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Abstract

Graph neural networks have shown significant
progress in various tasks, yet their ability to gen-
eralize in out-of-distribution (OOD) scenarios re-
mains an open question. In this study, we conduct
a comprehensive benchmarking of the efficacy of
chemical graph pre-trained models in the context
of OOD challenges, named as PODGenGraph.
We conduct extensive experiments across diverse
chemical graph datasets, encompassing different
graph sizes. Our benchmark is framed around
distinct distribution shifts, including both concept
and covariate shifts, whilst also varying the de-
gree of shift. Our findings are striking: even basic
pre-trained models exhibit performance that is not
only comparable to, but often surpasses, specifi-
cally designed models to handle distribution shift.
We further investigate the results, examining the
influence of the key factors (e.g., sample size,
learning rates, in-distribution performance etc.)
of pre-trained models for OOD generalization. In
general, our work shows that pre-training could
be a flexible and simple approach to OOD gener-
alization in chemical graph learning. Leveraging
pre-trained models together for chemical graph
OOD generalization in real-world applications
stands as a promising avenue for future research.

1. Introduction

Graph Neural Networks (GNNs) have emerged as a popular
tool for processing graph-structured data (Kipf & Welling,
2017; Wu et al., 2020). However, their performance is
markedly diminished when dealing with out-of-distribution
(OOD) tasks in which training and test data follow different
distributions (Li et al., 2022a). The OOD challenges in

"Department of Electrical Engineering, City University of Hong
Kong ?Department of Computer Science and Engineering, Uni-
versity of California, San Diego. Correspondence to: Rosa H.M.
Chan <rosachan@cityu.edu.hk>, Rose Yu <roseyu@ucsd.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

graph learning have prompted the development of many so-
lutions, ranging from disentangled and causal learning (Ma
et al., 2019; Liu et al., 2020; Yang et al., 2020; Fan et al.,
2022; Chen et al., 2022b), graph augmentation (Zhao et al.,
2021; Park et al., 2021; Kong et al., 2022; Yu et al., 2023),
to contrastive learning (You et al., 2020; Wang et al., 2022).
These methodologies, however, often cater to specific OOD
scenarios, such as distinctive data shifts or semantics, mak-
ing them less versatile due to the dynamic nature of real-
world applications.

Pre-trained models are those trained on tasks with abun-
dant data, without the need for task-specific labels, to learn
general features and patterns. Subsequently, these models
can be fine-tuned for specific downstream tasks, improving
performance and minimizing the requirement for extensive
training from scratch. Furthermore, pre-training has shown
success in OOD tasks in various data modalities, such as
computer vision (Kim et al., 2022; Naganuma & Hataya,
2023; Yu et al., 2021; Gulrajani & Lopez-Paz, 2020) and re-
inforcement learning tasks (Parisi et al., 2022; Trauble et al.,
2022). In the graph domain, earlier studies exemplified
by Hu* et al. (2020) and Xia et al. (2022), have underscored
the advantages of graph pre-training in addressing OOD
challenges. However, a comprehensive exploration of the
impact of pre-training on chemical graph OOD remains
absent in the field. Motivated by this potential, our study
seeks to investigate the viability of graph pre-trained models
as robust and efficient solutions for chemical graph OOD
generalization.

In this paper, we systematically investigate the role of pre-
trained strategies for chemical graph OOD generalization.
We consider a variety of graph pre-trained models and di-
verse distribution shifts. Specifically, we evaluate method-
ologies such as context prediction (Hu* et al., 2020), mask
pre-training learning (Hu* et al., 2020; Xia et al., 2023)
along with contrastive learning (Sun et al., 2020). We evalu-
ated their efficacy across various chemical graph datasets,
while adjusting the types of distribution shifts (e.g., covari-
ate shift and concept shift), as well as different distribu-
tion shift degrees. Figure 1 depicts the overview of our
benchmarking pipeline for self-supervised pre-training and
fine-tuning, which we name as PODGenGraph.
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Figure 1: Overview of the PODGenGraph benchmark pipeline. It instantiates self-supervised pre-training through feature
extraction and different pre-training strategies using large-scale unlabeled dataset. Afterward, it transfers the pre-trained
model for fine-tuning on various downstream tasks related to chemical graph out-of-distribution generalization.

Our aim is to empirically verify the superiority of pre-trained
models over the state-of-the-art methods specifically de-
signed for OOD tasks. Such results hold the promise for
designing graph OOD “foundation models” — an emerg-
ing learning paradigm that combines task-agnostic pre-
training with task-specific fine-tuning. Additionally, we
explore the impact of the key factors of pre-trained models
in OOD generalization performance, such as sample size,
fine-tuning learning rate, and in-distribution (ID) learning
performances.

Our key findings, based on various evaluation protocols and
analysis, include:

(a) In most chemical graph OOD generalization exper-
iments, pre-training methods achieve comparable,
mostly superior to specialized OOD methods such
as invariant/causal learning and graph augmentation
(achieving the highest or second-highest performances
among all 27 datasets). Moreover, pre-trained methods
consistently exhibit superiority across a set of degrees
of distribution shift, highlighting a simple yet effective
solution for chemical graph OOD tasks.

(b) We observe that even with a smaller fine-tuning sample
size, such as only 10%-20% of the original fine-tuning
sample size, pre-trained models can still achieve com-
parable results in OOD generalization to those with the
full sample size, demonstrating the sample efficiency.

(c) Contrary to (Miller et al.,, 2021), we find that in-
distribution learning performance is not always an in-
dicator for chemical graph OOD generalization. This
finding might lead to more comprehensive algorithms
or theoretical analysis exploring the correlation be-
tween OOD and ID learning performance in the future.

(d) Different from previous works (Yu et al., 2021; Li
et al., 2019), we discover that smaller learning rates
during the fine-tuning phase do not invariably lead
to better generalization in OOD scenarios for most
pre-trained chemical graph models, with the exception
being the mask pre-training method Molecule-BERT
that introduces prior information.

2. Related Works and Backgrounds
2.1. Graph Pre-training.

Graph pre-training methods usually leverage the external
datasets to learn the good initialization or representation
which could benefit the down-streaming tasks. Here we
summarize the current state-of-the-art approaches in two cat-
egories: supervised and self-supervised pre-training meth-
ods.

(1). Supervised Pre-training. Supervised pre-training re-
lies on a large labeled dataset to train the model, where the
model learns from explicit labels. While supervised labels
often require significant time and resources, they can still
aid pre-training, particularly in biochemical contexts. Hu*
et al. (2020) utilized these to predict a plethora of molecular
properties and protein functions. They also considered struc-
tural similarities between graphs as a form of supervision.
MOCL (Sun et al., 2021) further explored this by measuring
the structural similarity between molecules via the Tani-
moto coefficient. Other methods like GROVER (Rong et al.,
2020) and MGSSL (Zhang et al., 2021) were introduced to
predict the motifs in molecular graphs.

(2). Self-supervised Pre-training. Self-supervised pre-
training involves training a model on a dataset without ex-
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plicit labels, using the input data itself as the supervision
signal, typically through tasks like predicting missing parts
or reconstructing inputs. There are mainly three research
lines for self-supervised pre-training on graphs. The first
major direction is to reconstruct the parts of the graph or
model the masking components. Specifically, Hu* et al.
(2020) propose masking component modeling and Graph
AutoEncoders (Kipf & Welling, 2016) aims to reconstruct
parts of graphs that aid in understanding the data representa-
tion. Graph Autoregressive Models, such as GPT-GNN (Hu
et al., 2020) and MGSSL (Zhang et al., 2021) use the au-
toregressive framework for graph reconstruction.

The second direction is to conduct context prediction in
the graph to learn the graph representation, which uses the
subgraphs to predict the surrounding structures (Hu* et al.,
2020). The third direction is to learn the graph represen-
tation via sample-wise representation comparison. Info-
Graph (Sun et al., 2020) and DGI (Velickovi¢ et al., 2018)
employ mutual information maximization between various
graph representations. GraphCL (You et al., 2020) intro-
duces a contrastive learning framework emphasizing robust,
transferable representation learning with graph augmenta-
tions for enhanced generalizability.

To address the potential for label overlapping between the
pre-training and fine-tuning datasets, and to avoid the cost of
collecting labeled data in the pre-training phase, we choose
self-supervised pre-training methods for OOD evaluation.
We expand upon the OOD generalization results in previ-
ous work (Hu* et al., 2020) and analysis by conducting
a thorough exploration of graph pre-trained models. Our
study goes beyond the confines of MoleculeNet datasets
with covariate shifts, exploring diverse data sources includ-
ing DrugOOD (Ji et al., 2023), MoleculeNet (Wu et al.,
2018), OGBG (Hu et al., 2020), and others. Furthermore,
we investigate distribution shifts with varying degrees of
intensity, incorporating various meta-analyses such as the
examination of fine-tuning sample size and learning rates to
provide a more inclusive analysis.

In supervised pre-training, labels are typically hard to ac-
quire, or the acquisition is highly costly (Wang et al., 2023).
For molecular graphs or certain biological graphs, obtaining
annotations is particularly challenging. Given our aim is
to provide the evaluation and benchmark for pre-trained
models for OOD generalization which could be used for
practical real-world problems, we choose to evaluate the
self-supervised pre-training methods.

2.2. Graph OOD Generalization.

Graph out-of-distribution (OOD) tasks in which training
and test data follow different distributions are very chal-
lenging. There are roughly three types of approaches to
tackle the challenge: (1). Disentangled, Invariant, and

Causal Learning. Disentangled graph representation learn-
ing seeks to factorize real-world graphs into distinct latent
components. Such models aim to capture underlying, in-
formative factors in the graph data, which has been shown
to benefit OOD generalization. The pioneering work of
DisenGCN (Ma et al., 2019) introduces a novel convolu-
tional layer, DisenConv, which uses a neighborhood routing
mechanism to analyze and infer latent factors. IPGDN (Liu
et al., 2020) enhances this by adding an independence regu-
larization to minimize dependencies among representations.
FactorGCN (Yang et al., 2020) focuses on graph-level rep-
resentation, using a factorization mechanism to produce
hierarchical disentanglements. Recently, Mole-OOD (Yang
et al., 2022), DisC (Fan et al., 2022) and CIGA (Chen et al.,
2022b) specifically disentangle causal from non-causal in-
formation, offering a robust approach to handle biases and
distribution shifts in graphs. These advances spotlight the
potential of disentangled representations in achieving supe-
rior OOD performance on graph data.

(2). Graph Augmentation. The structure and topology of
graphs play a critical role in predicting their properties.
Some methods leverage structure-wise augmentations to
generate diverse training topologies. GAug (Zhao et al.,
2021) enhances generalization using a differentiable edge
predictor, MH-Aug (Park et al., 2021) uses Markov chain
Monte Carlo sampling for controlled augmentation. Addi-
tionally, feature-wise augmentations have emerged, where
node features are manipulated. GRAND (Feng et al., 2020)
randomly drops and propagates node features to reduce
sensitivity to specific neighborhoods, while FLAG (Kong
et al., 2022) augments node features using gradient-based
adversarial perturbations, maintaining the underlying graph
structures. LiSA (Yu et al., 2023) further solves the problem
of inconsistent predictive relationships among augmented
environments by invariant subgraph training. These meth-
ods verify the significance of graph data augmentation in
achieving enhanced out-of-distribution generalization.

(3). Contrastive Learning. Graph contrastive learning has
also shown promise for OOD generalization. For instance,
RGCL (Li et al., 2022c) use contrastive learning, with the
latter emphasizing rationale-aware augmentations. Test-
time training methods like GAPGC (Chen et al., 2022a) and
GT3 (Wang et al., 2022) further innovate by introducing
contrastive loss variants and hierarchical self-supervised
frameworks, respectively for OOD generalization. Our work
is close to this research line, and is the first to discover the
universal benefits of self-supervised pre-training to graph
OOD, in terms of various graph OOD scenarios. We choose
the state-of-the-art methods from the first two research lines
for comparison, including CIGA (Chen et al., 2022b), Mole-
OOD (Yang et al., 2022), and LiSA (Yu et al., 2023).
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3. Benchmark Methodology
3.1. Graph OOD Scenarios

We consider both the general feature distribution shifts (e.g.,
molecules under different assays) and structure distribution
shifts (e.g., different graph size). Given a training dataset
Dirain consisting of N graphs {G1,Gs, ...G v} each associ-
ated with a target label or property {y1,y2, ...y~ }, the graph
OOD problem arises when:

P(Gay|Dtest) * P(G7y|Dtrain) (1)

In this paper, we consider two types of OOD: covariate shift
and concept shift.

Covariate Shift. Covariate shift refers to a scenario where
the distribution of the input data (graphs in our context)
changes between training and test stages, while the con-
ditional distribution of the target given the input remains
consistent. Mathematically, if G represents our input graphs
and Y represents our labels:

-Ptrain(G) * Rest(G), Rruin(Y|G) = Rest(Y|G) (2)

For graph-structured data, covariate shift could imply that
while the method of labeling nodes or edges remains con-
sistent, the types of graphs in the test set might differ from
those in the training set.

Concept Shift. Concept or label shift arises when the dis-
tribution of the labels changes between training and testing,
even if the input distribution remains the same. Formally:

-P[rain(Y) ¥ -Ptest(Y); Ptrain(G|Y) = -P[est(G|Y) (3)

In the context of graph data, this means that while the types
of graphs remain consistent across training and test datasets,
the manner or criteria by which they are labeled has evolved
or changed.

3.2. Graph Pre-training Methodologies

In this section, we briefly discuss the pre-training meth-
ods that we used for this study. For molecular graphs with
node information, we choose representative methods from
three categories of pre-training methods, including context
prediction (ContextPred in (Hu* et al., 2020)), attribute
masking (original version in (Hu* et al., 2020) as well as
two recent advances Mole-BERT (Xia et al., 2023) and
GraphMAE (Hou et al., 2022)), and contrastive learning
(GraphCL (You et al., 2020)). These three directions are
representative graph pre-training strategies and the detailed
training and fine-tuning settings will be discussed in Sec-
tion 3.4.

* ContextPred: The goal of ContextPred is to pre-train
a GNN in such a way that it establishes proximity be-
tween embeddings of nodes that occur within analogous

structural contexts. It employs subgraphs to predict the
surrounding graph structures of these nodes. In this work,
we employ the K-hop neighborhood as the subgraph in
the original work and choose K = 5. We also follow
the context definition in the work (i.e., adjacent graph
structure), and choose the hop values 71 =4 and o = 7.

* Attribute masking& Mole-BERT & GraphMAE: All
three works use the masked component modeling methods
for the self-supervised learning. Specifically, they involve
the masking of certain components within molecules, in-
cluding atoms, bonds, and fragments, followed by training
the model to predict these masked components based on
the remaining contextual information. We follow the se-
tups in the original papers: Mask pre-training in (Hu*
et al., 2020) inputs atom and chemical bond attributes
are randomly masked, and GNNs are pre-trained to pre-
dict these masked attributes and Mole-BERT (Xia et al.,
2023) uses a context-aware tokenizer that encodes atoms
with chemically meaningful values for masking. Graph-
MAE (Hou et al., 2022) represents a significant advance-
ment in the field of graph autoencoders (GAEs). It di-
verges from traditional GAEs by prioritizing feature re-
construction over graph structure reconstruction and em-
ploys a novel masking strategy combined with scaled co-
sine error, enhancing training robustness and error metric
accuracy.

* GraphCL (You et al., 2020) introduces a contrastive
learning framework focusing on robust and transferable
representation learning. It also utilizes graph augmenta-
tions to enhance data priors, to improve the generalizabil-
ity and robustness.

For molecular datasets without node information, we use
a contrastive self-supervised pre-training method, Info-
Graph (Sun et al., 2020) and GraphCL (You et al., 2020) for
pre-training. InfoGraph extracts expressive representations
for graphs or nodes by maximizing mutual information be-
tween graph-level and substructure-level representations at
varying granularities.

3.3. Benchmark Setup

Datasets. We evaluate pre-trained models upon multiple
dataset sources, including three datasets from DrugOOD (Ji
et al.,, 2023) (DrugOOD-lbap-core—-ic50-assay,
DrugOOD-1bap-core-ic50-scaffold, and
DrugOOD-lbap-core—-ic50-size), ten datasets
from MoleculeNet (Wu et al., 2018) (BBBP, Tox2l1,
ToxCast, SIDER, ClinTox, MUV, HIV, BACE, OGBG-
MolHIV, OGBG-MolPCBA), and four datasets from the TU
collection (Morris et al., 2020) (NCI1, NCI109, PROTEINS,
DD). Appendix Table 3 lists the statistics and key factors
of the molecular datasets we employed. Additionally, we
include one synthesis graph dataset called Motif (Wu et al.,
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2022), with the detailed statistics and results presented in
Appendix Table 4 and 5, which can provide insights into
the efficacy of pre-training. A comprehensive introduction
to all datasets is provided in Appendix B.2.

Various Graph Domains. We select datasets covering a
wide array of graph structures. This includes molecular
graphs used in biophysics and physiology research, encom-
passing both those with and without node information.

Source of Distribution Shift and OOD. We use diverse
datasets covering various causes of distribution shift, fea-
turing variations in graph characteristics (like scaffold, size
and basis), as well as environmental factors (such as as-
say). In the DrugOOD dataset (Ji et al., 2023), the distri-
bution shift originates from disparities in Bemis-Murcko
scaffold size (DrugOOD-Scaffold), assay ID (DrugOOD-
Assay), and molecular atom size (DrugOOD-Size). In con-
trast, all datasets within the MoleculeNet (Wu et al., 2018)
follow a shift based on the Bemis-Murcko scaffold. For the
TU collection (Morris et al., 2020), we follow the data splits
by (Yehudai et al., 2021) based on molecular atom size.
Following (Gui et al., 2022), We consider both covariate
and concept shifts under different domains for most of the
datasets.

3.4. Baselines, Implementation, and Evaluation

Graph OOD Methods. Our baselines are specialized al-
gorithms designed for graph OOD tasks. We integrate em-
pirical risk minimization (ERM) (Vapnik, 1999) and the
state-of-the-art methods with disentangled, invaraint and
causal learning, and data-augmentation methodologies. All
methods have been reproduced based on their original im-
plementation (details are listed in Appendix C.1).

We choose two disentangled OOD algorithms, CIGA (Chen
et al., 2022b) and MoleOOD (Yang et al., 2022), both based
on the invariant and causal learning. CIGA (Chen et al.,
2022b) categorizes interactions between causal and non-
causal components into fully informative invariant features
(FIIF) and partially informative invariant features (PIIF).
MoleOOD (Yang et al., 2022) identifies molecule environ-
ments without manual specification and uses them along
with substructures for predictions. Furthermore, we adopt
one augmentation-based OOD algorithm, LiSA (Yu et al.,
2023). It utilizes variational subgraph generators to iden-
tify locally predictive patterns and generates multiple label-
invariant subgraphs, enhancing diversity for data augmenta-
tion process. We also consider cases GIN-OOD and GIN-ID,
where GIN is trained without specified operations for OOD.
GIN-OOD is tested on OOD testing sets, whereas GIN-ID
is tested on in-distribution sets.

Pre-training Datasets. In accordance with previous works
by Hu* et al. (2020), we use 2 million molecules sam-

pled from the ZINC-15 database (Sterling & Irwin, 2015),
to learn node representations for downstream molecular
datasets. Considering the lack of shared node information
across the general graph dataset and TU dataset, we initially
exclude the label information for self-supervised learning.
Once we have learned the representation of each graph, we
proceed to fine-tune the classifier (e.g., SVM, logistic re-
gression, or random forest) using a dataset that includes
label information.

GNN Architectures. We adopt 5-layer graph isomorphism
networks (GINs) (Xu et al., 2018) with 300-dimensional
hidden units as the backbone model for all pre-training
methods in all datasets. The average pooling is used as the
READOUT function.

Pre-training and Fine-tuning. In the pre-training phase,
the models undergo 100 training epochs with a batch size of
256 and a learning rate set to 0.001. During the subsequent
fine-tuning phase, we conduct training for 100 epochs with
a batch size of 32, except for DrugOOD with a batch size
of 128, and we report the test score with the best cross-
validation performance. In both phases, the models are
trained using stochastic Gradient Descent (SGD) with the
Adam optimizer.

Evaluation Metrics We utilize the original evaluation met-
rics associated with each dataset. Specifically, in the context
of molecular datasets, we report ROC-AUC for DrugOOD
and MoleculeNet following Ji et al. (2023); Wu et al. (2018),
average precision (AP) for OGBG-MolPCBA following Hu
et al. (2020), and the Matthews correlation coefficient for
TU datasets following Bevilacqua et al. (2021).

We employ 10 random seeds for all methods to get the mean
and standard deviation (std) results for each studied baseline.
To better evaluate the performance gap among methods, we
also consider additional statistical metrics including median
and interquartile mean (IQM). Additionally, we also calcu-
late the optimality gap, quantified by the the performance
gap between each method and the in-distribution learning
one, which ideally serves as the empirical upper-bound re-
sult for each task.

4. Result and Discussions
4.1. Results Analysis

General Results. Table 1- 2 give the results on all evalu-
ated datasets and OOD scenarios. Additionally, Fig. 3 and
Appedix Fig. 4 gives further statistical metrics including
median, IQM, mean, and optimality gap across datasets in
Drug-OOD and MoleculeNet, respectively. The extensive
results reveal that pre-trained methods predominantly out-
perform methods explicitly designed for Graph OOD tasks
across a majority of datasets. Specifically, within molecule-
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Figure 2: Analysis on Key Factors in Pre-training. (a)Effects of Shift Degree. Generalization capabilities of all methods
under varying degrees of distribution shift. A higher degree indicates a larger distribution shift; (b) Effects of Sample Size.
OOD generalization versus number of samples used in fine-tuning; (c) Effects of Fine-tuning LR. OOD Generalization
versus fine-tuning learning rates for models ContextPred, AttrMask, and Mole-BERT on the Drug-OOD dataset. (d)Relation
to ID Performance. OOD versus ID performances (measured by ROC-AUC) of three pre-trained models on Drug-OOD

and MoleculeNet.

related graph datasets, pre-trained methods achieve the high-
est or second-highest values in all 27 test sets, demonstrating
the substantial advantages of these methods in such contexts.
Among all pre-trained strategies, Mole-BERT consistently
performs the best or the second-best on most molecular
datasets. This is because Mole-BERT utilizes a context-
aware tokenizer for encoding atoms, which might be more
effective in capturing the nuanced chemical properties es-
sential for molecular datasets compared with ContextPred,
which focuses on predicting the surrounding graph struc-
tures of nodes within similar contexts.

4.2. Impact of Key Factors in Pre-trained Models for
Generalization

Effect of the Distribution Shift Degrees. We investigate
the relationship between the performance drop and shift

degrees. To quantify shift degrees, we adopt the follow-
ing approach: First, we train a vanilla GNN model on the
training domain without considering distribution shift. Sub-
sequently, we evaluate the performance drop on the testing
domain with distribution shifts. Specifically, we calculate
the relative performance drop in AUC-ROC for multiple
seeds and use the average value to represent the shift degree.
The formula for calculating shift degree (AS) is given by:

L

niz

AUC_ROC[min - AUC_ROC[eSt’ 3
AUC—-ROCin

AS ) 4)

where AUC—ROC i, 18 the AUC-ROC score achieved by
the GNN model on the training domain without distribution
shift, AUC-ROC\gq, ; is the AUC-ROC score achieved by the
GNN model on the testing domain with distribution shift
for the it" seed, and n is the total number of seeds used.
The shift magnitude, AS, represents the average relative



Title Suppressed Due to Excessive Size

Table 1: Performance evaluation on molecular OOD datasets. Different evaluation metrics are employed for different
datasets. DrugOOD, MoleculeNem, OGBG-MolHIV: Testing AOC-RUC; OGBG-MolPCBA: Testing Average Precision
(AP); TU datasets: Testing Matthews correlation coefficient (MCC). ”cov” and “’cpt” denote covariate and concept shift,
respectively. Brown shaded columns indicate pre-training strategies. The first and second best-performing numbers (except

the ID training) are in bold and bold, respectively.

Methods GIN-OOD  GIN-ID  CIGA-vl CIGA-v2 MOLEOOD LISA CONTEXTPRED ~ATTRMASK MOLE-BERT GRAPHCL GRAPHMAE
SCAFFOLD (cov)  67.31.050 84.36.0.15 6927081 69.68.0.21 68.01.0.39  65.71.0.25 70.0140.13 70.68.0.31 70.04 55 68.74.0.12 69.37.0.15
§ ASSAY (cov) 71.2040.209 87.07.062 72.36:060 73.28.035 71.18.063  70.66.0.63 72.80, 55 71.56.40.43 71.19.0.09 69.59.0.10 70.4040.12
2 SizE (cov) 66.672006 S8T.69.077 67.08.082 08.02,051  66.61u036 65.78.045  68.42.010  68.22,0,.  67.92.010  67.70.005  67.97.01
A Ave. 68.39 86.37 69.57 70.32 68.60 67.38 70.41 70.15 69.60 68.68 69.25
BBBP (cov) 65.78:4.00  93.13:058 65.50:162 68.69:137  69.71i156  65.2649.01 69.3241.03 64.95.3 40 71.88.1.12 68.02,4103 7119,
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performance drop across different seeds. Fig. 2(a) illustrates
the relationship between performance degradation and the
degree of distribution shift on the Drug-OOD dataset, where
there is the distribution shift on size. Here n = 10. It
is evident that a negative correlation exists between per-
formance and shift degrees across all methods. Notably,
pre-trained models maintain superior performance relative
to other methods at all degrees of shift, underscoring their
robustness against distribution shifts.

Effect of the Fine-tuning Sample Size. We study the
importance of fine-tuning sample size. We test the OOD
generalization with {5%, 10%, 20%, 40%, 50%, 65%, 80% }
of the size we used in original settings on Drug-OOD and
MoleculeNet datasets. Results on Drug-OOD datasets are
given in Fig. 2(b), showing that more samples during fine-
tuning lead to better generalization. However, even with
only a few samples, pre-trained models still achieve good
generalization performance. For instance, with only 20% of
the original sample size, the pre-trained models can achieve
comparable performances with baselines (baseline results
are in Table 1).

Effect of the Fine-tuning Learning Rates. Based on the
theoretical and empirical conclusions drawn from prior work
in Euclidean space data (Li et al., 2019; Yu et al., 2021),
we explore whether the choice of learning rate during the
fine-tuning phase has a consistent impact on OOD general-

ization. To analyze this relationship, we experimented with
a set of learning rates for all pre-trained models, specifically:
{0.02,0.01,0.005,0.002,0.001, 0.0005, 0.0002, 0.0001}.
The number of epochs are 100 for all cases. Our empirical
investigation shows that models fine-tuned with smaller
learning rates achieve better generalization capabilities.
Fig. 2(c) gives the OOD generalization performance
versus the selection of learning rate for Context prediction,
attribute masking and Mole-BERT on Drug-OOD dataset.
The results indicate that, only for Mole-BERT, a smaller
fine-tune learning rate leads to better generalization
performance. While for Attraibute masking and context
prediction, there is no correlation between generalization
performance and fine-tuning learning rates, which contrary
to the findings in image data (Yu et al., 2021).

Relation to the In-distribution Performance. In consider-
ing the relevance of pre-trained models to downstream tasks,
a question arises: Is the inherent model capability (shown as
the ID learning performances), reflected by the model’s per-
formance on its pre-training dataset, crucial for OOD gener-
alization in downstream tasks? To analyze this association,
we evaluated the relationship between the generalization
performances with OOD and in-distribution (ID) learning
on Drug-OOD and MoleculeNet datasets. Specifically, ID
performances are the down-streaming generalizaiton results
of the pre-trained models (pre-trained on ZINC-15 dataset)
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Table 2: Performance evaluation on TU dataset. ContextPred, AttrMask, and Mole-BERT are excluded due to the lack
of required node information. TU datasets use MCC for evaluation. ”cov’” and ’cpt” denote covariate and concept shift,
respectively. Brown shaded columns indicate pre-training strategies. The first and second best-performing numbers (except

the ID training) are in bold and bold, respectively.

Methods GIN-OOD GIN-ID CIGA-vl CIGA-v2 L1SA INFOGRAPH GRAPHCL
NCI1 (cov) 0.21:0.06  0.45:003 0.224007 0.27 50, 0.2450.01 0.39.0.01 0.25.0.03
NCI109 (COV) 0.163:0_05 0.44ﬂ]_02 0-2310.09 0-22i0.05 0.26i0_02 0.383:0_01 0'2910,02
PROTEINS (COV) 0‘23i0A05 0‘461003 04010.06 0.311012 0'431(]‘05 0.53:&0'07 0.3410.05
DD (cov) 0.25,0.00 0404004 0.294008 0.264008 0.37.007  0.35,,04 0.2640.05
AVG. 0.21 0.44 0.29 0.27 0.33 0.41 0.29
Median QM Mean Optimality Gap
GraphMAE | [ | L ]
GraphCL 1 1 1 1
MoleOOD [ 1 1 1
Mole-BERT 1 1 1
LiSA mm | | |
AttrMask 1 1 1 1
ContextPred I I I I
GIN-OOD 1 1 1 |
CIGA-v2 1 1 1 1
CIGA-v1 1 1 1 1
66.0 67.5 69.0 70.5 66.0 67.5 69.0 70.5 67.5 69.0 705 165 180 19.5
ROC-AUC

Figure 3: Aggregate performance on DrugOOD averaged across three datasets: DrugOOD-1bap—-core-ic50-assay,
DrugOOD-1bap-core-ic50-scaffold, and DrugOOD-1bap-core-ic50-size. Better results are indicated
by higher mean, median, and IQM scores, along with a lower optimality gap.

on Drug-OOD and MoleculeNet datasets without ditsirbu-
tion shift. Fig. 2(d) gives the evaluation, indicating that there
is no clear correlation between OOD and ID performances.
This finding shows that “accuracy on the line”” phenomenon
(Miller et al., 2021) does not always hold for the graph
pre-trained models under OOD generlization problem.

5. Conclusions & Discussion

Our work is placed within a context where prior methods
have designed relatively complicated algorithms tailored for
Graph OOD. It is crucial to clarify that our research does
not challenge or discredit these existing methods; instead,
we offer the perspective by evaluating and benchmarking
the performance of pre-trained models on Graph OOD prob-
lems.

The Potential of Pre-trained Models for Graph OOD:
We discovered that various pre-trained models, with min-
imal fine-tuning, could match and often surpass, the per-
formance of methods specially for graph OOD, such as
invariant/causal learning and data augmentation. This is
especially evident in tasks involving molecular graphs, re-
gardless of the type of distribution shift (concept or covari-
ate), where the pre-trained models achieved superior OOD
generalization compared to baseline methods in most cases.
Significantly, our results demonstrate that pre-trained mod-

els are consistently well-performing among all distribution
shift degrees, showing the advantages in OOD scenarios.

In-depth Empirical Study on Pre-trained Models for
Graph OOD: Our empirical investigation seeks to provide
a deeper understanding of the role of the pre-trained models
and various design choices for fine-tuning play in ensuring
optimal OOD generalization. Specifically, we explored
the correlation between fine-tuning learning rate and OOD
generalization, the relationship between pre-trained models
in OOD and ID scenarios, and the impact of sample size,
providing empirical insights that can guide future research
in OOD and pre-training.

In future work, we aim to explore a broader range of pre-
training methods and OOD scenarios. The development
of model selection strategies, particularly in the context of
pre-trained models and OOD generalization, is identified
as a promising avenue. Additionally, the potential enhance-
ment of OOD generalization performance through the com-
bination of pre-trained models with invariant learning or
data augmentation techniques is suggested. The exploration
of theoretical connections between graph pre-training and
OOD, drawing inspiration from self-supervised learning
and pre-train models, is another interesting future direc-
tion. A detailed discussion on furture directions is given in
Appendix A.
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A. Detailed Discussion on Future Work
A.1. Exploration of More Pre-training Methods and OOD Scenarios

Our current work predominantly evaluates representative pre-training and OOD methods/scenarios. However, the field
abounds with numerous other methodologies, as summarized in several surveys (Li et al., 2022b; Xia et al., 2022). Due to
computational constraints, we could not explore each one exhaustively, leaving a potential avenue for future research.

A.2. Development of Model Selection Approaches

Our empirical evaluations, especially those concerning learning rate experiments, lead us to believe that developing pre-
trained model selection strategies (e.g., (You et al., 2022)) for OOD generalization is a promising direction for future
research.

A.3. Combination of Methods for Enhanced Performance

Future studies could potentially combine pre-trained models with invariant learning or data augmentation techniques to
attain improved OOD generalization performance.

A.4. Potential Theoretical Understanding

Based on our current evaluations, there exists an opportunity to explore theoretical connections between graph pre-training
and OOD, providing a richer, more in-depth understanding of the empirical performance. One potential direction is exploring
some theoretical findings in self-supervised learning and pre-train models (Lee et al., 2021).

B. Details on Datasets

B.1. Dataset Statistics

Table ?? summarizes the important key factors and statistics of the molecular datasets. Table 3 and 4 give the full dataset
and graph statistics of molecular and general graph datasets used in the paper, respectively.

Table 3: Split statistics of general graph datasets.

o . . #. Graphs Avg. #. Node Avg. #. Edge .
Datasets | Domain Shift (training/validation/testing) | (training/validation/testing) | (training/validation/testing) # Classes | Metrics
Basis Covariate 18,000/3,000/3,000 17.1/15.8/14.9 48.9/33.0/31.5
Motif ) Concept 12,600/6,000/6,000 16.9/17.0/17/0 48.5/48.9/48.7 3 Accurac
Size Covariate 18,000/3,000/3,000 16.9/39.2/87.2 43.6/107.0/239.6 Y
Concept 12,600/6,000/6,000 51.8/51.5/51.6 141.8/140.2/141.5

B.2. Details on Dataset Introduction

DrugOOD (Ji et al., 2023). This benchmark supports Al-driven drug discovery with realistic molecular graph datasets. It
automates OOD dataset curation using ChEMBL (Mendez et al., 2019) and offers diverse dataset splitting criteria, including
scaffold, assay type and size, for tailored domain alignment. The task focus on drug target binding affinity prediction.

MoleculeNet (Wu et al., 2018). MoleculeNet stands as a comprehensive benchmark for molecular machine learning. It
curates diverse public datasets, sets up evaluation standards, and offers open-source tools for different molecular learning
methods, all accessible via the DeepChem open source library (Ramsundar et al., 2019).

The benchmark comprises multiple binary graph classification datasets, each designed to evaluate model performance
across different facets of molecular interaction. Specifically, BBBP (Martins et al., 2012) evaluates the crucial measure
of blood-brain barrier penetration, vital for understanding membrane permeability. Tox21 (Abdelaziz et al., 2016) offers
toxicity data encompassing 12 biological targets, including nuclear receptors and stress response pathways. Toxcast (Richard
et al., 2016) provides toxicology measurements based on over 600 in vitro high-throughput screenings, serving as a rich
resource for understanding toxicity. SIDER (Kuhn et al., 2016) features a database detailing marketed drugs and adverse drug
reactions, categorized into 27 system organ classes, offering insights into drug safety. ClinTox (Novick et al., 2013) (AAC)
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Table 4: Split statistics of molecular datasets.

. i #. Graphs Avg. #. Node Avg. #. Edge .
Datasets ‘ Domain ‘ Shift ‘ (training/validalt)ion/tesling) (training/vgalidation/testing) (training/vgalidatioi/testing) # Classes / Task ‘ # Task ‘ Metrics
Scaffold 21,519/19,041/19,048 39.4/26.8/22.5 85.8/58.4/47.7 2
DrugOOD Assay 34,179/19,028/19,032 34.5/30.7/29.7 75.2/66.8/64.7 2 1
Size 36,597/17,660/16,415 38.0/25.6/20.0 82.8/56.0/43.3 2
BBBP 1,631/204/204 22.5/33.4/27.5 48.4/72.3/59.8 2 1
Tox21 6,264/783/784 16.5/26.8/26.6 33.7/58.1/57.8 2 2
ToxCast Covariate 6,860/858/858 16.7/26.2/28.2 33.5/56.2/60.8 2 617
SIDER Scaffold 1,141/143/143 30.0/43.2/53.3 62.8/91.8/112.7 2 27
ClinTox 1, 181/148/148 25.5/32.6/24.6 542/71.0/53.4 2 2| ROC-AUC
MUV 74,469/9,309/9, 309 24.0/25.3/25.3 51.8/55.6/55.5 2 17
HIV 32,901/4,113/4,113 25.3/27.8/25.3 54.1/61.1/55.6 2 1
BACE 1,210/151/152 33.6/37.2/348 72.6/31.3/75.1 2 I
Scaffold Covariate 24,682/4,113/4,108 26.2/24.9/19.8 56.7/54.5/40.6
OGBG- Concept 15,274/9,382/9,927 24.6/26.5/26.6 53.1/56.9/57.1 ) |
MolHIV Size Covariate 26,169/2,773/3,961 27.8/15.5/12.1 60.1/32.8/24.9
Concept 14,483/9,676/10, 762 31.3/20.0/19.4 67.7/42.8/41.5
Seaffold |_Covarfate | 262, 764/44,019/43,562 26.9/23.7/20.9 58.2/51.6/44.6
OGBG- Concept | 159, 158/90, 740/119, 821 25.5/26.4/26.7 55.2/57.0/57.7 5 128 AP
MolPCBA Size Covariate | 269,990/48,430/31,925 27.9/19.1/15.0 60.5/40.9/31.5
Concept | 150,121/108,267/115,205 27.6/24.5/24.4 59.8/53.0/52.6
NCI1 1,942/215]412 20.8/20.7/61.1 14.6/44.6/132.9 2 1
NCI109 . .y 1,872/207/421 20.4/20.3/61.1 43.8/43.6/133.1 2 1
PROTEINS | Sive | Covariate 511 /56/1/12 154//1547//138.9 57.4;585/5046 2 I Mee
DD 533/59/118 143.2/156.1/746.4 707.1/746.4]3814.7 2 1

consists of qualitative data classifying drugs approved by the FDA and those that have failed clinical trials due to toxicity
concerns. MUV (Gardiner et al., 2011) represents a subset of PubChem BioAssay (Kim et al., 2023), refined through
nearest neighbor analysis, and tailored for validating virtual screening techniques. The HIV dataset originates from the
Drug Therapeutics Program (DTP) AIDS Antiviral Screen (Riesen & Bunke, 2008), a comprehensive screening effort that
evaluated the effectiveness of more than 40,000 compounds in inhibiting HIV replication. BACE (Subramanian et al., 2016)
is a dataset that provides qualitative binding results for a collection of inhibitors targeting human -secretase 1.

OGBG (Hu et al., 2020). OGBG is a specific subset within Open Graph Benchmark (OGB), containing representative
datasets like OGBG-Molhiv, OGBG-Molpcba, and OGBG-PPA. OGBG-Molhiv and OGBG-Molpcba challenge graph
property prediction with distribution shifts, specifically focusing on predicting molecular properties. They use a scaffold
splitting approach, separating structurally distinct molecules into different subsets for a realistic evaluation of graph
generalization. The dataset split follows GOOD benchmark (Gui et al., 2022). Specifically, for covariate shift with a
distribution source of size, we arranged the molecules in descending order based on the number of nodes and split them
into a ratio of 8 : 1 : 1 for the training set, validation set, and testing set, respectively. Similarly, the entire dataset was
ordered based on the Bemis-Murcko scaffold string of SMILES, maintaining the same ratio. For concept shift, exemplified
by size, we categorized molecules into different groups based on different numbers of molecular nodes. Following this
categorization, we selected samples from each group with different labels, forming the training set, validation set, and testing
set, respectively, with a ratio of 3 : 1 : 1. This grouping approach aligns with the scaffold-wise distribution, where molecules
are categorized based on the Bemis-Murcko scaffold string of SMILES.

TU Datasets. (Morris et al., 2020) It is a collection of benchmark datasets for graph classification and regression. Among
these datasets, NCI1, NCI109, PROTEINS, and DD stand out as important and representative graph classification datasets,
each offering unique characteristics and complexities. NCI1 and NCI109 datasets are prominent in chemoinformatics.
NCI1 is a binary graph classification dataset that focuses on anticancer compound classification. It comprises molecular
graphs, with nodes representing atoms and edges indicating chemical bonds. NCI109 extends the challenge by expanding
the number of classes and compounds. PROTEINS is a dataset focused on protein graphs, where each node represents
a specific protein, and the edges signify various biologically relevant connections or associations between these proteins.
The task is to predict the presence or absence of specific protein functions. DD is a real-world graph classification dataset,
comprising 1, 178 protein network structures, each of which features 82 distinct node labels. The task is to classify each
graph into one of two classes: an enzyme or a non-enzyme.

Motif. Motif is a synthetic dataset (Wu et al., 2022). It has been created to address structural shifts in graph data. In this
dataset, each graph is composed of a base and a motif. The bases are categorized into three distinct types: Tree (S = 0),
Ladder (S = 1), and Wheel (S = 2). On the other hand, the motifs include Cycle (C' = 0), House (C = 1), and Crane (C = 2),
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introducing various structural complexities into the dataset. The ground truth label Y for each graph is exclusively dictated
by the motif (C). The primary objective in this dataset is to accurately classify the graphs into one of three classes: Cycle,
House, or Crane.

B.3. Performance evaluation on Motif dataset

Table 5: Performance evaluation on Motif dataset. ContextPred, AttrMask, and Mole-BERT are excluded due to the lack of
required node information. Motif datasets use accuracy for evaluation. “cov” and “cpt” denote covariate and concept shift,
respectively. Brown shaded columns indicate pre-training strategies. The first and second best-performing numbers (except
the ID training) are in bold and bold, respectively.

Methods GIN-OOD  GIN-ID CIGA-v1 CIGA-v2 LISA INFOGRAPH GRAPHCL

BASIS (cov)  62.0143.92 9215004 66.4311131  67.15.819  82.55:7.18 86.85.243 83.33,, (4
BASIS (cpt) 72124189  92.15.0.04 72.50.402 7748.25:4 87.89.161 79.36,, 5, 71.09.3387
SIZE (cov) 52.94,093  92.16.0.07 49.14.834 54.42 5, 62.90.53 53.43.58.00 54.17.7.10
SIZE (cpt) 58.23.1.73 92164007 58.63.666 70.65.481 70.36,,45  064.79.168  58.26.2.31
AVG. 61.33 92.16 61.68 67.43 75.93 71.11 66.71

Motif

C. Details on Evaluated Methodologies
C.1. Hyperparameter Details for Baseline Methods

CIGA. We used default hyperparameters as specified in the original paper for DrugOOD, TU datasets, and Motif. Specifically,
in DrugOOD, the causal substructure size is set to 80% of each graph size for DrugOOD-Scaffold and DrugOOD-Assay,
while it’s 10% for DrugOOD-Size. The dropout rate is 0.5 for DrugOOD-Scaffold and DrugOOD-Assay, and 0.1 for
DrugOOD-Size. For DrugOOD-Assay with CIGA-v1 and CIGA-v2, the coefficient for contrastive loss is set to 8 and 1,
respectively. For DrugOOD-Scaffold with CIGA-v1 and CIGA-v2, it’s 32 and 16, respectively. For DrugOOD-Size with
CIGA-v1 and CIGA-v2, it’s 16 and 2, respectively.

For TU datasets, we use a causal substructure size of 60% for NCI1, 70% for NCI109, and 30% for DD and PROTEINS.
The coefficient for contrastive loss is 0.5 for NCI1 with CIGA-v1 and 1 for NCI1 with CIGA-v2. It’s 2 for both NCI109 and
DD with all CIGA versions. For PROTEINS, the coefficient for contrastive loss is 0.5 with both CIGA-v1 and CIGA-v2.

In Motif, the causal substructure ratio is 25%. For Motif, the coefficient of contrastive loss is chosen from {0.5, 1, 4, 8, 16,
32}.

For datasets in MoleculeNet and scaffold distribution shift in OGBG datasets, we use hyperparameters similar to those
in DrugOOD-Scaffold. For size distribution shift in OGBG datasets, the hyperparameters are aligned with those in
DrugOOD-Size.

MoleOOD. We employed default hyperparameters as provided in the code release. Specifically, we selected the prior
distribution from uniform, Gaussian distribution for all datasets. In DrugOOD, we utilized 20 domains for the domain prior
across three datasets. For MoleculeNet and OGBG datasets, we varied the number of domains among {10, 15, 20}.

LiSA. We utilized the default hyperparameters provided in the code release. The inner loop was set to 20 for all datasets.
We employed 3 subgraph generators and a coefficient loss regularization term of 0.1 across all datasets.

D. Full Results
D.1. Results on Different Datasets.

Appendix Table 6-12 give the full results on the OOD performances of all evaluated methods sperated by datasets.

D.2. Different Statistical Metrics

Appendix Fig. 4 shows the additional statistical evaluation on the performances of all approaches on Molecule-Net datasets.
The metrics include median, IQM, mean, and the optimality gap. Results also reveal that the pre-trained models achieve
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Table 6: Testing ROC-AUC on Drug-OOD datasets (Ji et al., 2023) with covariate shift. Blue shaded rows indicate
pre-training strategies. The first and second best-performing methods (except the ID training) are in bold and bold,
respectively.

‘ DrugOOD-Scaffold ‘ DrugOOD-Assay ‘ DrugOOD-Size ‘ Avg

CIGA-vl 69.27.0.81 72.3610.60 67.08.0.82 69.57
CIGA-v2 69.68¢0,21 73.28i0_35 68.02i0.51 70.32
MoleOOD 68.01i0.39 71'18i0‘63 66.61i0.36 68.60
LiSA 65.7110.25 67.66.0.63 65.78.40.46 66.38
ContextPred 70.01.0.13 72.80 ., o 68.42.0,9 | 70.41
AttrMask 70.68.0.31 71.56.0.43 68.22, .- 70.15
Mole-BERT 70‘04i0‘25 71.19i0.09 67.92i0.19 69.60
GIN-OOD 67.3110.50 71.2040.29 66.67.0.26 68.39
GIN-ID 84.3610.15 87.07+0.62 87.69.40.77 86.37

Table 7: Testing ROC-AUC on MoleculeNet datasets (Wu et al., 2018) with covariate shift. Blue shaded rows indicate
pre-training strategies.

| BBBP | Tox2l ToxCast SIDER ClinTox MUV HIV BACE Avg

CIGA-v1 65.50.1.62 | 73.874054 | 6281955 | 57401440 | 55.0041.60 | 68.10.1.30 75.7941.00 | 73.60.430 | 67.75
CIGA-v2 68.69.+1.37 | 72.2541.46 | 58.5311.85 | 94.901213 | 66.37.3.202 70.99.1.34 73.1944.00 | 78.56.234 | 68.16
MoleOOD | 69.71,, -; | 73652085 | 62.90:0.06 | 62.01 . 5 | 89.93.300 | 67792046 | 78.29.051 | 81.10.1 97 | 73.36
LiSA 65.26.2.01 | 66.32.076 | 59.56.057 | 57.28.0.66 | 65.00L260 | 67.91.i1.13 62.5741.30 | 69.97.306 | 64.92
ContextPred | 69.32.1.03 74.47 ,0.36 63.431040 60.45.0 .60 57.40,3 16 77.3611'11 77.56.0.95 79.41,1 96 68.38
AttrMask 649513‘40 76.2210'41 63.36i0'50 60.15i0'57 70.47i3.43 749312407 76.411()‘70 79.8810'61 71.37
Mole-BERT 71.88i1_12 76.9010_33 64‘181()‘31 62-74;{:089 78.88i2'24 78.6211_51 78'10t0465 80‘8811_45 74.62
GIN-OOD 65.7844.090 | 73.954028 | 62131071 | 57.381165 | 97.29:5.01 70.4041.80 75.0642.06 | 70.78i529 | 66.70
GIN-ID 93132058 | 82.601020 | 70931005 | 62572081 | 84.911210 | 79.49:144 | 80.86:111 | 86.7321.72 | 80.55

well-performance results compared with baseline approaches.
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Table 8: Performance evaluation on OGBG datasets (Hu et al., 2020) with covariate shift. OGBG-MolPCBA is evaluated
by AP, while OGBG-MOolHIV is evaluated by ROC-AUC. Blue shaded rows indicate pre-training strategies. The first and
second best-performing methods (except the ID training) are in bold and bold, respectively.

OGBG-MolPCBA OGBG-MolHIV

Size | Scafflod Size | Scafflod

CIGA-v1 10.5140.17 | 10.24.198 | 61.811168 | 69.40.:2.39
CIGA-v2 9.65i0,12 10.62i1_04 59'55i2.56 69.40i1_97
LiSA 6.52.0.20 8.6710.24 59.65,1.44 68.92,0.92
ContextPred 13~30i0.37 22~14i0.43 60~47i0.88 70.69i1.12
AtrtMask | 13.50, 45 | 21.89,,,, | 62.29,,0, | 70.29,, .-
Mole-BERT 16.19i0.24 17.33i0.12 66.95i0_93 69.63i0~96
GIN-OOD | 12.85,034 | 13.03:043 | 60.0651 63 | 65.41,1 70
GIN-ID 28.1010.69 | 30.80:054 | 79.49:055 | 80.86.1.11

Table 9: Testing Matthews correlation coefficient on TU datasets with covariate shift. Blue shaded rows indicate pre-training
strategies. The first and second best-performing numbers (except the ID training) are in bold and bold, respectively.

NCI1 | NCI109 | PROTEINS | DD
CIGA-vl | 0.22:0.07 | 0.23.0.00 0.40.0.06 0.29.0.08
CIGA-v2 0'7271:0‘07 0.22:&0,05 0.31:&0,12 miO‘OS
LiSA 0.24,0.01 | 0.2650.02 | 0.43,505 | 0-37:0.07
InfoGraph 0-3910.01 0.3810,01 0.5310,07 &10‘04
GIN-OOD O.Qlio_og 0.16i0,05 0.23:|:0_05 0.25i0_09
GIN-ID 0.45:0.03 | 0.44.0.02 0.46.0.03 0.4040.04

Table 10: Testing accuracy on general graph datasets with covariate shift. Blue shaded rows indicate pre-training strategies.
The first and second best-performing numbers (except the ID training) are in bold and bold, respectively.

Motif
Basis | Size
CIGA-vl 66.43111.31 49-14:!:8.34
CIGA-v2 67.1518.19 54'42:!:3.11
LiSA 82.55 . 15 | 62.90.5 30
InfoGraph | 86.85.5.435 | 53.43.5.09
GIN-OOD | 62.01.392 | 52.9445 93
GIN-ID | 92.15.0.04 | 92.16.0.07
Median QM Mean Optimality Gap
GraphMAE n n n
GraphCL 1 1 1
MoleOOD 1 1 1 1
Mole-BERT 1 1 1 1
LiSA mm | || |
AttrMask I 1 1 1
ContextPred I I I I
GIN-OOD 1 1 1 1
CIGA-v2 1 1 1
CIGA-v1 | 1 1 1
68 72 76 68 72 76 66 69 72 6 9 12 15
ROC-AUC

Figure 4: Aggregate performance on MoleculeNet. Better results are indicated by higher mean, median, and IQM scores,

along with a lower optimality gap.
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Table 11: Performance evaluation on OGBG datasets (Hu et al., 2020) with concept shift. OGBG-MolPCBA is evaluated
by AP, while OGBG-MOolHIV is evaluated by ROC-AUC. Blue shaded rows indicate pre-training strategies. The first and
second best-performing numbers (except the ID training) are in bold and bold, respectively.

OGBG-MolPCBA OGBG-HIV
Size | Scafflod Size | Scafflod

CIGA-v1 92210409 8.33:&0.06 72.8011_35 70.7911_55
CIGAV2 | 83l.012 | 87l.o12 | 73.62,, 55 | 71.65,,
LiSA 5.06+£0.32 | 8.55.0.63 72.364475 | 69.46.0.83
ContextPred 11.39.0.21 15.71,9 38 70.41.0.38 68.77.0.90
AttrMask 11.87:&0‘24 16.1410_49 70.59.0.58 71.50.0.55
Mole-BERT 15-7]—:&0.26 21.2910'53 75.9410,91 76.1310,39
GIN-OOD | 12765060 | 17272063 | 702051 12 | 62.3622.90
GIN-ID 28.1040.69 | 30.804054 | 79.49.:055 | 80.8611.11

Table 12: Testing accuracy on general graph datasets with concept shift. Blue shaded rows indicate pre-training strategies.
The first and second best-performing numbers (except the ID training) are in bold and bold, respectively.

Motif

basis | size
CIGA-v1 72-5014.02 58-6316466
CIGA-v2 | 7748954 | 70.65,4.81
LiSA 87.89.161 | 70.36,, 4,
InfoGraph | 79.36,, 15 | 64.79.1 638
GIN-OOD | 72.12,1.89 | 58.23.1.73
GIN-ID 92.15,0.04 | 92.164,0.07
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D.3. Different Backbones
Appendix Fig. 5-8 show the performance on molecular prediction with different GNN architectures (GIN and GAT).
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Figure 5: Comparison of ROC-AUC performance (%) on the DrugOOD dataset using the GIN and GAT backbones,
respectively.

80 : ; 80
75 75
8 £ e e e e I 8 q0d
< <
ORTLE N NN U — . - Q
< S 65 gt S R
601 B ...
ContextPred_GIN 60 T AtrMask GIN |
54— ContextPred GAT |~ AttrMask_GAT
T T T T T T T T T T T T T T T T
BBBP Tox21 ToxCast SIDER ClinTox MUV ~ HIV BACE BBBP Tox21 ToxCast SIDER ClinTox MUV ~ HIV BACE

Figure 6: Comparison of ROC-AUC performance (%) on the MoleculeNet dataset using the GIN and GAT backbones,
respectively.
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Figure 7: Comparison of AP on the OGBG-PCBA dataset using the GIN and GAT backbones, respectively.

E. Reproducibilty Statement
E.1. Details

The experiments are implemented on an 8 Intel Xeon Gold 5220R and 4 NVidia A100 GPUs. We use the publicly
accessible code libraries of all evaluated methods. The detailed implementation can be found through this anonymous link:
https://sites.google.com/view/podgengraph/.

E.2. Used Libraries and Licenses

In our implementation, we have used the following libraries which are covered by the corresponding licenses:

* Tensorflow (Apache License 2.0)

 Pytorch (BSD 3-Clause "New” or "Revised” License)

* Numpy (BSD 3-Clause "New” or “"Revised” License)

* RDKit (BSD 3-Clause "New” or "Revised” License)

* scikit-image (BSD 3-Clause "New” or "Revised” License)
e wilds (MIT License)

* Codebase of CIGA: link, (MIT license)

¢ Mole-OOD: link, (MIT license )

* Codebase of LiSA: link

* Codebase of AttrMask and context prediction: link, (MIT Liecense)
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https://github.com/Samyu0304/LiSA#code-for-mind-the-label-shift-of-augmentation-based-graph-ood-generalization-lisa-in-cvpr-2023
https://github.com/snap-stanford/pretrain-gnns
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Figure 8: Comparison of ROC-AUC performance (%) on the OGBG-HIV dataset using the GIN and GAT backbones,
respectively.

* Codebase of InfoGraph: link

* Codebase of Molecule-BERT: link
* Codebase of GraphCL: link

* Codebase of GraphMAE: link
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https://github.com/sunfanyunn/InfoGraph#infograph-unsupervised-and-semi-supervised-graph-level-representation-learning-via-mutual-information-maximization
https://github.com/zhang-xuan1314/Molecular-graph-BERT
https://github.com/Shen-Lab/GraphCL
https://github.com/THUDM/GraphMAE/tree/main

