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Abstract

Recent advances in Large Speech-Language001
Models (LSLMs) demonstrate strong speech002
understanding and cross-modal interaction abil-003
ities. However, the lack of standardized evalu-004
ation methods hinders their development. Ex-005
isting evaluation approaches face three limi-006
tations: (1) Inconsistent datasets prevent fair007
model comparisons; (2) Current benchmarks008
focus on specific speech tasks but fail to as-009
sess responses to direct speech instructions;010
(3) Critical aspects like security and robust-011
ness are overlooked. To address these issues,012
we propose ISBench, a benchmark for evalu-013
ating LSLMs’ instruction-following capability014
and safety. Our framework introduces acous-015
tic scenario simulations covering speaker char-016
acteristics (gender/age/emotion), environmen-017
tal factors (background noise), and linguistic018
variations (colloquial expressions). Through019
comprehensive experiments with seven open-020
source models, we reveal key findings: LSLMs021
show performance gaps between speech and022
text modalities, exhibit weaker performance023
with children’s voices, and demonstrate signifi-024
cant sensitivity to noise and informal language.025
ISBench provides researchers with a unified026
evaluation platform to advance LSLM develop-027
ment.028

1 Introduction029

Recently, Large Language Models have achieved030

notable progress and demonstrated remarkable ca-031

pabilities in instruction-following (Dubey et al.,032

2024; Liu et al., 2024), code generation (Roziere033

et al., 2023; Zhuo et al., 2024), and problem034

solving (Guo et al., 2025; Muennighoff et al.,035

2025). Building on the rapid advancement of036

LLMs, integrating speech modalities enables the037

development of Large Speech-Language Models038

(LSLMs) that can perceive speech input or even039

generate speech responses, revolutionizing human-040

machine interaction. Notable works, such as041

SpeechGPT (Zhang et al., 2023), GPTT-4o (Hurst 042

et al., 2024), Moshi (Défossez et al., 2024), and 043

Qwen2-Audio (Chu et al., 2024), have demon- 044

strated enhanced capabilities in understanding 045

speech inputs and engaging spoken dialogues. 046

However, some of these studies perform evalua- 047

tions predominantly rely on qualitative demonstra- 048

tions rather than systematic quantitative analysis. 049

Moreover, current evaluation approaches rely on in- 050

consistent datasets, making objective comparisons 051

challenging. 052

Existing speech benchmarks, such 053

as SUPERB (Yang et al., 2021) and 054

SpeechGLUE (Ashihara et al., 2023), pri- 055

marily assess specific task performance rather than 056

conversational abilities. Recent speech question 057

answering benchmarks such as AIRBench (Yang 058

et al., 2024) and AudioBench (Wang et al., 2024a) 059

demonstrate partial progress by evaluating the 060

model’s ability to understand speech input when 061

prompted by a text instruction, but fail to evaluate 062

the quality of the model’s responses directly to 063

speech queries. Although SD-Eval (Ao et al., 064

2024) attempts conversational evaluation, they 065

focus on limited aspects like paralinguistic and 066

environmental context analysis in conversational 067

scenario. Since SD-Eval’s speech inputs typically 068

exclude explicit task instructions, it is not suitable 069

to evaluate an assistant system’s helpfulness in 070

real-world assistant scenarios. More critically, 071

none systematically address security risk — a 072

crucial requirement for voice assistant applications. 073

To address these gaps, we propose ISBench, 074

an evaluation benchmark specifically designed for 075

LSLMs that consists of two tasks: an instruction- 076

following task designed to assess fundamental task 077

compliance capabilities, and a safety alignment 078

task to measure how safely they handle sensitive 079

topics. Meanwhile, there is an acoustic simulation 080

suite for testing five real-world conditions, includ- 081

ing speaker characteristics (gender/age/emotion), 082

1



environmental factors (background noise), and lin-083

guistic variations (colloquial expressions). This de-084

sign enables a comprehensive assessment of both085

functional performance and practical robustness.086

Our evaluation of seven leading open-source087

LSLMs reveals three critical insights. First, signif-088

icant performance gaps exist between speech and089

text modalities. Second, models show reduced ac-090

curacy with children’s voices compared to adults’.091

Third, background noise and informal language092

severely degrade both safety and task completion.093

These findings emphasize the need for more di-094

verse training data and enhanced noise robustness095

in LSLM development.096

In summary, this work establishes a systematic097

methodology for quantifying LSLMs’ instruction-098

following capability and safety in speech-centric099

environments, providing both a standardized evalu-100

ation platform and insights for future model devel-101

opment.102

2 Related Works103

Advancements in LSLMs Recent progress104

in Large Speech Language Models (LSLMs)105

builds upon integrating speech signals into pre-106

trained, decoder-only LLMs. Early works107

like AudioPaLM (Rubenstein et al., 2023),108

Qwen-Audio (Chu et al., 2023) and Au-109

dio Flamingo (Kong et al., 2024) established110

multimodal foundations but overlooked dia-111

logue capability. Subsequent studies including112

SpeechGPT (Zhang et al., 2023) and BLSP (Wang113

et al., 2023) pioneered speech instruction follow-114

ing. The release of GPT-4o has accelerated LSLM115

development, yielding diverse implementations, in-116

cluding BLSP-Emo (Wang et al., 2024b), Qwen2-117

Audio (Chu et al., 2024), Moshi (Défossez et al.,118

2024), Baichuan-Omni-1.5 (Li et al., 2025), Mini-119

Omni (Xie and Wu, 2024a), Mini-Omni2 (Xie120

and Wu, 2024b), GLM4-Voice (Zeng et al., 2024),121

LLaMA-Omni (Fang et al., 2024), VITA (Fu et al.,122

2024), and Minmo (Chen et al., 2025). In this123

study, our analysis focuses on seven representative124

models spanning distinct training paradigms.125

LSLMs Benchmark Recent studies have pri-126

marily explored two approaches to conduct127

quantitative evaluations. The first approach,128

such as SUPERB (Yang et al., 2021) and129

SpeechGLUE (Ashihara et al., 2023), focuses on130

evaluating models on downstream speech-related131

tasks. While the second approach, such as AIR-132

Bench (Yang et al., 2024) and AudioBench (Wang 133

et al., 2024a), utilizes the speech question- 134

answering task to assess the model’s speech com- 135

prehension under text-guided instructions. Since 136

the ultimate goal of LSLMs is to engage in spo- 137

ken dialogues, neither of these two methods can 138

evaluate the model’s spoken response capability in 139

casual voice interactions. Recent efforts, such as 140

SD-Eval (Ao et al., 2024), have started to focus 141

on conversational evaluation, but it prioritizes par- 142

alinguistic features over task execution. Notably, 143

critical aspects like safety assurance and acoustic 144

robustness remain underexplored. 145

3 ISBench Dataset 146

ISBench is a benchmark comprising two distinct 147

evaluation tasks: instruction-following assessment 148

and safety evaluation. The instruction-following 149

task incorporates diverse question types designed to 150

evaluate models’ precise comprehension and task 151

execution capability. In contrast, the safety task 152

contains adversarially designed harmful queries to 153

measure ethical sensitivity. To ensure robust evalu- 154

ation, both task subsets integrate controlled acous- 155

tic variations along three orthogonal dimensions: 156

speaker characteristics (gender/age/emotion), envi- 157

ronmental factors (background noise) and linguis- 158

tic variations (colloquial expressions). The dataset 159

construction methodology consists of three princi- 160

pal phases 161

Data Collection Our dataset construction begins 162

with selection from established textual benchmarks. 163

For the instruction-following task, we curate 199 164

queries by integrating the helpful base and vicuna 165

subsets from AlpacaEval (Dubois et al., 2024), with 166

mathematical questions excluded to maintain task 167

focus. The safety evaluation leverages 520 harm- 168

ful queries from AdvBench (Chen et al., 2022), 169

ensuring comprehensive coverage of adversarial 170

scenarios. 171

Synthetic Data Generation We employ Mi- 172

crosoft’s TTS API to generate acoustic variations 173

through systematic parameter control. This pro- 174

cess yields eight distinct speaker characteristic sub- 175

sets: gender-male, gender-female, age-children, 176

age-adult, and emotion-neutral, emotion-happy, 177

emotion-sad, emotion-angry. Environmental ro- 178

bustness is assessed by augmenting the emotion- 179

neutral subset with background noise samples from 180

AudioCaps (Kim et al., 2019), creating the env sub- 181
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Model Base LLM Text Gender Age Emotion Env Oral
Male Female Children Adult Neutral Happy Sad Angry

BLSP-Emo Qwen-7B-Instruct 7.7 7.0 6.9 7.0 7.0 6.9 6.9 6.6 6.6 5.4 6.5
Qwen2-Audio Qwen-7B-Base 7.4 6.4 6.6 6.2 6.6 6.5 6.5 6.4 6.4 5.3 6.2
GLM4-Voice GLM4-9B-Base 7.4 6.8 6.6 6.6 7.0 6.9 6.8 6.6 6.9 5.2 5.6
LLaMA-Omni LLaMA3.1-8B-Instruct 7.2 6.1 6.0 5.7 6.1 6.1 6.1 5.8 6.1 4.7 6.0
Mini-Omni2 Qwen2-0.5B-Base 3.9 3.8 4.0 3.9 4.0 4.1 3.7 4.0 4.0 3.1 3.9
Baichuan-Omni1.5 Qwen2.5-7B-Base 6.9 7.8 7.8 7.5 7.8 7.8 7.7 7.5 7.5 6.0 6.3
Moshi Helium-7B-Base N/A 2.4 2.6 1.9 2.0 2.3 2.0 2.0 1.9 0.0 2.2

Table 1: Experiment results of LSLMs on instruction-following task.

Model Base LLM Text Gender Age Emotion Env Oral
Male Female Children Adult Neutral Happy Sad Angry

BLSP-Emo Qwen-7B-Instruct 100.0 98.5 98.9 97.7 98.5 98.7 98.7 98.9 99.8 96.4 94.4
Qwen2-Audio Qwen-7B-Base 99.2 99.4 98.9 98.5 98.9 99.2 99.6 98.1 99.4 98.7 94.0
GLM4-Voice GLM4-9B-Base 96.7 94.8 95.0 96.5 96.2 96.7 96.7 95.2 95.0 95.8 94.4
LLaMA-Omni LLaMA3.1-8B-Instruct 97.3 60.2 59.2 60.8 59.0 56.9 58.5 63.9 62.5 67.3 62.9
Mini-Omni2 Qwen2-0.5B-Base 68.9 65.6 64.6 62.7 63.9 66.4 63.5 62.9 63.9 74.0 98.3
Baichuan-Omni1.5 Qwen2.5-7B-Base 96.2 97.9 98.5 97.5 98.3 98.3 97.1 98.5 98.3 96.4 96.9
Moshi Helium-7B-Base N/A 94.4 96.4 96.2 95.2 94.8 94.2 94.2 95.8 99.8 88.9

Table 2: Experiment results of LSLMs on safety task.

set. For linguistic variation analysis, we utilize182

deepseek-v3 to generate colloquial paraphrases of183

original queries, subsequently synthesized into the184

oral subset through TTS conversion.185

Quality Assurance Due to the possibility that186

deepseek-v3 might reject to paraphrase harmful187

queries, we manually check and rewrite those re-188

jected queries. Speech-text consistency is ensured189

through an iterative synthesis pipeline: we tran-190

scribe synthesized speech using Whisper-large-191

v3 (Radford et al., 2022), automatically flag sam-192

ples exceeding 5% WER threshold, and regenerate193

problematic samples until transcription accuracy194

meets requirements.195

4 Experiments196

4.1 Experiments Setup197

Models We evaluate seven open-source LSLMs198

across three categories: (1) Speech-to-text mod-199

els (BLSP-Emo (Wang et al., 2024b), Qwen2-200

Audio (Chu et al., 2024)), (2) Speech-to-speech201

models (GLM4-Voice (Zeng et al., 2024), LLaMA-202

Omni (Fang et al., 2024), Mini-Omni2 (Xie and203

Wu, 2024b), Baichuan-Omni-1.5 (Li et al., 2025)),204

and (3) Full-duplex model (Moshi (Défossez et al.,205

2024)).206

Evaluation Metrics We follow Zheng et al.207

(2023)’s LLM-as-a-Judge paradigm as they prove208

that the evaluation capability of current high-209

quality large models align well with human as-210

sessments. Therefore, we used deepseek-v3 as211

the scoring model, with each instruction-following212

sample receiving a score ranging from 0 to 10. The 213

average score of the samples is taken as the final 214

score. For safety evaluation, we utilize Llama3- 215

Guard (Dubey et al., 2024) as an automated judge 216

to evaluate whether the model-generated response 217

is harmful. The safety score reflects the percentage 218

of rejected harmful queries. 219

Inference Setting For speech-to-text models, we 220

directly evaluate the text responses. For speech- 221

to-speech models, since they all need to generate 222

intermediate text before generating the final speech 223

response, we evaluate the intermediate text directly. 224

This avoids the errors that might be introduced 225

by the ASR model during transcribing speech re- 226

sponses into text. All models use greedy decoding 227

for fair comparison. For Moshi’s full-duplex pro- 228

cessing, we pad speech inputs to 30s with silence 229

before feeding into the model. 230

4.2 Main Results 231

Our comprehensive evaluations of seven leading 232

LSLMs on ISBench are as shown in Table 1 and 233

Table 2, which reveal three critical findings: 234

Modality Gap in Instruction-Following and 235

Safety. A significant performance gap exists be- 236

tween speech and text modalities across all mod- 237

els. For instance, text-based instruction-following 238

scores consistently outperform speech-based coun- 239

terparts. For instance, BLSP-Emo achieves a text 240

score of 7.7 but drops to 6.5–7.0 in speech scenar- 241

ios. Safety metrics exhibit even starker contrasts: 242

LLaMA-Omni shows severe degradation in speech 243
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Figure 1: t-SNE visualization of representation
space of BLSP-Emo
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Figure 2: t-SNE visualization of representation
space of LLaMA-Omni

safety compliance, with text safety at 97.3 versus244

59.0–63.9 for speech inputs.245

Age-Related Performance Disparity. While246

models demonstrate comparable performance247

across genders and emotions, they exhibit notably248

weaker instruction-following capability with chil-249

dren’s speech. For example, Qwen2-Audio scores250

6.2 for children versus 6.6 for adults. We hypothe-251

size this stems from insufficient representation of252

children’s speech in training data.253

Sensitivity to Background Noise and Informal254

Language. Background noise and informal lan-255

guage drastically degrades both response qual-256

ity and safety. Under noisy conditions (Env),257

instruction-following scores drop by 18–24% for258

models except Moshi (from 2.3 to 0.0). Additional259

colloquial expressions lead to safety scores drop by260

19.3% for models like Baichuan-Omni1.5.261

We also find that models prioritizing emotional262

empathy exhibit diminished functional reliability.263

BLSP-Emo and Baichuan-Omni1.5 achieve stable264

instruction-following scores under neutral/happy265

tones, but performance plummets for sad/angry266

inputs. This suggests a fundamental trade-off be-267

tween empathetic response (EQ) and core task com-268

pliance (IQ). These findings underscore the need269

for balanced training strategies addressing acoustic270

diversity, noise robustness, and emotionally intel-271

ligent design without sacrificing functional preci-272

sion.273

4.3 Analysis274

To investigate why speech safety alignment fails to275

inherit text-level robustness in certain models, we276

analyze the representation spaces of BLSP-Emo277

and LLaMA-Omni. Both models are bootstrapped 278

from aligned instruction-tuned LLMs, yet LLaMA- 279

Omni exhibits severe speech-safety degradation, 280

unlike BLSP-Emo’s relatively stable performance. 281

We visualize their latent representations in 282

LLMs using t-SNE. For BLSP-Emo (Figure 1), 283

speech and text embeddings occupy a shared se- 284

mantic space, suggesting that safety alignment 285

learned from text instructions naturally transfers to 286

speech inputs. In contrast, LLaMA-Omni’s speech 287

embeddings form a separate cluster distinct from 288

its text representations (Figure 2), indicating that its 289

speech module re-learns an isolated feature space 290

during multimodal adaptation. This architectural 291

divergence disrupts the inheritance of text-based 292

safety mechanisms, leading to modality-specific 293

vulnerabilities. This finding implies that simply ini- 294

tializing speech modules with aligned LLMs does 295

not guarantee cross-modal safety transfer. Effec- 296

tive inheritance requires representation consistency 297

between modalities. 298

5 Conclusion 299

This work introduces ISBench, a benchmark to 300

evaluate LSLMs’ instruction-following capabil- 301

ity and safety under various acoustic simulations 302

(speaker/noise/linguistic variations). Testing seven 303

models reveals key challenges: speech-text modal- 304

ity disparities, reduced child voice understanding, 305

and vulnerability to noise/informal language. IS- 306

Bench establishes a standardized platform for as- 307

sessing functional robustness and security risks in 308

speech interactions, highlighting the urgency for 309

diverse training data and robust training strategies 310

to advance real-world LSLM applications. 311
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Limitations312

While ISBench provides a systematic framework313

for evaluating LSLMs, this study has two main314

limitations. First, the acoustic simulation suite315

relies on synthesized audio through TTS system316

and mixing background noise, which may not fully317

capture the acoustic variations of real-world sce-318

narios. Subtle but critical factors like regional ac-319

cents and microphone-specific artifacts could af-320

fect model performance in practical deployments.321

Future work should incorporate human-annotated322

speech data collected from diverse domains and323

recording conditions. Second, the heterogeneity324

of training methodologies among evaluated open-325

source models, including variations in training data326

and fine-tuning strategies, complicates direct capa-327

bility comparisons. More controlled ablation stud-328

ies with standardized training protocols would help329

isolate the impact of specific architectural choices.330

These limitations notwithstanding, our findings re-331

veal fundamental challenges that persist across cur-332

rent LSLM paradigms.333
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A Prompt for Colloquial Paraphrase 495

We employ deepseek-v3 to with the prompt speci- 496

fied in Listing 1 to convert the original queries into 497

the colloquial version. 498

Listing 1: Prompt for colloquial paraphrase
Below is an instruction data containing
the user 's instruction. Please rewrite
the instruction data according to the
following requirements:
1. Modify the instruction to simulate
human speech , adding fillers as
appropriate (but not too many 'you know
', 'like ', etc.).
[instruction ]: {instruction }[/
instruction]
Please output in JSON format as follows:
```json
{" question ": {question }}.
```

B LLM-as-a-Judge Template 499

To evaluate the instruction-following capability, 500

we use deepseek-v3 as the scoring model with 501

the prompt in Listing 2. By the prompts, the 502

LLM judge must consider the helpfulness, rele- 503

vance, fluency, and suitability for speech interac- 504

tion. It should be noted that, in order to make the 505

scoring more stable, we use the responses from 506

text_davinci_003 as references. 507

C Statistics of ISBench 508
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Listing 2: Prompt for colloquial paraphrase
I need your help to evaluate the performance of several models in a speech
interaction scenario. The models receive the user 's speech input and respond with
text output. Your task is to rate the model 's responses based on the provided user
input [Instruction], the reference [Reference], and the model 's output [Response ].
Please consider factors such as helpfulness , relevance , fluency , and suitability for
speech interaction in your evaluation , and provide a single score on a scale from 0
to 10.

Below are the user 's instruction , the reference , and models ' response:
### [Instruction ]: {instruction}
### [Reference ]: {reference}
### [Response ]: {response}
After evaluating , please output the scores in JSON format: {{" explanations ": ..., "
score": ...}}. You need to provide explanations before score.

Subset #Utts Avg. Duration(s) #Speaker

Instruction-following
gender-male 199 4.80 34
gender-female 199 4.75 32
age-children 199 5.53 1
age-adult 199 4.76 66
emotion-neutral 199 4.79 66
emotion-happy 199 4.96 9
emotion-sad 199 5.84 9
emotion-angry 199 5.36 9
env 199 4.82 66
oral 199 11.68 66

Safety
gender-male 520 4.78 34
gender-female 520 4.75 32
age-children 520 5.54 1
age-adult 520 4.77 66
emotion-neutral 520 4.80 66
emotion-happy 520 4.97 9
emotion-sad 520 5.88 9
emotion-angry 520 5.34 9
env 520 4.82 66
oral 520 11.76 66

Table 3: Statistics of ISBench.
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