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ABSTRACT

Large language models (LLMs) have been increasingly employed for (interac-
tive) decision-making, via the development of LLM-based autonomous agents.
Despite their emerging successes, the performance of LLM agents in decision-
making has not been fully investigated through quantitative metrics, especially
in the multi-agent setting when they interact with each other, a typical scenario
in real-world LLM-agent applications. To better understand the limits of LLM
agents in these interactive environments, we propose to study their interactions in
benchmark decision-making settings of online learning and game theory, through
the performance metric of regret. We first empirically study the no-regret behav-
iors of LLMs in canonical non-stochastic online learning problems, as well as the
emergence of equilibria when multiple of them interact through playing repeated
games. We then provide some theoretical insights into the sublinear regret growth
in the cases we observed, under certain assumptions on (supervised) pre-training
and the data generation model. Notably, we also identify (simple) cases where
advanced LLMs such as GPT-4 fail to be no-regret. To further promote the no-
regret behaviors, we propose a novel unsupervised training loss, the regret-loss,
which, in contrast to the supervised pre-training loss, does not require the labels
of (optimal) actions. Finally, we establish the statistical guarantee of generaliza-
tion bound for regret-loss minimization, and more importantly, the optimization
guarantee that minimizing such a loss can lead to known no-regret learning algo-
rithms, when single-layer self-attention models are used. Our further experiments
demonstrate the effectiveness of our regret-loss, especially in addressing the above
“regrettable” cases.

1 INTRODUCTION

Large language models (LLMs) have recently exhibited remarkable emerging capabilities (Bubeck
et al., 2023; Achiam et al., 2023; Wei et al., 2022b; Yao et al., 2023a). As a consequence, a bur-
geoning body of work has been investigating the employment of LLMs as central controllers for (in-
teractive) decision-making, through the construction of LLM-based autonomous agents (Hao et al.,
2023; Shen et al., 2023; Yao et al., 2023b; Shinn et al., 2023; Wang et al., 2023d; Significant Gravi-
tas, 2023). Specifically, the LLM agent interacts with the (physical) world in a dynamic/sequential
way: it uses LLMs as an oracle for reasoning and planning, then acts in the environment based on
the reasoning/planning and the feedback it perceives over time. LLM agent has achieved impressive
successes in embodied AI (Ahn et al., 2022; Huang et al., 2022a; Wang et al., 2023a), natural science
(Wu et al., 2023; Swan et al., 2023), and social science (Park et al., 2022; 2023) applications.
Besides being dynamic, another increasingly captivating feature of LLM-based decision-making is
the involvement of strategic interactions, oftentimes among multiple LLM agents. For example,
it has been reported that the reasoning capability of LLMs can be improved by interacting with
each other through negotiation and/or debate games (Fu et al., 2023; Du et al., 2023); LLM agents
have now been widely used to simulate the strategic behaviors for social and economic studies, to
understand the emerging behaviors in interactive social systems (Aher et al., 2023; Park et al., 2023).
Moreover, LLMs have also exhibited remarkable potential in solving various games (Bakhtin et al.,
2022; Mukobi et al., 2023), and in fact, a rapidly expanding literature has employed repeated games
as a fundamental benchmark to understand the strategic behaviors of LLMs (Brookins & DeBacker,
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2023; Akata et al., 2023; Fan et al., 2023). These exciting empirical successes call for a rigorous
examination and understanding through a theoretical lens of decision-making.
Regret, on the other hand, has been a core metric in (online) decision-making. It measures how
“sorry” the decision-maker is, in retrospect, not to have followed the best prediction in hindsight
(Shalev-Shwartz, 2012). It provides not only a sensible way to evaluate the sophistication level of
online decision-makers, but also a quantitative way to measure their robustness against arbitrary (and
possibly adversarial) environments. More importantly, it inherently offers a connection to modeling
and analyzing strategic behaviors: the long-run interaction of no-regret learners leads to certain
equilibrium when they repeatedly play games (Cesa-Bianchi & Lugosi, 2006). In fact, no-regret
learning has served as a natural model for predicting and explaining human behaviors in strategic
decision-making, with experimental evidence (Erev & Roth, 1998; Nekipelov et al., 2015; Balseiro
& Gur, 2019). It has thus been posited as an important model of “rational behaviors” in playing
games (Blum et al., 2008; Roughgarden, 2015). Hence, it is natural to ask:

Can we examine and better understand the online and strategic decision-making
behaviors of LLMs through the lens of regret?

Acknowledging that LLM(-agents) are extremely complicated to analyze, to gain some insights into
the question, we focus on benchmark decision-making settings: online learning with convex (linear)
loss functions, and playing repeated games. We defer a detailed literature review to Appendix A,
and summarize our contributions as follows.
Contributions. First, we carefully examine the performance of several representative pre-trained
LLMs in the aforementioned benchmark online decision-making settings, in terms of regret. We
observe that LLM agents can achieve regret sublinear in time in (non-stochastic) online learning
settings, where the loss functions change over time either arbitrarily, or by following some pat-
terns with bounded variation, and in playing both representative and randomly generated repeated
games. For the latter, equilibria will emerge as the long-term behavior of the multi-LLM interac-
tions. Second, we provide some theoretical insights into the observed sublinear regret behaviors,
based on certain assumptions on the supervised pre-training procedure, a common practice in train-
ing large models for decision-making, and some hypothetical models for training data generation.
In particular, we make a connection of the pre-trained LLMs to the known no-regret algorithm of
follow-the-perturbed-leader (FTPL) under these assumptions. Third, we also identify (simple) cases
where advanced LLMs such as GPT-4 fail to be no-regret. We thus propose a novel unsupervised
training loss, regret-loss, which, in contrast to the supervised pre-training loss, does not require the
labels of (optimal) actions. We then establish both statistical and optimization guarantees for regret-
loss minimization, which, in particular, show that minimizing such a loss can automatically lead to
the known no-regret learning algorithm of follow-the-regularized leader (FTRL), under single-layer
self-attention parameterization. Our further experiments demonstrate the effectiveness of our new
loss, especially in addressing the above “regrettable” cases. With the fast development of LLMs, we
emphasize that our goal is not to assert whether (current) LLMs are no-regret learners or not, espe-
cially given both the positive and negative observations above. Instead, our hope is to introduce and
inspire more rigorous metrics and principles into the current evaluation and development of LLM
agents, for online and multi-agent strategic decision-making.

2 PRELIMINARIES
Notation. For a finite set S , we use !(S) to denote the simplex over S . We denote R+ := {x →

R | x ↑ 0}. We define 000d and 111d as the d-dimensional all-zero and all-one vector, respectively, and
OOOd→d and Id→d as the d↓d-dimensional zero matrix and identity matrix, respectively. For a positive
integer d, we define [d] = {1, 2, . . . , d}. For p → Rd, R > 0 and C ↔ Rd being a convex set, define
B(p, R, ↗ · ↗) := {x → Rd

| ↗x ↘ p↗ ≃ R} and ProjC,↑·↑(p) = arg min
x↓C

↗x ↘ p↗. For any

x → Rd, define Softmax(x) =
(

e
xi∑

i→[d] exi

)

i↓[d]
. For a vector v → Rn, we use ↗v↗p to denote its

Lp-norm, with ↗v↗ denoting the L2-norm by default. We define (E) = 1 if some event E is true,
and (E) = 0 otherwise. For a random variable X , we use supp(X) to denote its support.
2.1 ONLINE LEARNING & GAMES
Online learning. We consider the online learning setting where an agent interacts with the envi-
ronment for T rounds, by iteratively making decisions based on the feedback she receives. Specif-
ically, at each time step t, the agent chooses her decision policy ωt → ” for some bounded domain
”, and after her commitment to ωt, a bounded loss function ft : ” ⇐ [↘B, B] for some constant
B > 0 is chosen by the environment, potentially in an adversarial fashion. The agent thus incurs a
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loss of ft(ωt), and will update her decision to ωt+1 using the feedback. We focus on the most basic
setting where the agent chooses actions from a finite set A every round, which is also referred to as
the Experts Problem (Cover, 1966; Vovk, 1990; Littlestone & Warmuth, 1994; Hazan, 2016), with-
out loss of much generality (c.f. Appendix B.5 for a detailed discussion). In this case, ” becomes
the simplex over A, i.e., ” = !(A), and ft(ωt) = ⇒εt, ωt⇑ for some loss vector εt → Rd that may
change over time, where d := |A|.
At time step t → [T ], the agent may receive either the full vector εt, or only the realized loss εtat

(we
sometimes also interchangeably write it as εt(at)), the atth element of εt, for some at ⇓ ωt(·), as
feedback, which will be referred to as online learning with full-information feedback, and that with
bandit feedback, respectively. The latter is also referred to as the adversarial/non-stochastic bandit
problem in the multi-armed bandit (MAB) literature. Note that hereafter, we will by default refer
to this setting that does not make any assumptions on the loss sequence (εt)t↓[T ] simply as online
learning. Moreover, if the loss functions change over time (usually with certain bounded variation),
we will refer to it as non-stationary online learning for short, whose bandit-feedback version is also
referred to as the non-stationary bandit problem.
Repeated games. The online learning setting above has an intimate connection to game the-
ory. Consider a normal-form game G = ⇒N, {An}n↓[N ], {rn}n↓[N ]⇑, where N is the number of
players, An and rn : A1 ↓ · · · ↓ AN ⇐ [↘B, B] are the action set and the payoff function
of player n, respectively. The N players repeatedly play the game for T rounds, each player n
maintains a strategy ωn,t → !(An) at time t, and takes action an,t ⇓ ωn,t(·). The joint action
at = (a1,t, · · · , aN,t) determines the payoff of each player at time t, {rn(at)}n↓[N ]. From a single-
player’s (e.g., player n’s) perspective, she encounters an online learning problem with (expected)
loss function εt := ↘Ea↑n,t↔ε↑n,t

[rn(·, a↗n,t)] at time t, where ↘n denotes the index for all the
players other than player n. We will refer to it as the game setting for short, and use the terms of
“agent” and “player” interchangeably hereafter. The key difference between online learning and re-
peated games is in their interaction dynamics: online learning involves an agent facing a potentially
adversarial, changing environment (or sequence of loss functions), while in repeated games, agents
interact by playing the same game repeatedly, which might be less adversarial when they follow
specific learning algorithms.
2.2 PERFORMANCE METRIC: REGRET

We now introduce regret, the core performance metric used in online learning and games. For a given
algorithm A , let ωA ,t denote the decision policy of the agent at time t generated by A . Then, the
regret, which is the difference between the accumulated (expected) loss incurred by implementing
A and that incurred by the best-in-hindsight fixed decision, can be defined as

RegretA
(
(ft)t↓[T ]

)
:=

T∑

t=1

ft(ωA ,t) ↘ inf
ε↓!

T∑

t=1

ft(ω).

In the Experts Problem, the definition is instantiated as RegretA ((εt)t↓[T ]) :=
∑

T

t=1⇒εt, ωA ,t⇑ ↘

infε↓!
∑

T

t=1⇒εt, ω⇑. With bandit-feedback, a common metric may also take further expectation for
RegretA , over the randomness of the policies (ωA ,t)t↓[T ]. An algorithm A is referred to as being
no-regret, if max(ft)t→[T ]

RegretA ((ft)t↓[T ]) ⇓ o(T ), i.e., the worse-case regret grows sublinearly
in T . Known no-regret algorithms include follow-the-regularized-leader (Shalev-Shwartz & Singer,
2007), follow-the-perturbed-leader (Kalai & Vempala, 2005) (see Appendix B.4 for more details).
In non-stationary online learning, one may also use the metric of dynamic regret (Zinkevich, 2003),
where the comparator in the definition also changes over time, as the best decision policy at each
time t: D-RegretA ((ft)t↓[T ]) :=

∑
T

t=1 ft(ωA ,t) ↘
∑

T

t=1 infε↓! ft(ω), which is a stronger notion
than RegretA ((ft)t↓[T ]) in that RegretA ((ft)t↓[T ]) ≃ D-RegretA ((ft)t↓[T ]).

3 DO PRE-TRAINED LLMS HAVE REGRET? EXPERIMENTAL VALIDATION
In this section, we explore the no-regret behaviors of representative LLMs (i.e., mainly GPT-4 Turbo
and GPT-4, together with GPT-3.5 Turbo, Mixtral-8x7b-instruct, and Llama-3-70B-instruct), in the
context of online learning and games. All experiments with LLMs are conducted using the public
OpenAI (Openai, 2023) or LLM Engine (LLM Engine, 2023) Python API. We provide some hy-
pothetical intuitions as to why pre-trained LLM might be no-regret in Appendix C.1, which will be
made concrete next.
Interaction protocol. To enable the sequential interaction with LLMs, we first describe the setup
and objective of our experimental study. At each round, we incorporate the entire history of loss vec-
tors of past interactions into our prompts, as concatenated texts, and ask the LLM agent to determine
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a policy that guides the decision-making for the next round. Note that since we hope to evaluate the
sophistication level of pre-trained LLMs through online learning or games, we only provide simple
prompts that she should utilize the history information, without providing explicit rules of how to
make use of the history information, nor asking her to minimize regret (in any sense). A detailed
description and an ablation study of the prompts are deferred to Appendix C.8, and an illustration of
the protocol for playing repeated games is given in Figure C.1.
3.1 FRAMEWORK FOR SUBLINEAR REGRET BEHAVIOR VALIDATION
Before delving into the results, we note that to the best of our knowledge, we are not aware of
any principled framework for validating sublinear growth of the regret with finite-time experimental
data. Therefore, we propose two frameworks below to rigorously validate the no-regret behaviors
of algorithms over a finite T , which might be of independent interest. More details can be found in
Appendix C.3.
Trend-checking framework. We propose a statistical hypothesis test aligned with our objectives:

H0 : The sequence
(
RegretA

(
(fϑ )ϑ↓[t]

)
/t
)
t↓[T ]

does not exhibit a decreasing pattern

H1 : The sequence
(
RegretA

(
(fϑ )ϑ↓[t]

)
/t
)
t↓[T ]

shows a decreasing pattern.
Ideally, one should check if RegretA

(
(fϑ )ϑ↓[t]

)
/t approaches zero (or a negative value) as t goes

to infinity. With a finite T value, testing these hypotheses provides a method to quantify this –
whether we reject H0 offers a way to measure it. To this end, one needs to count the number
of RegretA

(
(fϑ )ϑ↓[t]

)
/t ↘ RegretA

(
(fϑ )ϑ↓[t+1]

)
/(t + 1) > 0, for which we use Proposition 1

below. We will report the p-value of H0, denoted as ptrend, as the output of this framework.
Proposition 1. (p-value of the null hypothesis). Define the event

E(s, T ) :=

{
The number of

RegretA
(
(fω )ω→[t]

)

t
↗

RegretA
(
(fω )ω→[t+1]

)

t + 1
> 0 for t = 1, . . . , T is at least s ↘

T ↗ 1

2

}
.

Under the assumption that the null hypothesis H0 holds, the probability of this event happening is

bounded as PH0(E(s, T )) ≃
1

2T↑1

∑
T↗1
t=s

(
T ↘ 1

t

)
.

Regression-based framework. We propose an alternative approach by fitting the data with re-
gression. In particular, one can use the data

{(
t, log RegretA

(
(fϑ )ϑ↓[t]

))}
t↓[T ]

to fit a function

g(t) = ϑ0 log t+ϑ1, where the estimate of ϑ0, i.e., ϑ̂0, satisfying ϑ̂0 < 1 may be used to indicate the
no-regret behavior, i.e., the sublinear growth of RegretA

(
(fϑ )ϑ↓[t]

)
over time. While being simple,

it cannot be directly used when RegretA
(
(fϑ )ϑ↓[t]

)
< 0. Hence, we set log RegretA

(
(fϑ )ϑ↓[t]

)
as

↘10 if this happens. We define preg as the p-value of the regression parameter ϑ̂0, and will report
the pair of (ϑ̂0, preg) as the output of this framework.
3.2 RESULTS: ONLINE LEARNING
We now present the experimental results of pre-trained LLMs in online learning in: 1) (arbitrar-
ily) changing environments, 2) non-stationary environments, and 3) bandit-feedback environments.
Results for 2) and 3) are deferred to Appendices C.4 and C.5.
Changing environments. We first consider the setting with (arbitrarily) changing environments,
which are instantiated as follows: 1) Randomly-generated loss sequences. At every timestep,
we generate a random loss vector εt ⇓ Unif(↓d

i=1[min{xi, yi}, max{xi, yi}]) for {xi, yi ⇓

Unif(0, 10)}i↓[d] or εt ⇓ N (µµµd, I) with clipping to [0, 10] to ensure boundedness of the loss, where
µµµd ⇓ Unif([0, 10]d). Note that we use this as a way to systematically generate potentially arbitrary
loss sequences, and also note that our regret was defined for each realization of the random loss vec-
tors (instead of their expectations as in the definition of regret in stochastic bandit problems), which
can be arbitrarily different across timesteps. 2) Loss sequences with certain trends. Although many
real-world environments may change, they often change by following certain patterns. Therefore,
we consider two representative trends, the linear trend and the periodic (sinusoid) trend. We sample
a, b ⇓ Unif([0, 10]d) and let εt = (b ↘ a) t

T
+ a for the linear trend and εt = 5(1 + sin(at + b))

for the periodic trend. In the experiments, we choose d = 2. The average regret (over multiple
randomly generated instances) performance is presented in Figure 3.11, where we compare GPT-4
with well-known no-regret algorithms, FTRL with entropy regularization and FTPL with Gaussian
perturbations (with tuned parameters). It is seen that these pre-trained LLMs can achieve sublinear
regret in a large portion of the instances, and have sometimes even lower regret values than baselines.

1We emphasize that the error bars in the figures are not associated with the randomness/variance of the
algorithms/LLM-agents, but with the randomness/variance of the generation of environment instances.
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Figure 3.1: Regret of pre-trained LLMs for online learning with full-information feedback. Notably,
both commercial and open-source LLMs can achieve sublinear regret as validated by our frameworks
and the comparison with FTRL/FTPL, though the performances of weaker models of GPT-3.5 and
open-source ones are worse. Interestingly, the GPT-4 model can even outperform well-known no-
regret learning algorithms, FTRL and FTPL.
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Figure 3.2: Regret of pre-trained LLMs for online learning with full-information feedback, with
longer horizons of T = 100 and T = 200. In most cases, the LLMs can achieve sublinear regret as
validated by our frameworks and the comparison with FTRL/FTPL, though the performances of the
weaker model of GPT-3.5 is worse.

Behavioral patterns of LLMs. To understand how LLMs make decisions at each time step, we
provided example outputs of LLMs reasoning how they generate their policies in Appendix C.10.
We find that LLMs tend to use the history of the reward vectors by looking at their sum/average, and
tend to introduce randomization in decision-making. These are known to be the keys to achieving
no-regret behaviors in online learning (Hazan, 2016; Cesa-Bianchi & Lugosi, 2006).
Longer-horizon results. We also test the robustness and scalability of our empirical findings in
more challenging environments. We extend the problem horizon to T = 100 for the two settings
where loss vectors are generated in a stationary way (i.e., Uniform and Gaussian), and T = 200
for the other two non-stationary settings (i.e., Linear-trend and Sine-trend). Note that since in each
round, we need to feed all the previous history to the LLMs, the API costs in fact scale quadratically
with respect to the horizon T . Therefore, we replace GPT-4 by its cheaper (and more recent) version
of GPT-4o. To further scale to even longer-horizon cases with T = 500, we summarize the history
to reduce the prompt length by providing LLMs with the summation of the history loss associated
with each action. Similar summary-based input was also used in the concurrent work Krishnamurthy
et al. (2024), where both the averaged reward and the action selection count of each action were
summarized for the (i.i.d.) stochastic bandit setting. The corresponding results are provided in Fig-
ure 3.2 and Table 1, where the LLMs can exhibit no-regret behaviors as validated by our frameworks
and the comparison with FTRL/FTPL.

(ptrend, ϑ̂o, preg) GPT-4o FTRL FTPL

Uniform (0.0, 0.85, 0.0) (0.0, 0.6, 0.0) (0.0, 0.52, 0.0)
Gaussian (0.0, 0.86, 0.0) (0.0, 0.64, 0.0) (0.0, 0.68, 0.0)
Linear-trend (0.02, 0.83, 0.5) (0.02, 0.76, 0.1) (0.01, 0.79, 0.0)
Sine-trend (0.09, 0.28, 0.0) (0.01, 0.24, 0.0) (0.01, 0.26, 0.0)

Table 1: Longer-horizon (T = 500). GPT-4o model can still exhibit sublinear regret behaviors as
validated by our frameworks and the comparison with FTRL/FTPL.
3.3 RESULTS: MULTI-PLAYER REPEATED GAMES
We now consider the setting when multiple LLMs make online decisions in a shared environment
repeatedly. Specifically, at each round, the loss vectors each agent receives are determined by both
her payoff matrix and the strategies of all other agents. Note that the payoff matrix is not directly
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Figure 3.3: Regret of pre-trained LLMs for repeated games of different sizes, n most cases, both
commercial and open-source LLMs can achieve sublinear regret as validated by our frameworks
and the comparison with FTRL/FTPL. We report the regret of one agent for ease of presentation.
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Figure 3.4: (left) Regret of GPT-4 (Turbo) under the canonical counterexample for FTL (Hazan,
2016, Chapter 5). (mid, right) Failure of GPT-4 (Turbo) on two scenarios with regrettable behaviors,
while Transformers trained by our new regret-loss (N = 1) in Section 5 can achieve sublinear regret.

revealed to the LLM agent, but she has to make decisions in a completely online fashion based on
the payoff vector marginalized by the opponents’ strategies (see Figure C.1 for an example of the
prompt). This is a typical scenario in learning in (repeated) games (Cesa-Bianchi & Lugosi, 2006).
Representative games. We first test LLMs on 6 representative general-sum games (win-win, pris-
oner’s dilemma, unfair, cyclic, biased, and second best) studied in Robinson & Goforth (2005) (c.f.
Appendix B.6). For each type of the game, we conduct 20 repeated experiments.
Randomly generated games. To further validate the no-regret behaviors of LLMs, we also test
on 50 randomly generated three-player general-sum games, and 50 randomly generated four-player
general-sum games, where each entry of the payoff matrix is sampled randomly from Unif([0, 10]).
These are larger and more challenging settings than the structured and representative ones above.
We summarize the experimental results in Figure 3.3, which are similar to the above in the online set-
ting: for all types of games, pre-trained LLMs can achieve sublinear regret, which is often lower than
that obtained by FTRL/FTPL for most games. We provide six instances of three-player general-sum
games and six instances of four-player general-sum games in Figure C.4 and Figure C.5, respec-
tively. Occasionally, GPT-4 even provides a negative regret value.

3.4 PRE-TRAINED LLM AGENTS CAN STILL HAVE REGRET

The experiments above may suggest the no-regret behaviors of LLMs in online learning and game
playing. However, is this capability universal? We show that the no-regret property can break for
LLM agents if the loss vectors are generated in a more adversarial way.
Canonical counterexamples for follow-the-leader. First, we consider two well-known examples
that the follow-the-leader (FTL) algorithm (Shalev-Shwartz, 2012) suffers from linear regret.

Example 1: ε1(1) = 5, ε1(2) = 0 and εt(2 ↘ t%2) = 10, εt(1 + t%2) = 0 for t ↑ 2 (Hazan, 2016).

Example 2: εt(2 ↘ t%2) = 10, εt(1 + t%2) = 0 for 1 ≃ t ≃ c and εt(1) = 10, εt(2) = 0 for
c + 1 ≃ t ≃ T (= 500), for some integer c satisfying 0 < c < T (Feder et al., 1992).

Here, % denotes the modulo operation. Interestingly, for Example 1, GPT-4 agent can easily iden-
tify the pattern for the loss sequence that the optimal action alternates, thus accurately predicting
the loss it will receive and achieving low regret in Figure 3.4. For Example 2, the GPT-4 agent
with raw history input also provides an impressively lower (negative) regret than FTRL and FTPL
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(Figure C.6). The GPT-4 agent with summarized history input, in contrast, suffers from much larger
regret than FTRL and FTPL. We defer the detailed comparison between using raw history and sum-
marized history to Figure C.6, and an explanation of LLMs’ behaviors via predicting the trend of
the loss instances to Appendix C.7. In summary, the GPT-4 agent may predict such worst-case se-
quences well, and does not fail in the same way as FTL, which is known to suffer from a lack of
randomness in decisions.
Additionally, the results on Example 2 also imply that summary-based history input can perform
worse than the raw-history-based one in the adversarial setting we consider, while the former was
claimed to be the key in succeeding in the i.i.d. stochastic bandit setting (Krishnamurthy et al., 2024).
The regret values with these two types of input differ significantly, with a p-value of 1.2 ↓ 10↗157

under a one-sided independent t-test. These results further illustrate the fundamental differences
between the settings considered in Krishnamurthy et al. (2024) and ours.
Noisy alternating loss sequence. Inspired by the above, we design a new loss sequence that
is similar but less predictable, by adding some noise to the canonical counterexample. Specifi-
cally, we construct the following (simple) loss sequence with 2 actions such that εt(1 + t%2) =
min(25/t, 10), εt(2 ↘ t%2) ⇓ Unif([9, 10]) for t → [25].
Adaptive loss sequence. We also develop a simpler but more adaptive loss sequence that takes
the full power of the adversary in our online learning setup. After the GPT-4 agent provides ωt, we
choose εt with εt(arg max

i
ωti) = 10 and εt(3 ↘ arg max

i
ωti) = 0.

We also report the average regret over 20 repeated experiments for the later two settings using
GPT-4 and more advanced GPT-4 Turbo in Figure 3.4, where we cannot reject the hypothesis that
GPT-4 (Turbo) has linear regret by either our trend-checking or regression-based framework. These
observations have thus motivated us to design new approaches to further promote the no-regret
behaviors of the models, with additional training, as to be detailed in Section 5. Before it, we first
provide some theoretical insights into the observed sublinear regret behaviors.

4 WHY DO PRE-TRAINED LLMS (NOT) HAVE REGRET? A HYPOTHETICAL
MODEL AND SOME THEORETICAL INSIGHTS

We now provide some plausible explanations about the observed no-regret behaviors of pre-trained
LLMs, which are highly hypothetical by nature, since to the best of our knowledge, the details
of pre-training these popular LLMs (e.g., GPT-3.5 Turbo and GPT-4), regarding data distribution,
training algorithm, etc., have not been revealed. We instead make the explanations based on some
existing assumptions in the literature for modeling human behaviors, and the recent literature on
understanding LLMs and Transformers.

4.1 A (HUMAN) DECISION-MAKING MODEL: QUANTAL RESPONSE

A seminal model for human decision-making behaviors is the quantal response model, which as-
sumes that humans are often imperfect decision-makers, and their bounded rationality can be mod-
eled through unseen latent variables that influence the decision-making process (McFadden, 1976;
McKelvey & Palfrey, 1995), for which we defer the formal definition and introduction to Ap-
pendix D.2. In online decision-making, given the history information with multiple loss vectors,
we adopt the following generalization of the quantal response model.
Definition 4.1 (Quantal response against multiple losses). Given a set of losses (εi)i↓[t], a noise
distribution ϖ ⇓ Pnoise, and ϱt > 0, the generalized quantal response against (εi)i↓[t] is defined as

P
εt
quantal

(
a
∣∣ (ωi)i→[t]

)
:= P

εt
quantal

(
a

∣∣∣∣
t∑

i=1

ωi

)
= P

(
a → argmin

a↓→A
z(a↑)

)
, where z = εtϑ+

t∑

i=1

ωi.

In simpler terms, the generalized quantal response is defined as the standard quantal response against
the summation of the losses. Such a model has been investigated in the learning-in-games and be-
havioral economics literature (see Appendix D.2 for more details). Such a definition is also aligned
with our empirical findings on LLMs’ behavioral patterns in Section 3.2: i) evaluating the summa-
tion/average; ii) introducing randomization in decision-making. To gain more insights into these
empirical findings, we next analyze a case where pre-training under certain assumptions provably
leads to the quantal response behaviors and further yields no-regret guarantees.

4.2 CASE STUDY: PRE-TRAINING UNDER CANONICAL DATA DISTRIBUTION

Pre-training of LLMs is predominantly based on next-token prediction. When applying LLMs
to sequential decision-making, the model receives the context of the decision-making task as
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(x1, x2, · · · , xN ) and then generates (xN+1, · · · , xM ) encoding the action for some N, M → N+

and N < M , where each xi → V represents one natural language token for i → [M ], and V

is the finite token set. This process can be conceptualized as predicting the optimal action in the
form of the next token prediction (Yao et al., 2023b; Shinn et al., 2023; Liu et al., 2023a;e). Note
that this training procedure may also appear in the form of supervised fine-tuning (SFT) for down-
stream tasks of decision-making or question-answering, where optimal action labels may be easier
to obtain (Cobbe et al., 2021; Li et al., 2022; Lewkowycz et al., 2022). Meanwhile, large models
are often (pre-)trained under several fixed/stationary environments (Laskin et al., 2023; Lin et al.,
2024; Lee et al., 2023; Reed et al., 2022), which may limit their ability to handle arbitrary/non-
stationary/adversarial loss sequences in online learning. Thus, it is natural to ask: Is it possible to
have no-regret behaviors emerging as a consequence of this (optimal) action prediction, under only
a fixed pre-training distribution of the environments?
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Figure 4.1: Comparison of GPT-
4 with the generalized QR model,
where the model can very well
capture the behavior of the GPT-4
agent for examples in Section 3.2.

Here we analyze a standard pre-training objective on a token
sequence distribution x1:Nt+1 ⇓ P text

t
for given t → [T ],

which is the expected log-likelihood maximization for next-
token prediction over #, the parameter space of the LLM:

max
ϑ→!

Ex1:Nt+1
↓P text

t

Nt+1∑

j=1

log LLMϑ (xj |x1:j↔1) , (4.1)

where we define LLMϖ (x1 | x1:0) = LLMϖ (x1).

For the pre-training distribution, we model it as follows: there
exists a latent variable z, representing the loss for the underly-
ing static decision-making problem. The pre-training dataset,
however, only contains partial observations x1:Nt

(a natural
language representation of ε1:t) of z due to imperfect data col-
lection, which could be attributed to the fact that z is private to
the data-generator (human), representing the actual intention
of the human/data-generator. Hence, LLM will only be pre-
trained with partial and noisy information about z. Meanwhile, we assume that some high-quality
action label xNt+1:Nt+1 (a natural language representation of a) with respect to the underlying loss
vector z is also available in the dataset, which could come from user surveys, personal blogs, or data
annotation. We formalize such an assumption:
Assumption 1 (Pre-training distribution). Given T → N+, t → [T ], Nt+1 →

N+, there are latent variables (z, ε1:t), N1, · · · , Nt → [Nt+1], N0 = 0, such
that P(z, ε1:t, x1:Nt+1) = P(z, ε1:t)P(x1:Nt

| ε1:t)P(xNt+1:Nt+1 | z), and P text

t
(x1:Nt+1) :=

P(x1:Nt+1) =
∫

z

∫
ϱ1:t

P(z, ε1:t, x1:Nt+1)dε1:tdz. Intuitively, tokens {xNi↑1+1:Ni
}i↓[t] encode the

context, i.e., information for ε1:t, and the user will decode action a from xNt+1:Nt+1 .
To further understand our assumption, we provide an example in Appendix D.3, showing how a
natural text corpus may satisfy it. Similar assumptions that suppose the existence of such latent
variables in generating the pre-training datasets have also been made recently in Lee et al. (2023);
Lin et al. (2024); Liu et al. (2023e), for understanding the in-context decision-making behaviors
of LLMs/Transformers through posterior sampling, for which we defer a detailed comparison to
Appendix D.8. In particular, we show in Theorem 4.1 that if the noise, i.e., εi ↘ z is modeled
as Gaussian distributions and xNt+1:Nt+1 encodes the optimal action for z, the pre-trained LLM
provably recovers the prominent human behavior model in Section 4.1, the quantal response model.
Theorem 4.1 (Informal: Emergence of no-regret behavior). Suppose Assumption 1 holds with both
the prior distribution of z and the conditional distribution of {εi | z}i↓[t] being Gaussian, and
xNt+1:Nt+1 encodes the optimal action for z. Then, with the function class of LLMϖ being expressive
enough, and ςω being a maximizer of Equation (4.1), the behavior of LLMϖε follows Definition 4.1.
Furthermore, the use of LLMϖε can achieve no (dynamic) regret for (non-stationary) online learning
with full-information/bandit feedback for arbitrary loss vectors (with bounded variation).

The formal statement and proof are deferred to Appendix D.6. The results show that even when
pre-training is conducted solely with loss vectors generated from stationary distributions (ε1:t are
i.i.d. conditioned on z), it can still enable the emergence of no-regret behaviors in online learning
against potentially adversarial losses. Key in the proof is the connection of pre-trained LLM models
to the online learning algorithm of FTPL. Furthermore, Assumption 1 can be relaxed to better match
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the actual LLMs’ pre-training data distributions from diverse sources (c.f. Appendix D.7), and the
prior distribution of z could also be replaced by a general distribution (c.f. Theorem D.2). Finally,
we point out its implications for playing games in Appendix D.6.1.

How well can our hypothetical model class predict actual LLMs’ behaviors? To further verify
our theoretically-justified model in Theorem 4.1, we propose to estimate the parameters of {ϱt}

T↗1
t=0

in Definition 4.1 using the interaction data with actual LLMs, and use the estimated model to predict
LLMs’ behaviors on some test set. In Figure 4.1, we show the averaged regret for the LLMs and
our estimated model, where the generalized quantal response can very well capture the behavior
of the LLM agent for all problem instances in Section 3.2, on which the LLMs oftentimes achieve
sublinear regret, justifying the applicability of our hypothetical model and assumptions.

Finally, we acknowledge that for existing pre-trained LLMs like GPT-4, the canonical assumptions
above, though may be further relaxed (c.f. Remark D.3), may not hold in general. More importantly,
the supervision labels, i.e., the optimal action given z, may be sometimes imperfect or unavailable
in the dataset. These caveats motivate the study in our next section.

5 PROVABLY PROMOTING NO-REGRET BEHAVIOR BY A NEW LOSS

In light of the observations in Section 3, we ask the question:
Is there a way to enhance the no-regret property of the models without (optimal) action labels?

To address this question, we propose to train models with a new unsupervised learning loss that
naturally provides no-regret behaviors. We will particularly focus on the Transformer architecture
(Vaswani et al., 2017) under this new loss, a common architecture used in most existing LLMs.

5.1 A NEW UNSUPERVISED TRAINING LOSS: Regret-Loss
Intuitively, our new training loss is designed to enforce the trained models to minimize regret under
an arbitrary sequence of loss vectors. Specifically, we define the training loss as

L(ς) := max
ϱ1,...,ϱT

RegretLLMϑ

(
(εt)t↓[T ]

)
(5.1)

where ↗εt↗≃ ≃ B for t → [T ]. As discussed in Kirschner et al. (2023), directly minimizing the
max regret can be computationally challenging, except for superficially simple problems. More-
over, Equation (5.1) is not necessarily differentiable with respect to the parameter ς, if it does not
satisfy the condition of Danskin’s Theorem (Danskin, 1966); or even if it is differentiable (i.e., the
maximizer of (εt)t↓[T ] is unique), computation of derivatives can be challenging since we need
to calculate arg max(ϱt)t→[T ]

RegretLLMϑ
((εt)t↓[T ]) while there is an inf in the definition of regret.

Therefore, we provide a general class of surrogate losses to approximate Equation (5.1):

L(ς, k, N) := E
[∑

j↓[N ] h(RegretLLMϑ
((ε(j)

t
)t↓[T ]))f(RegretLLMϑ

((ε(j)
t

)t↓[T ]), k)
∑

j↓[N ] f(RegretLLMϑ
((ε(j)

t
)t↓[T ]), k)

]
, (5.2)

where k → N+, N → N+, h : R ⇐ R+ is a continuous function, with continuous derivative
h⇐, and f(·, k) : R ⇐ R+ is a continuous function for each k → N+, satisfying limk⇒≃

f(R1,k)
f(R2,k) =

⇔· (R1 > R2)+ (R1 = R2), where we use the convention of ⇔·0 = 0. These conditions on h, f
will be assumed throughout the paper. Examples of such an f include f(x, k) = xk and exp(kx).
We will sample N trajectories of loss sequences (ε(j)

t
)t↓[T ],j↓[N ] from some continuous probability

distribution supported on [↘B, B]T→N (without other additional statistical assumptions), and the
expectation in Equation (5.2) is thus taken with respect to this distribution. In Appendix E.2, we
prove that under certain regularity conditions of f and h, we have

lim
N,k⇒≃

L(ς, k, N) = h

(
max

ϱ1,...,ϱT

RegretLLMϑ
((εt)t↓[T ])

)
,

and the uniform convergence of L(ς, k, N): lim
N,k⇒≃

sup
ϖ↓”

∣∣∣h
(

max
ϱ1,...,ϱT

RegretLLMϑ
((εt)t↓[T ])

)
↘

L(ς, k, N)
∣∣∣ = 0, where # is a compact set of the model parameters. Hence, one can expect that

minimizing the loss function in Equation (5.2) with large enough k and N may promote the trained
models to have a small regret value. We will hereafter refer to Equation (5.2) as the regret-loss.
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5.2 GENERALIZATION AND REGRET GUARANTEES OF REGRET-LOSS MINIMIZATION

We first establish a statistical guarantee under general parameterizations of LLMϖ that are Lipschitz
with respect to ς, including the Transformer-based models as used in GPT-4 and most existing LLMs
(see Proposition 2 for an example with a formal statement). This guarantee focuses on their gener-
alization ability when trained to minimize the empirical regret loss (c.f. Equation (E.3)), denoted
as L̂(ς, k, N, NT ), by replacing the expectation E in Equation (5.2) with the empirical mean using
NT samples. We denote ς̂k,N,NT

→ arg min
ϖ↓” L̂(ς, k, N, NT ), and present the generalization

guarantee in Theorem E.1. Thanks to the uniform convergence of L(ς, k, N) (c.f. Appendix E.2),
we further obtain the following theorem on the regret guarantee of LLM

ϖ̂k,N,NT

:

Theorem 5.1. (Regret). Suppose2 for any k → N+, h, f(·, k) are non-decreasing, and log f is a
supermodular function (i.e., log f(R1, k1) ↘ log f(R1, k2) ↑ log f(R2, k1) ↘ log f(R2, k2) for
R1 ↑ R2 and k1 ↑ k2). Then, with high probability, we have

h

(
lim

N↔↗
lim

k↔↗
max

↘ϖt↘↗≃B

RegretLLM
ϑ̂
k,N,NT

(
(ϱt)t→[T ]

)
)

⇑ h

(
inf
ϑ→!

max
↘ϖt↘↗≃B

RegretLLM
ϑ

(
(ϱt)t→[T ]

))
+ Õ




√

dϑ

NT



 .

We defer the proof of the theorem to Appendix E.4. Therefore, if additionally, the model parameteri-
zation (e.g., Transformers) can realize a no-regret algorithm (as to be shown next), then Theorem 5.1
means that with a large enough NT , the learned LLM

ϖ̂k,N,NT

becomes a no-regret learner, i.e.,
RegretLLM

ϑ̂
k,N,NT

(
(εt)t↓[T ]

)
= o(T ). Finally, as a consequence, it is folklore that when multiple

such LLMs interact, a coarse correlated equilibrium will emerge in the long-term (c.f. Corollary 1).

5.3 REGRET-LOSS TRAINED TRANSFORMERS CAN BE ONLINE LEARNING ALGORITHMS

Despite the generality of the previous results, one cannot use an infinitely large N and k in prac-
tice. Hence, we now provide results when N is finite, for the architecture of Transformer models
(Vaswani et al., 2017). We focus on single-layer (linear) self-attention models, as in most recent
theoretical studies of Transformers (Ahn et al., 2023; Zhang et al., 2023a; Mahankali et al., 2023),
and N = 1. Note that in this case, the choice of f (and thus k) is not relevant. Thus, throughout this
subsection, we drop superscript (j) in Equation (5.2). We sample εt for t → [T ] as realizations of
some random variable Z, where we assume that Z is symmetric about zero, and Var(Z) = $ ↖ 0.
We consider the single-layer linear self-attention model as follows, for which we can show that the
global optimizer of our regret-loss can automatically lead to a no-regret learning algorithm:

g(Zt; V, K, Q, vc, kc, qc) =
t∑

i=1

(V εi + vc) ((Kεi + kc)
↭

· (Qc + qc)) . (5.3)

Theorem 5.2. Consider the policy space ” = B(0, R!, ↗ · ↗) for some R! > 0. The configu-
ration of a single-layer linear self-attention model in Equation (5.3) (V, K, Q, vc, kc, qc) such that
K↭(Qc + qc) = vc = 000d and V = ↘2R!$↗1E

(
↗
∑

T

t=1 εt↗ε1ε
↭
2

)
$↗1 is a global optimal solu-

tion of Equation (5.2) with N = 1, h(x) = x2. Moreover, every global optimal configuration of
Equation (5.2) within the parameterization class of Equation (5.3) has the same output function g.
Additionally, if $ is a diagonal matrix, then plugging any global optimal configuration into Equa-
tion (5.3), and projecting the output with Proj!,↑·↑ is equivalent to FTRL with an L2-regularizer.
Theorem 5.2 not only shows the capacity of self-attention models: it can realize online learning
algorithms, but also shows, more importantly, that minimizing our new regret-loss may automati-
cally produce it. In particular, one does not need to hard-code the parameters of the Transformer to
implement no-regret algorithms. Under single-layer self-attention parameterization (with softmax),
we can also show that a stationary point of the loss function (Equation (5.2)) can lead to FTRL (c.f.
Appendix E.5). Some potential generalizations of the results are also discussed in Appendix E.9.

5.4 EXPERIMENTAL RESULTS FOR REGRET-LOSS TRAINED TRANSFORMERS

We now provide experimental results for minimizing our regret-loss with the Transformer models,
and evaluate in the following environments: 1) randomly-generated loss sequences (Figure E.3); 2)
loss sequences with certain trends (Figure E.4); 3) repeated games (Figure E.5); and 4) counterex-
amples for pre-trained LLMs to be regrettable (Figure 3.4). Training setup can be found in Ap-
pendix E.11.1. We also provide an ablation study for optimizing Equation (5.2) in Appendix E.12.

Finally, we provide discussions on the limitations and future directions in Appendix F.
2Note that these conditions on h, f are in addition to those specified after Equation (5.2).
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