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Abstract
Code Agent development is an extremely active
research area, where a reliable performance met-
ric is critical for tracking progress and guiding
new developments. This demand is underscored
by the meteoric rise in popularity of SWE-Bench–
a benchmark that challenges code agents to gen-
erate patches addressing GitHub issues given the
full repository as context. The correctness of gen-
erated patches is then evaluated by executing a
human-written test suite extracted from the repos-
itory after the issue’s resolution.

However, constructing benchmarks like SWE-
Bench requires substantial manual effort to set up
historically accurate execution environments for
testing. Crucially, this severely limits the num-
ber of considered repositories, e.g., just 12 for
SWE-Bench. Considering so few repositories, se-
lected for their popularity runs the risk of leading
to a distributional mismatch, i.e., the measured
performance may not be representative of real-
world scenarios running the riks of misguiding
development efforts.

In this work, we address this challenge and in-
troduce SETUPAGENT, a fully automated sys-
tem capable of historically accurate dependency
setup, test execution, and result parsing. Using
SETUPAGENT, we generate two new datasets:
(i) SWEE-Bench an extended version of SWE-
Bench encompassing hundreds of repositories,
and (ii) SWA-Bench a benchmark focusing on ap-
plications rather than libraries. Comparing these
datasets to SWE-Bench with respect to their char-
acteristics and code agent performance, we find
significant distributional differences, including
lower issue description quality and detail level,
higher fix complexity, and most importantly up to
60% lower agent success rates.
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1. Introduction
Code Agents are quickly becoming one of the most promis-
ing and actively researched applications of Large Language
Models (LLMs); partly due to their potential to revolution-
ize the 700 billion dollar software industry (Statista). To
measure progress and more importantly steer further de-
velopments in this field, high-quality datasets and bench-
marks are crucial. In particular, it is essential that they are
representative of real-world use cases, sufficiently large to
allow meaningful statistical analysis, and diverse and recent
enough to avoid unintentional overfitting and contamination.

Existing Benchmarks However, function-level bench-
marks like HumanEval (Chen et al., 2021), popular for
evaluating LLM’s coding performance, are unrepresentative
of real-world use, lack diversity, and are becoming satu-
rated. To address these limitations, SWE-Bench (Jimenez
et al., 2024) was proposed as the first repository-level cod-
ing benchmark based on real-world tasks, i.e., resolving
GitHub issues. Yet, it still suffers from several limitations.
(i) It is limited to few repositories, potentially leading to
overfitting to these specific codebases. (ii) Its sole focus on
libraries in contrast to applications raises generalizability
questions. (iii) Its focus on popular repositories not only
makes it less representative but also increases the chances
of contamination with general codebase knowledge. (iv)
Its static nature leads to most or even all instances being
created before recent models’ knowledge cutoff, allowing
even the exact instances to be present in the training data.

Creating Repository-Level Benchmarks To address
these challenges, we would like to create more diverse
benchmarks and update them frequently with new tasks.
However, while the GitHub Issues and Pull Requests (PRs),
serving as task descriptions and reference solutions, respec-
tively, for SWE-Bench-like benchmarks can be scraped
automatically, evaluating the correctness of a solution, re-
quires the repository’s test suite to be executed. This, in turn,
requires setting up historically accurate execution environ-
ments, identifying the correct test commands, and parsing
the results. Prior work addressed this problem either manu-
ally (Jimenez et al., 2024) or by aggressively filtering out
instances where default commands were unsuccessful (Jain
et al., 2024c). However, both approaches yield limited di-
versity and don’t lend themselves to frequent updates.
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Figure 1. Overview of SETUPAGENT where a -icon represents an LLM driven step and a -icon represents execution feedback.

This Work: SETUPAGENT To address this challenge,
we propose SETUPAGENT, the first method to automate
this setup process, enabling us to create repository-level
code benchmarks fully automatically from a list of GitHub
repositories. SETUPAGENT works in three key phases (il-
lustrated in Figure 1): (i) Command Extraction (green in
Figure 1), (ii) Iterative Testing and Improvement (blue ),
and (iii) Validation (purple ). In the extraction phase, SE-
TUPAGENT analyzes relevant context, such as README.md
files, CI/CD configurations, and referenced web pages, to
propose installation and testing commands. During the itera-
tive improvement phase, SETUPAGENT then executes these
commands in a clean environment and leverages an LLM to
systematically diagnose and resolve issues. Finally, in the
validation phase, SETUPAGENT ensures that the generated
commands are reliable by verifying the correctness of the
setup based on test results, only accepting configurations
that meet a predefined success threshold.

This Work: Generated Benchmarks We demonstrate
SETUPAGENT’s capability to generate coding benchmarks
from a list of repositories by creating SWA- and SWEE-
Bench, each addressing specific shortcomings of SWE-
Bench. Both are designed to be representative of real-world
use cases, consider many repositories leading to diverse
benchmarks, and can be frequently updated without manual
effort to avoid contamination and overfitting. SWA-Bench
focuses on software applications, containing 44 projects
while SWEE-Bench focuses on diversity and less popular
projects containing 366 Python repositories. Comparing
SWA- and SWEE-Bench to SWE-Bench, we find signifi-
cant distributional differences, including lower repository
age and popularity at issue creation, a larger focus on recent
issues, and significantly more complex reference code fixes
(2-4x more modified files and lines). Evaluating popular
code agents on these datasets, we find significant perfor-
mance differences for some models and statistically signifi-
cant signs of contamination, highlighting the importance of
evaluating on representative benchmarks.

Key Contributions of this work are:

• We propose SETUPAGENT, the first method for au-
tonomously creating historically accurate execution
environments.

• We leverage SETUPAGENT to create two datasets for
repository-level code generation SWA- and SWEE-
Bench, focusing on applications and diverse projects,
respectively.

• We extensively analyze SWA- and SWEE-Bench in
terms of their characteristics and corresponding code
agent performance.

2. Related Work
Code Agents To fully leverage the potential of LLMs
for code generation, they have been equipped with tools
to interact with their environment without additional user
input, e.g., by searching, viewing, and editing code, (Wang
et al., 2024a). These so-called code agents have shown
great promise on complex tasks (Bouzenia et al., 2024a;
OpenDevin, 2024; Zhang et al., 2024; Yang et al., 2024b;
Xia et al., 2024; Aider, 2024; Ridnik et al., 2024; Wang
et al., 2024b). In this work, we evaluate some of the best-
performing open-source agents.

Code Generation Benchmarks With the success of
LLMs in the domain of code generation, an increasing va-
riety of function-level code generation benchmarks were
proposed to assess their capabilities (Chen et al., 2021;
Hendrycks et al., 2021; Austin et al., 2021; Jain et al., 2024a;
Huang et al., 2024). However, not only were these increas-
ingly saturated by state-of-the-art models but their focus
on interview-style function-level coding challenges makes
them also unrepresentative of the complexities of real-world
codebases and software engineering tasks.

To address these limitations, a range of repository-level
code-generation benchmarks have been proposed recently
(Liu et al., 2023; Jain et al., 2024b; Jimenez et al., 2024).
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However, a repository-level context not only makes code
generation but also dataset generation more challenging as it
requires a historically accurate execution environment to be
set up, the project’s test suite to be run, and detailed results
to be extracted. The required manual effort led to existing
datasets focusing on a relatively small number of popular
repositories. As a result, they are prone to overfitting, often
lack diversity, and can easily contaminate the training data.

Automatic Dataset Generation These challenges could
be addressed via automatic dataset generation, which has
been successfully applied to function-level benchmarks by
scraping tasks from coding challenge websites and doing
varying levels of manual post-processing (Hendrycks et al.,
2021; Jain et al., 2024a; Huang et al., 2024).

Jimenez et al. (2024) transfer these ideas to repository-level
benchmarks, automatically scraping GitHub repositories, is-
sues, and pull requests resolving these issues to create SWE-
Bench consisting of 12 repositories and 2294 instances.
However, they still created the required execution environ-
ments and test commands manually. Further, the resulting
issues were shown to suffer from underspecified descrip-
tions and overly specific tests (Chowdhury et al., 2024).

Jain et al. (2024b) create R2E, a function-level synthe-
sis benchmark with repository context by scraping GitHub
repositories and masking out the function to be generated.
They automated the setup by applying a default approach for
projects with a setup.py or pyproject.toml file, au-
tomatically generating equivalence tests, and filtering out all
instances where this approach fails. However, this approach
aggressively filters projects with more complex installation
procedures, not only introducing a selection bias but also
yielding only 246 instances.

In this work, we combine the more interesting repository-
level tasks with a fully automated benchmark generation
process, by introducing and leveraging SETUPAGENT to
automatically extract the installation and testing procedures
for every task instance, allowing us to create larger and more
diverse benchmarks efficiently.

Bouzenia & Pradel (2024), concurrently proposed EXECU-
TIONAGENT, a tool to automatically set up and test reposi-
tories. However, it is 60 times slower than SETUPAGENT,
does not support historical states, and does not extract results
at test-level granularity. Even if the latter two shortcomings
were addressed, it would remain infeasibly slow taking, e.g.,
over 4 months to generate SWEE-Bench1.

3. Autonomous Environment Setup
In this Section, we first outline the requirements for a setup
and testing agent to be used for benchmark generation and
then describe the agent we develop for this purpose.

1Extrapolated from ∼150 repositories.

3.1. Notation and Definitions

We first introduce notation to describe repository-level cod-
ing tasks, adapted from Mündler et al. (2024). Given a
codebase R, we obtain R◦X by applying the code patch X .
We similarly denote the test suite T with T ◦ S after apply-
ing the test patch S. A single test t ∈ T can either pass (P)
or fail (F) when executed against the codebase R in an ex-
ecution environment E. We write: execE(t, R) ∈ {P, F}
and let the order P > F hold.

A repository-level coding task can be written as the tu-
ple (R, T, I, E, S∗, X∗), where R and T are the original
codebase and test suite, respectively, I is the issue de-
scription, E the execution environment, and S∗ and X∗

the reference test and code patch, respectively. By ex-
ecuting all tests ti ∈ T ◦ S∗ in the execution environ-
ment E, first against the original (R) and then the patched
codebase (R ◦X∗), we obtain the reference test behavior
b∗i = (execE(ti, R) → execE(ti, R◦X∗)). We call ti with,
e.g., b∗i = F → P a fail-to-pass test as it fails before the
reference fix is applied but passes afterward. We let the
partial order F→P > F →F and P →P > P →F hold.

The task is now to generate a patch X ′, given
only (R, T, I, E), such that the test behavior b′i =
execE(ti, R) → execE(ti, R ◦ X ′) matches or improves
on the reference result, i.e., b′i ≥ b∗i for all tests ti ∈ T ◦ S∗.

3.2. Setup Agent Requirements

A generic setup agent targeting individual, up-to-date reposi-
tories only has to satisfy one main requirement: Correctness
– It must extract and run the installation and testing com-
mands before parsing the test results. However, benchmark
generation, i.e., generating the execution environment E
given the remaining components of a coding task, imposes
additional requirements: Historical Accuracy – Benchmark
instances are based on specific, often outdated versions of a
codebase R. The execution environment E must thus use
historically accurate dependency versions to reproduce the
original issue faithfully and avoid version incompatibilities.
Efficiency – To generate a dataset of many hundreds of in-
stances, the setup agent must be efficient enough to keep
total runtime reasonable (hours or at most few days). Gran-
ularity – Evaluating agent success requires test-level results
to be parsed from the test suite output.

3.3. SETUPAGENT

Overview SETUPAGENT works in three phases illustrated
in Figure 1: (1) Extraction ( in Figure 1), (2) Iterative
testing and imporvement ( ), and (3) Validation ( ). In
the first phase, SETUPAGENT extracts a first version of the
installation and testing commands from all relevant files, ref-
erenced webpages, and, if available, successful commands

3



Automated Benchmark Generation for Repository-Level Coding Tasks

from similar versions of this repository. In the second phase,
SETUPAGENT iteratively executes first the installation and
then testing commands, analyses the results and updates the
commands. Finally, in the third phase, SETUPAGENT vali-
dates the resulting commands by executing them, extracting
the test results, and rejecting the proposed commands, if
too few tests pass. Validated commands are then returned
to the user and saved in a reference database to facilitate
installations of different versions of the same repository.

Input:
Please extract all commands required to install
<project_name> in a clean environment and run its
test suite from the context below.
’’’
## README.md
<file_content>
## CONTRIBUTING.md
<file_content>
’’’

LLM Response:
’’’bash
apt-get install -y graphviz # installation
pip install -r req.txt # installation
nox -e test # testing
’’’
Installation Commands:
apt-get install -y graphviz
uv pip install -r req.txt -exclude-newer 2022-04-11
Testing Commands:
nox -e test

Figure 2. Illustration of the extraction phase of SETUPAGENT.
Please see App. B for the full-length prompts.

Extraction Phase The goal of the Extraction Phase is
to extract an initial version of the installation and test-
ing commands. We illustrate it in Figure 2, using a sig-
nificantly simplified prompt and shortened response for
illustration purposes. In the first step, SETUPAGENT re-
views all relevant files to identify the correct Python version.
If available, it is directly parsed from the setup.py or
pyproject.toml file, otherwise version constraints are
extracted from different sources using an LLM and then
resolved while taking issue creation time into account to en-
sure Historical Accuracy. Next, SETUPAGENT uses a heuris-
tic to identify possibly relevant context like README.md
and CONTRIBUTING.md files, CI/CD configurations, and
referenced webpages. It then reviews these sources and
directly rejects those not containing information relevant to
installation or testing, thus keeping its context size small
and improving Efficiency. Finally, SETUPAGENT prompts
an LLM to extract the installation and testing commands
from the chosen sources. To ensure Historical Accuracy,
SETUPAGENT enforces the use of the uv environment man-
ager for Python dependencies, configuring it to exclude
dependency versions released after the issue creation.

Iterative Improvement Phase SETUPAGENT now tries
to install and test the project in a clean Docker container
using the extracted commands. If any of the installation
steps fail, i.e., exit with a non-zero exit code, or the test

Input:
You are trying to install and test <project_name>
using the following commands.
’’’bash
<commands>
’’’
Modify the commands to resolve the following error:
’’’
...
ModuleNotFoundError: No module named ’rustworkx’
’’’

LLM Response:
We have to install rustworks first:
’’’bash
pip install rustworkx
’’’
Updated Installation Commands:
apt-get install -y graphviz
uv pip install -r req.txt exclude-newer 2022-04-11
uv pip install rustworkx exclude-newer 2022-04-11

Figure 3. Illustration of the iterative improvement phase of SETU-
PAGENT, where the error message was obtained by executing the
commands from the previous iteration.

commands fail with an error, SETUPAGENT selects the rel-
evant sections of the error messages and then prompts an
LLM to identify the issue and propose a modification of the
installation commands to fix it. We illustrate this in Figure 3,
where SETUPAGENT adds a missing dependency. Now SE-
TUPAGENT tries to resolve issues apparent in the test results,
analyzing the logs to determine whether a failure is due to
incorrect test commands, an incorrect installation, or a bug
in the codebase. Depending on the result, SETUPAGENT
prompts an LLM to modify the installation or testing com-
mands to fix the issue or passes the repo on to the validation
phase. This iterative improvement is repeated until all er-
rors are resolved or an iteration limit is reached. Using a
moderate iteration limit of 4 steps, we achieve significantly
improved Correctness without sacrificing Efficiency.

Input:
Please assess whether <project_name> was installed
and its test suite executed correctly given the
resulting printout.
Answer YES or NO.
’’’
...
===== 2597 passed, 3 failed in 10.85s =====
’’’

LLM Response:
YES

Figure 4. Illustration of the first step in the Validation phase.

Validation Phase In the validation phase, SETUPAGENT
first queries an LLM to assess whether the installation and
testing were successful, illustrated in Figure 4. If the LLM
judges the installation to be successful, SETUPAGENT up-
dates the test framework’s configuration to return test-level
results, e.g., by adding -rA to a pytest command, thus
ensuring Granularity. It then selects the correct parser from
a pre-defined set to extract test-level results and checks
the number of passing and failing tests. We consider the
installation to be successful if at least 95% of tests pass.
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Figure 5. PDFs (left and middle) and CDF (right) of PR creation dates (left), repository age at PR creation time (middle), and number of
GitHub stars (right) for SWA, SWEE, and SWE-Bench.

4. Code Generation Benchmarks
In this Section, we describe how we leverage SETUPAGENT
to create SWA- and SWEE-Bench, two new benchmarks
addressing specific limitations of SWE-Bench. We compare
these datasets with SWE-Bench and provide insights into
distributional differences.

Automatically Generated Benchmarks By creating ex-
ecution environments automatically, we address two core
limitations of manually generated repository-level bench-
marks: (i) we can consider many more repositories without
requiring infeasible manual labor, thus improving diversity
and reducing the risk of overfitting and (ii) we can easily
update benchmarks by creating new tasks from recent PRs
and issues, thus ensuring that models are not contaminated
with benchmark instances (see Figures 5 and 6).

SWA-Bench Many practitioners using Code Agents de-
velop software applications that suffer from different types
of bugs compared to libraries due to architectural and struc-
tural differences. As SWE-Bench only considers libraries,
we design SWA-Bench to focus only on applications.

SWEE-Bench We observe that more popular repositories
tend to have higher-quality codebases and issue descrip-
tions. This includes, e.g., a more consistent (file) structure
and naming conventions, better documentation including de-
tailed docstrings for most functions, and issue descriptions
following a precise template (see Figures 7 and 8). As SWE-
Bench focuses on particularly popular Python repositories,
the resulting tasks can be unrepresentative of real-world
use. Therefore, we design SWEE-Bench with a focus on
diverse and less popular (median of 365 vs 16k stars) Python
repositories (see Figure 5).

4.1. Dataset Creation

Source Repositories For SWA-Bench, we combine a list
of 468 popular Python applications (Hashemi, 2024) with
a list of 50 Python projects from Bouzenia et al. (2024b),
leading to a total of 475 candidate repositories after dedu-
plication. For SWEE-Bench, we consider the 8000 most

Table 1. SWEE pipeline from projects to tasks. A PR is valid if it
resolves an issue, modifies a test file, and is merged. An instance
valid, if it has additionally at least one F →P test.

Step # Repos # PRs

Initial Projects 8000
+ GH Repo Found 7057
+ Preprocessing 5097
+ Permissive License 3800
+ Has valid PR 2377
+ SETUPAGENT succeeds 514
+ Get nper_repo valid PRs 2115
+ SETUPAGENT succeeds 1513
+ valid instance 885

downloaded PyPi projects at the time (van Kemenade et al.,
2024) with between 100k and 1.5B monthly downloads and
0 to 25k stars, leading to good diversity while focusing on
relevant projects.

Dataset Creation with SETUPAGENT We combine the
original PR filtering process from Jimenez et al. (2024) with
our SETUPAGENT as follows: For every project, we first
locate the corresponding repository, deduplicate the results,
and filter out repositories that are not published under a
permissive license. We then scrape issues and pull requests
for each repository until we find the most recent PR that
is merged, resolved an issue, and modified a test file. We
call this a valid PR. We then use SETUPAGENT to set up an
execution environment E for the corresponding codebase
R (see Section 3). For repositories where this succeeds, we
scrape additional PRs until we have nper_repo valid ones
or, for SWEE, reach a maximum of 500 PRs. We then use
SETUPAGENT to create the execution environment E for
each corresponding codebase R in reverse chronological
order per repository, populating SETUPAGENT’s reference
commands database to speed up the setup process. Finally,
we split every PR into a reference code patch X∗ and test
patch S∗. We execute the full test suite T ◦ S∗ before
and after the code patch is applied, i.e., on R and R ◦X∗,
respectively, to obtain the reference test behaviors b∗i . We
then filter out PRs, where test execution fails in one of
these settings or which have no F → P test, i.e. ∄ t ∈
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T ◦ S∗ : execE(t, R) → execE(t, R ◦X∗) = F→P . The
remaining PRs form the valid instances of the generated
benchmark. We choose nper_repo = 50 for SWA-Bench
and nper_repo = 10 for SWEE-Bench to obtain the desired
number of tasks and show the number of repositories and
PRs this leads to in Tables 1 and 10, respectively.

Ease of Use To make benchmark generation and use
as easy as possible, SETUPAGENT only requires a list
of repositories to generate a dataset in a format compat-
ible with SWE-Bench along with docker images with
all dependencies installed. We publish SWA-Bench on
HuggingFace and the corresponding docker containers at
logicstarai/swa-bench. A suitable evaluation harness is avail-
able at github.com/logic-star-ai/SWEBench.

Repository Proportion

SWE

SWA

SWEE

Figure 6. Comparison of the repository distribtuion of SWEE-,
SWA-, and SWE-Bench across instances.

4.2. Benchmark Characteristics

Diversity We compare the distribution of instances over
repositories in Figure 6 and observe that while instances in
SWE are heavily concentrated in only a few repositories,
with over 50% of instances belonging to only two out of
12 total repositories, SWA- and SWEE-Bench show much
more diversity with 535 instances from 44 repositories and
885 from 366 repositories. See App. C for a full list.

Codebase Characteristics We compare benchmarks with
respect to codebase characteristics in Table 2 and Figure 5
and observe that SWE-Bench, compared to, SWA- and
especially SWEE-Bench contains significantly older and
more popular (# GitHub stars) repositories and larger, more
complex codebases (# files and # lines of code).

Issue Description Quality To assess the issue description
quality, we measure the number of words, error messages,
and code blocks they contain as well as the overlap between
the files mentioned there and modified in the reference fix
and the overlap between the issue description and the ref-
erence solution itself. We show cumulative distribution
functions (CDFs) of the aforementioned characteristics in
Figure 7. We observe that while SWA-Bench has more
detailed issue descriptions (longer, more code blocks, and
more error messages), they do not seem to be of higher qual-
ity (less overlap with the reference solution and equal file
mentions). Comparing SWE-Bench and SWEE-Bench, we

Table 2. Comparison of mean dataset characteristics.
SWA SWEE SWE

Codebase # Files 899 77 1491
# Lines 112k 14.8k 321k

Issue Descriptions
# Words 240.2 125.1 181.3
# Error Messages 0.20 0.13 0.19
# Code Blocks 1.53 1.19 1.06

Tests

# P →P 564.2 226.6 120.1
# F→P 38.8 38.1 13.5
# F→F 3.7 1.4 3.4
# P →F 0.11 0.03 0.04

Test Patches

# Edited Files 1.89 2.05 1.52
# Edited Lines 74.8 91.5 39.2
# Added Tests 9.10 23.78 6.37
# Removed Tests 16.77 2.49 0.54

Fix Patches # Edited Files 3.26 3.26 1.66
# Edited Lines 104.3 169.9 41.0
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Figure 7. CDFs over issue description characteristics. Number of
words (top left), number of code blocks (top middle), number of
error messages (top right), number of filenames contained in the
issue description and modified in the reference solution (bottom
left), the overlap between the issue description and the reference
solution in terms of longest string match (bottom middle) and
complete lines (bottom right). A CDF further down and to the
right indicates a higher value.

observe longer issue descriptions and slightly more overlap
with the reference solution in SWE-Bench but otherwise
similar characteristics.

Fix Complexity To assess the complexity of required
fixes, we measure the number of lines and files modified in
the reference solution and the number of tests that flip from
passing to failing (and vice versa). We show CDFs in Fig-
ure 8 and observe that while SWEE- and SWA-Bench have
similar distributions across all these metrics, SWE-Bench
fixes are significantly less complex by all metrics.

4.3. Manual Review

While SETUPAGENT ensures that at least 95% of tests pass,
some quality issues may still remain. To assess their fre-
quency and impact, we conduct a manual review focusing
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Figure 8. CDFs over fix-complexity characteristics. Number of
edited lines (left), number of edited files (top middle), number
affected tests, i.e., F →P + P →F (right). A CDF further down
and to the right indicates higher characteristic values.

on two types of issues: (i) dataset quality along the lines of
SWE-Bench Verified (Chowdhury et al., 2024), i.e., whether
the issue is sufficiently well-specified to be resolved with-
out further information and whether the tests are suitable
to check its resolution and (ii) setup success, i.e., whether
SETUPAGENT was able to set up the environment correctly
and run the tests as expected.

Dataset Quality In line with prior work (Chowdhury et al.,
2024), we focus on two main aspects: (i) task specificity, i.e.,
whether the issue is sufficiently well-specified to resolve it
without further information and (ii) test quality, i.e., whether
the added unit tests check for the described behaviour or are
overly specific to concrete implementations such as exactly
matching error messages. We assess both of these criteria on
a scale from 0 to 3, where 0 is the best score and 3 the worst,
using the same annotation guide as Chowdhury et al. (2024).
That is, we scored issue specificity and clarity on a scale of 0
(well-specified issue with clear success criteria) to 3 (almost
impossible to solve correctly without further instructions)
and test quality from 0 (test perfectly covers valid solutions)
to 3 (tests are too narrow or broad or requiring information
not provided in the issue description). On both scales, 0 and
1 are considered acceptable, while 2 and 3 are insufficient.

We conducted a manual review of 30 randomly chosen SWA
instances and observed the following: 21 (70%) instances
have a meaningful and sufficiently complete issue descrip-
tion, and 20 (67%) of these additionally have suitable tests
(27 or 90% across all instances) to check whether the issue
was fixed. This is in line with the results of Chowdhury
et al. (2024) and shows that the majority of issues are solve-
able, with current performance levels still leaving significant
room for improvement, making SWA a suitable benchmark
for current and future code generation systems.

Setup Success To validate the automated assessment used
by SETUPAGENT to determine whether an instance was set-
up correctly, we assess both the extracted setup and testing
steps as follows. (i) We score the setup on a binary scale
of 0 (correct setup that is functionally equivalent with the
described setup and 1 (incorrect setup). (ii) We score testing
on a scale from 0 (functionally equivalent to described test-
ing) to 2 (tests only partially or not at all executed), where

both 0 and 1 are considered acceptable.

We manually review the same 30 instances as above and
observe the following: All instances run the correct tests
with 23 (77%) using exactly the same test commands as
provided in the reference. 22 (73%) of these instances
additionally have a fully correct installation/setup. These
results indicate that SETUPAGENT has no trouble extracting
the correct testing steps, with the setup proving slightly
more challenging but also forgiving considering that 95%
of tests passed despite minor setup errors.

5. Experimental Evaluation
In this Section, we first evaluate the effectiveness of SETU-
PAGENT for dataset creation and then analyze Code Agent
performance across datasets.

5.1. Experimental Setup

Models We consider a range of models across sizes, cost
points, and model providers. For exact versions, see Table 9
in App. A. Unless otherwise specified, we use GPT-4O-
MINI as the underlying model for all agents. For decod-
ing, we use the default parameters for all Code Agents and
greedy decoding for SETUPAGENT.

Code Agents We evaluate three state-of-the-art Code
Agents from the top of the SWE-Bench leaderboard2 which
most likely have been optimized for SWE-Bench (Open-
Hands (Wang et al., 2024b), AutoCodeRover-v2.0 (Zhang
et al., 2024)), and SWE-Agent v1 (Yang et al., 2024a) and
ZeroShot (Jimenez et al., 2024) with oracle context (files
modified in the ground truth fix) and BM25 retrieval which
prompts LLMs directly without any optimization for SWE-
Bench. We report the portion of resolved instances as accu-
racy (Acc.) for all Code Agents.

Code Execution We run all code execution (both for SE-
TUPAGENT and all Code Agents) in separate Docker con-
tainers to improve reproducibility and security. For SETU-
PAGENT, we use an Ubuntu 22.04 container as the base
image and pre-install a range of common build dependen-
cies but do not provide any Python dependencies.

5.2. Effectiveness of SETUPAGENT

We evaluate the effectiveness of SETUPAGENT in creating
SWA- and SWEE-Bench by analyzing the frequency of
fully successful environment and testing setups in Table 3.
We observe SETUPAGENT is able to extract historically
correct execution environments for 20-30% of repositories
without reference commands and for 55-75% of instances

2swebench.com accessed in November 2024
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Table 3. SETUPAGENT success rates at extracting installation and
test commands as well as parsing the resulting test output.

Success

SWA Repos 28.6%
Instances 58.5%

SWEE Repos 21.6%
Instances 71.5%

Table 4. Ablation study on SETUPAGENT, reporting the number of
successfully extracted execution environments for SWA-Bench.

# Repositories

SETUPAGENT 44
only CI/CD Files 33
only Text Files 15
no Iterative Improvement 11

for these repositories. Without reference commands, SE-
TUPAGENT takes 76 minutes to attempt to install all 154
repositories considered for SWA after deduplication and
license checks and thus takes only about 30s on average per
repository. When creating SWEE-Bench, we deactivate the
web browsing ability of SETUPAGENT.

Ablation We evaluate the impact of SETUPAGENT’s com-
ponents in an ablation study on SWA-Bench, reporting
results in Table 4. We observe that especially the use of
CI/CD config files and the iterative improvement are crucial
for SETUPAGENT’s success.

Failure Analaysis To understand SETUPAGENT’s failure
cases, we conduct a small case study, manually inspecting
five failed instances from SWA-Bench, and observe the fol-
lowing: In all instances, errors in the build process cause
the failure. For all but one instance, finding the installation
instructions requires following two or more links on web
pages. In all but two instances, the only described way to test
the application requires running docker containers, which
SETUPAGENT does not support. In two instances, installa-
tion and/or testing requires the use of makefiles, referencing
multiple substeps. Finally, in one instance SETUPAGENT
chooses the wrong requirement file and then begins to in-
stall missing testing dependencies. We believe this points
to exciting future work improving SETUPAGENT’s web-
browsing capabilities and docker support.

5.3. Agent Performance Across Datasets

We conduct all below experiments on the full SWA and
uniformly subsampled versions of SWEE and SWE-Full
of identical size (535 instances) due to cost constraints.

We report Code Agent performance in Table 5 and observe

Table 5. Issue resolution rates (accuracy) of various agents on
SWA-, SWEE-, and SWE-Bench, all with GPT-4O-MINI.

SWA SWEE SWE

Openhands 3.9% 4.4% 4.6%
AutoCodeRover v2 8.4% 9.0% 8.2%
SWE-Agent v1 2.6% 7.5% 7.1%
ZeroShot(Oracle) 0.9% 2.2% 2.8%
ZeroShot(BM25) 1.3% 2.8% 1.5%

surprisingly small differences in performance between all
three datasets when using GPT-4O-MINI for most agents,
with SWE-Agent performing significantly worse on SWA.

To assess the interaction of agent performance and model
selection, we evaluate AutoCodeRover v2 (Zhang et al.,
2024) across a range of LLMs, showing results in Table 6.
Interestingly, we observe a large variance in the accuracy
difference between SWE and SWA across models. While
GPT-4O-MINI performs similarly well on all benchmarks,
all other models perform much better on SWEE- and even
better on SWE-Bench. We show later that this may be due
to lower performances for instances created after the models
knowledge cutoff.

Table 6. Performance of AutocodeRover v2 (Zhang et al., 2024)
using different underlying LLMs.

SWA SWEE SWE

GPT-4O-MINI 8.4% 9.0% 8.2%
GPT-4O 10.2% 15.1% 16.6%
HAIKU-3.5 10.8% 12.9% 13.6%
LLAMA 3.3 70B 8.8% 10.8% 12.5%
QWEN2.5 † 3% 2% 4%
DEEPSEEK V3 † 8% 13% 26%

† Evaluated on 100 random instances.

5.4. Benchmark Analaysis

In Section 4, we observed interesting distributional dif-
ferences between the instance characteristics of SWA-,
SWEE-, and SWE-Bench. Now, we explore how these
characteristics correlate with agent performance, reporting
Spearman’s rank correlation coefficients ρ and p-values for
AutoCodeRover v2 and GPT-4O in Table 7. We observe
that only characteristics computed with knowledge of the
solution have a statistically significant correlation with per-
formance. In particular, the overlap of the issue with the
reference code patch in terms of file names, and number
of lines has a strong positive correlation with performance,
while all fix complexity metrics have a strong negative cor-
relation with performance.

Data Contamination We analyze the accuracy (Acc) of
AutoCodeRover v2 on SWA- and SWEE-Bench, depend-
ing on whether a PR was created before or after a model’s
knowledge cutoff (KC), showing results in Table 8. We re-
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Table 7. Spearman’s rank correlation coefficients ρ and p-value be-
tween accuracy and instance characteristics, separated by whether
statistic can be computed without axes to ground truth. Statistically
significant (p < 1%) correlations are highlighted in bold. Positive
ρ indicate that a larger characteristic value is associated with better
performance.

Characteristic
SWA SWEE SWE

ρ p-value ρ p-value ρ p-value

Repo Age -0.06 2.0× 10−1 -0.02 5.8× 10−1 -0.02 7.0× 10−1

# GitHub Stars -0.03 4.8× 10−1 -0.02 7.2× 10−1 0.07 1.3× 10−1

# Words in Issue -0.06 1.8× 10−1 0.00 9.6× 10−1 0.01 7.7× 10−1

# Code Blocks in Issue 0.00 9.7× 10−1 0.04 3.4× 10−1 -0.06 1.7× 10−1

# Error Messages in Issue 0.03 4.6× 10−1 0.09 3.7× 10−2 -0.04 3.5× 10−1

# Fix File Names in Issue 0.12 4.5× 10−3 0.19 1.2× 10−5 0.18 2.5× 10−5

Longest Fix Substring in Issue -0.04 3.7× 10−1 -0.11 1.1× 10−2 0.04 3.1× 10−1

# Fix Lines in Issue 0.09 3.7× 10−2 0.06 1.7× 10−1 0.17 1.1× 10−4

# Lines in Fix -0.28 5.0× 10−11 -0.40 1.3× 10−21 -0.28 6.2× 10−11

# Files in Fix -0.12 6.2× 10−3 -0.26 1.6× 10−9 -0.16 1.4× 10−4

# Affected Tests -0.18 3.3× 10−5 -0.25 4.0× 10−9 -0.15 7.2× 10−4

Table 8. Accuracy of AutocodeRover v2 (Zhang et al., 2024) on
SWA-Bench instances split between those created before and
after the model’s knowledge cutoff (KC) and the p-value of the
underlying resolution rate being the same or higher after the KC.

Dataset Model # after KC Acc before KC Acc after KC p-value

SWA
GPT-4O-MINI 249 9.4% 7.2% 17.90%
GPT-4O 249 12.2% 7.2% 2.65%
HAIKU-3.5 44 11.0% 9.1% 34.83%

SWEE
GPT-4O-MINI 230 8.2% 10.0% 76.50%
GPT-4O 230 15.4% 15.2% 47.56%
HAIKU-3.5 102 13.6% 9.8% 15.01%

port the (one-sided) p-value of observing these results under
the null hypothesis that the success rate is not lower after the
KC (computed using a t-test and normal approximation of
the binomial distribution). We observe that on SWA-Bench
all considered models have a lower success rate after the
KC with the difference being statistically significant only
for GPT-4O. Interestingly, we observe no such signs on
SWEE-Bench which contains much less popular projects
and is thus less prone to contamination. While all SWE
instances are too old to conduct a similar analysis, we ob-
serve that the performance delta between SWE and SWA is
correlated with the drop in accuracy over the KC on SWA.

6. Conclusion
We introduced SETUPAGENT, the first method for auto-
mated and historically accurate execution environment setup
for Python codebases. SETUPAGENT enables us to cre-
ate repository-level code benchmarks fully automatically
from a list of GitHub repositories. We demonstrated its
effectiveness by creating two new benchmarks, SWA- and
SWEE-Bench, focusing on applications and diversity of
codebases, respectively, and addressing several limitations
of existing repository-level code benchmarks. In particular,
their automated generation allows us to consider many more
repositories, increasing diversity and reducing the risk of
overfitting, and update the benchmarks over time, minimiz-
ing the risk of data contamination.

We extensively analyzed SWA- and SWEE-Bench, observ-
ing significant distributional differences compared to SWE-
Bench in fix-complexity characteristics that are strongly
correlated with agent success. We further found statisti-
cally significant performance degradation for SWA-Bench
instances created after the knowledge cutoff for one model.
Together, these findings highlight the importance of eval-
uating on diverse, representative, and frequently updated
benchmarks and thus the value of our automated bench-
mark generation approach. We believe SETUPAGENT can
facilitate this by enabling practitioners to quickly turn their
specific target domain into a high-quality representative
benchmark.

Impact Statement
This paper presents work advancing Code Agent evaluation
and may thus amplify all positive and negative societal im-
pacts of improved Code Agents. Our work shows that eval-
uating Code Agents on diverse and up-to-date benchmarks
is critical to obtain representative results, with SWE-Bench
(and even more SWE -VERIFIED) consisting of unusually
easy problems. These findings may relativize some recent
predictions of code agents soon replacing human software
developers and show that the field is still far from achieving
this goal. Beyond this, our work on automated execution
environment setup has the goal of advancing the field of
Machine Learning for code more generally. There are many
potential additional societal consequences of our work, none
of which we feel must be specifically highlighted here.
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A. Appendix: Experiments
Below, we provide the exact model versions we used in Table 9.

Table 9. LLM Details inlcuding Knowledge Cutoff (KC)

Model Name Model ID API Provider KC Reference

GPT-4O gpt-4o-2024-08-06 OpenAI Oct 2023 OpenAI (2025)
GPT-4O-MINI gpt-4o-mini-2024-07-18 OpenAI Oct 2023 OpenAI (2025)
HAIKU-3.5 claude-3-5-haiku-20241022 Anthropic Jul 2024 Anthropic (2024)
DEEPSEEK V3 DeepSeek-V3 TogetherAI - Liu et al. (2024)
LLAMA 3.3 70B Meta-Llama-3.3-70B-Instruct-Turbo TogetherAI Dec 2023 Grattafiori et al. (2024)
QWEN2.5 Qwen2.5-72B-Instruct-Turbo TogetherAI Qwen Team (2024)

A.1. Ablations

Table 11. Repeatability of SETUPAGENT

Run Successes Symmetric Difference to Run 1

1 27 -
2 27 0
3 26 1

Repeatability While benchmarks need only be constructed once
and thus the repeatability of SETUPAGENT has no impact on the
value and repeatability of benchmark’s it creates, repeatability is an
important aspect for the usability of such a system. Therefore, we
conducted an experiment running SETUPAGENT three times on 100
random candidate repositories from SWEE in a setup like for Table 5.
We show results in Table 11, where we report the number of successfully installed repositories and the symmetric difference
in installed repositories compared to the first run. We find that SETUPAGENT is highly repeatable, with only one repository
being installed in the first and second run that was not installed in the third run.

B. Appendix: Prompts
In this Section, we provide the full-length prompts used by SETUPAGENT.
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Table 10. SWA pipeline from projects to tasks. A PR is valid if it resolves an issue, modifies a test file, and is merged. An instance valid,
if it has additionally at least one F →P test.

Step # Repos # PRs

Initial Projects 475
+ GH Repo Found 440
+ Preprocessing 427
+ Permissive License 227
+ Has valid PR 154
+ SETUPAGENT succeeds 44
+ Get up to 50 valid PRs 1527
+ SETUPAGENT succeeds 893
+ valid instance 535

Prompt to suggest relevant files

You are a senior developer contributing to the www.github.com/<repo_id>
project by solving issues. You have created a Docker environment with
Ubuntu, and now you want to install the repository in development mode
(meant for active development and testing) and run the tests. The first
step is to locate the installation instructions and the test commands.
I will provide you a list of filenames or file paths (e.g., README.md,
contributing.md), which typically include instructions for installation
and testing. The files can be either filenames (e.g., README.md) or file
paths (e.g., docs/maintaining/installing/install-from-source.rst). From the
provided list of filenames or file paths your task is: 1. Identify those
likely related to installation or testing based on their names. 2. Exclude
those that are clearly irrelevant. 3. If unsure, include the file/path in
your response. 4. Return only the files/paths from the given list, exactly
as they appear, without modifying their names or structure 5. If a full
path is given, return the full path, not just the filename. 6. Use the
following format for your response <ANSWER>: file 1, ...file n, filepath 1,
...filepath k
<REASONING>: <YOUR REASONING>
Example input:
‘‘‘
readme.md, contributing.md, contributors.md,
docs/maintaining/installing/install-from-source.rst,
docs/source/lib/install_datatypes.rst,
docs/html/ux-research-design/contribute.md
‘‘‘
A reasonable output is:
‘‘‘
<ANSWER>: readme.md, contributing.md,
docs/maintaining/installing/install-from-source.rst,
<REASONING>: The files readme.md and contributing.md
commonly contain installation and testing instructions, while
docs/maintaining/installing/install-from-source.rst is likely related to
installation as the name suggests
‘‘‘
Here are the file names
‘‘‘
<file 1>, <file 2>, ..., <file k>
‘‘‘
Please read the names carefully, ask yourself the purpose of each file based
on the name before including it in your response. Use the given format for
your answer and please do not add any extra comment or text.

Figure 9. Prompt for choosing relevant files to installation and testing
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Prompt to suggest external sources of information

You are a senior developer contributing to the GitHub project at
www.github.com/<repo_id> by solving issues. Your goal is to install the
repository in development mode and run its tests.
You have created a Docker environment with Ubuntu, and now you are searching
for the installation instructions and test commands.
I will provide you with the content of common repository files (e.g.,
README.md, CONTRIBUTING.md). Your task is to analyze the provided text
and identify all external links that contain relevant information to
1. Installation instructions for this project.
2. Test commands or instructions for running the tests for this project.
3. Contribution guidelines.

Please provide the links you found following the criteria below.
a. Exclude links to generalpurpose documentation for external tools (e.g.,
Tox, Pytest, or other frameworks/libraries).
b. If you are unsure about the relevance of a link, better include it.
c. Order the links from most to least relevant.
d. Do not add any comment or text.
e. Use the following format:
LINK: <LINK 1>
LINK: <LINK 2>
...LINK: <LINK n>
Here is the text:
’’’
<text_content>
’’’

Figure 10. Prompt to suggest potentially relevant external sources

Prompt to determine importance of a url content

You are a senior developer working on the GitHub project at
www.github.com/<repo_id>. You have set up a Docker environment with Ubuntu,
and now your goal is to install the repository in development mode and run
its tests.
Your task is to carefully review the content of the following link:
<current_link>, and determine if it includes installation instructions or
test commands for the <repo_id> project.
Please follow these steps:
1. Look carefully in the provided content for any potential installation
commands or test commands related to the <repo_id> project.
2. Ask yourself if the located instructions are reasonable, legitimate
and can be practically executed to install or to test the <repo_id> project
only.
Please provide your answer using the following format:
INSTALLATION/TEST COMMANDS: <TRUE|FALSE>
REASONING: <REASONING>
**Important Notes**
Answer with TRUE only if the content explicitly includes valid and usable

installation or test commands.
If you do not find any relevant commands, or if the instructions are

vague, ambiguous, impractical, or unrelated answer FALSE.
When in doubt, answer FALSE.

Content of the link <current_link>:
’’’
<clean_content> ’’’

Figure 11. Prompt for determining if a link is relevant to installation and testing in the extraction phase of the SETUPAGENT
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Extract Install Command Prompt

You are a senior developer working on the project located at
www.github.com/<repo_id>. You have created a Docker environment with
Ubuntu, cloned the repository, and navigated to the directory <repo_dir>.
Your next step is to install the project in development mode, which is
intended for active development and testing. I’ll provide you with
important text files (e.g., README.md) and important continuous integration
(CI) configuration files, which typically contain instructions for
developers on installation and testing. The format provided will be the
file name followed by its content.
Your task is to identify and return the bash commands necessary for the
correct installation of the repository. This includes system dependencies,
project installation in development mode, and any prerequisites or
configuration commands.

** IMPORTANT NOTES **
1. Include system dependencies installation commands required for the
project (e.g., via apt, yum, curl, etc.).
2. Include installation commands necessary for setting up the project in
development mode.
3. Include prerequisites installation and configuration commands, such as
those for npm or any other required setup.
3. If comprehensive installation instructions are provided, return them
without any modifications.
4. Only exclude commands related to creating or activating virtual
environments.

The returned commands should meet the following criteria:
1. Enclosed in quotes.
2. Focused strictly on commands necessary for both system dependency
installation and development-mode installation of the project.
3. Free from any comments or text.
4. Accurate and executable without errors.

If no installation commands are present, return NONE.
Here is the text:
‘‘‘
<context>
‘‘‘
Take your time to carefully analyze the content. Make sure that your
response includes only the necessary installation bash commands. Ask
yourself if the provided content is sufficient for installation. And for
each command, ask yourself what’s the purpose of the command and if it is
necessary.
An example of the expected response is:
‘‘‘bash
install_command_1
install_command_2
‘‘‘
Please provide the installation commands in the above specified format.

Figure 12. Prompt used for extraction of installation commands in extraction phase of SETUPAGENT
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Extract Test Command Prompt

You are a senior developer working on the www.github.com/<repo_id> project.
You have created a Docker environment with Ubuntu, cloned the repository,
and installed it in development mode (meant for active development and
testing).
You are now inside the <repo_dir> directory and your next goal is to run
the unit tests. I will provide you with some important text files (e.g.,
README.md) and important continuous integration (CI) congiguration files,
which typically include instructions for running tests. The format provided
will be the file name followed by its content.
Your task is to identify and return the exact bash commands required to run
the tests.
The returned commands should meet the following criteria:
1. Enclosed in quotes.
2. Free from any comments or text.
3. Accurate and executable without errors.
If no test commands are present, return NONE.
Here is the text:
‘‘‘
<context>
‘‘‘
Take your time to analyze the content carefully. Ensure that only the
necessary bash commands for running the tests are included. Ask yourself
the purpose of each command before including it in your response.
An example of the expected response is:
‘‘‘bash
test_command_1
test_command_2
‘‘‘
Please provide the test commands in the above specified format.

Figure 13. Prompt used for extraction of test commands in the extraction phase of SETUPAGENT
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Prompt for determining error causes

You are a developer working on the project at www.github.com/<repo_id>. You
created an environment with python version <python_version>. Your goal is
to install the repository in development mode (meant for active development
and testing) and run the unit tests.
The installation commands are:
‘‘‘bash
<install_command_1>
<install_command_2>
...
<install_command_k>
‘‘‘
The testing commands are:
‘‘‘bash
<test_command_1>
<test_command_2>
...
<test_command_k>
‘‘‘
You received the following error message after executing the command
<error_command>:
’’’
<error_message>
’’’
Your task is to analyze the error message and determine its causes.
You can return one of the following answers:
1. <PYTHON>, if the error is caused by incompatibilities between the python
version and any used package.
2. <INSTALLATION>, if the error is caused by an installation command or is
related to any missing package, regardless if it a testing related framework
or not. All the required packages must be installed in the installation
phase.
3. <TESTING>, if the error is caused by any testing command (e.g., an
invalid flag in the test command)
4. <UNDECIDABLE>, if you cannot determine what causes the error.
Please read the error message carefully and try to spot the commands that
are responsible for the error. Always provide the reasoning for your
answer.
Use the following format:
RESULT: <PYTHON, INSTALLATION, TESTING, UNDECIDABLE>
REASONING: <YOUR REASONING>

Figure 14. Prompt for determining the error cause in the iterative improvement phase of the SETUPAGENT

17



Automated Benchmark Generation for Repository-Level Coding Tasks

Prompt for fixing python version

You are a senior developer working on the project at
www.github.com/<repo_id>. Your goal is to install the repository in
development mode (meant for active development and testing) and run the
unit tests.
You created an environment with python version <python_version>, but you are
unsure if the python version is correct.
You received the following error message while testing the repository:
’’’
<error_message>
’’’
A senior software developer colleague has provided an explanation of why
things are not working as expected with the current commands:
<Reasoning from the answer to the prompt for determining the error cause>.
Use his reasoning to resolve the current error we are facing.
Your task is to determine a compatible Python version for the current state
of the repository. Carefully read the error message and identify the most
suitable Python version.
Please follow this answer format:
1. Return <NONE> if the error is unrelated to the Python version or you
cannot determine a compatible version.
2. If a specific Python version is compatible, return only the version
number (e.g., 2̈.7)̈.
3. Do not include any additional comments or text in your response.

Figure 15. Prompt for fixing python version used in the iterative improvement phase of SETUPAGENT

Prompt for fixing installation commands 1

You are a senior developer working on the project at
www.github.com/<repo_id>. You are working in an enviroment with python
version <python_version>. You have attempted to install the repository
in development mode (meant for active development and testing) using the
following bash commands:
‘‘‘bash
<install_command_1>
<install_command_2>
...
<install_command_n>
‘‘‘
However, the command <error_command> failed and we received the following
error message:
’’’
<error_message> ’’’
Your task is to fix the above error. Think carefully what causes the error
and try to spot the commands that are responsible for it. Please provide
the updated installation steps in a bash code block, following these rules:
1. You have to use always uv pip instead of regular pip.
2. Return <NONE> if you can not fix the command.
3. Do not add any comments or text.
For example:
‘‘‘bash
apt-get install -y <package_name>
uv pip install -r requirements.txt
‘‘‘

Figure 16. Prompt for fixing the installation commands used in the iterative improvement phase of SETUPAGENT when the error occurs in
the building process of containers
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Prompt for fixing installation commands 2

You are a senior developer working on the project at
www.github.com/<repo_id>. You tried to install the repository in
development mode, which is intended for active development and testing,
however the installation failed.
You are working in an enviroment with python version <python> and you tried
to use the following bash commands for the installation:
‘‘‘bash
<install_command_1>
<install_command_2>
...
<install_command_n>
‘‘‘
During the execution of these commands, you received the following error
message: ’’’
<error_message> ’’’
A senior software developer colleague has provided an explanation of why
things are not working as expected with the current commands:
<Reasoning from the answer to the prompt for determining the error cause>.
Use his reasoning to resolve the current error we are facing.
Your task is to carefully read the error message and determine which
commands are causing the error. Reason about every command if it is causing
the error. If you conclude that the problem is related to any of the
commands, update the installation bash script to solve the problem. Note
that you can also add new commands to fix the problem. If you decide to
update the installation bash script you have to follow these rules:
1. Provide the updated installation steps in a bash code block.
2. Use uv pip instead of regular pip.
2. Return NONE if the error is not related to the installation steps or you
are not able to fix it.
3. Do not add any comments or text.
For example:
The initial installation command is:
‘‘‘bash
uv pip install ˙
‘‘‘
However, the error message states that the <package_name> package is not
installed. Then you would update the installation command to:
‘‘‘bash
uv pip install ˙
uv pip install <package_name> ‘‘‘

Figure 17. Prompt for fixing the installation commands used in the iterative improvement phase of SETUPAGENT
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Prompt for fixing testing commands

You are a senior developer working on the project at
www.github.com/<repo_id>. You installed the repository in an enviroment
with python version <python_version> and now you are trying to run the unit
tests.
You run the tests using the following bash commands:
‘‘‘bash
<test_command_1>
<test_command_2>
...
<test_command_k>
‘‘‘
However, at the moment we receive the following error message:
’’’ <error_message> ’’’
A senior software developer colleague has provided an explanation of why
things are not working as expected with the current commands:
<Reasoning from the answer to the prompt for determining the error cause>.
Use his reasoning to resolve the current error we are facing.
Your task is to read the produced error message carefully, determine what
the problem is and try to fix it. Ask yourself which test command could
cause this problem. If you conclude that the problem is related to the test
commands, update the test commands to solve the problem.
Please provide the updated test commnds in a bash code block, following
these rules:
1. You have to always use uv pip instead of regular pip.
2. Return NONE if the error is not related to the test command or you
cannot fix it.
3. Do not add any comments or text.
4. Add a command only if you are sure that it is correct.
For example: The initial testing command was:
‘‘‘bash
pytest test_file.py run all ‘‘‘ However, if in this case we would need the
flag ’-v’ and the maximal number of failing tests to be 1, we would have to
correct the command to:
‘‘‘bash
pytest test_file.py maxfail=1 v ‘‘‘

Figure 18. Prompt for fixing the installation commands used in the iterative improvement phase of SETUPAGENT
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C. Appendix – Dataset Details
Below, we list all repositories along with the number of corresponding tasks in SWA-Bench.

SWA-Bench– Repositories

1. iterative/dvc - 42

2. streamlink/streamlink - 35

3. spack/spack - 35

4. PrefectHQ/prefect - 34

5. xonsh/xonsh - 32

6. mitmproxy/mitmproxy - 31

7. python-pillow/Pillow - 29

8. mkdocs/mkdocs - 23

9. hynek/structlog - 22

10. pallets/click - 21

11. locustio/locust - 20

12. jpadilla/pyjwt - 17

13. elastic/elasticsearch-dsl-py - 17

14. pallets-eco/wtforms - 17

15. ipython/ipython - 16

16. python-poetry/poetry - 15

17. conan-io/conan - 15

18. sabnzbd/sabnzbd - 14

19. Zulko/moviepy - 14

20. nvbn/thefuck - 12

21. arrow-py/arrow - 11

22. benoitc/gunicorn - 8

23. cookiecutter/cookiecutter - 8

24. pypa/pipenv - 7

25. graphql-python/graphene - 6

26. pypa/bandersnatch - 5

27. AtsushiSakai/PythonRobotics - 4

28. hynek/doc2dash - 3

29. PythonCharmers/python-future - 3

30. aimhubio/aim - 2

31. dbcli/pgcli - 2

32. geopython/pycsw - 2

33. dbader/schedule - 2

34. kibitzr/kibitzr - 1

35. getnikola/nikola - 1

36. geopy/geopy - 1

37. Maratyszcza/PeachPy - 1

38. gawel/pyquery - 1

39. Suor/funcy - 1

40. simonw/datasette - 1

41. cowrie/cowrie - 1

42. pypa/pip - 1

43. StevenBlack/hosts - 1

44. jupyter/nbgrader - 1

Below, we list all repositories along with the number of corresponding tasks in SWEE-Bench.
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SWEE-Bench– Repositories Part I

1. python-attrs/attrs - 9

2. dgasmith/opt_einsum - 9

3. jazzband/tablib - 8

4. MartinThoma/flake8-simplify - 8

5. matthewwithanm/python-markdownify - 8

6. stephenhillier/starlette_exporter - 8

7. sciunto-org/python-bibtexparser - 8

8. davidhalter/parso - 8

9. marshmallow-code/flask-smorest - 7

10. adamchainz/blacken-docs - 7

11. MarketSquare/robotframework-tidy - 7

12. lundberg/respx - 7

13. seperman/deepdiff - 7

14. Stranger6667/hypothesis-graphql - 7

15. cantools/cantools - 7

16. didix21/mdutils - 7

17. marshmallow-code/apispec - 7

18. softlayer/softlayer-python - 6

19. gorakhargosh/watchdog - 6

20. pygments/pygments - 6

21. dask-contrib/dask-histogram - 6

22. andialbrecht/sqlparse - 6

23. mirumee/ariadne - 6

24. tableau/tabcmd - 6

25. gerrymanoim/exchange_calendars - 5

26. snowplow/snowplow-python-tracker - 5

27. joerick/pyinstrument - 5

28. scikit-rf/scikit-rf - 5

29. matthewwardrop/formulaic - 5

30. laspy/laspy - 5

31. python-control/python-control - 5

32. mwouts/itables - 5

33. AzureAD/microsoft-authentication-library-for-python
- 5

34. firebase/firebase-admin-python - 5

35. ethereum/eth-account - 5

36. davidhalter/jedi - 5

37. agronholm/typeguard - 5

38. Delgan/loguru - 5

39. pytransitions/transitions - 5

40. lovasoa/marshmallow_dataclass - 5

41. aio-libs/yarl - 5

42. PyCQA/pyflakes - 5

43. python/importlib_metadata - 5

44. konradhalas/dacite - 5

45. ilevkivskyi/typing_inspect - 5

46. jupyter/jupyter_core - 5

47. getsentry/responses - 5

48. beartype/plum - 4

49. open2c/bioframe - 4

50. developmentseed/morecantile - 4

51. nats-io/nats.py - 4

52. nipy/nipype - 4

53. python-quantities/python-quantities - 4

54. stac-utils/pystac-client - 4

55. luolingchun/flask-openapi3 - 4

56. sayanarijit/expandvars - 4

57. jpadilla/pyjwt - 4

58. NowanIlfideme/pydantic-yaml - 4

59. john-kurkowski/tldextract - 4

60. geopandas/geopandas - 4

61. cloudevents/sdk-python - 4

62. jupyter/nbformat - 4

63. matthew-brett/delocate - 4

64. iterative/shtab - 4

65. jsonpickle/jsonpickle - 4

66. ethereum/eth-utils - 4

67. mhe/pynrrd - 4

68. adamjstewart/fiscalyear - 4

69. pytest-dev/pytest-xdist - 4

70. facelessuser/wcmatch - 4

71. scikit-hep/awkward - 4

72. tomplus/kubernetes_asyncio - 4

73. ipython/traitlets - 4

74. David-Wobrock/sqlvalidator - 4

75. omry/omegaconf - 4

76. python-lsp/python-lsp-server - 4

77. cogeotiff/rio-tiler - 3

78. wjohnson/pyapacheatlas - 3
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SWEE-Bench – Repositories Part II

79. adamchainz/django-htmx - 3

80. mwclient/mwclient - 3

81. executablebooks/sphinx-book-theme - 3

82. scikit-hep/vector - 3

83. patrick-kidger/equinox - 3

84. christiansandberg/canopen - 3

85. regebro/pyroma - 3

86. nephila/giturlparse - 3

87. cookiecutter/cookiecutter - 3

88. serge-sans-paille/pythran - 3

89. tomasvotava/fastapi-sso - 3

90. jsvine/pdfplumber - 3

91. scrapy/protego - 3

92. SmileyChris/django-countries - 3

93. cscorley/whatthepatch - 3

94. pythological/kanren - 3

95. pypa/virtualenv - 3

96. fastavro/fastavro - 3

97. marshmallow-code/marshmallow-sqlalchemy -
3

98. gazpachoking/jsonref - 3

99. lepture/mistune - 3

100. scikit-learn-contrib/category_encoders -
3

101. simonw/sqlite-utils - 3

102. executablebooks/mdit-py-plugins - 3

103. tsutsu3/linkify-it-py - 3

104. hhatto/autopep8 - 3

105. cubewise-code/mdxpy - 3

106. joblib/joblib - 3

107. python-trio/trio-typing - 3

108. nalepae/pandarallel - 3

109. tableau/server-client-python - 3

110. r1chardj0n3s/parse - 3

111. ipython/ipython - 3

112. pypa/readme_renderer - 3

113. jaraco/zipp - 3

114. docker/docker-py - 3

115. joshy/striprtf - 3

116. googleapis/python-pubsub - 3

117. TylerYep/torchinfo - 3

118. scrapy/w3lib - 3

119. googleapis/google-auth-library-python-oauthlib
- 3

120. agronholm/cbor2 - 3

121. weiwei/junitparser - 3

122. conan-io/conan - 3

123. python/importlib_resources - 3

124. timvink/mkdocs-git-authors-plugin - 3

125. agronholm/exceptiongroup - 3

126. magmax/python-inquirer - 3

127. PrefectHQ/prefect - 3

128. Yelp/detect-secrets - 3

129. Chilipp/autodocsumm - 3

130. jaraco/keyring - 3

131. Pylons/waitress - 3

132. pypa/setuptools - 3

133. barrust/pyspellchecker - 2

134. bluesky/ophyd - 2

135. OpenMath/py-openmath - 2

136. readthedocs/sphinx-notfound-page - 2

137. canonical/operator - 2

138. ekzhu/datasketch - 2

139. dhatim/python-license-check - 2

140. Shoobx/xmldiff - 2

141. ewels/rich-click - 2

142. jaraco/path - 2

143. yu-iskw/dbt-artifacts-parser - 2

144. symerio/pgeocode - 2

145. daggaz/json-stream - 2

146. jazzband/dj-database-url - 2

147. nipunsadvilkar/pySBD - 2

148. adamchainz/django-linear-migrations - 2

149. mwouts/jupytext - 2

150. MrBin99/django-vite - 2

151. ml31415/numpy-groupies - 2

152. regebro/svg.path - 2

153. gmr/flatdict - 2

154. aws-samples/sample-python-helper-aws-appconfig
- 2

155. behave/behave - 2
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SWEE-Bench – Repositories Part III

156. thesimj/envyaml - 2

157. codingjoe/django-select2 - 2

158. allisson/python-simple-rest-client - 2

159. christianhelle/autofaker - 2

160. esphome/aioesphomeapi - 2

161. oauthlib/oauthlib - 2

162. rustedpy/result - 2

163. graphql-python/graphene - 2

164. benmoran56/esper - 2

165. eerimoq/bincopy - 2

166. keleshev/schema - 2

167. PyCQA/flake8 - 2

168. kjd/idna - 2

169. jupyter/nbconvert - 2

170. scikit-hep/hist - 2

171. spulec/freezegun - 2

172. jupyter/nbclient - 2

173. PythonCharmers/python-future - 2

174. tortoise/pypika-tortoise - 2

175. rthalley/dnspython - 2

176. mkaranasou/pyaml_env - 2

177. terraform-compliance/cli - 2

178. googleapis/python-firestore - 2

179. googleapis/python-api-core - 2

180. scrapy/cssselect - 2

181. python-humanize/humanize - 2

182. jdepoix/youtube-transcript-api - 2

183. dedupeio/dedupe - 2

184. databricks/databricks-cli - 2

185. bluesky/event-model - 2

186. workos/workos-python - 2

187. kynan/nbstripout - 2

188. assertpy/assertpy - 2

189. dbt-labs/hologram - 2

190. sendgrid/python-http-client - 2

191. keis/base58 - 2

192. attwad/python-osc - 2

193. wireservice/csvkit - 2

194. adamchainz/time-machine - 2

195. MagicStack/immutables - 2

196. vinitkumar/json2xml - 2

197. frispete/keyrings.cryptfile - 2

198. swansonk14/typed-argument-parser - 2

199. scottwernervt/favicon - 2

200. slackapi/python-slack-sdk - 2

201. nginxinc/crossplane - 2

202. hetznercloud/hcloud-python - 2

203. dbader/schedule - 2

204. amplify-education/python-hcl2 - 2

205. jazzband/contextlib2 - 2

206. theskumar/python-dotenv - 2

207. raimon49/pip-licenses - 2

208. locustio/locust - 2

209. astanin/python-tabulate - 2

210. alecthomas/voluptuous - 2

211. django-crispy-forms/crispy-bootstrap5 - 2

212. geospace-code/pymap3d - 2

213. tedder/requests-aws4auth - 2

214. pyvisa/pyvisa-py - 1

215. nithinmurali/pygsheets - 1

216. mlenzen/collections-extended - 1

217. emcconville/wand - 1

218. rsalmei/alive-progress - 1

219. rycus86/prometheus_flask_exporter - 1

220. fastapi-users/fastapi-users - 1

221. google/mobly - 1

222. scrapy/itemadapter - 1

223. ncclient/ncclient - 1

224. google/duet - 1

225. di/calver - 1

226. beancount/smart_importer - 1

227. bridgecrewio/python-hcl2 - 1

228. construct/construct - 1

229. devrimcavusoglu/pybboxes - 1

230. richardpenman/whois - 1

231. cvxpy/cvxpy - 1

232. elastic/ecs-logging-python - 1

233. pythonarcade/pytiled_parser - 1

234. astropy/extension-helpers - 1
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SWEE-Bench – Repositories Part IV

235. SAP/python-pyodata - 1

236. Azure/azure-functions-durable-python - 1

237. IdentityPython/djangosaml2 - 1

238. jwodder/check-wheel-contents - 1

239. Zulko/moviepy - 1

240. xhtml2pdf/xhtml2pdf - 1

241. cknd/stackprinter - 1

242. guillp/jwskate - 1

243. jmcarp/flask-apispec - 1

244. timofurrer/colorful - 1

245. miso-belica/sumy - 1

246. kvesteri/intervals - 1

247. marcotcr/lime - 1

248. wkentaro/gdown - 1

249. realpython/codetiming - 1

250. jaraco/tempora - 1

251. jendrikseipp/vulture - 1

252. pycontribs/ruyaml - 1

253. albumentations-team/albumentations - 1

254. nose-devs/nose2 - 1

255. jongracecox/anybadge - 1

256. patrys/httmock - 1

257. maxfischer2781/asyncstdlib - 1

258. pgzip/pgzip - 1

259. arvkevi/kneed - 1

260. rasterio/affine - 1

261. circus-tent/circus - 1

262. xchwarze/samsung-tv-ws-api - 1

263. jaraco/portend - 1

264. fabiocaccamo/python-benedict - 1

265. numpy/numpy-financial - 1

266. praw-dev/prawcore - 1

267. scipy/oldest-supported-numpy - 1

268. logtail/logtail-python - 1

269. polkascan/py-scale-codec - 1

270. Knio/pynmea2 - 1

271. jazzband/django-configurations - 1

272. allenai/cached_path - 1

273. click-contrib/click-aliases - 1

274. Pylons/hupper - 1

275. cloudscale-ch/cloudscale-python-sdk - 1

276. alessandromaggio/pythonping - 1

277. imageio/imageio-ffmpeg - 1

278. podhmo/python-node-semver - 1

279. netbox-community/pynetbox - 1

280. kumar303/mohawk - 1

281. SpamScope/mail-parser - 1

282. perrygeo/python-rasterstats - 1

283. pahaz/sshtunnel - 1

284. python-hyper/h11 - 1

285. razorpay/razorpay-python - 1

286. zeroSteiner/rule-engine - 1

287. mocobeta/janome - 1

288. glut23/webvtt-py - 1

289. benoitc/gunicorn - 1

290. mcmtroffaes/pybtex-docutils - 1

291. alexmojaki/executing - 1

292. sigmavirus24/github3.py - 1

293. ccpem/mrcfile - 1

294. csinva/imodels - 1

295. click-contrib/click-help-colors - 1

296. srossross/rpmfile - 1

297. hgrecco/pint - 1

298. django-ses/django-ses - 1

299. gmr/pamqp - 1

300. spotify/annoy - 1

301. PyCQA/pycodestyle - 1

302. regebro/tzlocal - 1

303. mapado/haversine - 1

304. scientific-python/lazy-loader - 1

305. grappa-py/grappa - 1

306. flexmock/flexmock - 1

307. jg-rp/liquid - 1

308. prompt-toolkit/python-prompt-toolkit - 1

309. jaraco/jaraco.context - 1

310. aio-libs/multidict - 1

311. rsheftel/pandas_market_calendars - 1
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312. mkdocs/mkdocs - 1

313. websocket-client/websocket-client - 1

314. DataDog/datadog-lambda-python - 1

315. iterative/dvclive - 1

316. cogeotiff/rio-cogeo - 1

317. erikrose/parsimonious - 1

318. facelessuser/pymdown-extensions - 1

319. pypa/build - 1

320. mkdocs/mkdocs-redirects - 1

321. dlint-py/dlint - 1

322. klen/peewee_migrate - 1

323. afq984/python-cxxfilt - 1

324. kinverarity1/lasio - 1

325. Turbo87/utm - 1

326. django/daphne - 1

327. executablebooks/sphinx-design - 1

328. interpretml/slicer - 1

329. google/yapf - 1

330. sensein/etelemetry-client - 1

331. MKuranowski/aiocsv - 1

332. executablebooks/sphinx-tabs - 1

333. pexpect/pexpect - 1

334. pythological/etuples - 1

335. frankie567/httpx-oauth - 1

336. sarugaku/resolvelib - 1

337. python273/telegraph - 1

338. boolangery/py-lua-parser - 1

339. Electrostatics/mmcif_pdbx - 1

340. pyca/service-identity - 1

341. diff-match-patch-python/diff-match-patch -
1

342. xlwings/jsondiff - 1

343. mapbox/cligj - 1

344. cthoyt/pystow - 1

345. Rapptz/discord.py - 1

346. gahjelle/pyplugs - 1

347. Colin-b/pytest_httpx - 1

348. LLNL/certipy - 1

349. spec-first/connexion - 1

350. Yelp/bravado - 1

351. mkorpela/pabot - 1

352. scrapy/parsel - 1

353. alexmojaki/pure_eval - 1

354. graphql-python/graphql-core - 1

355. joke2k/faker - 1

356. averbis/averbis-python-api - 1

357. jupyter/jupyter_client - 1

358. jaraco/inflect - 1

359. GreyZmeem/python-logging-loki - 1

360. suminb/base62 - 1

361. youknowone/wirerope - 1

362. xnuinside/simple-ddl-parser - 1

363. executablebooks/sphinx-thebe - 1

364. Pylons/webob - 1

365. SethMMorton/fastnumbers - 1

366. python-semver/python-semver - 1
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