix. More-138

over, Golovanov et al. (2019) showed that concate-139

nation of multiple textual contexts may form the140

guiding prefix. Keskar et al. (2019) added con-141

trollability in language model during training by142

appending training corpus with different control143

codes, resulting in impressive generations for exist-144

ing codes. However, these approaches are limited145

to text-based controllability.146

2.3 Conditionalizing Pretrained Language147

Models for Generation148

Models conditioned with pretrained language in-149

clude noisy channel modeling (Yee et al., 2019)150

and fusion approaches (Sriram et al., 2017; Gul-151

cehre et al., 2015) that concatenate hidden states of152

the conditional model with that of language model153

to predict the next word. Recently, Ziegler et al.154

(2019) proposed a modality invariant condition-155

alization approach for any transformer-based lan-156

guage model through pseudo self-attention. There,157

in every pretrained transformer layer the encod-158

ing vectors are considered as history and allowed159

to be attended over, leading to conditioning dur-160

ing self-attention. They also tested context at-161

tention where the decoder transformer layer is162

converted to a encoder-decoder, using pretrained163

weights for the decoding part. They demonstrated164

that pseudo self-attention is effective for even 165

non-textual conditioning like image-based para- 166

graph generation and class-based review genera- 167

tion. However, their work considers single modal- 168

ity conditioning whereas we treat the problem of 169

multimodality conditioning. 170

In this work, we use the approaches of Ziegler 171

et al. (2019) as a comparative baseline. However, 172

introducing new parameters within the whole 173

network may hinder generative capabilities of 174

pretrained language models. In addition, they 175

require cumbersome manipulation of pretrained 176

model architectures. MAnTiS addresses these 177

issues with a simple approach requiring fewer 178

additional parameters. 179

180

3 Method 181

Given a sequence of token vectors x = 182

(x1, . . . , xn), language models learn the probability 183

p(x), 184

p(x) =
n∏

i=1

p(xi | x1, . . . , xi−1) 185

Here, we adapt a pretrained language model into 186

a multimodal conditional model that learns the 187

conditional probability distribution p(x|y), where 188

y = (y1, . . . , yn) consists of tokens of any modal- 189

ity. 190

p(x|y) =
n∏

i=1

p(xi | y, x1, . . . , xi−1) 191

The goal is to learn p(x|y) given supervised dataset 192

of x, y pairs. To achieve this, we frame the problem 193

using an encoder-decoder architecture. We encode 194

conditional modalities using modality specific en- 195

coders and then project to the textual token space of 196

the language model. Between the different modal- 197

ity types we add separator tokens, allowing the 198

model to distinguish between them. We prepend 199
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Model BLEU4 CIDEr METEOR ROUGE-L

CONTEXT-ATTN 3.9 30.4 10.2 17.2
PSEUDO-SELF 4.2 32.3 10.3 17.3
MANTIS 4.8 36.8 10.8 17.9

MANTIS-SCRATCH 3.9 30.8 10.1 17.3
MANTIS-MULTI 4.9 39.0 11.1 18.2
MANTIS-MULTI + TEXT

DROPOUT

5.0 39.5 11.1 18.2

Table 2: Comparison of generator performance scores

Model Grammar Non-Redundancy Consistency Attractiveness Overall

CONTEXT-ATTN 0.74 0.89 0.75 0.51 0.603
PSEUDO-SELF 0.76 0.93 0.72 0.54 0.578
MANTIS 0.82 0.96 0.81 0.62 0.665

Table 3: Qualitative evaluation of generated descriptions

these conditional tokens y to the input guiding the200

generation x. We illustrate the overall architecture201

of our approach in Figure 1.202

The following subsections describe the encoding203

strategy, details of input construction, and the fine-204

tuning procedure.205

3.1 Encoder Mapping206

During the encoding stage we use both image and207

text modalities to condition the generation. To208

encode images we extract the embedding form209

of the last fully connected layer of a pretrained210

ResNet-152 model (He et al., 2016). This can211

be regarded as a single dense token per image212

whose dimension N depends on the ResNet model.213

Transformation of the input image uses the same214

setting as during the pretraining process, which in-215

cludes resizing, center cropping and normalization.216

Next, we project the token into the language model217

embedding space D through a linear layer with218

learnable weight matrix W ∈ RN×D.219

220

The embedding function of the decoder language221

model encodes the text. For the language model,222

we use the transformer-based pretrained model223

GPT-2 (Radford et al., 2019), an auto-regressive224

model whose self-attention module can attend only225

on previous tokens, with Byte Pair Encoding (BPE)226

for text tokenization.227

This approach can easily be extended towards228

any modality because we map the encoding to the 229

textual space. The encoder and decoder are jointly 230

fine-tuned end-to-end during supervised learning. 231

Allowing the encoder, specifically, the image en- 232

coder to be fine-tuned will contribute towards ef- 233

fective learning of image token mapping. 234

3.2 Multimodal Fine-tuning 235

In the GPT-2 language model the input consists of a 236

sum of token and position embeddings, with the po- 237

sition encoding zero-indexed. For each conditional 238

modality, we start the position encoding from zero 239

as well. Between each modality token we add a 240

separator token [SEP] whose position is one plus 241

the previous token position. The first conditional 242

token is prepended with a beginning of sentence 243

[BOS] token and the generation ends with a end of 244

sentence [EOS] token. 245

During fine-tuning, the model is trained using 246

the same loss function (cross-entropy) as GPT-2, 247

between the next predicted word of the language 248

model head and the ground truth word. No loss is 249

computed for the image tokens because they have 250

no exact vocabulary. 251

3.3 Modality Dropout 252

Fine-tuning in this manner forces the pretrained 253

language model to learn cross-modality correla- 254

tions between image and text. Naturally, this can 255

cause text tokens to influence generation more than 256
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other modality tokens. In our approach, we pre-257

train the decoder language model and image em-258

bedding model while we randomly initialize the259

image mapping layer for training. Neverova et al.260

(2015) proposed ModDrop, arguing that randomly261

dropping different modality channels during train-262

ing could help learn cross-modality representations263

and reduce false co-adaptions.264

Because image representations must be fused265

into the text-only model, we randomly dropped266

out text conditionality paths with a probability p267

tuned during training. We speculate that this could268

provide improved image conditioning and lead to269

better overall performance. This was performed in270

addition to the standard dropout within the trans-271

former decoder layers.272

4 Experimental Setting273

This section includes detailed information on the274

datasets, metrics, and baselines used during train-275

ing and evaluation.276

4.1 Datasets277

We used the initially released version of the fash-278

ion captioning dataset FACAD (Yang et al., 2020).279

This dataset consists of fashion articles and their280

names, images from different perspectives, e-281

commerce relevant descriptions, colors, and other282

pieces of metadata. In this work, we want to gener-283

ate product descriptions given the title and various284

images of a product. An example of the dataset is285

shown in Table 1. There are total 55,959 descrip-286

tions. We removed entries with empty description,287

name or images, as well as duplicated descriptions,288

reducing the size to 45,748. Out of these 40,748289

were used for training, 2,500 for validation, and the290

remaining 2,500 for testing.291

Yang et al. (2020) used this dataset for the image292

captioning problem where the generated caption293

depends only on a single given image. We used this294

dataset for multimodal conditioned NLG, where295

multiple instances of each modality may be pro-296

vided as input. However, using multiple images per297

description significantly reduces the total number298

of training samples.299

4.2 Evaluation Metrics300

To perform qualitative evaluation we report model301

performance on the most commonly used NLG302

metrics, which include BLEU4 (Papineni et al.,303

2002), CIDEr (Vedantam et al., 2015), METEOR304

(Denkowski and Lavie, 2014), and ROUGE-L (Lin, 305

2004) scores. 306

4.3 Training Details 307

GPT-2 is a large transformer-based model trained 308

on the WebText dataset (∼40 GB), consisting of 309

text from 8 million non-Wikipedia webpages (Rad- 310

ford et al., 2019). It shows excellent performance 311

with coherent text generation; thus, we use it as 312

the base unconditional pretrained language model. 313

In particular, we use GPT-2 medium, possessing 314

an embedding size of 1024, comprising 24 layers 315

with 16 heads per layer and including a total of 316

345M parameters. It is publicly available from the 317

HuggingFace repository (Wolf et al., 2019). We 318

use the same vocabulary with an addition of three 319

tokens: BOS, SEP and PAD (padding token). For 320

encoding images we use ResNet-152 trained on the 321

ImageNet dataset (Deng et al., 2009), which is pub- 322

licly available in PyTorch’s torchvision package 323

(Paszke et al., 2019). 324

Additionally, we tuned the learning rates for 325

each model between 1e−5 to 5e−5. We tuned 326

text modality dropout between 0.3 to 0.7 and set 327

all other dropout values to 0.1. Training was done 328

using the AdamW optimizer and a linear scheduler 329

with warmup. 330

4.4 Baseline Methods 331

We compare MAnTiS against the current most 332

advanced approaches for conditioning language 333

model. In comparing approaches we used the latest 334

available code published by the authors. 335

CONTEXT-ATTN: Context attention adds a ran- 336

domly initialized encoder-decoder layer on top of 337

every pretrained decoder layer of GPT-2 (Ziegler 338

et al., 2019). Multimodal conditionality tokens are 339

used as the encoder tokens. 340

PSEUDO-SELF: Pseudo self-attention prepends 341

additional multimodality conditioning tokens to 342

every self-attention layer of GPT-2 (Ziegler et al., 343

2019). This achieved the best performance for uni- 344

modal conditioning, forming the strongest baseline. 345

5 Results 346

A single image for each fashion item was chosen 347

(the first image in the dataset sample) to fairly 348

compare Context-Attn, Pseudo-Self, MAnTiS, and 349

MAnTiS-scratch. In MAnTiS-scratch we ran- 350

domly initialized the internal language model. In 351

MAnTiS-multi we used up to five images if avail- 352
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Input Model Generated Text

Beverly Skinny
Flare Jeans

CONTEXT-
ATTN

Tonal stitching and subtle fading add worn
in character to dark wash jeans cut with a
flattering figure flattering flare.

PSEUDO-SELF These stretchy bootcut jeans are inspired by
the ’70s super-sweet denim look that has you
feeling like the real thing.

MANTIS Figure-flattering flared jeans are made from
soft denim with shape-retaining stretch and a
clean front for a modern silhouette.

Azur Tassel Hem
Cotton Blouse

CONTEXT-
ATTN

With a twirl that’s T-shirt cut to the natural
waist, this gauzy blouse is ready to be fancy
or just fun.

PSEUDO-SELF From a collaboration with fashion/lifestyle
blogger Lindsey Schuster, cute pieces like
this top prove that looking good can be a
breeze—even on crazy-busy days.

MANTIS Shine through your work-to-play look in this
gauzy blouse trimmed with embroidered tas-
sels for a free-spirited vibe.

Table 4: Sample outputs on the FACAD dataset.

Input Generated Text

Cover-Up Dress

If you don’t already have a beach
vacation planned, this long-sleeve
cover-up dress in a vintage floral
print would like you to reconsider
that.

Velour-Hooded
Jumpsuit

Get a luxe look in this one-and-
done jumpsuit designed in sumptu-
ous velour with a dramatic high/low
hem.

Hudson Holly
High Waist
Distressed

Deconstructed
Crop Flare

Jeans

Essential white jeans get dashed
with destruction, from the ripped
knee to the slashed hem, and the
end result delivers some drama for
denim days and nights.

Davis Feather
Trim Cami

A feather-trimmed hem and
spaghetti straps add dynamic
finishing touches to this streamlined
cami.

Table 5: MAnTiS generated descriptions with colored annotations (green: higher quality; blue: information unique
to the image; purple: textual information; orange: incorrect information).
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able and added conditioning text dropout with a353

probability 0.3. We used the full product name of354

each fashion item to train all models.355

5.1 Fashion Description Generations356

The main quantitative results for the fashion de-357

scription generation task are summarized in Table 2.358

MAnTiS significantly outperformed the baseline359

approaches in all the evaluation metrics. MAnTiS360

improved the BLUE4 score by 0.6, CIDEr by 4.5,361

METEOR by 0.5, and ROUGE-L by 0.6 respec-362

tively compared to Pseudo-Self, which shows the363

effectiveness of our approach.364

Context-Attn adds a new layer in each trans-365

former block, and jointly optimizing pretrained366

weights along with the newly initialized weights367

in every layer adds difficulty. We suspect this hin-368

dered the information gain from images, or even369

negatively impacted the generation capability of370

the pretrained model. Similar observations were371

made in uni-modal settings by Ziegler et al. (2019).372

We believe our approach outperformed the strong373

baselines because it entailed minimal interference374

with the pretrained language model. We introduced375

new parameters only at the input level, compared to376

Pseudo-Self which alters the self-attention module.377

We next analyzed whether using multiple images378

improved text generation. The dataset provides379

several images of each fashion article. Providing380

MAnTiS-multi with up to 5 images increased per-381

formance over MAnTiS in all metrics, with im-382

provements of 0.1, 2.2, 0.3 and 0.3 in BLEU4,383

CIDEr, METEOR and ROUGE-L respectively.384

This shows that the model combines information385

from different visual inputs. We further studied386

the effect of incorporating text modality dropout.387

Dropping out product name information randomly388

improved the performance slightly over MAnTiS-389

multi in BLEU4 and CIDEr, with no change in ME-390

TEOR or ROUGE-L. This indicates that modality391

dropout can provide small benefits and no negative392

effect during optimization. As expected, MAnTiS-393

scratch greatly underperformed MAnTiS-single, in-394

dicating the benefit of large pretrained models.395

5.2 Human Rating396

Product descriptions geared towards e-commerce397

should entice customers using appealing phrases.398

Difficulty arises when analyzing such properties399

using automatic metrics, so we performed human400

evaluations to rate aspects of generated descrip-401

tions. Two random judges of different genders402

were tasked to score 200 product descriptions. In- 403

spired by Dang (2005) we asked the raters to mea- 404

sure five linguistic qualities including grammar, 405

non-redundancy, consistency, attractiveness, and 406

overall scores. For the first four qualities, the task 407

demanded only a yes/no answer. A consistent de- 408

scription is coherent and correct given a product’s 409

name and image, and is attractive if it is interesting 410

or attention-grabbing. For the last category “over- 411

all”, judges scored descriptions between 1 (worst) 412

and 5 (best) from an e-commerce perspective. 413

The normalized average scores are shown in 414

Table 3. MAnTiS outperformed the baseline ap- 415

proaches in all five categories. This shows that 416

our conditional adaptation approach is significantly 417

better than the previous approaches. This is likely 418

due to the fact that MAnTiS does not introduce new 419

parameters within the pretrained language model, 420

unlike other approaches. 421

5.3 Qualitative Analysis 422

In Table 4 we show example generations from dif- 423

ferent models. We see that Context-Attn has repeti- 424

tion and incorrect information like “subtle fading”, 425

while no fading is seen in the image. MAnTiS 426

generated higher quality descriptions highlighting 427

image features like “trimmed with embroidered 428

tassels”. 429

To illustrate our results, we give a few represen- 430

tative MAnTiS generations from the test dataset 431

in Table 5. We color-coded important parts of the 432

generated text with green to indicate a high-quality 433

phrase, blue to indicate attributes present only in 434

the image, purple to indicate attributes from prod- 435

uct name and orange to indicate possibly incoherent 436

information. The blue highlighted phrases demon- 437

strate that MAnTiS generations are guided in part 438

by image content. In the first row, the generated 439

description aptly connects the Cover-Up Dress to 440

a beach setting. The model may sometimes fail 441

to pick up on image-based cues correctly, as seen 442

in third example where color was pronounced as 443

“white” instead of denim blue, although this con- 444

fusion is understandable as the faded regions are 445

white. Overall, the examples show that MAnTiS 446

can generate diverse coherent descriptions condi- 447

tioned on both modalities. 448

6 Conclusion 449

In this work, we introduce MAnTiS, a novel ap- 450

proach for adapting pretrained language models 451
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into multimodal conditional NLG models. We452

showed that our approach significantly outperforms453

strong baselines methods on several common NLG454

evaluation metrics. For a qualitative analysis, we455

perform human evaluations and show that our ap-456

proach generates high-quality text that agrees with457

the conditional input. Based on several qualita-458

tive measures we show that conditionalizing a pre-459

trained language model through new modalities460

does not hamper its generative capabilities.461

Our approach is straightforward, easy to imple-462

ment, and extendable to any modality and provides463

an effective way to conditionalize any pretrained464

language model. We believe this study will set a465

strong baseline in the field of multimodal NLG.466
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