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ABSTRACT

The rapid development of Multimodal Large Language Models (MLLMs) has
expanded their capabilities from image comprehension to video understanding.
However, most of these MLLMs focus primarily on offline video comprehension,
necessitating extensive processing of all video frames before any queries can be
made. This presents a significant gap compared to the human ability to watch,
listen, think, and respond to streaming inputs in real time, highlighting the lim-
itations of current MLLMs. In this paper, we introduce StreamingBench, the
first comprehensive benchmark designed to evaluate the streaming video under-
standing capabilities of MLLMs. StreamingBench assesses three core aspects of
streaming video understanding: (1) real-time visual understanding, (2) omni-
source understanding, and (3) contextual understanding. The benchmark con-
sists of 18 tasks, featuring 900 videos and 4,300 human-curated QA pairs. Each
video features five questions presented at different time points to simulate a con-
tinuous streaming scenario. We conduct experiments on StreamingBench with
13 open-source and proprietary MLLMs and find that even the most advanced
proprietary MLLMs like Gemini 1.5 Pro and GPT-4o perform significantly be-
low human-level streaming video understanding capabilities. We hope our work
can facilitate further advancements for MLLMs, empowering them to approach
human-level video comprehension and interaction in more realistic scenarios.

1 INTRODUCTION

The rapid evolution of Multimodal Large Language Models (MLLMs) has significantly reshaped the
field of Artificial Intelligence (Yang et al., 2023; Reid et al., 2024; Liu et al., 2024c;a). Current ad-
vanced MLLMs (Reid et al., 2024; Wang et al., 2024a; Yao et al., 2024) have already demonstrated
exceptional performance in video understanding tasks, excelling on existing video benchmarks (Fu
et al., 2024; Wang et al., 2024b; Zhou et al., 2024; Ataallah et al., 2024). Moreover, several pioneer-
ing studies (Chen et al., 2024a; Zhang et al., 2024a; Wu et al., 2024) have focused on improving the
ability of MLLMs to comprehend real-time online video streams, pushing the boundaries of their
applicability and efficiency in dynamic environments. In the industry, streaming video understand-
ing has also attracted significant attention, with OpenAI’s GPT-4o (OpenAI, 2024) as a prominent
example that demonstrates human-like perception and understanding of streaming inputs.

Despite the recognition of the importance of streaming video understanding for MLLMs, most ex-
isting video understanding benchmarks (Fu et al., 2024; Wang et al., 2024b; Zhou et al., 2024) are
primarily designed for offline evaluation. In such setups, all video frames are pre-loaded into the
MLLMs before any queries are made, assuming the model has complete access to the entire video
content. In contrast, streaming video understanding tasks differ in three key aspects: (1) queries can
arise at any point during the video stream, rather than just at the end; (2) synchronized visual and
audio inputs must be considered as in real-world streaming scenarios; (3) the influence of context
must be taken into account, such as redundant information in long video streams and the history of
streaming interactions. These differences in design principles between offline and streaming tasks
make it quite challenging to adapt offline benchmarks for streaming evaluation.
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Figure 1: Illustrative comparison between StreamingBench and previous offline video benchmarks.
In offline video benchmarks, questions are designed based on the entire video being visible. In
contrast, StreamingBench presents questions at specific moments, with three main task categories
specifically designed to evaluate fundamental capabilities in streaming video understanding.

To the best of our knowledge, the only current benchmark related to streaming video understanding
is VStream-QA (Zhang et al., 2024a). The main attribute of VStream-QA is that each question-
answer pair is assigned a timestamp indicating its position in the video and is only related to the
content preceding that point. However, VStream-QA includes only 32 videos from Ego4d (Grau-
man et al., 2022) and MovieNet (Huang et al., 2020), with a limited variety of video types and a
narrow range of scenarios. In addition, it only covers five types of tasks, focuses solely on the visual
modality, and the questions for each video are independent of each other. These limitations pre-
vent VStream-QA from fully assessing streaming video understanding abilities for MLLMs when
confronted with complex, multimodal streaming inputs in real-world scenarios.

To address the limitations of existing video benchmarks, we introduce StreamingBench, the first
comprehensive benchmark for assessing the streaming video understanding capabilities of MLLMs.
StreamingBench consists of 900 videos and 4,300 questions, spanning eight diverse video categories
that reflect a wide range of real-world scenarios. Each video features five questions that are manually
curated to ensure a high level of relevance to the streaming video scenarios. These questions are
categorized into 18 tasks, and based on the characteristics of streaming video tasks, they can be
grouped into three main categories as illustrated in Figure 1:

• Real-Time Visual Understanding, which focuses on the ability of MLLMs to comprehend
visual content in real-time, recognizing and interpreting objects, actions, and changes as
they happen within the video stream. For example, in Figure 1, the answer to the question
“What words are currently shown?” may vary depending on the specific moment in time
the question is asked, highlighting the dynamic nature of streaming video tasks.

• Omni-Source Understanding, which refers to the ability integrate visual and audio infor-
mation in real-time video streams. MLLMs must handle both sources simultaneously to
provide a comprehensive understanding of the scene and answer questions that depend on
their synchronization, such as “What is happening in the video when [sound] is made?”.

• Contextual Understanding, which evaluates the capability of MLLMs to comprehend the
broader context within a video stream, including detecting anomalies, filtering misleading
information, maintaining continuity across sequential interactions, and responding proac-
tively based on predefined conditions. For instance, as shown in the last query of Figure 1,
a follow-up question is asked based on the content of the previous query interaction, with
a reference to“the event referred to in the previous query”.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison between StreamingBench and other video benchmarks. Timestamp denotes
whether to assign timestamps to questions. Temporal Clues denote whether the questions are related
to different temporal clues within videos (Section 4.4)). SQA and PO denote sequential question
answering and proactive output, respectively (Section 3.1.3).

Benchmark #Videos #QA Pairs Timestamp
Temporal Clues Modality Streaming Interaction Annotation

Prior Concurrent Subsequent Vision Audio SQA PO Auto Manual

Offline
(Short)

MSRVTT-QA (Xu et al., 2017) 2,990 72,821 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

TGIF-QA (Jang et al., 2017) 9,575 8,506 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓

MV-Bench (Li et al., 2024b) 3,641 4,000 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

How2QA (Li et al., 2020) 1,166 2,852 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

ActivityNet-QA (Yu et al., 2019) 800 8,000 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Offline
(Long)

InfiniBench (Ataallah et al., 2024) 1219 108,200 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓

MLVU (Zhou et al., 2024) 1,334 2,593 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓

LVBench (Wang et al., 2024b) 500 1,549 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Video-MME (Fu et al., 2024) 900 2,700 ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Online
VStream-QA (Zhang et al., 2024a) 32 3,500 ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

StreamingBench(Ours) 900 4,300 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We conduct experiments on StreamingBench with state-of-the-art MLLMs, including three propri-
etary models GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (Reid et al., 2024) and Claude 3.5 Son-
net (Anthropic, 2024), and 10 advanced open-source MLLMs like LLaVA-OneVision (Li et al.,
2024a), Qwen2-VL (Wang et al., 2024a) and MiniCPM-V 2.6 (Yao et al., 2024). Since these models
currently cannot accept streaming video input1, we convert each streaming task into an offline one
for evaluation. For each question, the model processes the video segment from the start to the point
when the question is asked, treating it as the complete input, and provides a response based on that
segment. The results show that even the best-performing model, Gemini 1.5 Pro, achieves only an
average accuracy of 67.36%, which is 24.30% lower than human performance. This indicates that
there is a significant gap between MLLMs and human performance in understanding video streams.

To further investigate this gap, we conduct a series of analytical experiments, revealing that current
models perform poorly in terms of real-time processing. This may be attributed to the fact that
most existing MLLMs are primarily trained on offline videos. Additionally, we find that these
models generally lack the ability to understand and interact with streaming contexts. Specifically,
redundant information in the context of streaming videos significantly affects model performance,
and current models struggle with proactive output in streaming scenarios and fail to effectively
respond to continuous queries. We hope these findings will provide valuable insights for improving
future MLLMs and contribute to the development of the next generation of multimodal systems.

2 RELATED WORK

Video MLLMs. Recently, the development of advanced MLLMs has shifted from single image
understanding to video comprehension (Reid et al., 2024; Wang et al., 2024a; Yao et al., 2024; Lin
et al., 2023; Chen et al., 2024b; Li et al., 2024a). These video MLLMs typically work by converting
entire videos into visual tokens that can be processed by LLMs, through sampling and encoding
video frames. However, these models are limited to offline video understanding rather than real-
time, real-world streaming video comprehension. In contrast, GPT-4o (OpenAI, 2024) explores the
potential for human-like perception and understanding of streaming inputs. There are also several
streaming video MLLMs in the academic field, including VideoLLM-online (Chen et al., 2024a),
Flash-VStream (Zhang et al., 2024a), and VideoLLM-MoD (Wu et al., 2024). With the growing
interest in research on streaming video MLLMs, there is an increasing urgency to comprehensively
evaluate their streaming video understanding capabilities.

Video Understanding Benchmarks. The development of video understanding benchmarks has
progressed in tandem with advancements in MLLMs. Most current benchmarks are primarily fo-
cused on evaluating capabilities of either comprehensive video understanding (Li et al., 2024b; Fu
et al., 2024) or long-form video understanding (Wang et al., 2024b; Zhou et al., 2024). To our knowl-
edge, there is currently only one benchmark, VStream-QA (Zhang et al., 2024a), that is related to
streaming video understanding, where each question is assigned a timestamp to simulate a real-time

1The GPT-4o API currently does not support video inputs.
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query. However, VStream-QA has limitations in terms of the video types and task designs it encom-
passes, making it not suitable for a thorough evaluation of streaming video understanding abilities.
In this paper, we introduce StreamingBench, a comprehensive streaming understanding benchmark.
A comparison between StreamingBench and other video benchmarks is provided in Table 1.

3 STREAMINGBENCH

3.1 TAXONOMY

We identify three key distinctions between a streaming video understanding benchmark and tradi-
tional offline video benchmarks: (1) the inclusion of real-time queries that can appear at any point
during the video stream, rather than solely at the end; (2) the consideration of synchronized vi-
sual and audio content, mirroring real-world video streams; and (3) the reflection of the complex
and dynamic context of video streams, encompassing the evaluation of streaming interactions be-
yond conventional isolated question answering. Based on these distinctions, we design three task
categories: Real-Time Visual Understanding, Omni-Source Understanding and Contextual Un-
derstanding. Each category mainly addresses one of these distinctions and evaluates specific core
capabilities essential for streaming video comprehension.

3.1.1 REAL-TIME VISUAL UNDERSTANDING

The tasks in this category aim to assess the ability of a model to perceive, comprehend, and reason
based on the visual content of video streams. Each question is accompanied by a timestamp that
indicates the time of the query and ensures that it only pertains to the visual content preceding that
specific moment. To emphasize the real-time nature of the questions, they include specific time
indicators such as “right now”, “just now”, or “currently”. As a result, the same question asked at
different times may yield different answers.

There are 10 tasks that belong to this category: (1) Object Perception (OP): Detect and identify
specific objects within the video. (2) Causal Reasoning (CR): Analyze cause-and-effect relation-
ships in events. (3) Clips Summarization (CS): Summarize main content in specific video clips.
(4) Attribute Perception (ATP): Identify and categorize object or individual attributes. (5) Event
Understanding (EU): Recognize and describe sequences of events. (6) Text-Rich Understanding
(TR): Interpret and explain text-rich content within the video. (7) Prospective Reasoning (PR):
Predict future events based on current video context. (8) Spatial Understanding (SU): Understand
and describe spatial relationships and locations. (9) Action Perception (ACP): Identify and de-
scribe specific actions in the video. (10) Counting (CT): Count occurrences of specific objects or
actions. These tasks cover the main visual understanding tasks and effectively evaluate the ability
of MLLMs to understand visual information in real-time in streaming scenarios. For deterministic
evaluations, all test examples are presented as multiple-choice questions with four distinct options
each. For examples of each task, please refer to Appendix D.

3.1.2 OMNI-SOURCE UNDERSTANDING

These tasks evaluate the capability of a model to process visual and audio content in a video stream
simultaneously, especially focusing on the ability to integrate information from video and audio
content, or align them temporally. There are four tasks in this category:

Emotion Recognition (ER): What is the mood of the person? The task involves identifying the
current emotion of a particular person in the video and determining the cause of their emotional
change, based on the visual and auditory cues in the video stream.

Scene Understanding (SCU): Describe the scene that just occured. This task requires MLLMs to
comprehend and describe dynamic scenes as they occur in a video stream, with a specific emphasis
on accurately identifying both the visual elements and the audio that occurs simultaneously.

Source Discrimination (SD): Who just said “[quote]”? This task requires MLLMs to accurately
identify the speaker of specific lines of dialogue ([quote]) within a video stream, based on the visual
and auditory cues presented just before or during the time the dialogue was spoken.
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Multimodal Alignment (MA): Describe the scene when a person said “[quote]”. This task re-
quires MLLMs to accurately correlate spoken words ([quote]) with corresponding visual scenes in
a video. Based on the time intervals and context provided, MLLMs must describe the scene that
occurs when a specific line is spoken, ensuring that the visual and auditory elements are correctly
aligned.

As with the questions in the previous task type, each question in omni-source understanding is set
with a specific timestamp, and is a multiple-choice question with four options for the purpose of
deterministic evaluation. In addition, we make sure that all questions can not be answered without
understanding both visual and audio content. Please refer to Appendix D for data examples.

3.1.3 CONTEXTUAL UNDERSTANDING

These tasks focus on assessing the ability of MLLMs to provide accurate responses based on com-
plex context within a continuous video stream. Such context includes not only the redundant in-
formation presented throughout the video, but also the the streaming interactions such as prior
question-answer pairs or conditions for late proactive outputs. Overall, there are four contextual
understanding tasks. The first two involve filtering information from the redundant context:

Misleading Context Understanding (MCU): What are the cards on the table right now? In video
streams, misleading context can lead models to make false predictions. For instance, when playing
cards, different cards may have appeared on the table in previous video frames. To answer this
example question, the model must distinguishing the current state of the cards from that appeared
in earlier frames but are no longer present. This task challenges the model to maintain precision in
scenarios where similar but incorrect visual cues are prevalent, ensuring reliable understanding in
complex visual environments.

Anomaly Context Understanding (ACU): What unusual event just occurred? This task evaluate
the MLLMs’ ability to detect and accurately identify unusual or unexpected events within a video
stream. The model must differentiate between subtle variations in similar scenarios and correctly
identify the anomaly, ensuring precise understanding in dynamic and unpredictable environments.

The form of these two tasks is the same as previous questions, i.e., multi-choice questions with
assigned timestamps. There are also two tasks related to streaming interactions:

Sequential Question Answering (SQA): What is the current outfit of the person mentioned in
the first question? This task is characterized by a sequence of questions where each subsequent
question is directly related to the entity or event mentioned in previous ones. The model must
effectively utilize episodic memory to accurately link related information, ensuring coherent and
contextually relevant responses throughout the task sequence.

Proactive Output (PO): When a goal is scored, output “GOAL”. Unlike typical input-output tasks
where the model responds directly to the input, this task requires the model to proactively determine
when to generate output based on predefined conditions. This involves maintaining an internal state
to track relevant information from incoming video frames, which is crucial for responsive AI systems
in real-time streaming environments.

The question format of SQA is similar to other formats but includes an additional history of QA
sequences. In contrast, each question in the PO task includes an additional timestamp, indicating
the exact time when the output should occur. Data examples are in Appendix D.

3.2 DATA CONSTRUCTION

Video Selection. We divide the streaming understanding scenarios into eight distinct categories
to ensure a comprehensive simulation of real-world, real-time streaming applications: life record,
competition, education, TV show, video games, documentary, animation & movie and unusual event.
We manually select and carefully curate 900 YouTube videos to cover all of these scenarios and
ensure that they possess attributes suited for different streaming video understanding tasks.

QA Generation. We use a hybrid annotation pipeline to generate QA pairs for different task cate-
gories in StreamingBench. For real-time visual understanding tasks and the proactive output task,
we first sample frames from the video at 1 fps and use GPT-4o to generate captions for every 20
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Figure 2: The left diagrams depict the distribution of tasks and video durations in StreamingBench,
while the right diagram illustrates the categories of the 900 videos included in the benchmark. It is
important to note that we have created a total of 250 questions for the proactive output task, but for
efficiency, only 50 of them are currently evaluated in the present version of StreamingBench. We
plan to release the remaining questions to support future evaluations.

frames. Since StreamingBench requires queries at various points in the video, we add a timestamp
to the top-left corner of each frame, which allows GPT-4o to create captions with finer temporal
granularity (with intervals of less than 20 seconds). Using these timestamped, fine-grained captions,
GPT-4o then generates QA pairs for different tasks and automatically assign a question timestamp.
For omni-source understanding tasks and other contextual understanding tasks, we ask human an-
notators to manually label the QA pairs.

Quality Control. To ensure the quality of data in StreamingBench, we implement a rigorous human
verification process for both automatically generated and manually annotated QA pairs. Each pair is
reviewed for accuracy, clarity, and relevance. Low-quality pairs containing ambiguities or incorrect
labels are revised, and questions that can be answered without video information are discarded.
Additionally, we shuffle options to ensure a balanced distribution. This meticulous quality control
process ensures that StreamingBench effectively challenges models to demonstrate their real-time
streaming video understanding capabilities. More details of data construction are in Appendix 3.2.

Figure 2 depicts the main statistics of StreamingBench, which comprises 900 videos and 4,300 ques-
tions. The videos span eight different categories, with durations ranging from as short as 3 seconds
to as long as 24 minutes, covering a wide range of real-world streaming scenarios. Specifically,
the real-time visual understanding category includes 500 videos with a total of 2,500 questions, the
omni-source understanding category comprises 200 videos with 1,000 questions, and the contextual
understanding category contains 200 videos with 800 questions.

4 EXPERIMENTS

In this section, we present the experimental setup, evaluation results, and analysis of Streaming-
Bench. We evaluate 13 open-source and proprietary MLLMs, highlighting their strengths and limi-
tations in streaming video scenarios. Building on these initial findings, we then conduct additional
in-depth analytical experiments to further explore their performance, aiming to facilitate further
advancements for MLLMs in enhancing its streaming video understanding capabilities.

4.1 SETTINGS

We evaluate three proprietary MLLMs: GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (Reid et al.,
2024), and Claude 3.5 Sonnet (Anthropic, 2024), alongside 10 high-performing open-source video
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Table 2: Performance of various MLLMs on StreamingBench. †: For videos of varying lengths, we
apply the corresponding frame rates for Qwen2-VL: 1 fps for under 5 minutes, 0.5 fps for 5 to 10
minutes, and 0.2 fps for over 10 minutes, balancing efficiency and visual information retention. ‡:
Human evaluation with a randomly sampled 10% of all questions, as detailed in Appendix C.2.

Model Params Frames
Real-Time Visual Understanding Omni-Source Understanding Contextual Understanding

Overall
OP CR CS ATP EU TR PR SU ACP CT All ER SCU SD MA All ACU MCU SQA PO All

Human

Human‡ - - 89.47 92.00 93.60 91.47 95.65 92.52 88.00 88.75 89.74 91.30 91.46 88.00 88.24 93.60 90.27 90.26 88.80 90.40 95.00 100 93.55 91.66

Proprietary MLLMs

Gemini 1.5 pro - 1 fps 79.02 80.47 83.54 79.67 80.00 84.74 77.78 64.23 71.95 48.70 75.69 46.80 39.60 74.90 80.00 60.22 51.41 40.73 54.80 30.00 47.79 66.90
GPT-4o - 64 77.11 80.47 83.91 76.47 70.19 83.80 66.67 62.19 69.12 49.22 73.28 41.20 37.20 43.60 56.00 44.50 41.20 38.40 32.80 29.41 36.96 59.83

Claude 3.5 Sonnet - 20 80.49 77.34 82.02 81.73 72.33 75.39 61.11 61.79 69.32 43.09 72.44 31.60 34.00 32.80 48.80 36.80 38.40 34.80 34.40 35.29 35.83 57.34

Open-Source Video MLLMs

LLaVA-OneVision 7B 32 80.38 74.22 76.03 80.72 72.67 71.65 67.59 65.45 65.72 45.08 71.12 40.80 37.20 33.60 44.80 38.40 35.60 36.00 27.27 11.76 31.63 56.16
Qwen2-VL 7B 0.2-1 fps† 75.20 82.81 73.19 77.45 68.32 71.03 72.22 61.19 61.47 46.11 69.04 41.20 22.00 32.80 43.60 34.90 31.20 26.00 39.60 1.96 30.37 53.91

MiniCPM-V 2.6 8B 32 71.93 71.09 77.92 75.82 64.60 65.73 70.37 56.10 62.32 53.37 67.44 40.80 24.00 34.00 41.20 35.00 34.00 31.60 41.92 9.80 34.21 53.71

LLaVA-NeXT-Video 32B 64 78.20 70.31 73.82 76.80 63.35 69.78 57.41 56.10 64.31 38.86 66.96 37.69 24.80 34.40 42.80 34.90 29.20 30.40 35.35 5.88 30.04 52.64

InternVL-V2 8B 16 68.12 60.94 69.40 77.12 67.70 62.93 59.26 53.25 54.96 56.48 63.72 37.60 26.40 37.20 42.00 35.80 32.00 31.20 32.32 11.76 30.59 51.06

Kangaroo 7B 64 71.12 84.38 70.66 73.20 67.08 61.68 56.48 55.69 62.04 38.86 64.60 37.60 31.20 28.80 39.20 34.20 32.80 26.40 33.84 3.92 29.32 50.97

LongVA 7B 128 70.03 63.28 61.20 70.92 62.73 59.50 61.11 53.66 54.67 34.72 59.96 39.60 32.40 28.00 41.60 35.40 32.80 29.60 30.30 5.88 29.34 48.55

VILA-1.5 8B 14 53.68 49.22 70.98 56.86 53.42 53.89 54.63 48.78 50.14 17.62 52.32 41.60 26.40 28.40 36.00 33.10 26.80 34.00 23.23 15.68 27.24 43.18

Video-CCAM 14B 96 56.40 57.81 65.30 62.75 64.60 51.40 42.59 47.97 49.58 31.61 53.96 33.60 22.00 28.40 34.80 29.70 27.60 24.40 16.67 5.88 21.83 42.34

Video-LLaMA2 7B 32 55.86 55.47 57.41 58.17 52.80 43.61 39.81 42.68 45.61 35.23 49.52 30.40 32.40 30.40 36.00 32.40 24.80 26.80 18.67 1.96 22.08 40.43

MLLMs: Video-LLaMA2 (Zhang et al., 2023), MiniCPM-V 2.6 (Yao et al., 2024), InternVL-
V2 (Chen et al., 2024c), Video-CCAM (Fei et al., 2024), LongVA (Zhang et al., 2024b), LLaVA-
OneVision (Li et al., 2024a), VILA-1.5 (Fang et al., 2024), Kangaroo (Liu et al., 2024d), LLaVA-
NeXT-Video (Liu et al., 2024b), and Qwen2-VL (Wang et al., 2024a).2 We adhere to the official
configurations of most MLLMs for frame extraction from the videos, as detailed in Appendix A.1.

Since current MLLMs lack the ability to accept streaming video input, we convert each streaming
task into an offline task for evaluation except for the proactive output task. During the evaluation
process, each video is clipped into the segment from the beginning to the timestamp when the
question is asked. Then the model answers the question based on this video segment in an offline
way. We use accuracy as the evaluation metric for all multiple-choice questions.

For SQA, the basic evaluation process and metric are consistent with other tasks. The only differ-
ence is that contextual information, i.e., previous QA pairs should be additionally included. For
simplicity, we attach the history of question-answer pairs before the current question to expand the
input as: “{Timestamp1}: {QA1} . . . ; Answer the question accordingly: {current question}”.

For the Proactive Output task, most models cannot be directly evaluated, as they lack the ability to
autonomously provide output without prompts. To address this, we implement a polling strategy: we
define an interval spanning several seconds before and after the ground truth timestamp (the moment
when the model is expected to output). During this interval, the model is queried every second with
the question “Is it the right time to output?” This continues until the model responds with “Yes.”
At that point, the model is prompted to provide the relevant keywords, and this moment is recorded
as the actual output timestamp. A question in the PO task is considered accurately resolved only
if the difference between the actual output timestamp and the ground truth timestamp is less than
two seconds. The average accuracy across all queries is then computed and used as the performance
metric for the PO task. Please refer to Appendix A.2 for more evaluation protocals.

4.2 RESULTS ON STREAMINGBENCH

The performance of 13 open-source and proprietary models on the 18 tasks of StreamingBench
is presented in Table 2. The results indicate that all three proprietary models outperform the best-
performing open-source model, LLaVA-OneVision, with Gemini 1.5 pro achieving the highest score
of 67.36%. Among the open-source models, LLaVA-OneVision ranks first with a score of 54.79%,
followed closely by Qwen2-VL and MiniCPM-V 2.6, which achieve scores of 52.69% and 52.58%,
respectively. For comparison, we sample 10% of the tasks from each of the 18 tasks for human

2We also evaluate two streaming video MLLMs claiming online processing capabilities: VideoLLM-
Online (Chen et al., 2024a) and Flash-VStream (Zhang et al., 2024a). However, the performance of these
two models is relatively poor. We list the evaluation results of them in Appendix C.1.
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Figure 3: Performance of different MLLMs on the proactive output task. “≤ xs” means that the
answer is considered correct if the actual output time is within x seconds of the ground truth.

evaluation. The average human score across 18 tasks is 91.66%. Even the best-performing MLLMs,
Gemini 1.5 Pro, lags significantly behind human performance.

The results demonstrate that all models perform well on real-time visual understanding tasks, but
exhibit generally poor performance on omni-source understanding and contextual understanding
tasks. This suggests that the models’ ability to understand offline video transfers effectively to
real-time visual understanding, but they struggle with tasks that require audio information for omni-
source understanding and tasks that demand consideration of contextual information in scenarios
with streaming interactions or high-redundancy visual inputs for contextual understanding. This
highlights a significant gap between the current MLLMs and the goal of achieving streaming video
understanding. Notably, Gemini 1.5 Pro excels in omni-source understanding due to its capability
to process audio within videos. Additionally, Claude 3.5 Sonnet achieves the highest score among
all models in the proactive output task, with a score of 45.10% within a two-second error margin.
The decent performance of these proprietary models on omni-source understanding and contextual
understanding tasks reflects the potential of these models to achieve streaming video understanding.

4.3 MODEL PERFORMANCE ON DIFFERENT VIDEO LENGTHS

We further investigate the impact of video length on the model capabilities of streaming video un-
derstanding. As most current MLLMs can process minute-level videos, we choose 60 seconds as a
threshold to distinguish between short and long videos, and compare the models’ performance on
both. We focus on the top three open-source models with the highest performance in real-time visual
understanding. The results, as shown in Table 3, indicate that all models perform worse overall on
videos longer than 60 seconds compared to their performance on shorter videos. However, Qwen2-
VL stands out by demonstrating better performance on long videos than short ones in the tasks of
Causal Reasoning (CR) and Clip Summarization (CS). This highlights the need for improvements
in the ability of MLLMs to effectively process longer video content.

Table 3: Performance of the top open-source models on different tasks for videos ≤60s and >60s.

Model Video Length
Real-Time Visual Understanding

OP CR CS ATP EU TR PR SU ACP CT All

LLaVA-OneVision
≤60 s 84.81 75.00 84.93 91.30 89.29 85.88 82.61 73.91 73.53 63.26 81.30

>60 s 79.17 74.07 72.95 76.79 66.92 66.53 63.53 63.00 63.86 25.00 66.94

Qwen2-VL
≤60 s 86.08 80.00 78.08 85.51 89.28 82.35 78.26 73.91 67.65 67.35 78.89

>60 s 72.22 81.18 91.30 75.11 63.91 66.95 70.59 59.50 60.00 38.89 66.33

MiniCPM-V 2.6
≤60 s 88.61 75.00 83.56 89.86 75.00 81.18 82.61 69.57 77.94 79.59 81.67

>60 s 67.36 70.37 76.23 71.73 62.41 60.17 67.06 53.00 58.60 44.44 63.52
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Figure 4: A two-dimensional classification of clues in StreamingBench. The first dimension cate-
gorizes clues by their timing relative to the query: Prior (before the query), Concurrent (during the
query), and Subsequent (after the query). The second dimension differentiates between Single Clue,
requiring only one frame, and Multiple Clues, needing multiple frames for the answer.

Table 4: The average accuracy of MLLMs on tasks with different clue types.

Clue Type Prior Concurrent Subsequent Total

Num. Acc. Num. Acc. Num. Acc. Num. Acc.
Single 212 53.91% 1278 43.79% 32 8.93% 1522 44.47%
Multiple 1196 53.57% 1564 44.07% 18 3.01% 2778 47.83%
Total 1408 53.75% 2842 43.92% 50 6.72% 4300 46.64%

4.4 MODEL PERFORMANCE ON TASKS WITH DIFFERENT TEMPORAL CLUES

We classify questions according to clue types demonstrated in Figure 4, and show average accuracy
of different models in Table 4. The results demonstrate that model performance is not related to the
number of clues but rather to the position of clue occurrence. Specifically, models perform better
on prior-type tasks than on concurrent- and subsequent-type tasks. This discrepancy is likely due to
the fact that most offline video QA tasks in current training datasets focus on prior-type tasks, while
concurrent- and subsequent-type tasks are underrepresented. Enhancing the ability of MLLMs to
handle concurrent- and subsequent-type tasks is crucial for future progress.

4.5 ANALYSES ON CONTEXUAL UNDERSTANDING TASKS

Do Redundant Information Affect Contextual Understanding? We observe that all models per-
form unsatisfactorily in two contextual understanding tasks involving redundant information: mis-
leading and anomaly context understanding tasks (MCU and ACU). To quantitatively assess the im-
pact of highly redundant visual information on model performance, we sample 125 questions from
these tasks and manually eliminate redundant information in them. For MCU, we extract frames that
contain clues for answering the question and discard other misleading frames. For ACU, we keep
only the video segments where the anomaly events occur as inputs. We conduct experiments using
four top-performing open-source MLLMs on StreamingBench. The results, as shown in Table 5,
indicate that MLLMs consistently achieve better performance when redundant visual information is
removed from the inputs. This finding underscores the insufficient robustness of current MLLMs
in handling redundant information. Future models should aim to improve their ability to accurately
extract relevant information from inputs with high visual redundancy.

9
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Table 5: Comparison of the performance of four models on MCU and ACU tasks with and without
high-Redundancy visual Information inputs (RI). ∆ denotes the performance difference.

LLaVA-NeXT-Video MiniCPM-V 2.6 Qwen2-VL LLaVA-OneVision

w/ RI w/o RI ∆ w/ RI w/o RI ∆ w/ RI w/o RI ∆ w/ RI w/o RI ∆

MCU 30.40 65.60 +35.20 31.60 49.60 +18.00 26.00 67.20 +41.20 36.00 68.00 +32.00
ACU 29.20 48.00 +18.80 34.00 50.40 +16.40 31.20 53.60 +22.40 35.60 49.60 +14.00

Do Question References Constrain Model Performance in Sequential QA? To understand the
impact of references between questions on model performance, we explicitly resolve these refer-
ences in the original questions and conduct experiments. For example, the original question “How
many game scores has the team referred to in the previous question scored so far?” is modified to
“How many game scores has GS (the team name) scored so far?”. (See Figure 14) As shown in the
left part of Figure 5, the results indicate that most models, except for MiniCPM-V 2.6, exhibit per-
formance improvement to some extent. This suggests that the suboptimal performance of the models
is partly due to their inability to resolve references between questions, requiring further adaptation
to the sequential question-answering scenario for MLLMs.

Why Cannot MLLMs Handle the Proactive Output Task? We assume that the proactive output
(PO) task requires two abilities of an MLLM: (1) accurately locating and responding to critical
information in continuously incoming frames, and (2) following proactive output instructions. Based
on these two aspects, we further analyze why MLLMs struggle to handle the PO task effectively.
First, we relax the evaluation threshold for the time difference between the actual output time and the
ground truth timestamp, and observe a rapid improvement in accuracy as shown in Figure 3. This
suggests that MLLMs have a certain ability to respond to information, but lack precision in timing.
Next, we transform the PO task into a more traditional “passive” output task, where we directly
query the model for critical information at the ground truth timestamp and assess the correctness of
the response. For example, the original question “When the scoreboard shows 97 points for USA for
the first time, output ’97’,” is modified to “What is the current score for USA?” (See Figure 13) As
shown in the right part of Figure 5, the model performance improves significantly. This indicates
that the model struggles to adapt to the proactive output format, and further targeted improvements
are needed.

Figure 5: Left: Performance comparison of top open-source MLLMs on the SQA task, with or
without reference resolution in questions. Right: Performance comparison on the PO task, before
and after transforming the question into a concurrent type.

5 CONCLUSION

In this work, we introduce StreamingBench, the first comprehensive benchmark designed to as-
sess the streaming video understanding capabilities of MLLMs. StreamingBench consists of 900
videos and 4,300 QA pairs, covering 18 tasks across three main categories that evaluate key as-
pects of streaming video comprehension. Experiments with 13 state-of-the-art MLLMs reveal that
even the best-performing model Gemini 1.5 Pro still falls significantly short of human-level perfor-
mance. Additionally, we analyze the performance gap and propose potential directions for improv-
ing MLLMs. We hope that our work will contribute to the development of future AI systems with
improved performance in real-world scenarios.
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A MORE DETAILS OF EVALUATION

A.1 MODEL INFERENCE SETTINGS

GPT-4o Limited by API, we extract only 64 frames for each video. In our current environment,
more frames will result in a large number of access failures. We will try other methods to use more
frames for evaluation in the future.

Qwen2-VL To streamline the evaluation process and reduce associated costs, frames are extracted
at different rates based on the length of the video: 1 fps for videos shorter than 5 minutes, 0.5 fps for
videos between 5 and 10 minutes, and 0.2 fps for videos longer than 10 minutes. When assessing the
performance of the four models on ACU tasks with and without high-redundancy visual information
inputs (Table 5), we applied a frame extraction strategy similar to that used for videos in order to
evaluate multiple images. This approach is more cost-efficient as the processing pipeline for videos
incurs lower computation resource consumption per frame compared to standalone images. It is
assumed that the model requires fewer computational resources to process a single image when
embedded within a video.

Other Open-Source MLLMs We adhere to the official inference strategies of these MLLMs. For
MiniCPM-V 2.6 and InternVL-V2, we have found that there are some situations where the last few
frames cannot be captured. We assume such strategy may affect the evaluation results and plan to
solve this in the future.

A.2 EVALUATION PROTOCALS

Real-time visual understanding tasks, omni-source understanding tasks, ACU and MCU follow the
same evaluation process. For each question, we crop the video segment from the full video up to
the timestamp where the question appears, and use this segment as the input to the model, while
applying the following prompt for multiple-choice question answering:

Prompt used for Tasks Except for SQA, PO

You are an advanced video question-answering AI assistant.
You have been provided with some frames from the video and a
multiple-choice question related to the video. Your task is
to carefully analyze the video and provide the best answer to
question, choosing from the four options provided. Respond with
only the letter (A, B, C, or D) of the correct option.

Question: {}

Options: {} {} {} {}

The best option is:

For the SQA task, we follow a similar protocol to the previous one, with the key difference being that
the prompt includes contextual information in textual form. This context consists of the timestamp
(as an integer), the questions, answer options, and the ground truth answer from prior conversations.
Notably, the prompt provides the ground truth answer instead of the model’s previous responses, as
we assume that humans can correct incorrect responses during real streaming conversations. During
evaluation, the model is presented with a sequence of related questions about the same video, with
information from earlier interactions incorporated into the prompt.
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Prompt used for SQA

You are an advanced video question-answering AI assistant. You
have been provided with a video and a multiple-choice question
related to the video. Your task is to carefully analyze the video
and the provided context to answer the question, choosing from the
four options provided. Respond with only the letter (A, B, C, or
D) of the correct option.

Here are the contextual information related to the video. Please answer the questions based on
the contextual information:

At timestamp {}, the following question and answer occurred: Question: {}; Options: {}, {},
{}, {}; Answer: {};
. . .

Here is the question. Answer it and don’t confuse it with the previous conversation.

Question: {}

Options: {} {} {} {}

The best option is:

In PO tasks, the questions generally take the form: “When . . . , output . . . .” To enhance the accuracy
and stability of the responses, the prompt for PO includes a query about whether an output is neces-
sary. The polling timestamps encompass the query timestamp and every second within the interval
[-4,4], using the ground truth timestamp as the origin, up to 10 timestamps.

Prompt used for PO

You are an advanced video question-answering AI assistant.
You have been provided with some frames from the video and a
multiple-choice question related to the video. Your task is
to carefully analyze the video and provide the best answer to
question, choosing from the four options provided. Respond with
only the letter (A, B, C, or D) of the correct option.

Question: {}

Is it the right time to output {}? You can only answer yes or no.

The answer is:

B MORE DETAILS OF DATA CONSTRUCTION

B.1 VIDEO SELECTION

We divide the streaming understanding scenarios into eight distinct categories to ensure a compre-
hensive simulation of real-world, real-time streaming applications. The Life Record category in-
cludes videos that capture everyday activities such as travel vlogs, house tours, and reaction videos.
The Competition category features sports, including football, basketball. Video games category in-
cludes eSports and gaming videos. Education encompasses videos like lectures, tutorials, and other
instructional content. TV Show covers a range of media, including TV series, talk shows, and news
segments. Unusual Event focuses on unexpected scenarios such as car accidents, prank videos,
and magic shows. The Documentary category features content that includes science documentaries,
cultural explorations. Animation & Movie category includes comedies, kid’s shows and animated
films. This categorization ensures that the benchmark thoroughly simulates the diverse scenarios
encountered in real-time streaming environments.
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Figure 6: Pipeline of StreamingBench for automatic construction of streaming QA.

B.2 QA GENERATION

To create questions that truly capture the streaming nature of video understandings, we selected
five distinct timestamps for each video to serve as query points. For tasks under the Real-Time
Visual Understanding category and the Proactive Output task, we adapted the traditional two-step
approach of generating questions based on captions. The pipeline for QA Generation is illustrated
in Figure 6. Specifically, we employed GPT-4o to sample frames from the video at a rate of 1 frame
per second (fps). We observed that for Single-Frame tasks, directly generating questions based on
the sampled images, without an intermediate captioning phase, resulted in higher quality questions.
Conversely, for Multi-Frame tasks, generating captions first and then formulating questions from
those captions yielded better results. Unlike other video benchmarks where queries are typically
presented at the end of the video, StreamingBench introduces queries at various points throughout
the video. To automatically generate appropriate query timestamps, we tagged each sampled frame
with its corresponding timestamp in the video. We found that this method helped us produce high-
quality questions with realistic query timings. Additionally, we tagged each question with the time
range during which the relevant clues appeared in the video, specifying the minimal video segment
necessary to answer the question accurately. This tagging approach also proved effective, ensur-
ing the generation of high-quality, contextually relevant questions. For tasks in the Omni-Source
Understanding category and Contextual Understanding tasks (excluding Proactive Output), where
questions require audio information, we employed meticulous manual annotation. Each video was
carefully annotated to ensure the precision and relevance of the generated questions.

B.3 PROMPT FOR QA GENERATION

Below are our prompts for automatically constructing question-answer pairs. First we generate
captions, and then generate questions with precise timestamps based on the captions. Alternatively,
we can directly generate questions with precise timestamps from images marked with corresponding
timestamps
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Prompt used for captions construction

You are an AI assistant skilled in video comprehension, captioning,
and adding timestamps. These are frames from a {} second {SUBJECT}
video with 1-second intervals between each frame. Each image has a
corresponding timestamp.

Follow these TWO STEPS:

STEP 1: Detailed Description

1. Describe the video in as much detail as possible, including
features (shapes, sizes, colors, positions, orientations, etc.),
actions, movements, relationships of people and objects, and
backgrounds.
2. Only describe what is visible in the video. Do not include
information you are unsure about.
3. Start the description naturally, without summaries.
4. Be objective and avoid subjective opinions or guesses.
5. Write naturally and fluently. Do not caption frame by frame.
6. Ensure proper grammar, especially for person and tense.

STEP 2: Add Timestamps

1. Add specific timestamps to different segments of the
description based on the timestamps in the top left corner of the
frames.
2. Do not modify the original description content.
3. Use the format [H:MM:SS - H:MM:SS] for ranges or [H:MM:SS] for
single timestamps.
4. Ensure timestamps match the corresponding video frames.

Example format:

[H:MM:SS - H:MM:SS]: description segment; [H:MM:SS]: description
segment; ...

Only output the captions with added timestamps. Do not include
any other content. Carefully review the provided video frames,
then provide your response.
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Prompt used for questions generation

You are an AI assistant skilled at generating questions and
answers. I have a 20s video clips extracted from a {SUBJECT} video,
organized in chronological order with time marks like [0:01:00 -
0:01:20]. the time marks do not start from 00:00:00 if the time
marks is not [0:00:00 - 0:00:20]. Please read the video clips
carefully and provide question-answer pairs based on the video
clips.

Follow these instructions:

GUIDE:
1. Ensure the questions and answers are highly relevant to the
captions and DO NOT INCLUDE TOPICS NOT MENTIONED in the captions.
2. IGNORE CONTRADICTORY OR UNREASONABLE PARTS of the captions. Do
not base questions on them.
3. Present questions as multiple-choice. Provide task type,
questions, options, and answers. Each question should have 4
options with similar formats, and the wrong options should be
deceptive.
4. Avoid questions specific to individual scenes or overly precise
timing. Consider all scenes as a whole.
6. Pay attention to grammar. Avoid grammar mistakes, especially
with person and tense.
7. Ensure questions are reasonable and challenging, requiring
thoughtful consideration to answer correctly.
8. The question should not contain phrases like "In the beginning
of the clips" or "at the beginning of the video" or "in the video"
or "in this clips"; it can include expressions of the present or
recent past such as "just now" or "right now."
9. Please pay attention to the tense of the sentences.
10. Provide only {NUMBER} best question-answer pairs based on the
caption

Understand the following task descriptions:

<Specific Task Definition>

Example Tasks:

<Few Shots>

Please generate Q&A content in the following format:
Format:
Task Type: <task type>
Question: <question>
Time Stamp: <time stamp>
A. <option A>
B. <option B>
C. <option C>
D. <option D>
Answer: <answer>

Output only the questions and answers. Now, please carefully
review the captions and output your questions and answers following
the SAME FORMAT as the examples above.
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C MORE EXPERIMENTAL RESULTS

C.1 RESULTS OF STREAMING VIDEO MLLMS

Flash-VStream Flash-VStream is evaluated on all tasks (except for PO) using the same strategy
applied to other models. In most cases, it only produces the output “A”, leading to extremely low
accuracy on these tasks. For PO, the official scripts are initially attempted; however, due to excessive
processing time, we adopt the polling strategy, which yields similarly poor results.

VideoLLM-online We modify the official script to enable evaluation on our benchmark. However,
it cannot follow instructions accurately and generate a large amount of redundant information. For
PO, VideoLLM-online is able to accept streaming video input, yet the streaming evaluation strategy
performs similarly, or even worse, compared to the polling strategy.

The evaluation results are listed in Table 6. We also provide some output examples for both models
in the following:

Responses of Flash-VStream

Real-time Visual Understanding

What does the the glass structure likely depict right now?

Answer: ”B”

A. A historic monument.
B. A modern bus stop.
C. A construction site.
D. A marketplace.

Flash-VStream: A. A historic monument.

Proactive Output

When the dealer reveals the hidden card and it is a face card, output ”Dealer card face”. Is it
the right time to output ”Dealer card face”?

Ground truth timestamp: ”00:05:44”

Flash-VStream: { ”content”: ”Yes”, ”time”: 336 (00:05:36) }
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Table 6: Performance of two streaming video MLLMs on StreamingBench.

Model Params Frames
Real-Time Visual Understanding Omni-Source Understanding Contextual Understanding

Overall
OP CR CS ATP EU TR PR SU ACP CT All ER SCU SD MA All ACU MCU SQA PO All

Human

Human - - 89.47 92.00 93.60 91.47 95.65 92.52 88.00 88.75 89.74 91.30 91.46 88.00 88.24 93.60 90.27 90.26 88.80 90.40 95.00 100 93.55 91.66

Streaming MLLMs

Flash-VStream 7B - 25.89 43.57 24.91 23.87 27.33 13.08 18.52 25.20 23.87 48.70 23.23 25.91 24.90 25.60 28.4 26.00 24.80 25.20 26.80 1.96 24.12 24.04

VideoLLM-online 8B - 39.07 40.06 34.49 31.05 45.96 32.40 31.48 34.16 42.49 27.89 35.99 31.20 26.51 24.10 32.00 28.45 24.19 29.20 30.80 3.92 26.55 32.48

Responses of VideoLLM-online

Real-time Visual Understanding

What text is prominently shown on the packaging of the darker graphics card right now?

Answer: ”C”

A. DESIGNED BY GAMERS, BUILT BY NVIDIA.
B. CREATED BY GAMERS, DEVELOPED BY NVIDIA.
C. INSPIRED BY GAMERS. BUILT BY NVIDIA.
D. ENGINEERED BY GAMERS, MADE BY NVIDIA.

VideoLLM-online: A. DESIGNED BY GAMERS, BUILT BY NVIDIA.

Proactive Output

When the player in the light blue jersey scores a goal, output G̈oal by light blue team.̈ Is it
the right time to output G̈oal by light blue team?̈

Ground truth timestamp: ”00:04:11”

VideoLLM-online: { ”content”: ”You are an advanced video question-answering AI assistant.
(Sorry, the last response is wrong) No.assistant: You are an advanced video question-answering”,
”time”: 255 (00:04:15) }

Table 7: Performance of various MLLMs on the three core tasks set for streaming understanding
capabilities in StreamingBench.

Model Video Length
Real-Time Visual Understanding

OR CR CS ATR EU TR PR SU ACR CT All

LLaVA-OneVision
≤60 s 84.81 75.00 84.93 91.30 89.29 85.88 82.61 73.91 73.53 63.26 81.30

>60 s 79.17 74.07 72.95 76.79 66.92 66.53 63.53 63.00 63.86 25.00 66.94

Qwen2-VL
≤60 s 86.08 80.00 78.08 85.51 89.28 82.35 78.26 73.91 67.65 67.35 78.89

>60 s 72.22 81.18 91.30 75.11 63.91 66.95 70.59 59.50 60.00 38.89 66.33

MiniCPM-V 2.6
≤60 s 88.61 75.00 83.56 89.86 75.00 81.18 82.61 69.57 77.94 79.59 81.67

>60 s 67.36 70.37 76.23 71.73 62.41 60.17 67.06 53.00 58.60 44.44 63.52

Video-LLaMA2
≤60 s 79.22 65.00 63.01 72.46 64.29 61.18 78.26 47.83 62.69 55.32 65.06

>60 s 49.65 53.70 55.33 54.43 52.63 37.29 29.41 41.00 41.75 17.36 44.59

Video-CCAM
≤60 s 79.75 60.00 76.71 82.61 78.57 81.18 65.22 63.04 67.65 57.14 73.51

>60 s 50.0 57.41 61.48 56.54 62.41 40.25 36.48 44.00 45.26 20.83 48.26

LongVA
≤60 s 82.28 70.00 61.64 79.71 78.57 71.76 78.26 60.87 64.71 57.14 70.37

>60 s 66.67 62.04 60.66 67.93 57.89 55.08 55.29 51.5 52.28 22.92 56.47

Kangaroo
≤60 s 83.54 75.0 76.71 85.51 78.57 77.65 73.91 65.22 76.47 8.16 71.67

>60 s 67.71 87.04 68.44 69.62 63.91 55.51 51.76 53.00 58.60 37.5 61.63
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The complete results regarding the impact of video length on the model’s streaming video under-
standing are presented in Figure 7. The results indicate that the length of the video does indeed affect
the model’s performance. However, the performance differences in the tasks of causal reasoning and
clips summarization are not particularly significant. In contrast, the impact of video length on the
model’s performance in the counting task is substantial.

C.2 DETAILS OF HUMAN EVALUATION

We invited five participants to evaluate the tasks in StreamingBench. For each task, 10% of the
questions were randomly selected from StreamingBench and presented to the participants. Each
participant had only one chance to respond to each question. Additionally, once a video had been
watched, participants were not allowed to rewind or replay it.

D DATA EXAMPLES
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Figure 7: Data examples for object perception, attribute perception, and text-rich understanding
tasks.
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Figure 8: Data examples for causal reasoning, clips summarization , and prospective reasoning tasks.
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Figure 9: Data examples for event understanding, emotion recognition, and scene understanding
tasks.
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Figure 10: Data examples for source discrimination, misleading context understanding, and anomaly
context understanding tasks.
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Figure 11: Data examples for multimodal alignment, sequential quension answering, and proactive
output tasks.
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Figure 12: Data examples for spatial understanding, counting, and action perception tasks.
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Figure 13: The process of transforming proactive output tasks into a general form concurrent type
question.

Figure 14: The process of references resolution transformation in sequential question answering.
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