
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

SPARSE SPECTRAL TRAINING AND INFERENCE ON EU-
CLIDEAN AND HYPERBOLIC NEURAL NETWORKS

Jialin Zhao1,2, Yingtao Zhang1,2, Xinghang Li2, Huaping Liu2, Carlo Vittorio Cannistraci1,2,3 ∗
1Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence
2Department of Computer Science
3Department of Biomedical Engineering, Tsinghua University, Beijing, China

ABSTRACT

The increasing GPU memory demands of large language models call for more
memory-efficient training methods. Existing approaches like LoRA struggle with
low-rank constraints in pre-training, while ReLoRA suffers from saddle point
issues. We propose Sparse Spectral Training (SST), a memory-efficient pre-
training framework that updates all singular values, selectively updates singular
vectors via multinomial sampling, and leverages singular value decomposition
(SVD) for initialization and periodic reinitialization, reducing distortion compared
to other low-rank methods. Across tasks including language generation, machine
translation, and graph learning, SST outperforms existing memory-efficient train-
ing methods and is often comparable to full-rank training. On LLaMA-1.3B,
SST reduces the perplexity gap to full-rank training by 97.4%, demonstrating its
effectiveness for scalable, memory-efficient model pre-training.

1 INTRODUCTION

The increasing scale of large language models (Kaplan et al., 2020; Brown et al., 2020; Touvron
et al., 2023b) poses significant challenges for training from scratch due to extreme GPU memory
demands. While parameter-efficient fine-tuning (PEFT) methods like LoRA (Hu et al., 2022) reduce
memory consumption by restricting updates to a low-rank subspace, this constraint limits model
expressiveness, particularly in pre-training. Recent methods such as ReLoRA (Lialin et al., 2024),
COLA (Xia et al., 2024), and PLoRA (Meng et al., 2024b) mitigate this issue by periodically merging
low-rank parameters, but they still suffer from saddle point issues, leading to slow and unstable
convergence.

We propose Sparse Spectral Training (SST), a novel framework that optimizes memory efficiency
while closely approximating full-rank training. Unlike prior approaches (Hu et al., 2022; Lialin
et al., 2024; Zhang et al., 2023; Ding et al., 2023) that operate in a fixed low-rank subspace, SST
updates all singular values at each step while selectively updating singular vectors sampled from
a multinomial distribution based on singular value magnitude. Additionally, SST utilizes singular
value decomposition (SVD) to initialize and periodically reinitialize low-rank parameters, reducing
distortion and improving convergence.

Our extensive experiments demonstrate SST’s effectiveness across diverse architectures and tasks. On
the OPT and LLaMA model family, SST reduces the perplexity gap between low-rank methods and
full-rank training by 50%–97.4%. In machine translation, SST narrows the BLEU gap by 66.7%.
We also pioneer parameter-efficient pre-training in hyperbolic space, where SST even outperforms
full-rank training in most cases. A detailed discussion of related work is provided in Appendix M.

2 LOW RANK ADAPTATION

This section introduces LoRA (Hu et al., 2022), ReLoRA (Lialin et al., 2024), and GaLore (Zhao
et al., 2024), highlighting their limitations, which are addressed by SST in Section 3.

∗Correspondence to: Jialin Zhao <jialin.zhao97@gmail.com>, Carlo Vittorio Cannistraci <kaloka-
gathos.agon@gmail.com>.

1



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

𝑋

𝑊

𝐴 B×

𝑌
+

𝑋

𝑊

𝐴 B

×𝑌
+

Periodic merge 
and reinitialize

𝑋 𝑌

𝑈Σ𝑉𝑇

×

×

Σ

Index

Sample

𝑋

𝑈[:,𝑟:]Σ[𝑟:]𝑉[𝑟:,:]
𝑇

Σ[:𝑟]
1/2

𝑉[:𝑟,:]
𝑇

×

𝑌
+

𝑈[:,∶𝑟]Σ[:𝑟]
1/2

Periodic re-SVD

(d) SST(c) ReLoRA*(b) PiSSA(a) LoRA

Figure 1: Comparison of SST with LoRA, PiSSA, and ReLoRA*. LoRA applies a low-rank
update to frozen weights, while ReLoRA* iteratively initializes and merges low-rank matrices.
PiSSA initializes low-rank parameters using SVD but always updates the same set of singular
vectors. SST adopts a sampling-update-swapping paradigm, dynamically selecting singular vectors
via multinomial sampling, updating all singular values, and using periodic re-SVD to maintain
orthogonality, balancing exploration and exploitation in pre-training.

2.1 LORA

LoRA fine-tunes a pre-trained model by learning a low-rank update ∆W = BA to a frozen weight
matrix W0, reducing memory usage:

h = (W0 +∆W)x = (W0 +BA)x (1)

Limitation. LoRA is constrained by its low-rank structure. Consider W∗ as the optimal weight
matrix which minimizes loss. The deviation from the current weights is ∆W∗ = W∗ − W0.
Performing a singular value decomposition on ∆W∗ yields ∆W∗ = UΣVT. Σ is a diagonal
matrix with entries {σ1, σ2, ..., σm}. Then the Eckart–Young–Mirsky theorem (Eckart & Young,
1936) states:

∥∆W∗ −∆W∥F ≥
√

σ2
r+1 + · · ·+ σ2

m (2)

This suggests that LoRA can only closely approximate the performance of full-rank training in simple
tasks like fine-tuning, where σi ≈ 0, i ∈ {r + 1, ...,m}.

2.2 RELORA*

ReLoRA, COLA, and PLoRA mitigate LoRA’s limitations by periodically merging low-rank updates
into W0. However, ReLoRA requires a full-rank warm-up, and all methods suffer from zero-
initialized low-rank matrices, causing saddle point issues. In this paper, we unify these methods into
a generalized, end-to-end parameter-efficient pre-training paradigm, which we refer to as ReLoRA*
and formalize in Algorithm 1.

Limitation. ReLoRA* only learns a small subset of singular values per iteration, and zero initializa-
tion results in zero gradients at reinitialization, slowing convergence.

2.3 GALORE

GaLore projects gradients into a low-rank space using a projection matrix Pt derived from the top-r
singular vectors of the gradient of W, recalculated every T steps.

Limitation. GaLore selects top-r singular vectors at each step, making it sensitive to data noise. In
experiments, it showed instability for low rank, leading to divergence on OPT-350M. Consequently,
we chose to include the detailed explanation and comparison with GaLore in Appendix G rather than
in the main text.

3 SPARSE SPECTRAL TRAINING

To overcome the limitations of prior methods, this section presents Sparse Spectral Training (SST).

2



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) Full-rank

0 250 500 750 1000 1250 1500 1750 2000
Step

0.00

0.02

0.04

0.06

0.08

0.10
Gr

ad
ie

nt
 Fr

ob
en

iu
s N

or
m

 M
ea

n full_weight_grad

(b) SST

0 250 500 750 1000 1250 1500 1750 2000
Step

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Gr
ad

ie
nt

 Fr
ob

en
iu

s N
or

m
 M

ea
n SST_active_U_grad

(c) ReLoRA*

0 250 500 750 1000 1250 1500 1750 2000
Step

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Gr
ad

ie
nt

 Fr
ob

en
iu

s N
or

m
 M

ea
n relora_A_grad

Figure 2: ReLoRA* encounters periodic saddle points. This plot shows the Frobenius norm of
gradients for (a) full-rank training, (b) sampled U in SST, and (c) A in ReLoRA*. Both SST and
ReLoRA* use an iteration interval of 200. ReLoRA* exhibits saddle points at each restart, with a
lower gradient correlation (0.58) to full-rank training compared to SST (0.85), highlighting SST’s
closer alignment with full-rank optimization.

3.1 SPARSE SPECTRAL LAYER

SST applies sparse updates in the spectral domain by decomposing each linear layer as:

h = Wx = UΣVTx, [U,Σ,VT] = SVD(W) (3)

where U,Σ,VT are full-rank SVD components of W, replacing it entirely in the model. Unlike
LoRA-based methods, SST maintains full-rank representations while enabling selective updates.
SVD is computed only at initialization and periodically reinitialized (Eq. 7) to maintain efficiency
(see Table 20), as over time, U,Σ,VT may drift from the true singular components.

3.2 GRADIENT UPDATE OF U, VT WITH Σ

Updating Σ. The diagonal matrix Σ, treated as a vector of dimension m, is updated at every step
due to its low memory cost:

Σt+1 = max(Σt − η∇LΣ, 0) (4)

where η is the learning rate, and ∇LΣ is the backpropagated gradient. The max function ensures
that Σ values remain non-negative.

Selective Updates of U and VT. Singular vectors are updated selectively using multinomial
sampling:

Ut+1
·i =

Ut
·i − η∇LU·i

|Ut
·i − η∇LU·i |

, Vt+1
·i =

Vt
·i − η∇LV·i

|Vt
·i − η∇LV·i |

, if i ∈ S, S ∼ Multinomial(r,Σ) (5)

where S contains the indices of r selected singular vectors. To preserve unit norm, normalization is
applied post-update.

Enhanced Gradient Optimization. We enhance default gradients for U and VT by decoupling
magnitude (Σ) from direction (derivation included in Appendix D):

∇LU·i =
∂L
∂W

V·iΣi ⇒ ∇̃LU·i =
∂L
∂W

V·i (6)

This allows singular vectors with lower singular values to retain substantial gradients.

Periodic re-SVD. To maintain orthogonality, periodic singular value decomposition is performed:

[Ut+1,Σt+1,Vt+1T] = SVD(UtΣtVtT) (7)

Re-SVD resets singular vectors, preventing degradation into a low-rank subspace. Each re-SVD
defines a new round, while each selective update defines an iteration. The full algorithm is detailed
in Algorithm 2. Efficient implementation of SST is detailed in Appendix A.

3



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 1: BLEU scores on IWSLT’14 for Euclidean and hyperbolic Transformers. Some BLEU
scores are zero because that training resulted in NaN losses. Notably, SST consistently outperforms
other low-rank methods.

Euclidean Hyperbolic

Dimension r Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST

64 8 24.27 18.08 18.12 22.28 25.69 17.50 0.0 23.40
4 14.05 15.49 20.27 0.0 0.0 23.03

128
16

25.79
23.30 22.92 25.12

24.70
23.70 0.0 25.22*

8 20.56 20.61 24.19 20.81 0.0 25.12*
4 16.37 18.00 22.80 17.58 24.42 24.60

256

32

23.92

23.76 23.02 23.97*

19.94

24.16* 0.0 25.04*
16 22.88 22.01 23.42 23.93* 0.0 25.52*
8 20.32 20.36 22.65 21.58* 24.02* 24.67*
4 16.72 17.85 21.39 18.72 24.08* 24.51*

Table 2: Validation perplexity on OpenWebText across various model sizes of OPT and LLaMA
along with the number of trainable parameters of each method.

Model r/dmodel Training Tokens Full LoRA ReLoRA* SST

OPT-125M 64/768 19.7B 23.50 (125.2M) 34.23 (50.9M) 35.80 (50.9M) 26.98 (51.0M)
OPT-350M 64/1024 19.7B 21.78 (331.2M) 34.26 (57.5M) 39.21 (57.5M) 27.72 (57.7M)
OPT-1.3B 64/2048 19.7B 15.10 (1.316B) 1716 (164.4M) 29.52 (164.4M) 22.31 (164.7M)

LLaMA-130M 64/768 2.6B 20.04 (134.11M) 29.71 (60.38M) 31.33 (60.38M) 23.35 (60.44M)
LLaMA-1.3B 128/2048 13.1B 14.54 (1.339B) 16.50 (250.71M) 17.32 (250.71M) 14.59 (251.05M)

3.3 WHY SVD DECOMPOSITION IS IMPORTANT

This section discusses the advantages of using SVD initialization and periodic re-SVD over the zero
initialization in ReLoRA*. After each merging step, ReLoRA* resets B to zero, causing A to have
zero gradients, leading to slow learning at the start of each iteration. As shown in Figure 2, ReLoRA*
exhibits periodic drops in gradient norm at the start of each iteration, while SST maintains a stable
gradient flow.

4 EXPERIMENTS

4.1 MACHINE TRANSLATION

Experimental details are provided in Appendix E.1. Table 1 presents BLEU scores for IWSLT’14
across various dimensions and ranks (r). The results confirm that SST consistently outperforms other
low-rank methods. On average, SST reduces the BLEU gap (defined as the BLEU score difference
from full-rank training) by 66.7% for Euclidean Transformers on IWSLT’14.

Further comparative results on the Multi30K and IWSLT’17 datasets using the standard dimensions
for vanilla Euclidean transformers are documented in Table 24. Here, SST not only surpasses other
low-rank methods but also demonstrates superior performance compared to full-rank training.

4.2 NATURAL LANGUAGE GENERATION

Experimental details are provided in Appendix E.2.

Language modeling. Table 2 shows validation perplexity on OpenWebText across different LLM
sizes. SST consistently achieves lower perplexity than LoRA and ReLoRA*, significantly reducing
the PPL gap with full-rank training by 67.6% (OPT-125M), 52.4% (OPT-350M), 50.0% (OPT-1.3B),
65.8% (LLaMA-130M), and 97.4% (LLaMA-1.3B).

Zero-shot evaluations. Table 3 presents results on 16 NLP tasks, where SST consistently outperforms
other low-rank methods. On OPT-125M, SST achieves an average score of 44.6, slightly surpassing
full-rank training (44.5). SST also attains a 56.3% win rate against full-rank training, demonstrating
its strong generalization in zero-shot settings.

4



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

REFERENCES

R.M. Anderson and R.M. May. Infectious Diseases of Humans: Dynamics and Control. Infectious
Diseases of Humans: Dynamics and Control. OUP Oxford, 1991. ISBN 9780198540403. URL
https://books.google.com.tw/books?id=HT0--xXBguQC.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Carlo Vittorio Cannistraci and Alessandro Muscoloni. Geometrical congruence, greedy navigability
and myopic transfer in complex networks and brain connectomes. Nature Communications, 13(1):
7308, 2022.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report
on the 11th IWSLT evaluation campaign. In Marcello Federico, Sebastian Stüker, and François
Yvon (eds.), Proceedings of the 11th International Workshop on Spoken Language Translation:
Evaluation Campaign, pp. 2–17, Lake Tahoe, California, December 4-5 2014. URL https:
//aclanthology.org/2014.iwslt-evaluation.1.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Jan Niehues, Sebastian Stüker, Katsuhito Sudoh,
Koichiro Yoshino, and Christian Federmann. Overview of the IWSLT 2017 evaluation campaign.
In Proceedings of the 14th International Conference on Spoken Language Translation, pp. 2–14,
Tokyo, Japan, December 14-15 2017. International Workshop on Spoken Language Translation.
URL https://aclanthology.org/2017.iwslt-1.1.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. Advances in neural information processing systems, 32, 2019.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and
Jie Zhou. Fully hyperbolic neural networks. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5672–5686, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.389. URL
https://aclanthology.org/2022.acl-long.389.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
2921–2926, 2017. doi: 10.1109/IJCNN.2017.7966217.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://openreview.net/forum?
id=jxgz7FEqWq.

5

https://books.google.com.tw/books?id=HT0--xXBguQC
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2017.iwslt-1.1
https://aclanthology.org/2022.acl-long.389
https://openreview.net/forum?id=jxgz7FEqWq
https://openreview.net/forum?id=jxgz7FEqWq


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30k: Multilingual english-
german image descriptions. In Proceedings of the 5th Workshop on Vision and Language, pp.
70–74. Association for Computational Linguistics, 2016. doi: 10.18653/v1/W16-3210. URL
http://www.aclweb.org/anthology/W16-3210.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Octavian Ganea, Gary Becigneul, and Thomas Hofmann. Hyperbolic neural networks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/dbab2adc8f9d078009ee3fa810bea142-Paper.pdf.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man-
grulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made simple,
efficient and adaptable. https://github.com/huggingface/accelerate, 2022.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas.
Hyperbolic attention networks. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rJxHsjRqFQ.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. Opennmt: Open-
source toolkit for neural machine translation. In Proc. ACL, 2017. doi: 10.18653/v1/P17-4012.
URL https://doi.org/10.18653/v1/P17-4012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

6

http://www.aclweb.org/anthology/W16-3210
https://proceedings.neurips.cc/paper_files/paper/2018/file/dbab2adc8f9d078009ee3fa810bea142-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/dbab2adc8f9d078009ee3fa810bea142-Paper.pdf
https://zenodo.org/records/10256836
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/huggingface/accelerate
https://openreview.net/forum?id=rJxHsjRqFQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/P17-4012
https://aclanthology.org/2021.emnlp-main.243


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In 13th
International Conference on the Principles of Knowledge Representation and Reasoning, KR 2012,
Proceedings of the International Conference on Knowledge Representation and Reasoning, pp.
552–561. Institute of Electrical and Electronics Engineers Inc., 2012. ISBN 9781577355601. 13th
International Conference on the Principles of Knowledge Representation and Reasoning, KR 2012
; Conference date: 10-06-2012 Through 14-06-2012.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReloRA: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=DLJznSp6X3.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. Advances in neural
information processing systems, 32, 2019.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. arXiv:2103.10385, 2021.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal singular values and singular
vectors adaptation of large language models. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a. URL https://openreview.net/forum?id=
6ZBHIEtdP4.

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, Shaoxiang Wu, Xiaochen Wang, Peiyi Wang,
Qingxiu Dong, Liang Chen, and Zhifang Sui. Periodiclora: Breaking the low-rank bottleneck in
lora optimization, 2024b. URL https://arxiv.org/abs/2402.16141.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):1–12, 2018.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.),
Proceedings of the 2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 839–849, San Diego, California,
June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1098. URL
https://aclanthology.org/N16-1098.

Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Vittorio
Cannistraci. Machine learning meets complex networks via coalescent embedding in the hyperbolic
space. Nature communications, 8(1):1615, 2017.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/abs/1912.
01703.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

7

https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=6ZBHIEtdP4
https://openreview.net/forum?id=6ZBHIEtdP4
https://arxiv.org/abs/2402.16141
https://aclanthology.org/N16-1098
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen Ganea. Poincare glove: Hyperbolic word
embeddings. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=Ske5r3AqK7.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-efficient
tuning of pre-trained models using dynamic search-free low-rank adaptation. In Proceedings of
the 17th Conference of the European Chapter of the Association for Computational Linguistics, pp.
3274–3287, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language models
via residual learning, 2024.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=lq62uWRJjiY.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

8

https://openreview.net/forum?id=Ske5r3AqK7
https://openreview.net/forum?id=Ske5r3AqK7
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://arxiv.org/abs/1708.07747
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Yingtao Zhang, Jialin Zhao, Wenjing Wu, Alessandro Muscoloni, and Carlo Vittorio Cannistraci.
Epitopological learning and cannistraci-hebb network shape intelligence brain-inspired theory for
ultra-sparse advantage in deep learning. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=iayEcORsGd.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora:
Fine-tuning high-rank parameters with the delta of low-rank matrices, 2023.

9

https://openreview.net/forum?id=iayEcORsGd


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Newly Sampled

Swap to active
Swap to freeze

𝑉𝑎𝑐𝑡𝑖𝑣𝑒

𝑉𝑓𝑟𝑒𝑒𝑧𝑒

Figure 3: Illustration of the memory-efficient implementation for SST. After each sampling step,
the sampled vectors are swapped with the active vectors from the previous iteration.

Algorithm 1 ReLoRA*

input Initial weight W of each layer; total iteration T1; iteration interval T2

for t1 = 0, . . . , T1 − 1 do
Initializing: Initialize B and A for each layer.
Subtracting: Subtract B and A from W to maintain the original model output, W = W−BA
Updating: Update B and A for T2 steps while keeping W frozen.
Merging: Merge B and A back to W, updating W = W +BA.

end for

Table 3: Zero-shot evaluations on the same 16 NLP tasks featured in the OPT article (Zhang et al.,
2022). Except for the ReCoRD task, which uses F1 score, all other tasks are evaluated using accuracy,
with values presented as percentages. Mean scores in bold represent superior performance among the
low-rank methods. Additionally, we include the win percentage (including ties) for each low-rank
method compared to the full-rank training.

OPT-125M OPT-350M OPT-1.3B

Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST

ARC (Challenge) 21.2 22.9 21.1 21.3 22.0 22.3 21.3 21.1 24.6 24.2 22.9 21.5
ARC (Easy) 35.8 34.2 33.9 34.3 35.9 32.3 33.0 35.7 43.2 26.1 35.9 37.8
BoolQ 59.5 54.2 60.8 62.0 53.6 56.2 62.2 57.7 57.7 37.8 61.4 59.5
CB 51.8 48.2 28.6 48.2 44.6 44.6 33.9 41.1 59.0 41.1 37.5 42.9
COPA 67.0 61.0 57.0 66.0 69.0 61.0 59.0 60.0 70.0 51.0 68.0 65.0
HellaSwag 27.7 26.5 27.1 26.9 28.4 26.6 26.9 27.5 35.0 26.1 27.2 28.1
MultiRC 55.4 57.2 55.9 57.2 52.0 52.6 56.4 57.0 56.8 42.8 57.7 56.9
OpenBookQA 24.6 24.6 23.6 26.2 26.4 24.2 23.0 25.2 29.0 27.0 24.8 25.0
PIQA 58.7 57.2 56.3 58.3 59.2 56.9 56.9 59.0 64.0 50.3 57.1 59.1
ReCoRD 16.7 17.5 22.6 18.5 19.4 17.6 19.0 23.2 13.7 17.6 23.0 18.1
RTE 50.5 56.7 53.1 53.4 52.0 49.1 54.9 50.2 51.6 52.7 52.0 53.8
StoryCloze 55.8 53.8 53.6 54.5 57.2 53.7 53.0 54.6 61.1 49.7 54.0 56.1
WIC 49.8 51.4 50.0 50.0 50.5 50.0 50.0 50.2 50.3 50.0 50.0 50.0
Winograd 52.0 48.7 50.6 50.6 55.0 51.7 50.2 51.3 55.7 50.9 52.4 55.3
Winogrande 49.1 49.2 50.7 50.1 50.7 50.3 50.8 52.0 51.1 47.9 50.0 49.1
WSC 36.5 38.5 36.5 36.5 36.5 37.5 36.5 36.5 39.4 63.5 36.5 36.5

Mean 44.5 43.8 42.6 44.6 44.5 42.9 42.9 43.9 47.6 41.2 44.4 44.7
Win Percentage - 50.0 43.8 56.3 - 31.3 31.3 31.3 - 18.8 25.0 25.0

A MEMORY-EFFICIENT IMPLEMENTATION FOR SST

To achieve similar memory reduction as LoRA, SST stores optimizer states for all Σ and only for
the vectors sampled in each iteration from U and VT. However, standard implementations of Adam
optimizer (Kingma & Ba, 2014) in PyTorch (Paszke et al., 2019) do not support sparse optimizer

10



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

states. To address this, we partition U and VT into active and frozen segments. Only active segments
store the optimizer states, where Uactive ∈ Rm×r and VT

active ∈ Rr×n. The frozen segments, Ufreeze

and VT
freeze, do not store optimizer states. Vectors newly sampled from the frozen segments are

swapped with unsampled vectors in the active segments (illustrated in Figure 3). This approach
enables SST to function as a time-sharing operating system, effectively balancing resource allocation
among the vectors in U and VT.

B ALGORITHM OF SPARSE SPECTRAL TRAINING

Algorithm 2 Sparse Spectral Training (SST)

input Dataset D; total round T1; number of iterations T2; iteration interval T3

Use Kaiming initialization to initialize origin model’s weight W(0)
k , k = 1, ..., n, where n is the

number of linear layers.
Replace origin model’s weight with SVD decomposition

[U
(t1,0)
k ,Σ

(t1,0)
k ,V

(t1,0)
k

T
] = SVD(W

(t1)
k )

for t1 = 0, . . . , T1 − 1 do
for t2 = 0, . . . , T2 − 1 do

Ik = {1, 2, . . . ,m} be the set of all possible indices of singular vectors

S
(t1,t2)
k ⊆ Ik, S

(t1,t2)
k ∼ Multinomial(r,Σ(t1,t2×T3)

k )

for t3 = 0, . . . , T3 − 1 do
Represent t = t2 × T3 + t3;
Sample a mini-batch from D and compute the forward pass by Eq.3 and compute the
gradient ∇L;
Update Σ

(t1,t+1)
k = max(Σ

(t1,t)
k − η∇LΣk

, 0)
Update

U
(t1,t+1)
k,·i =

U
(t1,t)
k,·i − η∇̃LUk,·i

|U(t1,t)
k,·i − η∇̃LUk,·i |

, V
(t1,t+1)
k,·i =

V
(t1,t)
k,·i − η∇̃LVk,·i

|V(t1,t)
k,·i − η∇̃LVk,·i |

, if i ∈ S
(t1,t2)
k

where Uk,·i means column vector i of Uk

end for
end for
Reinitialize with new SVD decomposition

[U
(t1+1,0)
k ,Σ

(t1+1,0)
k ,V

(t1+1,0)
k

T
] = SVD(U

(t1,T2×T3−1)
k Σ

(t1,T2×T3−1)
k V

(t1,T2×T3−1)
k

T
)

end for

C EXPERIMENTS ON LARGER DATASETS AND HYPERPARAMETER TUNING

To further evaluate the performance of SST, we conducted additional experiments using larger datasets
and varied hyperparameter settings. Specifically, we pre-trained LLaMA-130M on the C4 dataset
(Raffel et al., 2020), which is about 25 times larger than OpenWebText. We also compared the
performance of SST, LoRA, and ReLoRA* under two different learning rates.

Table 4 presents the validation perplexity (PPL) results for LLaMA-130M on both C4 and OpenWeb-
Text. The results show that SST consistently outperforms other low-rank methods, achieving lower
perplexity across all configurations.

Each method was trained with 2.6 billion tokens. The learning rate of 1e−3 for full-rank training
aligns with the configuration used in the ReLoRA article. For consistency, we applied the same
learning rates (lr = 1e−3 and lr = 3e−3) across LoRA, ReLoRA*, and SST.

11



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 4: Validation perplexity on C4 and OpenWebText for LLaMA-130M with different learning
rates. Bold values indicate the lowest PPL among all low-rank methods.

Dataset Model r/d Full (lr=1e-3) lr=1e-3 lr=3e-3
LoRA ReLoRA* SST LoRA ReLoRA* SST

C4 LLaMA-130M 64/768 24.91 35.91 37.34 32.13 30.75 133.06 29.79
OpenWebText LLaMA-130M 64/768 20.04 29.71 31.33 25.89 795.24 230.43 23.35

SST consistently achieves lower perplexity than LoRA and ReLoRA* at the same learning rate.
Notably, with lr = 3e−3, SST surpasses all other low-rank methods, reducing the perplexity gap
by 16.4% on C4 and 65.8% on OpenWebText. These findings highlight SST’s effectiveness and
robustness on larger datasets and varied learning rate configurations.

D PROOF OF GRADIENT OF SPARSE SPECTRAL LAYER

We can express the differential of W as the sum of differentials:

dW = dUΣVT +UdΣVT +UΣdVT (8)

We have chain rule for the gradient of W:

∂L
∂W

=
∂L
∂h

∂h

∂W
=

∂L
∂h

xT (9)

dL =
∂L
∂W

: dW

=
∂L
∂W

: dUΣVT +
∂L
∂W

: U dΣVT +
∂L
∂W

: UΣdVT

=
∂L
∂W

VΣ : dU+UT ∂L
∂W

V : dΣ+ΣUT ∂L
∂W

: dVT

where : is the Frobenius inner product. So we have the gradient of U, Σ and VT:

∂L
∂U

=
∂L
∂W

VΣ,
∂L
∂VT

= ΣUT ∂L
∂W

,
∂L
∂Σ

= UT ∂L
∂W

V (10)

In vector perspective, for the ith vector, it is:

∂L
∂U·i

=
∂L
∂W

V·iΣi,
∂L
∂V·i

= Σi
∂L

∂WT
U·i,

∂L
∂Σi

= U·i
T ∂L
∂W

V·i (11)

where U·i means the ith column vector of U, and Σi is the ith value of the diagonal matrix Σ.

E EXPERIMENT DETAILS

To validate our Sparse Spectral Training (SST) approach, we conducted experiments on both Eu-
clidean and hyperbolic neural networks, demonstrating the generalization of SST across various
neural network architectures and embedding geometries.

We compared SST with full-rank training, LoRA, and ReLoRA*. The key distinctions between
ReLoRA* and ReLoRA (Lialin et al., 2024) is that ReLoRA includes a full-rank training as “warm
start”, which prevents it from being an end-to-end memory-efficient pre-training method.

For all low-rank methods, all linear layers in the baseline models were replaced by low-rank layers.
Hyperparameters and implementation details are provided in Appendix E.

12



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

As discussed in Section 2.3, the comparison between SST and the contemporaneous work GaLore
(Zhao et al., 2024) is provided in Appendix G, as GaLore is unstable during OPT pre-training with
r = 64. We highlight SST’s superior performance across all of our experiment settings. Ablation
studies are documented in Appendix H, and a detailed analysis of memory consumption and training
time can be found in Appendix I. Additionally, an experiment on image classification tasks is included
in Appendix J.

E.1 MACHINE TRANSLATION

We employ the vanilla transformer (Vaswani et al., 2017) as the Euclidean transformer and HyboNet
(Chen et al., 2022) as the hyperbolic transformer. Our experiments include three widely-used machine
translation datasets: IWSLT’14 English-to-German (Cettolo et al., 2014), IWSLT’17 German-to-
English (Cettolo et al., 2017), and Multi30K German-to-English (Elliott et al., 2016). For IWSLT’14,
the hyperparameters are aligned with those from HyboNet.

E.2 NATURAL LANGUAGE GENERATION

Language modeling. We utilize the OPT (Zhang et al., 2022) and LLaMA (Touvron et al., 2023a)
architecture as the baseline for our language generation experiments. For LLaMA, we follow the
experiment setup from (Zhao et al., 2024). All models are pre-trained on OpenWebText (Gokaslan &
Cohen, 2019), an open-source reproduction of OpenAI’s WebText. We applied a rank of r = 64 for
all OPT models and LLaMA-130M, and r = 128 for LLaMA-1.3B.

Zero-shot evaluations. Each pretrained model performs zero-shot evaluations on all 16 NLP tasks
used in the OPT article (Zhang et al., 2022), including ARC Easy and Challenge (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
StoryCloze (Mostafazadeh et al., 2016), SuperGLUE (Wang et al., 2019), WinoGrad (Levesque et al.,
2012), and WinoGrande (Sakaguchi et al., 2019). Evaluations are conducted using the LM Evaluation
Harness framework (Gao et al., 2023). Except for the ReCoRD task, which uses F1 score, all other
tasks are evaluated using accuracy.

E.3 IMPLEMENTATION DETAILS FOR SST

Sampling of U and VT. In our experiments, we employ a more exploratory approach when
sampling U and VT:

p(i) =
1

2
(
1

m
+

Σi∑
j Σj

) (12)

where p(i) is the possibility to sample index i vector of U and VT. This adjustment ensures that
vectors associated with lower singular values still have a substantial likelihood of being sampled,
preventing their probabilities from becoming excessively low and promoting a more balanced
exploration across the spectral components.

Optimizer state reset and warmup. Before each iteration, Sparse Spectral Training (SST) resets
all optimizer states for U, VT and Σ. For example, for optimizers like Adam, this involves clearing
the first and second moments as well as the timestep. Consequently, a brief warmup period is essential
at the beginning of each iteration to accommodate the reset states. This warmup period is typically
20 steps, guided by the exponential decay rate β used in the Adam optimizer.

Hyperbolic SST. The formula of hyperbolic linear layer in (Chen et al., 2022) is:

h = fx(M)x =

[√
∥Wx∥2− 1

K

v⊤x
v⊤

W

]
x =

[√
∥Wx∥2 − 1

Kv⊤

Wx

]
(13)

where v ∈ Rn+1, W ∈ Rm×(n+1) and K is the curvature. The formula of Hyperbolic SST is:

13



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

h =

[√
∥UΣVTx∥2 − 1

Kv⊤

UΣVTx

]
(14)

E.4 HYPERPARAMETERS OF MACHINE TRANSLATION

IWSLT’14. The hyperparameters can be found in Table 5. We employ the same codebase and
hyperparameters as those used in HyboNet (Chen et al., 2022), which is derived from OpenNMT-py
(Klein et al., 2017). For all methods, last checkpoint is utilized for evaluation. Beam search, with a
beam size of 2, is employed to optimize the evaluation process. Experiments were conducted on one
A100 GPU.

For SST, iteration interval (T3) is set to 200. Each iteration begins with a warmup phase lasting 20
steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

Table 5: Hyperparameters on IWSLT’14 for Euclidean and hyperbolic Transformer.

Hyper-parameter Euclidean Hyperbolic
Embedding Dimension 64, 128, 256 64, 128, 256
Feed-forward Dimension 256, 512, 1024 256, 512, 1024
Batch Size 10240 tokens 10240 tokens
Gradient Accumulation Steps 4 4
Training Steps 40000 40000
Dropout 0.0 0.1
Attention Dropout 0.1 0.1
Max Gradient Norm - 0.5
Warmup Steps 6000 6000
Decay Method noam noam
Label Smoothing 0.1 0.1
Layer Number 6 6
Head Number 4 4
Learning Rate 5 2
Optimizer Adam rAdam

Multi30K and IWSLT’17. The hyperparameters can be found in Table 6. Because of overfitting,
model checkpoint with lowest validation loss is utilized for evaluation. A larger learning rate
(0.0003) is used for low rank parameters (U, VT and Σ for SST, B and A for LoRA and ReLoRA*.
Experiments were conducted on one A100 GPU.

For SST, interation interval (T3) is set to 200 for Multi30K and 400 for IWSLT’17. Each iteration
begins with a warmup phase lasting 20 steps. The number of iterations per round (T2) is determined
by the formula T2 = d/r, where d represents the embedding dimension and r denotes the rank used
in SST.

E.5 HYPERPARAMETERS OF NATURAL LANGUAGE GENERATION

Hyperparameters for OPT. The hyperparameters for OPT are detailed in Table 7. We employ
a linear warmup of 2000 steps followed by a stable learning rate, without decay. A larger learning
rate (0.001) is used for only low rank parameters (U, VT and Σ for SST, B and A for LoRA and
ReLoRA*. The total training tokens for each experiment is 19.7B, roughly 2 epochs of OpenWebText.
Distributed training is facilitated using the Accelerate (Gugger et al., 2022) library across four A100
GPUs on a Linux server.

For SST, interation interval (T3) is set to 200. Each iteration begins with a warmup phase lasting
20 steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

14



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 6: Hyperparameters on Multi30K and IWSLT’17 for vanilla Transformer.

Hyper-parameter Multi30K IWSLT’17
Embedding Dimension 512 512
Feed-forward Dimension 2048 2048
Batch Size 128 sentences 128 sentences
Gradient Accumulation Steps 1 1
Training Steps 100000 150000
Dropout 0.1 0.1
Decay Method constant constant
Layer Number 6 6
Head Number 8 8
Learning Rate 0.0001 0.0001
Weight Decay 1 0.1
Optimizer AdamW AdamW

Table 7: Hyperparameters for OPT Models

Hyper-parameter OPT-125M OPT-350M OPT-1.3B
Embedding Dimension 768 512 (project to 1024) 2048
Feed-forward Dimension 3072 4096 8192
Global Batch Size 240 240 240
Sequence Length 2048 2048 2048
Training Steps 40000 40000 40000
Learning Rate 0.0001 0.0001 0.0001
Warmup Steps 2000 2000 2000
Optimizer AdamW AdamW AdamW
Layer Number 12 24 24
Head Number 12 16 32

Hyperparameters for LLaMA. The hyperparameters for LLaMA are detailed in Table 8. We
follow the same experiment setup from (Zhao et al., 2024). We employ a linear warmup of 2000/10000
steps followed by a cosine decay. For LLaMA-130M, the learning rates for LoRA, ReLoRA*, and
SST are selected from {1e-3, 3e-3} based on the lowest PPL observed in Table 4. For LLaMA-
1.3B, the learning rates for LoRA, ReLoRA*, and SST are fixed at 1e-3. The learning rates for
full-rank training are set to 1e-3 for LLaMA-130M and 4e-4 for LLaMA-1.3B, consistent with the
configuration in the ReLoRA article.

For SST, interation interval (T3) is set to 200. Each iteration begins with a warmup phase lasting
20 steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

Table 8: Hyperparameters for LLaMA Models

Hyper-parameter LLaMA-130M LLaMA-1.3B
Embedding Dimension 768 2048
Feed-forward Dimension 2048 5461
Global Batch Size 512 512
Sequence Length 256 256
Training Steps 20000 100000
Learning Rate 0.001 0.0004
Warmup Steps 2000 10000
Optimizer Adam Adam
Layer Number 12 24
Head Number 12 32

15



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0.0 0.1 0.2 0.3 0.4
Pruned Ratio

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Pe
rp

le
xi

ty

Full
SST
100%
99%
98%
97%
96%
95%
93%
90%

Figure 4: Singular Value Pruning. We conduct singular value pruning on full-rank and SST
pretrained OPT-125M model. After performing singular value decomposition on weight matrices, we
preserve the top k singular values so that the cumulative sum of preserved singular values ranges
from [100%, 99%, 98%, ..., 93%, 90%] of the original cumulative sum. The pruned ratio of singular
values is plotted along the x-axis.

E.6 HYPERPARAMETERS OF HYPERBOLIC GRAPH NEURAL NETWORKS

We use HyboNet (Chen et al., 2022) as full-rank model, with same hyperparameters as those used in
HyboNet. Experiments were conducted on one A100 GPU.

For SST, interation interval (T3) is set to 100. Each iteration begins with a warmup phase lasting
100 steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d
represents the embedding dimension and r denotes the rank used in SST.

We set dropout rate to 0.5 for the LoRA and SST methods during the node classification task on the
Cora dataset. This is the only one deviation from the HyboNet configuration.

F SINGULAR VALUE PRUNING

We further conduct an analysis study of the potential for using SST model for further compression.
The results, as shown in Figure 4, indicate that the SST model retains lower perplexity across a
wider range of pruning ratios compared to the full-rank model. This suggests that the SST method
effectively concentrates the informational content of the weights into fewer singular values, making it
more suitable for further compression.

This enhanced performance underscores the potential of SST in maintaining essential model character-
istics even under significant compression, making it a promising approach for developing lightweight
yet powerful language models for inference.

G EVALUATING SST AND GALORE: COMPLEMENTARY APPROACHES TO
MEMORY EFFICIENCY

Recently, a new approach named Gradient Low-Rank Projection (GaLore) (Zhao et al., 2024) has
been proposed to address the memory challenges associated with pre-training large language models.
GaLore, by implementing a memory-efficient gradient projection method.

Using the released code of GaLore1, we conducted comparative experiments on the IWSLT’14 dataset
with Transformer models, employing the same configurations as other low-rank methods. We set
the scale factor α = 1 in these experiments because α = 0.25, which is used in the article, performs

1https://github.com/jiaweizzhao/GaLore

16

https://github.com/jiaweizzhao/GaLore


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 9: The BLEU score on IWSLT’14 for Euclidean Transformer, compared with GaLore.
Values highlighted in bold represent the highest performance among the low rank methods, while
those marked with an “*” denote performance that exceeds that of the full-rank variants.

Dimension r Full GaLore SST

64 8 24.27 18.08 22.28
4 14.07 20.27

128
16

25.79
23.43 25.12

8 19.71 24.19
4 16.01 22.80

256

32

23.92

24.01* 23.97*
16 22.82 23.42
8 20.12 22.65
4 15.94 21.39

much worse than α = 1. As illustrated in Table 9, SST method consistently outperformed GaLore
across various model dimensions and ranks, except for d = 256, r = 32.

In addition, we evaluated validation perplexity on the OpenWebText dataset with OPT-125M and
OPT-350M models. We tested GaLore with scale factor α = 0.25 (used in GaLore article) and α = 1.
As shown in Table 10, SST outperformed GaLore at both settings of α on OPT-125M. Since α = 1
had better results than α = 0.25 on OPT-125M, we used α = 1 for training GaLore on OPT-350M.
Initially, GaLore trained normally on OPT-350M, but around step 6127, the training loss suddenly
increased from approximately 4 to 7 within a few steps, resulting in a very high final perplexity for
the GaLore OPT-350M, as shown in Table 10. Training of GaLore on OPT-1.3B is still ongoing, and
we will update the results as soon as they are available. Zero-shot evaluations comparing SST with
GaLore are presented in Table 11, which also demonstrate SST’s superior performance.

Here, we discuss our guess on why SST may have an advantage over GaLore on low-rank settings.
GaLore utilizes a projection matrix Pt ∈ Rm×r derived from the singular value decomposition
(SVD) of a single step’s gradient. Only one step’s gradient may introduce noise due to data sampling
variability. Conversely, SST employs U and VT as projection matrices, which are initialized and
reinitialized with the SVD of W. W could be seemed as the momentum of gradient of W, less noisy
than one step’s gradient. Furthermore, SST updates all Σ values, regardless of r, making it more
robust as r decreases.

Table 10: Validation perplexity, compared with GaLore on OpenWebText dataset with OPT-125M
and OPT-350M, along with the number of trainable parameters of each method. r = 64. Values
highlighted in bold represent the highest performance among the low rank methods.

Full GaLore α = 1 GaLore α = 0.25 SST
OPT-125M 23.50 (125.2M) 32.17 (45.6M) 37.08 (45.6M) 26.98 (51.0M)

OPT-350M 21.78 (331.2M) 1994 (43.4M) - 27.72 (57.7M)

H ABLATION STUDY

Impact of Σ updates. We conduct an ablation study to evaluate the impact of various components
and configurations within SST on the IWSLT’14 using a Euclidean Transformer with a dimension
of 128 and rank r of 4. The results of this study are summarized in Table 12, which highlights the
contributions of specific elements to the overall performance measured in BLEU score.

One variation tested involves changing the update mechanism for Σ. Instead of updating all Σ, only
sampled Σ are updated, same as update for U and VT. This modification results in a lower BLEU
score of 22.40, indicating that full updates of Σ contribute positively to the model’s performance.

17



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 11: Zero-shot evaluations, compared with GaLore with same tasks as Table 3. Mean scores
in bold represent superior performance among the low-rank methods. Win percentage (including ties)
for each low-rank method is compared to the full-rank training.

OPT-125M OPT-350M

Full GaLore α = 1 GaLore α = 0.25 SST Full GaLore α = 1 SST

ARC (Challenge) 21.2 21.2 20.4 21.3 22.0 25.7 21.1
ARC (Easy) 35.8 33.7 32.8 34.3 35.9 25.7 35.7
BoolQ 59.5 61.8 62.2 62.0 53.6 37.8 57.7
CB 51.8 37.5 35.7 48.2 44.6 41.1 41.1
COPA 67.0 64.0 58.0 66.0 69.0 52.0 60.0
HellaSwag 27.7 27.0 26.6 26.9 28.4 26.2 27.5
MultiRC 55.4 57.2 54.8 57.2 52.0 42.8 57.0
OpenBookQA 24.6 23.6 24.6 26.2 26.4 27.8 25.2
PIQA 58.7 57.1 56.4 58.3 59.2 50.5 59.0
ReCoRD 16.7 15.0 16.4 18.5 19.4 17.5 23.2
RTE 50.5 51.6 56.0 53.4 52.0 52.7 50.2
StoryCloze 55.8 53.5 52.8 54.5 57.2 49.7 54.6
WIC 49.8 50.0 50.0 50.0 50.5 50.0 50.2
Winograd 52.0 50.9 52.4 50.6 55.0 50.2 51.3
Winogrande 49.1 51.7 48.4 50.1 50.7 49.4 52.0
WSC 36.5 36.5 36.5 36.5 36.5 63.5 36.5

Mean 44.5 43.3 42.8 44.6 44.5 41.4 43.9
Win Percentage - 43.8 37.5 56.3 - 25.0 31.3

Initialization method. We experiment with a configuration similar to the ReLoRA*, where h =
(W +UΣVT)x, with U and VT randomly initialized and Σ initialized to zero. After each round,
U, VT and Σ are reinitialized. This setup significantly reduces the BLEU score to 16.03, which
is similar to the performance of LoRA (16.37) and ReLoRA* (18.00). This demonstrates that the
most important feature of SST is that instead of randomly initialized, SST uses SVD of W as the
initialization of U and VT, which is aligned with our analysis in section 3.3.

Table 12: Ablation Study on IWSLT’14 dataset with Euclidean Transformer. Dimension is 128 and
r is 4.

BLEU
LoRA 16.37

ReLoRA* 18.00

SST - Instead of update all Σ, only update sampled Σ 22.40

SST - Use formula similar as ReLoRA*: h = (W +UΣVT)x. (U
and VT random initialized, and Σ zero initialized)

16.03

SST 22.80

Impact of iteration interval (T3). We also conducted additional experiments to study the impact
of varying iteration interval T3 (sampling period). All methods were trained on a vanilla Transformer
model with a hidden dimension of 64 and r = 8 on the IWSLT’14 dataset. In the original setup
(Table 1), T3 was set to 200 steps per iteration.

Table 13: Impact of iteration interval (T3) on BLEU scores for IWSLT’14.

Steps per Iteration T3 800 400 200 100 50 25 10

BLEU Score 21.85 23.64 22.47 22.49 22.60 22.46 22.25

18



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

As shown in Table 13, both excessively large and small values of T3 result in decreased performance.
A large T3 may cause SST degrade to LoRA, while a small T3 leads to frequent resets of the
optimizer’s momentum, thereby affecting convergence.

Impact of Number of Iterations. We conducted an additional experiment on the IWSLT’14 dataset
using a vanilla Transformer to evaluate the impact of the number of iterations per round, with a model
dimension of 64 and r = 8. The results are summarized in Table 14:

Table 14: Impact of number of iterations per round on BLEU scores for IWSLT’14.

Number of Iterations per Round 1 2 4 8 16 32

BLEU Score 22.28 22.21 22.24 22.28 22.30 22.37

The results indicate that different numbers of iterations yield comparable performance. In our
experiments, this hyperparameter was not tuned; instead, we fixed it to d/r.

Sampling Mechanisms. To evaluate the impact of different sampling mechanisms on the per-
formance of SST, we conducted additional experiments using a vanilla Transformer with a model
dimension of 64 and r = 8 on the IWSLT’14 dataset. The evaluation metric is BLEU, where higher
scores indicate better performance. Table 15 summarizes the results:

Table 15: BLEU scores for different sampling mechanisms on IWSLT’14. Bold indicates the highest
performance.

Sampling Mechanism MULTINOMIAL UNIFORM SEQUENTIAL TOP R
BLEU 22.28 22.01 22.13 18.28

Descriptions of Sampling Mechanisms:

• MULTINOMIAL: The multinomial random sampling method used in SST.

• UNIFORM: Uniform random sampling.

• SEQUENTIAL: Iterating through all singular vectors without repetition.

• TOP R: Selecting the top-r singular vectors with the largest singular values.

We also considered a Binomial sampling mechanism; however, it could not guarantee that the number
of selected singular vectors would remain consistent with the specified rank, making it unsuitable for
direct comparison.

The results indicate that TOP R performs the worst, as its search space collapses into a restricted
low-rank subspace. In contrast, as long as all singular vectors are visited, the other methods deliver
comparable performance. Among these, MULTINOMIAL demonstrates a slight advantage.

Impact of Rank. For all low-rank methods, including LoRA, ReLoRA*, and SST, rank is more of
a constraint determined by available resources rather than a hyperparameter to be extensively tuned.
Higher ranks generally lead to better performance but at the cost of increased memory consumption.
To ensure fairness, the same rank values were used for LoRA, ReLoRA*, and SST in all experiments,
as these methods have a similar number of trainable parameters under the same rank.

Additionally, we conducted an experiment on the IWSLT’14 dataset using a vanilla Transformer
with a model dimension of 128 to analyze the impact of rank on different methods. The results are
presented in Table 16:

The evaluation metric is BLEU, where higher scores indicate better performance. The BLEU score
for full-rank training is 25.79. The results demonstrate that as the rank increases, the performance of
all methods improves. Notably, SST consistently outperforms other low-rank methods, especially at
smaller ranks, highlighting its robustness under resource-constrained settings.

19



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 16: Impact of rank on BLEU scores for IWSLT’14. Dimension is 128.

Rank (r) 1 2 4 8 16 32 64

LoRA 12.44 14.16 16.37 20.56 23.30 25.12 26.11
ReLoRA 14.53 15.39 18.00 20.61 22.92 24.15 25.25

SST 17.49 20.69 22.80 24.19 25.12 26.08 26.15

Impact of Training Steps. To investigate whether additional training steps benefit SST, we con-
ducted an experiment on the IWSLT’14 dataset using a vanilla Transformer with a model dimension
of 64 and r = 4. Table 17 presents the BLEU scores for full-rank training and SST under different
training steps (evaluated on the model at the last step):

Table 17: BLEU scores under different training steps. The default training step in Table 1 is 40,000.

Steps 20,000 40,000 80,000 160,000 320,000 640,000

Full 22.95 24.27 24.85 24.72 24.71 25.05
SST 17.23 20.27 21.91 22.86 23.32 23.92

The results demonstrate that as the number of training steps increases, the gap between full-rank
training and SST narrows. Even with r = 4, SST approaches the performance of full-rank training at
640,000 steps. These findings confirm that while SST may require more steps to converge at lower
ranks, it remains competitive with full-rank training given sufficient steps.

Table 18: GPU memory consumption on different sizes of OPT models, including optimizer state
and gradient. Model weight uses float32. AdamW optimizer state uses float32 (same data type as
used in OPT experiments in Table 2).

Full LoRA/ReLoRA* SST
OPT-125M 1956.05 MB 1118.56 MB 1254.41 MB

OPT-350M 5070.41 MB 2046.41 MB 2573.77 MB

OPT-1.3B 20093.22 MB 7133.24 MB 9345.72 MB

I MEMORY CONSUMPTION AND TRAINING TIME

Memory consumption. As shown in Table 18, the memory consumption of SST is comparable to
LoRA and much smaller than full-rank models. SST has a similar number of trainable parameters
(about 0.2% higher) as LoRA (as stated in Table 2), but more frozen parameters (about 45% higher)
than LoRA. However, this can be mitigated if we use low precision for the frozen parameters, as in
(Dettmers et al., 2024).

Table 19 shows that the memory consumption of SVD decomposition for the largest weight in each
model is about 3%, which is small compared with the whole model.

Training time. Table 20 shows that the time spent on SVD in SST is very low, about 0.5%-
0.8% compared with the whole training time. SST has comparable training time as LoRA and
full-rank model. The increasement of training time of SST is mainly due to SST’s linear function,
h = UΣVTx, which is slower than original h = Wx. However, during inference, replacing
UΣVT with a single matrix W could obtain same computation efficiency as full-rank models.
ReLoRA* has comparable computation time as LoRA.

Performance with Fewer Steps. Despite requiring slightly more time per step, SST achieves
superior performance with fewer training steps compared to other low-rank methods. The choice
of 20% fewer steps for SST corresponds to the maximum additional training time incurred by SST

20



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 19: GPU memory consumption of SVD decomposition in SST.

Model Largest Weight Shape Peak GPU Memory Consumption
OPT-125M 768 × 3072 41.25 MB (3.3%)

OPT-350M 1024 × 4096 72.00 MB (2.8%)

OPT-1.3B 2048 × 8192 288.01 MB (3.1%)

Table 20: Overall training time on different sizes of OPT models with 19.7 billion training tokens,
using 4 A100 GPU. “Time of SVD in SST” is the overall time of singular value decomposition within
SST.

Model Full LoRA SST Time of SVD in SST
OPT-125M 62.5h 64.4h 65.0h 0.3h (0.5%)

OPT-350M 135.8h 153.3h 170.0h 0.8h (0.5%)

OPT-1.3B 303.4h 324.8h 387.2h 3.0h (0.8%)

compared to other low-rank methods, as shown in Table 20. Table 21 compares the perplexity (PPL)
of SST trained with 20% fewer steps to that of other methods trained with full steps.

Table 21: Validation perplexity with SST trained 20% fewer steps compared to full steps for other
methods.

Model Full LoRA ReLoRA* SST (20% fewer steps)
OPT-125M 23.50 34.23 35.80 28.03
OPT-350M 21.78 34.26 39.21 29.42
OPT-1.3B 15.10 1716 29.52 22.98
LLaMA-130M 20.04 29.71 31.33 24.74
LLaMA-1.3B 14.54 16.50 17.32 15.65

These results demonstrate that SST maintains significantly lower perplexity even with fewer training
steps, highlighting its efficiency. SST effectively balances its computational overhead while achieving
superior performance compared to other low-rank methods. This makes SST a compelling choice for
high-quality pretraining.

J EXPERIMENT ON IMAGE CLASSIFICATION

We conduct additional experiments on image classification tasks using MLP-based models. In this
section, we provide a comparison of full-rank training, LoRA, ReLoRA*, and SST on three datasets:
MNIST (Lecun et al., 1998), EMNIST (Cohen et al., 2017), and Fashion MNIST (Xiao et al., 2017).

The architecture of the MLP is 784− 512− 512− 512− #class. Each method is trained for a total
of 100 epochs. Learning rate is set to 0.01 for all methods.

We use a rank of 16 for all low-rank methods, which corresponds to 1/32 of the full-rank dimension.
For ReLoRA* and SST, one epoch per iteration is used. The results are averaged over three random
seeds, and all datasets were evaluated based on test accuracy.

As shown in Table 22, SST outperforms both LoRA and ReLoRA* across all three datasets. SST
reduces performance gap between low-rank method and full-rank training by 49% in average.

K MEMORY EFFICIENCY ANALYSIS

To better understand the memory efficiency of SST compared to baseline methods, we provide a
detailed joint analysis of GPU memory consumption and performance trade-offs.

21



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 22: Image classification tasks test accuracy.

Dataset Full LoRA ReLoRA* SST
MNIST 98.63 ± 0.04 97.69 ± 0.10 97.72 ± 0.05 98.33 ± 0.04

EMNIST 85.32 ± 0.24 79.45 ± 0.26 84.12 ± 0.12 84.96 ± 0.11

Fashion MNIST 90.44 ± 0.06 88.30 ± 0.01 89.08 ± 0.16 89.22 ± 0.06

Memory and Performance Trade-Off. SST’s GPU memory consumption is comparable to
ReLoRA*, while achieving significant improvements in perplexity (PPL). A comparison of memory
reduction and PPL increase is provided in our analysis (Figure 5).

We define the following metrics for clarity:

Memory Reduction (%) =
Full memory − Low rank memory

Full memory
× 100

PPL Increase (%) =
Low rank PPL − Full PPL

Full PPL
× 100

To provide a more intuitive understanding of SST’s memory efficiency, we introduce a new metric
called the efficiency ratio, defined as:

Efficiency Ratio =
Memory Reduction (%)

PPL Increase (%)

This efficiency ratio quantifies how much memory can be reduced at the cost of a 1% increase in PPL.
A higher efficiency ratio indicates a more memory-efficient method.

Results. SST achieves a significantly higher efficiency ratio than ReLoRA* across various pretrain-
ing tasks. Figure 6 shows the efficiency ratio improvements of SST compared to ReLoRA*:

• 167.4% (OpenWebText, LLaMA-130M)

• 99.7% (C4, LLaMA-130M)

• 196.1% (OpenWebText, OPT-125M)

• 142.3% (OpenWebText, OPT-350M)

• 65.9% (OpenWebText, OPT-1.3B)

• 4434.3% (OpenWebText, LLaMA-1.3B)

Conclusion. These results demonstrate that SST achieves a substantially better trade-off between
memory reduction and PPL increase compared to ReLoRA*. This highlights SST’s effectiveness in
optimizing memory efficiency while maintaining strong model performance, making it a practical
choice for resource-constrained pretraining tasks.

L HYPERBOLIC GRAPH NEURAL NETWORKS

Hyperbolic Graph Neural Networks (HGNNs) (Chami et al., 2019; Chen et al., 2022) capitalize on
the expansive and hierarchical nature of hyperbolic space to efficiently manage and analyze graph-
structured data. This geometric space is particularly suitable for graphs due to its ability to closely
mimic the underlying data structures with minimal distortion, offering a substantial improvement
over traditional Euclidean methods.

We evaluated the effectiveness of SST on HyboNet (Chen et al., 2022) version of HGNN in node
classification and link prediction across four distinct datasets: Airport (Chami et al., 2019), Cora (Sen
et al., 2008), Disease (Anderson & May, 1991), and PubMed (Namata et al., 2012). Each experiment
was conducted with three random seeds.

22



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0 10 20 30 40 50 60
Memory Reduction Compared to Full-Rank (%)

0

20

40

60

80

100

PP
L 

In
cr

ea
se

 c
om

pa
re

d 
to

 Fu
ll-

Ra
nk

 (%
)

OpenWebText,OPT-125M

OpenWebText,OPT-125M

OpenWebText,OPT-350M

OpenWebText,OPT-350M

OpenWebText,OPT-1.3B

OpenWebText,OPT-1.3B

OpenWebText,LLaMA-130M

OpenWebText,LLaMA-130M

C4,LLaMA-130M

C4,LLaMA-130M OpenWebText,LLaMA-1.3B

OpenWebText,LLaMA-1.3B

ReLoRA*
SST

Figure 5: Memory reduction vs. PPL increase. Comparison of SST and ReLoRA* on multiple
datasets and models.

Table 23: Node Classification and Link Prediction Results. Model’s dimension d = 16. Results
are reported as test F1 scores for node classification and test precision for link prediction, expressed
in percentages. Values highlighted in bold represent the highest performance among the low-rank
methods, while those marked with an “*” denote performance that exceeds that of the full-rank
variants.

Node Classification Link Prediction

Method Airport Cora Disease PubMed Airport Cora Disease PubMed

Full d = 16 92.88 ± 0.5 81.13 ± 0.2 91.83 ± 0.4 78.1 ± 0.4 95.77 ± 0.08 94.62 ± 0.2 91.49 ± 1.5 96.55 ± 0.03

LoRA r = 1 85.75 ± 1.0 45.5 ± 0.3 79.66 ± 1.9 69.17 ± 2.1 94.01 ± 0.2 84.22 ± 0.1 84.29 ± 1.5 89.34 ± 0.4
SST r = 1 88.61 ± 0.5 75.07 ± 0.5 89.22 ± 1.7 77.47 ± 0.3 95.37 ± 0.4 91.11 ± 0.6 93.63 ± 0.7* 95.57 ± 0.1

LoRA r = 2 89.06 ± 1.0 64.73 ± 0.8 83.84 ± 4.3 76.27 ± 0.8 94.75 ± 0.15 88.8 ± 0.5 91.38 ± 0.7 92.14 ± 0.3
SST r = 2 87.92 ± 0.09 77.5 ± 0.7 90.64 ± 1.7 77.93 ± 0.1 95.59 ± 0.2 91.89 ± 0.3 94.83 ± 0.6* 95.71 ± 0.1

The results, detailed in Table 23, demonstrate SST has strong performance in both node classification
and link prediction tasks. With r = 1, SST reduces the performance gap, by an average of 73.7% in
node classification and 82.5% in link prediction. In the Disease link prediction task, SST outperforms
full-rank training at both r = 1 and r = 2. Notably, SST’s advantage over LoRA is greater at r = 1
than at r = 2, likely due to SST’s sampling strategy being particularly effective in sparser scenarios.

M RELATED WORK

Low-Rank Adaptation. Low-rank adaptation has become a key strategy for reducing the computa-
tional and memory requirements of training large-scale neural networks. Hu et al. (2022) introduced

23



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Ope
nW

eb
Tex

t,O
PT-

12
5M

Ope
nW

eb
Tex

t,L
LaM

A-1
30

M

C4,L
LaM

A-1
30

M

Ope
nW

eb
Tex

t,O
PT-

35
0M

Ope
nW

eb
Tex

t,O
PT-

1.3
B

0.0

0.5

1.0

1.5

2.0

2.5

(M
em

or
y 

Re
du

ct
io

n 
%

) /
 (P

PL
 In

cr
ea

se
 %

)

19
6.

1%

16
7.

4%

99
.4

%

14
2.

3%

65
.9

%

ReLoRA*
SST

4434.3%

OpenWebText,LLaMA-1.3B

Figure 6: Efficiency Ratio Improvements. SST achieves significantly higher efficiency ratios
compared to ReLoRA* across various tasks and model sizes. The LLaMA-1.3B result is included at
the bottom of the plot due to its large value.

Table 24: Comparison of BLEU scores on Multi30k and IWSLT’17 datasets using Euclidean
Transformer (dimension = 512), r = 32. Scores highlighted in bold represent the highest perfor-
mance achieved by low-rank methods.

Full LoRA ReLoRA* SST

Multi30K 40.7 40.1 41.6 43.4
IWSLT’17 31.7 31.9 32.0 32.3

Low-Rank Adaptation (LoRA), a technique that fine-tunes pre-trained models by integrating low-rank
matrices to significantly reduce the number of parameters updated during training. Various enhance-
ments to LoRA have since been developed to improve its efficiency and broaden its application
(Zhang et al., 2023; Dettmers et al., 2024; Zi et al., 2023; Valipour et al., 2023). Lialin et al. (2024)
introduced ReLoRA specifically for the pre-training phase, which requires a full-rank warm-up to
achieve performance comparable to full-rank training. A similar approach is also found in COLA
(Xia et al., 2024) and PeriodicLoRA (Meng et al., 2024b). Additionally, Zhao et al. (2024) intro-
duced GaLore, which projects gradients into a low-rank subspace. Meng et al. (2024a) introduced
PiSSA, which applies SVD-based low-rank updates for fine-tuning pre-trained weights by focusing
on dominant singular vectors. These advancements highlight the versatility and ongoing evolution of
low-rank adaptation techniques in response to the growing complexity of neural network models.

24



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

fc1

0 100 200 300 400 500 600 700 800
Singular Value Index

0
25
50
75

100
125
150
175
200

Si
ng

ul
ar

 V
al

ue

Full
SST
LoRA

fc2

0 100 200 300 400 500 600 700 800
Singular Value Index

0

10

20

30

40

Si
ng

ul
ar

 V
al

ue

Full
SST
LoRA

q proj

0 100 200 300 400 500 600 700 800
Singular Value Index

0

2

4

6

8

Si
ng

ul
ar

 V
al

ue

Full
SST
LoRA

k proj

0 100 200 300 400 500 600 700 800
Singular Value Index

0

2

4

6

8

10

Si
ng

ul
ar

 V
al

ue

Full
SST
LoRA

v proj

0 100 200 300 400 500 600 700 800
Singular Value Index

0

20

40

60

80

Si
ng

ul
ar

 V
al

ue

Full
SST
LoRA

out proj

0 100 200 300 400 500 600 700 800
Singular Value Index

0

20

40

60

80

100

Si
ng

ul
ar

 V
al

ue

Full
SST
LoRA

Figure 7: Singular Value Distribution. This visualization depicts the distribution of singular values
for the OPT-125M model with full-rank, LoRA, and SST, with r = 64). The x-axis represents the
index of singular values, sorted from largest to smallest, while the y-axis shows the magnitude of
each value. It highlights how LoRA predominantly captures and overestimates the top-r singular
values, in contrast to SST, which shows a much similar distribution as full-rank training.

N RELATED WORK OF OTHER PARAMETER-EFFICIENT TRAINING METHODS

Apart from low-rank adaptations, researchers have developed a variety of parameter-efficient training
techniques to optimize resource consumption while preserving learning effectiveness. Prompt tuning
is an effective method that integrates tunable prefixes or soft prompts into the input embeddings of
models. It enables lightweight task-specific adaptations with minimal impact on the model’s overall
architecture (Lester et al., 2021; Liu et al., 2021). Dynamic sparse training (DST), through methods
like SET (Mocanu et al., 2018), RIGL (Evci et al., 2020), MEST (Yuan et al., 2021), and CHT (Zhang

25



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

et al., 2024), employs a dynamic prune-and-grow strategy that adjusts network topology during
training. This approach optimizes training efficiency and can improve generalization by continuously
adapting the network’s sparse structure. This presents a significant shift from static training methods.

Hyperbolic Neural Networks. Hyperbolic neural networks are an emerging area in deep learning,
exploiting the unique properties of hyperbolic space that make it ideal for processing hierarchical and
graph-structured data (Muscoloni et al., 2017; Cannistraci & Muscoloni, 2022). Innovations in this
area have adapted fundamental neural network mechanisms to function within hyperbolic geometries,
as demonstrated by Muscoloni et al. (2017) and Ganea et al. (2018). Further developments by
Chen et al. (2022) explore manifold-specific properties to enrich both theoretical understanding and
practical deployment. The use of hyperbolic spaces has been shown to significantly improve data
representation and generalization across various tasks, marking a notable advancement in managing
complex, non-Euclidean data structures (Gulcehre et al., 2019; Liu et al., 2019; Tifrea et al., 2019).

26


	Introduction
	Low Rank Adaptation
	LoRA
	ReLoRA*
	GaLore

	Sparse Spectral Training
	Sparse Spectral Layer
	Gradient Update of U, VT with 
	Why SVD Decomposition is Important

	Experiments
	Machine Translation
	Natural Language Generation

	Memory-Efficient Implementation for SST
	Algorithm of Sparse Spectral Training
	Experiments on Larger Datasets and Hyperparameter Tuning
	Proof of Gradient of Sparse Spectral Layer
	Experiment Details
	Machine Translation
	Natural Language Generation
	Implementation Details for SST
	Hyperparameters of Machine Translation
	Hyperparameters of Natural Language Generation
	Hyperparameters of Hyperbolic Graph Neural Networks

	Singular Value Pruning
	Evaluating SST and GaLore: Complementary Approaches to Memory Efficiency
	Ablation Study
	Memory Consumption and Training Time
	Experiment on Image Classification
	Memory Efficiency Analysis
	Hyperbolic Graph Neural Networks
	Related Work
	Related Work of Other Parameter-Efficient Training Methods

