CONCEPT ATTRACTORS IN LLMs AND THEIR APPLICATIONS

Anonymous authors

000

001

003

006

008

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Large language models (LLMs) often map semantically related prompts to similar internal representations at specific layers, even when their surface forms differ widely. We show that this behavior can be explained through Iterated Function Systems (IFS), where layers act as contractive mappings toward concept-specific Attractors. We leverage this insight and develop simple, training-free methods that operate directly on these Attractors to solve a wide range of practical tasks, including language translation, hallucination reduction, guardrailing, and synthetic data generation. Despite their simplicity, these Attractor-based interventions match or exceed specialized baselines, offering an efficient alternative to heavy fine-tuning, generalizable in scenarios where baselines underperform.

1 Introduction

Consider three distinct concepts: the Lord of the Rings universe, the Python programming language, and 19th-century romantic literature. When prompts from these concepts are given to a large language model (LLM) such as Llama 3.1 Grattafiori et al. [2024], we see an interesting phenomenon. For each concept, despite lexical variations among its prompts, their intermediate representations appear to collapse to distinct regions at *specific layers* – at which layer this happens varies based on the concept. For instance, prompts such as "Who is Gandalf the Grey?" and "What is the significance of Mount Doom?" share minimal similarity on the surface, yet their representations converge to nearly identical locations at layer 24. We see a similar behavior for Python-related queries such as "Help me implement a binary search tree in

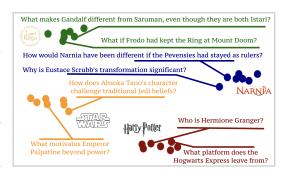


Figure 1: A t-snevan der Maaten & Hinton [2008] plot of the latent representations of Llama3.1-8B for $7\times4=28$ different prompts, seven each, for the Lord of the Rings universe, Narnia, Star Wars, and Harry Potter. Although the prompts explore different aspects of the universes and share almost no common keywords, we observe a clear clustering based on the different worlds.

Python" versus "How can I find the longest non-repeating substring in Python?" and for prompts for the same genre in literature: "Discuss themes in Pride and Prejudice" and "Any easy way to recognize Byron's poetry?". Such a semantic collapse has been reported in some recent results. For instance, Shai et al. [2024] notes that transformer models develop a structured latent representations that encode *belief states*. Separately, Fernando & Guitchounts [2025] suggests that due to the internal dynamics of the model, representations converge to "stable" configurations. From a more practical perspective, Hendel et al. [2023]; Liu et al. [2024d]; Skean et al. [2024] showed that transformers and LLMs shape their latent space according to the underlying task. These findings, while restricted to smaller models and/or for specific contexts, cumulatively support the idea of representation collapse.

A natural question is whether this concept-specific collapse is implied as a property of some underlying dynamical system already studied in the literature, and if so, what guidance can these existing results provide? Specifically, can we obtain strategies for important downstream use-cases? If p_1, \dots, p_n are a set of prompts related to a specific concept C, we conjecture that the layers of our model may be acting like a dynamical system that maps semantically related inputs to proximal regions, regardless of their form at the "surface". In other words, the full sequence of layers (leading up to where the

representations collapse), if viewed as a unit, implements an iterative (contractive) mapping process to an *Attractor set*, one for each concept. We will see shortly that – to the extent that our hypothesis holds – how existing results are consistent with this view of the collapse phenomena.

Contributions. We show that viewing the LLMs through the lens of Iterated Function Systems Barnsley [1988]; Hutchinson [1981] offers a meaningful (or at worst, plausible) explanation for both the layer-specific concept clustering and the subsequent generative process. The main practical benefit is that for a wide-variety of downstream tasks, which are often handled piecemeal in the literature, we can obtain a generic scheme that operates under the assumption that operating with the Attractors alone is *sufficient*. We demonstrate that careful interventions on Attractors can provide us lightweight, *training-free* solutions to a wide array of problems, from **programming language translation** and **guardrailing**, to **hallucination reduction** and **synthetic data generation**. Despite the simplicity as well as limited data/compute needs, these solutions turn out to be comparable to existing specialized approaches. Our experiments focus on Llama3.1 8B Grattafiori et al. [2024]. However, we see a similar behavior on other LLM families too (in particular, Gemma Team et al. [2024] and Qwen Team [2024]), but avoid an exhaustive analysis of all LLMs.

2 ITERATED FUNCTION SYSTEMS AND LLMS

There is mounting evidence that large language models (LLMs) possess emergent capabilities beyond simple rote memorization and statistical pattern matching Bender et al. [2021]. Among the many phenomena observed in these models – from in-context learning Dong et al. [2024] to compositional reasoning Lu et al. [2023]; Li et al. [2024b] – we focus on a particular representation-convergence property. Our scope is specifically the collapse phenomena at *specific* intermediate layers. To understand this behavior through the lens of dynamical systems, we hypothesize that LLMs implicitly implement a collection of Iterated Function Systems (IFS) during forward propagation through the layers (Fig. 2).

2.1 LLMs implement Iterated Function Systems?

Empirically, we see that for prompts p_i , p_j in each concept C, there exists a layer l where:

$$\lim_{l \to l_C} \frac{1}{n^2} \sum_{i,j=1}^n |h_l(p_i) - h_l(p_j)| \ll \frac{1}{n^2} \sum_{i,j=1}^n |h_0(p_i) - h_0(p_j)| \tag{1}$$

with h_l denoting the implicit transformation by the LLM up to layer l. This "squashing" of inter-prompt distances suggests that a contractive mapping process is taking place through the layers. Our hypothesis is that this can be understood via the framework of Iterated Function Systems (IFS) Barnsley [1988]; Hutchinson [1981].

An IFS is defined as a finite set of contractive mappings on a complete metric space. The collective action of these mappings, defined by the Hutchinson operator Hutchinson [1981] is:

$$\mathcal{F}(\mathbf{S}) = \bigcup_{i=1}^{N} f_i(\mathbf{S})$$
 (2)

and induces a compact invariant set i.e., $\mathcal{F}(\mathbf{S}^*) = \mathbf{S}^*$, which is called the Attractor of the IFS. More generally, for any initial non-empty compact set $\mathbf{S}_0 \in \mathbb{X}$, the sequence $\{\mathbf{S}_0, \mathbf{S}_1 \coloneqq \mathcal{F}(\mathbf{S}_0), \mathbf{S}_2 \coloneqq \mathcal{F}(\mathbf{S}_1), \cdots \}$ converges to \mathbf{S}^* in the Haussdorf metric. More generally, an Attractor in

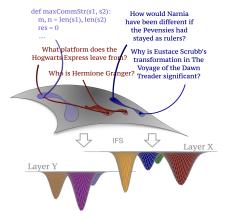


Figure 2: An LLM can be viewed as an IFS that transforms the non-linear manifold of texts into a well-behaving collection of Attractors.

a dynamical system is a closed invariant set toward which trajectories from a wide class of initial conditions evolve asymptotically within its basin of attraction, and may take the form of fixed points, periodic orbits, tori, or other Attractors characterized by sensitive dependence on initial conditions Barnsley [1988].

Dynamical systems often exhibit Attractors—sets toward which trajectories converge. Simple systems satisfying Banach's fixed-point conditions Banach [1922] converge to a single point, while others yield more complex structures like limit cycles or strange Attractors Strogatz [2024]. We hypothesize that the iterative application of layer transformations in an LLM induces concept-specific invariant sets—semantic Attractors ($\mathbf{A}_l^{\mathcal{C}}$) for each concept \mathcal{C} — within the latent space at layer l. These compact regions characterize specific concepts, with convergence potentially occurring at different depths depending on the concept.

Once a sequence's representation enters $\mathbf{A}_l^{\mathcal{C}}$, it is further processed by the remaining layers and output matrix W_{out} to yield a token distribution. Each Attractor may have an invariant measure $\mu_l^{\mathcal{C}}$, describing the distribution of states within it under stochastic dynamics (e.g., varied inputs aligned with concept \mathcal{C}). While $\mu_l^{\mathcal{C}}$ is useful for tasks like *synthetic data generation*, it does not directly define next-token probabilities in autoregressive inference, which depend on the specific input-driven state.

The attractors, $\mathbf{A}_l^{\mathcal{C}}$, are linked to the LLM's operational prefill and decode stages. During prefill, the LLM's composed layer transformations guide initial representations of an input prompt, $h_0(p)$, towards $\mathbf{A}_l^{\mathcal{C}}$, with the representation $h_l(p)$ landing within this attractor to give the initial semantic context. Then, during decode, each incremental update to the context (by newly generated tokens) is processed by these same underlying layer dynamics. For coherent generation aligned with concept \mathcal{C} , the evolving sequence representation at layer l is continually guided towards or kept within the basin of attraction of $\mathbf{A}_l^{\mathcal{C}}$. Thus, $\mathbf{A}_l^{\mathcal{C}}$ acts like a stabilizing latent structure.

Collage theorem. Our operational model takes the transformation performed by the LLM for a concept and approximates it by repeatedly iterating a single affine contractive map Balestriero & Baraniuk [2021], $\phi_{\rm eff} = M_{\rm eff}V + t_{\rm eff}$ (with V as a placeholder hidden representation), suggesting that the overall transformation, for a specific concept, can be roughly approximated by an iterated affine dynamics. We want to estimate the parameters (i.e., the matrix $M_{\rm eff}$ and vec-

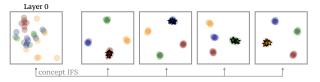


Figure 3: 4 different concepts in layer 0 (before any application of the underlying IFS, and one of the contractions of the underlying IFS we recover by solving the inverse problem for each concept separately. The circles correspond to the true vectors as obtained from the LLM in layer 24 and the stars correspond to the application of the contractions to the points in layer 0.

tor $t_{\rm eff}$) and the number of iterations iter, that best reproduce the observed mapping (Figure 3). This is achieved by minimizing the discrepancy between the LLM's observed states at the Attractor layer and the states predicted by iterating $\phi_{\rm eff}$ from the initial prompt representations:

$$\min_{M_{\text{eff}}, t_{\text{eff}}, \text{iter}} \sum_{i=1}^{N} \mathcal{D}\left(h_l(p_j), \phi_{\text{eff}}^{\text{iter}}(h_0(p_j))\right)$$
(3)

subject to $M_{\rm eff}$ being contractive (e.g., its operator norm $|M_{\rm eff}|_{op} < 1$). We apply this iter times, and \mathcal{D} is a suitable distance metric. This single map ϕ_{eff} defines a simple Iterated Function System (IFS). The unique Attractor of this 1-map IFS is its fixed point, V^* to which all trajectories $\phi_{\text{eff}}^k(V)$ (for any initial V) converge as k grows. The observed empirical set $A^{\mathcal{C}}$ is then interpreted as the collection of states reached after iter applications of ϕ_{eff} starting from the initial set S_0 . If, as empirical evidence for many concepts suggests, this 1-map model provides a good first-order approximation, then A^{C} would be expected to lie in the vicinity of V^* . The Collage Theorem Barnsley [1988] states that if $\mathbf{A}^{\mathcal{C}}$ is indeed close to the true Attractor V^* of our fitted ϕ_{eff} , then $\mathbf{A}^{\mathcal{C}}$ should be well "collaged" by ϕ_{eff} itself; i.e., $d(\mathbf{A}^{\mathcal{C}}, \phi_{\text{eff}}(\mathbf{A}^{\mathcal{C}}))$ should be small. While the iterated single affine map is simple, for concepts whose empirical Attractors $\mathbf{A}^{\mathcal{C}}$ exhibit more complex geometries (e.g., disjoint sets or intricate fractal structures not well approximated by convergence to a single point), a richer effective IFS comprising multiple affine maps might be necessary. This would involve finding ϕ 's and an iteration count iter' that minimize $d\left(\mathbf{A}^{\mathcal{C}}, \mathcal{F}^{\mathtt{iter}'}(S_0)\right)$, where \mathcal{F} is the Hutchinson operator for the candidate set of ϕ 's. Alternatively, one could model the geometry of $\mathbf{A}^{\mathcal{C}}$ directly by finding an IFS whose intrinsic Attractor matches A^{C} , by minimizing the collage error. These approaches are more involved but grounded in IFS theory.

Does this perspective add to existing results? Several recent results have indirectly hinted at the IFS-like nature of the LLMs, and more generally transformers, for specific tasks, datasets, and

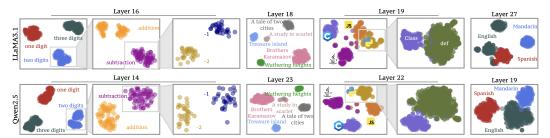


Figure 4: Attractors in Llama3.1-8B Grattafiori et al. [2024] and Qwen2.5-7B Yang et al. [2024]; Team [2024]. From the fractal-like structure of the task vectors in layer 16/14, to literature-based Attractors in layer 18/23 and programming-based in layer 19/22, the treatment of an LLM as an IFS allows us to recover (and use) them in multiple applications, invariant to the underlying LLM.

architectures. Fernando & Guitchounts [2025] describes how the intermediate layers of an LLM converge to different "Attractor" points/vectors as the context window of the LLM increases. The result in Wang et al. [2025] examines the Attractors formed in the output layer of an LLM, discovering that paraphrasing results in 2-period cycles. The authors in Shai et al. [2024] present evidence that transformers develop internal representations corresponding to "belief states" over hidden variables in the data-generating process. This phenomenon mirrors the behavior of an IFS, belief states in Shai et al. [2024] can be viewed as specific points within concept Attractors that encode probabilistic information about possible continuations. Notice that the fractal structures reported in Shai et al. [2024] arises naturally from known properties of IFS: systems whose repeated application to an initial set converges to a unique invariant set with so-called *self-similar* properties.

2.2 A PRELIMINARY INVESTIGATION OF ATTRACTORS

Before evaluating their practical utility, we first examine the nature of Attractors and their underlying IFS across various concepts and datasets as a sanity check.

Induced tokens. To understand what the Attractors represent, we average the vectors for each of the four fictional worlds from Fig. 1 to approximate their Attractor points, then project them to vocabulary space via the LLM's final linear layer. The top induced tokens (Table 1) support our hypothesis, revealing meaningful associations—including tokens not present in the original texts, such as the pound symbol (£), filming locations (Auckland, NZ), or author connections (C.S. Lewis and J.R.R. Tolkien). This suggests the Attractors capture the underlying "essence" of each world, beyond surface-level content.

Table 1: Top induced tokens of Attractors.

Concept	Tokens
	Harry, wizard, Hogwarts,
Harry Potter	magical, Voldermort,
	London, British, £
Land of the Dine	Lord, Tolkien,
Lord of the Rings	Middle, Auckland, NZ
Narnia	Kingdom, Tolkien,
Namia	British, Oxford, Aslan
	Imperial, Star, galaxy,
Star Wars	Galactic, Jedi, Empire,
	Skywalker, Force, powerful

Different concepts, different layers. While for functional worlds, as in Figure 1, we see that the LLM forms clear Attractors in layer 24, this is not the case for all families of concepts, and not discussed in many existing results. We will see later that different families of concepts form Attractors in different layers. For example, we observe the same behavior in layer 19 for programming languages, in layer 27 for natural languages, and in layer 18 for literature books (Figure 4).

Same concept, multiple Attractors. Previously, we modeled each concept as a single Attractor (or Concept Vector) in the LLM's latent space. However, some concepts may decompose into multiple sub-concepts. For instance, English forms two distinct Attractors when combining datasets with different semantic styles (https://www.manythings.org/anki/spa-eng.zip, https://huggingface.co/datasets/swaption2009/20k-en-zh-translation-pinyin-hsk; see Figure 4). This fragmentation is even clearer in layer 16, where tasks produce multiple Attractors based on the number of digits per example.

A fractal-like structure in the Attractors. In Figure 4 (left), replicating the setup from Hendel et al. [2023], we observe a structure in the Attractors that empirically resembles that of a fractal. At a high level, Attractors cluster by the number of digits in the examples. Zooming in, subclusters emerge based on task type (addition vs. subtraction), and further divisions align with specific values being added or subtracted. Similarly, the single cluster of Python programs is further divided into two,

based on the solution style (object-oriented vs procedural). This hierarchical structure aligns with theoretical findings in Shai et al. [2024], suggesting a fractal organization of Attractors in this setting. A complete analytical characterization of this phenomenon remains beyond reach with conventional theoretical tools (e.g., box-counting Feldman [2012]). The empirical analysis, however, supports the view that LLMs appear to operate in practice according to this fractal hypothesis.

LLMs and World Models. There is much discussion related to whether LLMs operate with an explicit, internal world model Ha & Schmidhuber [2018]. Based on the empirical analysis described so far, we find that there is at least partial evidence to support the idea that the models indeed harbor a *fuzzy* understanding of the world, which is better expressed partially across many of these intermediate layers. In the subsequent section, we will focus on how we can better exploit this fuzzy world model of the LLMs and propose **practical, training free solutions** to a number of use cases.

3 ATTRACTOR FOR CONCEPT DETECTION

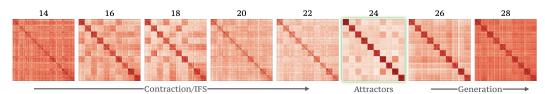


Figure 5: Cosine similarity between all prompts' from TOFU forget05 Maini et al. [2024]. The first 20 rows/columns of each heatmap correspond to questions about the first author, the second 20 about the second author, and so on. The forming of author-based Attractors is apparent and it becomes clearer in layer 24.

Machine unlearning is a active research area, with initial work in computer vision Xu et al. [2023] where many widely used datasets included images of individuals who did not consent to their use. The training datasets of contemporary LLMs are also prompting concern about compliance with the Right to Be Forgotten Chenou & Radu [2019] and similar regulations. Due to the size of these models, retraining or fine-tuning (e.g., Fan et al. [2024]; Jia et al. [2023]; Kurmanji et al. [2023]; Chen et al. [2023]) is often too costly. Moreover, since removal requests are continuous, efficient online unlearning is desirable. To evaluate unlearning in LLMs, Maini et al. [2024] proposed the TOFU benchmark, where models must forget certain fictional authors while retaining performance on others and unrelated tasks.

Existing solutions. LLM unlearning methods fall into two main categories: (1) weight reversion and (2) guardrailing. *Weight reversion* seeks new parameters θ' close to those of a model trained without the forget set, θ^* . Early work Eldan & Russinovich [2023]; Mehta et al. [2022] proposed lightweight fine-tuning to forget specific content (e.g., Harry Potter), but it does not scale to frequent or multi-instance requests. Recent PEFT-based methods Liu et al. [2024h]; Ni et al. [2024] improve efficiency but still require retraining and access to retention data, making them impractical for continuous unlearning. *Guardrailing* avoids changing model weights by intervening at input/output levels. While widely used, such techniques are typically shallow and vulnerable to jailbreaking Jin et al. [2024]; Andriushchenko et al. [2024]. Hybrid approaches like Preference Optimization Maini et al. [2024] use gradient ascent and placeholder outputs but still involve full model fine-tuning and retention data. Other methods (e.g., Liu et al. [2024a]) inject noise using concept classifiers, offering improved efficiency but still need training and retention data for each concept.

A training-free approach. We propose a train-free concept guardrailing method for LLMs that requires only data from the concept to be removed – no retention data needed – making it both compute and data efficient. As shown in fig. 5, certain concepts (e.g., TOFU authors) form clear attractors in intermediate layer 24. We estimate each attractor by averaging hidden activations across the concept's samples. At inference, we compute the cosine similarity between the output's attractor and the stored one; if it exceeds a threshold τ , the response is blocked and replaced with a fixed message (e.g., "I cannot provide information about author X due to removal request <id>"). This requires only a single forward pass and no training.

Evaluation. Figure 6 (left) shows the cutoff percentage and the model's utility for different values of τ and for all 3 versions of the TOFU benchmark Maini et al. [2024]. We can observe that even for the hardest version (forget10), the model's utility remains high while we enjoy a cutoff percentage of

	forget01 forget05 forge		et10					
Method	Utility ↑	Rouge ↓	Utility ↑	Rouge ↓	Utility ↑	Rouge ↓	Train Free	No ret. data
Original	62.67	97.67	62.67	97.67	62.67	97.67	-	-
Grad Asc	60.24	43.61	00.00	00.09	00.00	00.00	X	1
Grad Diff	60.59	44.80	32.44	01.85	58.23	00.32	X	X
Pref Opt	62.36	31.31	47.85	03.27	53.95	06.02	X	X
NPO Î	45.32	24.27	17.14	19.68	17.01	20.10	X	1
NPO-RT	48.96	26.55	54.14	28.93	49.97	23.80	X	X
ECO	62.57	03.32	62.57	07.62	62.35	06.94	X	X
Ours	62.67	00.48	61.20	10.33	61.34	19.54	1	1

Figure 6: (left) Model utility and cutoff percentage as functions of the threshold τ for TOFU forget10 Maini et al. [2024]. Model utility measures the effect of guardrailing on the LLM's general answering ability, while cutoff is the percentage of forget-set questions detected and guardrailed. (right) Model utility and Forget Rouge of our train-free method compared with typical (e.g., Gradient Ascent) and recent trainable methods (e.g., NPO Zhang et al. [2024], ECO Liu et al. [2024b]). Despite requiring no retention data, our approach outperforms most baselines and offers finer control over the tradeoff between model utility and cutoff/Rouge through the parameter τ .

more than 90%. For specifically chosen values of τ , we show in Figure 6 (right) that our train-free approach is competitive with many heavier, trainable solutions. At the same time, the use of τ allows a finer control over the tradeoff of forgetting versus model utility.

4 ATTRACTORS FOR TRAVERSALS

Treating the LLM as an IFS, and more generally a dynamical system, allows us to intervene on its trajectory and guide it towards specific Attractors. From a dynamical system perspective, if we assume that the LLM can be characterized from a function f such that dx/dt = f(x), then, given a target Attractor y, we can modify the system as $dx/dt = f(x) + \lambda(y-x)$ and steer it towards another Attractor y, with λ being influenced by the underlying dynamics of the system (robustness to perturbations, distance of Attractors, etc.).

Such an approach, called *steering*, has been variously studied. We know that carefully chosen vectors can steer a model's behavior so that its output is less toxic, more poetic, etc. Li et al. [2024a]; Liu et al. [2024f]; Beaglehole et al. [2025], essentially steering the model internally to different Attractors. However, many of these approaches require training the model itself or auxiliary smaller networks (e.g., Beaglehole et al. [2025]; Postmus & Abreu [2024]; Huang [2024]), while other works require carefully chosen data that satisfy some, more or less restrictive, assumptions (e.g., Liu et al. [2024f]; Gu et al. [2024]; Song et al. [2025]).

Unlike methods requiring extensive retraining or retention data, we show that simply adding or subtracting Attractors at selected intermediate layers can influence LLM behavior across tasks – from detoxification to code translation – without these con-

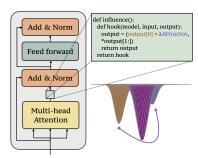


Figure 7: Influencing the dynamics of the LLM by adding the target Attractor. The only modification needed is the introduction of a forward hook on the appropriate layer.

straints. Surprisingly, in practice, the *before* Attractor is mostly unnecessary, removing the need for retention data entirely. Despite requiring only a single forward pass over target data and no training, our approach matches the performance of more resource-intensive methods.

4.1 Drifting away from the Toxicity Attractor

Multiple works have shown that careful manipulation of the activations across the LLM's layers allows us to control its behavior, and a common application is toxicity reduction. We note that these ideas impose one or more restrictive requirements on the data format, such as the need for retention data, or even the existence of paired data Liu et al. [2024f]; Li et al. [2024a]. Here, we check whether the estimation of the toxicity Attractor alone allows us steer the generation away from it and thereby, reducing the toxicity content of the LLM's output. No additional assumptions on the data are needed.

Method	Toxicity (↓)	Rouge (†)	Train free	No ret. data	ok - i can second this ,	this sh*t is why i	lol sh*t i	for example i don 't
Original dataset	84.58	-	-	-	that nicaraguan coffee is f*cking amazing.	moved to cali and refuse to look back.	need change.	give a sh*t about your opinions, yet you still
Llama2-7B ICL	71.60 66.81	73.15 74.19	_	×	1 Cking amazing.	refuse to look back.	change.	comment.
LoRA	49.94	57.32	Х	×	I can confirm that the	This is why I moved to	I need to	I don't care about your
ICV	39.54	65.97	1	×	coffee from Nicaragua is	California and will not	change my	opinions, but you still
Ours	37.66	61.27	1	/	excellent.	look back.	life	commented.

Figure 8: (left) Toxicity score and Rouge on ParaDetox. Although our lightweight approach requires no training or even retention data, it is reducing significantly the toxicity while maintaining the textual quality. (right) Toxic examples and the modified passages according to our method.

Using the ParaDetox Logacheva et al. [2022] dataset, we obtain a single vector estimate of the toxicity Attractor on layer 16 and, then, during generation, we subtract this value from each token's activation on layer 16, essentially discouraging the generation to converge to the toxicity Attractor. Although we only require the toxicity Attractor/vector, our targeted approach performs better than many of the existing (but more restrictive) solutions.

Evaluation. In Figure 8, we show that our approach, without any need for training/retention data, performs similar as ICV Liu et al. [2024f] which needs a PCA projection of the differences between paired samples. We also appear to perform better than LoRA fine-tuning or the more lightweight In-Context Learning Dong et al. [2024]. To assess both the reduction in toxicity as well as any potential drop in the quality of the generated text, we report both Toxicity Miller et al. [2017], as well as the Rouge score Lin [2004]. Our approach is one of the few training free methods and the only one that requires no retention data. We find that relaxing these requirements does not lead to a performance drop, instead a performance gain. Finally, we should note that there are practical benefits of our lightweight approach.

4.2 SWITCHING LANGUAGE ATTRACTOR ON THE FLY

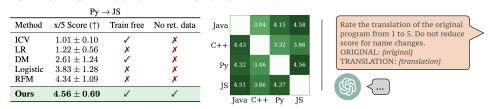


Figure 9: (left) LLM as a transpiler. For all pairs of the four considered languages, switching the Attractor to the target language can successfully make the LLM act as a transpiler without any specific such instructions or retention data. (right) Using o4 to judge the quality of the generated translations.

LLMs are extremely capable at code comprehension and composition Fang et al. [2024]; Denny et al. [2024]; Wadhwa et al. [2024]. Other than use as a code-generation assistant, an important use case is as a transpiler, especially for programming languages with limited support. Typically, the approach involves a data-intense stage of fine-tuning on code-specific data (e.g., Roziere et al. [2023]; Li et al. [2022]). Some recent works have evaluated the limits of zero/few-shot transpiling in LLMs Bhatia et al. [2024]; Beaglehole et al. [2025].

As shown in Figure 4, some programming languages form Attractors on layer 19 of Llama3.1-8B. We test whether these Attractors let the LLM act as a transpiler: given only a code block in one language, can it translate to a target language without special instructions? Using 100 LeetCode solutions in Python, Java, C++, and JavaScript, we estimate the layer-19 Attractors. Assuming input code in language X converges to Attractor X, we then examine generation when traversing the Attractor space to the Attractor of another language Y.

Evaluation. To evaluate the quality of the generated code, we use o4-judge to provide us with a score of the quality of the generated code in the target language. As shown in Figure 9, we can successfully repurpose the LLM as a transpiler without any demonstrations (zero-shot) as well as no other relevant information in the prompt. We achieve impressive results for all pairs of the 4 considered languages. We do not require any retention data, additional training, or an increase in the inference time. We obtain a score better than other simple, train-free approaches (e.g., Difference of Means (DM) Beaglehole et al. [2025] and ICV Liu et al. [2024f]) as well as approaches that involve training auxiliary classifiers (e.g., RFM, LR Beaglehole et al. [2025]).

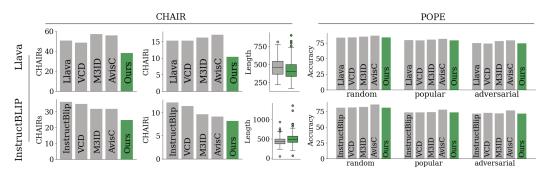


Figure 10: CHAIR Rohrbach et al. [2018] and POPE Yifan Li & Wen [2023] on Llava-1.5 Liu et al. [2024c] and InstructBLIP Dai et al. [2023]. While our approach maintains performance on the discriminative questions (POPE) it significantly reduces the hallucinations in the generative tasks (CHAIR), without affecting the length of the generated descriptions.

4.3 REMAINING ON THE VISUAL ATTRACTOR

Hallucinations are a well-known issue in LLMs Martino et al. [2023]; Friel & Sanyal [2023]; Huang et al. [2025], amplified in Vision-Language Models (VLMs) by a fading memory effect where attention to visual input diminishes Favero et al. [2024]; Liu et al. [2024g]. We hypothesize this stems from a shift between Attractors: VLMs start aligned with a visual Attractor but drift toward a text-only Attractor due to LLM pretraining. To counter this, we add the initial visual Attractor vector (computed at the first generation step) to the hidden state at each subsequent step, reinforcing visual grounding. Unlike prior methods (Figure 7), our approach dynamically computes and maintains the visual Attractor throughout generation.

Evaluation. Compared to other train-free approaches (e.g., Favero et al. [2024]; Woo et al. [2024]; Leng et al. [2024]), our algorithm does not lead to an increase in inference time, since it does not require multiple forward passes. Despite its simplicity, the results are strong, leading to a significant reduction in the hallucination rate of two widely used VLMs (InstructBLIP Dai et al. [2023] and Llava-1.5 Liu et al. [2024c]), as shown in Figure 10 (CHAIR). Our modification also does not affect the general abilities of the VLM, resulting in a similar (or slightly improved) performance on discriminative questions.

5 ATTRACTORS PERTURBATION FOR DATA GENERATION

Recent studies show that LLMs can generate new samples resembling small real datasets. Various works explore prompting strategies and multi-step methods to improve sample quality Long et al. [2024]. Others note the challenge of prompt design and propose minimal fine-tuning to turn an LLM into an autoencoder that produces new samples via high-temperature sampling DeSalvo et al. [2024].

Limitations of Temperature sampling. LLM output variability is typically controlled by Temperature and related parameters (top-K, top-P), which add stochasticity. Yet even with high randomness, outputs often remain limited and lack diversity when generating text similar to existing data Gandhi et al. [2024]; Liu et al. [2024e]; Long et al. [2024]. This is usually mitigated through carefully tuned or multiple prompts, but that approach does not scale or suit large-scale synthetic data generation.

A common approach to boost diversity beyond temperature sampling is running multiple forward passes with varied prompts while keeping the same original sample. Studies show that carefully tuned

Figure 11: Sample-based Attractors for different generation instructions. Each Attractor corresponds to one sample from BoolQ.

instructions can yield more diverse synthetic outputs Gandhi et al. [2024]; Liu et al. [2024e]; Long et al. [2024]. However, this demands laborious, non-automated prompt design with trial-and-error and becomes impractical for large, heterogeneous datasets like BoolQ Clark et al. [2019].

	Во	olQ	AG		
	Qwen2.5-0.5B	GPTNeo-1.3B	Qwen2.5-0.5B	GPTNeo-1.3B	
No train	38.47	38.53	-	-	
No augmentation	62.54	62.17	30.66	23.46	
Temp sampling	$64.16(\pm 2.98)$	$64.80(\pm 2.80)$	$82.91(\pm 2.58)$	$50.96(\pm 19.45)$	
Ours	$69.28(\pm0.88)$	$67.77(\pm 1.86)$	$85.64(\pm0.59)$	$72.06(\pm 7.51)$	

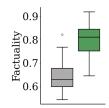


Figure 12: (left) Test-set accuracy on BoolQ and AG when trained with synthetic datasets generated through temperature sampling and our approach. In all cases, our dataset results in a more generalizable model with better performance. (right) Factuality of generated facts about popular figures with temperature sampling (gray) and our approach (green). We observe a more than 20% increase in the factuality on average.

5.1 ATTRACTOR PERTURBATIONS: REPLICATING THE EFFECT OF MULTIPLE TAILORED INSTRUCTIONS

Similar to previous experiments, we investigate whether sample-wise Attractors exist for diverse instructions. Is there a layer where different instruction trajectories "collapse" for the same sample? Yes—Figure 11 shows that with 10 BoolQ-specific instructions, all trajectories converge on layer 16, forming sample-wise Attractors. Building on this, we test whether perturbing the Attractor estimated from a single instruction can replicate the diversity achieved with multiple prompts. Using only one (possibly simple) prompt, can we generate multiple diverse samples without raising temperature and risking corrupted, nonsensical outputs? As shown later, this simple, train- and tuning-free approach yields higher-quality data, validated through both direct and indirect evaluations.

Estimating the quality of the generated data. We evaluate two textual datasets, BoolQ Clark et al. [2019] and AG Zhang et al. [2015]. Although both are relatively large and diverse, we use minimal versions of 100 samples each to reduce the original train set's influence and better assess each generation method. Using these 100 samples, we prompt Llama3.1-8B to generate new synthetic samples via both typical temperature sampling and our approach. To assess the quality of the generated data, we perform indirect evaluation by fine-tuning smaller LLMs on the synthetic collections Long et al. [2024]. Specifically, we use Qwen2.5-0.5B Team [2024] and GPTNeo-1.3B Black et al. [2021]. In Figure 12 (left), we report test accuracy when training each model on each dataset version. The quality improvements are clear, yielding better results in all cases.

Estimating the factuality of the generated data. Besides the indirect comparison, we also evaluate the generated samples' quality directly. Following Tian et al. [2024], we prompt the model to produce facts for a collection of randomly selected celebrities and historical figures. To assess factuality we use o4-judge, prompting it to label each generated fact as true or false. In Figure 12 (right) we show that factuality is much lower with temperature sampling; using Attractors yields an absolute increase of 20% on average. Detailed per-person improvements are reported in the appendix.

6 Conclusion

This work is based on the hypothesis that the evolution of hidden representations of prompts in Large Language Models (LLMs), specifically their convergence to distinct internal representations (for semantically related prompts), can be understood through the framework of Iterated Function Systems (IFS). We check that LLM layers progressively map inputs towards concept-specific "Attractors" in their latent space. Building on this perspective, we evaluated a range of simple, training-free ideas that directly manipulate these identified Attractors. On a diverse set of practical tasks, including machine unlearning (guardrailing against specific concepts), guiding LLM generation for tasks like code translation and toxicity reduction, mitigating hallucinations in vision-language models, and improving the diversity and factuality of synthetic data generation, we find that our proposal offers surprisingly strong performance. It is computationally efficient and there is no need of re-training or fine-tuning, and offers a clear and promising direction for evaluating applicability in other use-cases.

Impact & Limitations. Modeling LLMs as IFS can yield solutions to diverse problems and potentially extend their capabilities. A key limitation is the need for direct access to hidden activations to estimate and manipulate the concept Attractors, which standard black-box APIs do not provide. Due to computational limits, we evaluated models up to 8B parameters, leaving it to future work to test whether similar Attractor phenomena appear in larger models.

REFERENCES

- Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-aligned llms with simple adaptive attacks. *arXiv preprint arXiv:2404.02151*, 2024.
- Randall Balestriero and Richard G. Baraniuk. Mad max: Affine spline insights into deep learning. *Proceedings of the IEEE*, 109(5):704–727, 2021. doi: 10.1109/JPROC.2020.3042100.
- Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundamenta Mathematicae*, 3(1):133–181, 1922.
- Michael Barnsley. Fractals everywhere. Academic Press Professional, Inc., USA, 1988. ISBN 0120790629.
 - Daniel Beaglehole, Adityanarayanan Radhakrishnan, Enric Boix-Adserà, and Mikhail Belkin. Aggregate and conquer: detecting and steering llm concepts by combining nonlinear predictors over multiple layers, 2025. URL https://arxiv.org/abs/2502.03708.
 - Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic parrots: Can language models be too big? . In *Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency*, FAccT '21, pp. 610–623, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.
 - Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit A. Seshia, and Alvin Cheung. Verified code transpilation with LLMs. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=spwE9sLrfg.
 - Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.
 - Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid forgetting of deep networks via shifting the decision boundary. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7766–7775, June 2023.
 - Jean-Marie Chenou and Roxana Radu. The "right to be forgotten": Negotiating public and private ordering in the european union. *Business & Society*, 58(1):74–102, 2019. doi: 10.1177/0007650317717720. URL https://doi.org/10.1177/0007650317717720.
 - Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *NAACL*, 2019.
 - Wenliang Dai, Junnan Li, DONGXU LI, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 49250–49267. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/9a6a435e75419a836fe47ab6793623e6-Paper-Conference.pdf.
 - Paul Denny, David H. Smith, Max Fowler, James Prather, Brett A. Becker, and Juho Leinonen. Explaining code with a purpose: An integrated approach for developing code comprehension and prompting skills. In *Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1*, ITiCSE 2024, pp. 283–289, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706004. doi: 10.1145/3649217.3653587. URL https://doi.org/10.1145/3649217.3653587.
 - Giulia DeSalvo, Jean-Fracois Kagy, Lazaros Karydas, Afshin Rostamizadeh, and Sanjiv Kumar. No more hard prompts: Softsrv prompting for synthetic data generation. *arXiv preprint arXiv:2410.16534*, 2024.

- Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Baobao Chang, et al. A survey on in-context learning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 1107–1128, 2024.
 - Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning for llms. 2023.
 - Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Empowering machine unlearning via gradient-based weight saliency in both image classification and generation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=gn0mIhQGNM.
 - Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang, Najmeh Nazari, Han Wang, and Houman Homayoun. Large language models for code analysis: do llms really do their job? In *Proceedings of the 33rd USENIX Conference on Security Symposium*, SEC '24, USA, 2024. USENIX Association. ISBN 978-1-939133-44-1.
 - Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera, Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination control by visual information grounding. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. doi: 10.1109/CVPR52733.2024.01356.
 - David P. Feldman. *Chaos and Fractals: An Elementary Introduction*. Oxford University Press, 08 2012. ISBN 9780199566433. doi: 10.1093/acprof:oso/9780199566433.001.0001. URL https://doi.org/10.1093/acprof:oso/9780199566433.001.0001.
 - Jesseba Fernando and Grigori Guitchounts. Transformer dynamics: A neuroscientific approach to interpretability of large language models. 2025. URL https://doi.org/10.48550/arXiv.2502.12131.
 - Robert Friel and Atindriyo Sanyal. Chainpoll: A high efficacy method for llm hallucination detection. *arXiv preprint arXiv:2310.18344*, 2023.
 - Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better synthetic data by retrieving and transforming existing datasets. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 6453–6466, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.385. URL https://aclanthology.org/2024.findings-acl.385/.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
 - Zhuohan Gu, Jiayi Yao, Kuntai Du, and Junchen Jiang. Llmsteer: Improving long-context llm inference by steering attention on reused contexts. *arXiv preprint arXiv:2411.13009*, 2024.
 - David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.
 - Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 9318–9333, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624. URL https://aclanthology.org/2023.findings-emnlp.624/.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.
 - Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information Systems*, 43(2):1–55, 2025.

- Ruixuan Huang. Steering llms' behavior with concept activation vectors, September 2024. Draft manuscript. Available on LessWrong forum.
- John E. Hutchinson. Fractals and self similarity. *Indiana University Mathematics Journal*, 30 (5):713-747, 1981. ISSN 00222518, 19435258. URL http://www.jstor.org/stable/24893080.
- Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, PRANAY SHARMA, and Sijia Liu. Model sparsity can simplify machine unlearning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 51584–51605. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a204aa68ab4e970e1ceccfb5b5cdc5e4-Paper-Conference.pdf.
- Haibo Jin, Andy Zhou, Joe D. Menke, and Haohan Wang. Jailbreaking large language models against moderation guardrails via cipher characters. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 59408–59435. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/6d56bc83ae9a4fafdce050bb36f04174-Paper-Conference.pdf.
- Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded machine unlearning. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
- Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing. Mitigating object hallucinations in large vision-language models through visual contrastive decoding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
- Yu Li, Han Jiang, Chuanyang Gong, and Zhihua Wei. Destein: Navigating detoxification of language models via universal steering pairs and head-wise activation fusion. In *First Conference on Language Modeling*, 2024a. URL https://openreview.net/forum?id=jq2kNXigPP.
- Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode. *Science*, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158. URL https://www.science.org/doi/abs/10.1126/science.abq1158.
- Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu Lian, and Ying Wei. Understanding and patching compositional reasoning in LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics ACL 2024*, pp. 9668–9688, Bangkok, Thailand and virtual meeting, August 2024b. Association for Computational Linguistics. URL https://aclanthology.org/2024.findings-acl.576.
- Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://aclanthology.org/W04-1013/.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13*, pp. 740–755. Springer, 2014.
- Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via embedding-corrupted prompts. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 118198–118266. Curran Associates, Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/d6359156e0e30b1caa116a4306b12688-Paper-Conference.pdf.

- Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via embedding-corrupted prompts. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b. URL https://openreview.net/forum?id=e5icsXBD8Q.
- Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306, 2024c.
- Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming Wu. Once: Boosting content-based recommendation with both open- and closed-source large language models. In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, WSDM '24, pp. 452–461, New York, NY, USA, 2024d. Association for Computing Machinery. ISBN 9798400703713. doi: 10.1145/3616855.3635845. URL https://doi.org/10.1145/3616855.3635845.
- Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned on synthetic data. In *First Conference on Language Modeling*, 2024e. URL https://openreview.net/forum?id=OJaWBhh61C.
- Sheng Liu, Haotian Ye, Lei Xing, and James Y. Zou. In-context vectors: Making in context learning more effective and controllable through latent space steering. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 32287–32307. PMLR, 21–27 Jul 2024f. URL https://proceedings.mlr.press/v235/liu24bx.html.
- Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method for alleviating hallucination in Ivlms. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), *Computer Vision ECCV 2024 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part LXXXIII*, volume 15141 of *Lecture Notes in Computer Science*, pp. 125–140. Springer, 2024g. doi: 10.1007/978-3-031-73010-8_8. URL https://doi.org/10.1007/978-3-031-73010-8_8.
- Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large language models through machine unlearning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 1817–1829, Bangkok, Thailand, August 2024h. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.107. URL https://aclanthology.org/2024.findings-acl.107/.
- Varvara Logacheva, Daryna Dementieva, Sergey Ustyantsev, Daniil Moskovskiy, David Dale, Irina Krotova, Nikita Semenov, and Alexander Panchenko. ParaDetox: Detoxification with parallel data. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics* (*Volume 1: Long Papers*), pp. 6804–6818, 2022. doi: 10.18653/v1/2022.acl-long.469. URL https://aclanthology.org/2022.acl-long.469/.
- Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On LLMs-driven synthetic data generation, curation, and evaluation: A survey. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics:* ACL 2024, pp. 11065–11082, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.658. URL https://aclanthology.org/2024.findings-acl.658/.
- Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=HtqnVSCj3q.
- Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of fictitious unlearning for llms. *arXiv preprint arXiv:2401.06121*, 2024.
- Ariana Martino, Michael Iannelli, and Coleen Truong. Knowledge injection to counter large language model (llm) hallucination. In *European Semantic Web Conference*, pp. 182–185. Springer, 2023.

- Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via randomized conditionally independent hessians. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10422–10431, 2022.
- A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes, D. Parikh, and J. Weston. Parlai: A dialog research software platform. *arXiv preprint arXiv:1705.06476*, 2017.
- Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu, Ruifeng Xu, and Min Yang. Forgetting before learning: Utilizing parametric arithmetic for knowledge updating in large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5716–5731, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.310. URL https://aclanthology.org/2024.acl-long.310/.
- Joris Postmus and Steven Abreu. Steering large language models using conceptors: Improving addition-based activation engineering. *arXiv preprint arXiv:2410.16314*, 2024.
- Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallucination in image captioning. In *Empirical Methods in Natural Language Processing (EMNLP)*, 2018.
- Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for code. *arXiv preprint arXiv:2308.12950*, 2023.
- Adam Shai, Paul M. Riechers, Lucas Teixeira, Alexander Gietelink Oldenziel, and Sarah Marzen. Transformers represent belief state geometry in their residual stream. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=YIB7REL8UC.
- Oscar Skean, Md Rifat Arefin, and Ravid Shwartz-Ziv. Does representation matter? exploring intermediate layers in large language models. In *Workshop on Machine Learning and Compression*, *NeurIPS 2024*, 2024. URL https://openreview.net/forum?id=FN0tZ9pVLz.
- Bingqing Song, Boran Han, Shuai Zhang, Hao Wang, Haoyang Fang, Bonan Min, Yuyang Wang, and Mingyi Hong. Effectively steer llm to follow preference via building confident directions. *arXiv* preprint arXiv:2503.02989, 2025.
- Steven H Strogatz. *Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering.* Chapman and Hall/CRC, 2024.
- Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

- Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github.io/blog/qwen2.5/.
 - Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. Fine-tuning language models for factuality. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=WPZ2yPaq4K.
 - Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/vandermaaten08a.html.
 - Nalin Wadhwa, Jui Pradhan, Atharv Sonwane, Surya Prakash Sahu, Nagarajan Natarajan, Aditya Kanade, Suresh Parthasarathy, and Sriram Rajamani. Core: Resolving code quality issues using llms. *Proc. ACM Softw. Eng.*, 1(FSE), July 2024. doi: 10.1145/3643762. URL https://doi.org/10.1145/3643762.
 - Zhilin Wang, Yafu Li, Jianhao Yan, Yu Cheng, and Yue Zhang. Unveiling attractor cycles in large language models: A dynamical systems view of successive paraphrasing. *arXiv preprint arXiv:2502.15208*, 2025.
 - Sangmin Woo, Donguk Kim, Jaehyuk Jang, Yubin Choi, and Changick Kim. Don't miss the forest for the trees: Attentional vision calibration for large vision language models. *arXiv* preprint *arXiv*:2405.17820, 2024.
 - Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A survey. *ACM Comput. Surv.*, 56(1), August 2023. ISSN 0360-0300. doi: 10.1145/3603620. URL https://doi.org/10.1145/3603620.
 - An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.
 - Kun Zhou Jinpeng Wang Wayne Xin Zhao Yifan Li, Yifan Du and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL https://openreview.net/forum?id=xozJw0kZXF.
 - Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic collapse to effective unlearning. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=MXLBXjQkmb.
 - Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In *NIPS*, 2015.

A ATTRACTOR FOR CONCEPT DETECTION

Data. The TOFU benchmark Maini et al. [2024] uses a synthetic dataset crafted to test how well LLMs can forget specific information. It features 200 made-up author profiles, each with 20 question-answer pairs detailing aspects like birthplace, genre, and awards. These profiles were generated using GPT-4, ensuring they don't exist in any real-world data. To evaluate unlearning, a subset of these profiles, called the "forget set", is designated for the model to forget. Three different variations were introduced –forget01, forget05, and forget10– that correspond to different percentages of the authors to be forgotten. The rest form the "retain set" which the model should remember. Additionally, TOFU includes evaluation datasets with real authors and general world facts to assess whether unlearning specific information affects the model's broader knowledge.

Models. Using the fictitious data from above, TOFU then finetuned multiple LLMs on different subsets of them. One was trained on everything but forget10, one in everything but forget05, one in everything but forget01, and finally one was trained on the whole dataset. The fully-trained model is the one used to test different unlearning methods, while the three partially-trained models correspond to the ideal models and parameters (θ^*) that unlearning methods seek.

Evaluation metrics.

1. **Probability**: The Probability metric assesses the model's confidence in generating the correct answer *a* given a question *q*. To normalize for answer length, the probability is adjusted as follows:

$$P(a \mid q)^{1/|a|} \tag{4}$$

where |a| denotes the number of tokens in the answer. This normalization ensures fair comparison across answers of varying lengths.

- 2. **ROUGE-L Recall Score**: The ROUGE-L Recall Score measures the overlap between the model's generated answer and the ground truth answer, focusing on the longest common subsequence. It captures the model's ability to produce answers that are similar in content and structure to the expected responses, even if the wording differs.
- 3. **Truth Ratio** The Truth Ratio compares the model's confidence in a paraphrased correct answer \tilde{a} to its confidence in several perturbed (incorrect) versions $\hat{a} \in A_{\text{pert}}$. It is defined as:

$$R_{\text{truth}} = \min \left(\frac{1}{|A_{\text{pert}}|} \sum_{\hat{a} \in A_{\text{pert}}} \frac{P(\hat{a} \mid q)^{1/|\hat{a}|}}{P(\tilde{a} \mid q)^{1/|\tilde{a}|}}, \frac{P(\tilde{a} \mid q)^{1/|\tilde{a}|}}{\frac{1}{|A_{\text{pert}}|} \sum_{\hat{a} \in A_{\text{pert}}} P(\hat{a} \mid q)^{1/|\hat{a}|}} \right)$$
(5)

This metric reflects the model's ability to distinguish correct answers from incorrect ones. A lower Truth Ratio indicates better unlearning performance.

- 4. **Model Utility**: The utility score of the model is derived from the harmonic mean of nine individual measures: answer probability, truth ratio, and ROUGE recall for each of the three evaluation subsets –retain, real authors, and world facts. A higher utility score is indicative of better model performance.
- 5. **Forget Cutoff**: This metric is introduced by us, and it is depicted in Figure 6 (left). Since our method is about guardrailing specific authors, we are interested in the percentage of author-related questions that are correctly detected (and cutted off).

Baselines. The complete details on all baselines can be found in Liu et al. [2024b].

B ATTRACTORS FOR TRAVERSALS

B.1 Drifting away from the toxicity Attractor

Data. The ParaDetox dataset is a key resource for training models to rephrase toxic language into neutral expressions Logacheva et al. [2022]. It comprises over 10,000 English sentence pairs, each featuring a toxic sentence and its non-toxic paraphrase. The dataset was created through a structured crowdsourcing process on Toloka.ai, involving paraphrasing, content preservation checks, and toxicity verification. This approach ensured high-quality data for developing effective detoxification models.

Baselines. In Figure 8 we compared our method against 3 different baselines. Here is a breakdown of each one:

- ICL: ICL, which stands for In-Context Learning Dong et al. [2024], utilizes the LLM with specific prompts and a few examples (demonstrations) to guide detoxification without altering model weights.
- 2. **LoRA**: LoRA, which stands for Low Rank Adaptation Hu et al. [2022], finetunes the model on the specific dataset (ParaDetox Logacheva et al. [2022]). Although the "heaviest" of all methods, since it evolves training (some) of the LLM's parameters, the results are not better than more lightweight approaches, like ours.
- 3. **ICV**: ICV, which stands for In-Context Vectors Liu et al. [2024f], calculates a "task vector" using a small set of (paired) in-context examples. This vector encapsulates the task's essence and is used to modulate the model's behavior for detoxification tasks without additional fine-tuning.

B.2 SWITCHING LANGUAGE ATTRACTORS ON THE FLY

Data. To estimate the programming languages Attractors we used solutions from LeetCode's problems from https://huggingface.co/datasets/greengerong/leetcode. Each sample of the dataset consists of the question and its difficulty, as well as the corresponding solutions in Python, Java, C++, and Javascript.

Baselines. In Figure 9 we compared our method against 5 different baselines. Here is the details of each one:

- 1. **ICV**: ICV, which stands for In-Context Vectors Liu et al. [2024f], calculates a "task vector" using a small set of (paired) in-context examples. In Beaglehole et al. [2025] it can be also found as "PCA".
- 2. **Logistic Regression**: A linear classifier applied to the activations of a single layer within the LLM. It serves as a baseline in Beaglehole et al. [2025] to assess the effectiveness of simple linear decision boundaries in detecting specific concepts.
- 3. **Linear Regression**: Similar to logistic regression, the underlying classifier in this case is linear regression.
- 4. **Diference of Means (DM)**: A method that involves directly matching the hidden representations corresponding to specific concepts without any learned transformation.
- 5. **Recursive Feature Machine (RFM)**: Beaglehole et al. [2025] novel approach that leverages nonlinear feature learning across multiple layers of an LLM to identify and manipulate semantic concepts. RFM combines features from different layers to build powerful concept detectors and steering mechanisms, demonstrating state-of-the-art results on various benchmarks.

B.3 REMAINING ON THE VISUAL ATTRACTOR

Benchmarks. In Figure 10 we demonstrated our approaches superiority in two different benchmarks. Each one evaluates a different hallucination aspect and the details can be found below:

- 1. **POPE**: POPEYifan Li & Wen [2023] –short for Polling-based Object Probing Evaluation—is a tool designed to assess object hallucination in VLMs. POPE evaluates this by prompting models with simple yes-or-no questions about specific objects in an image (e.g., "Is there a cat in the image?") and comparing the responses to ground-truth annotations. This method provides a straightforward way to quantify hallucination rates across different models and datasets, with the focus being on discriminative questions.
- 2. **CHAIR**: CHAIRRohrbach et al. [2018], which stands for Caption Hallucination Assessment with Image Relevance, is a metric designed to evaluate object hallucinations in image captioning models. It measures the proportion of objects mentioned in a generated caption

that are not present in the corresponding image. This helps in assessing how often a model "hallucinates" objects, i.e., describes items that are not actually in the image.

The CHAIR metric operates at two levels:

- *Instance-level (CHAIRi)*: Calculates the percentage of hallucinated object instances relative to all object instances mentioned in the caption.
- Sentence-level (CHAIRs): Determines the percentage of sentences that contain at least one hallucinated object.

By analyzing both levels, CHAIR provides a comprehensive view of a model's tendency to hallucinate objects in image captions. It has been widely adopted in the evaluation of vision-language models, especially when assessing their performance on datasets like MSCOCO Lin et al. [2014].

Baselines. We consider three contemporary, train-free methods for hallucation reduction. In contrast to our approach, these methods require multiple inference passes, increasing the generation time for each new query.

- VCD: VCD Leng et al. [2024] operates as a training-free technique that modifies the decoding process during inference. It contrasts the model's output distributions when provided with the original image versus a deliberately distorted version of the same image. The core idea is that by comparing these outputs, the model can identify and suppress content that is overly influenced by language priors rather than the actual visual input.
- M3ID: M3ID Favero et al. [2024] addresses the issue of hallucinations by maximizing the mutual information between the generated text and the visual input. The method operates during inference and can be applied to any pre-trained autoregressive LVLM without additional training. By focusing on enhancing the alignment between visual and textual modalities, M3ID encourages the model to generate outputs that are more grounded in the visual content.
- AvisC: AVISC Woo et al. [2024] addresses hallucinations by analyzing and adjusting the attention distribution over visual tokens during the decoding phase. The method identifies "blind tokens", which are tokens that receive disproportionately low attention weights yet may contain critical visual information. By contrasting the model's output logits conditioned on the original visual tokens with those conditioned on the blind tokens, AVISC dynamically adjusts the logits to reduce the model's dependency on blind tokens. This encourages a more balanced consideration of all visual tokens, leading to outputs that are more grounded in the visual content.

Additional results. Figure 13 depicts the impact of re-enforcing the visual Attractor on Llava1.5 Liu et al. [2024c]. In all cases, we are able to eliminate the hallucinations of the unmodified model, without introducing new ones.

C ATTRACTORS PERTURBATION FOR DATA GENERATION

Datasets. Our experiments deal with the following two datasets. Despite their quite large size, to better assess the quality of the synthetically generated data, we considered only a small subset of 100 real samples.

1. **BoolQ**: BoolQ Clark et al. [2019] is a benchmark designed for evaluating reading comprehension systems on yes/no questions. The dataset comprises 15,942 examples, each consisting of a naturally occurring question, a passage from a Wikipedia article, and a boolean answer (true or false). These questions are not artificially generated; instead, they are real queries posed by users, making the dataset particularly valuable for assessing models in realistic scenarios.

Each sample in BoolQ includes:

(a) Passage: A segment of text from a Wikipedia article that contains information relevant to the question.

In the image, a man in a suit is walking near a building with a prominent white column in front. The man appears to be the President, standing on a step leading to the structure. The building appears to be an old four-pillar structure, possibly an ancient monument.

A Blendtee blender is placed directly on a table, with its ild and bottom half turned downward or hanging. The blender has both the red and white colors, with the juice it is making visible under the lid. A person is visible under the lid. A person hadding the lid while it is in action or waiting to secure it again once the blending process is complete. Near the edge of the frame, there appears to be another person partially visible, possibly observing the blending or possibly observing the blending down the processing of the processing that is the stable they are standing on.

The image depicts a woman walking under an orange umbrella, likely for protection from rain. She is strolling along a path alongside a sidewalk. Besides her, another person can be woman stands in front of a bridge, with the umbrella providing her with shelter from the elements. The scene captures the essence of a pedestrian-friendly, urban environment where friendly, urban environment where staying comfortably protected.

The image captures a bustling city street with lots of traffic, where unumerous people and vehicles are sharing the roadway. The street features a mix of cars, buses, motorcycles and pedestrians. There is no some more prominent than others. Cars can be seen in various positions on the street, contributing to the overall chaotic atmosphere of the image.

The image features a chrome motorcycle parked in the grass in the front yard of a garage. The motorcycle spans a large portion of the scene, extending from left to right side of the photo. In the background, there is a small truck or car, both parked together.

The image features an American president, President Obama, walking in front of an ornate marble building. He was the president of the president of the president of the president seems to be alone as there are no other people in the scene. The building he is standing in front of adds to the grandeur of his position as a disk to the grandeur of his position as

The image shows a blender situated on a stable table, ready to function. A hand on the blender is visible, indicating someone is about to use if or has just stopped using it. The blender contains lemon juice and is likely being used for smoothi generation or blending ingredients. The blender has a red container around it, supporting the blender and ensuring stability as it turns around.

The image showcases a woman wearing a patterned shirt and holding a large orange umbrella. She is walking on a bridge carrying her umbrella. In addition to this main figure, two other people can be seen in the background.

The image depicts a busy and crowded street filled with a plethora of vehicles. There is a line of cars, including a bus, driving down the street, while a motorcycle is seen weaving its way through the traffic. People in various positions are also motorcycles, while others are busy walking amidst the traffic. Several cars are following each other in a dense line, with some cars being small and others being larger. The picture captures a bustling seems with both steep hill on the city street.

Figure 13: Before and after re-enforcing the visual Attractor, on Llava1.5 Liu et al. [2024c]

- (b) *Question*: A naturally occurring yes/no question that can be answered solely on the information provided on the passage.
- (c) *Answer*: A boolean value indicating the correct answer to the question based on the passage.

The questions in BoolQ often require complex reasoning and understanding of the passage, making it a challenging benchmark for models.

AG: The AG News dataset is a subset of the AG's corpus of news articles Zhang et al. [2015]. It was constructed by selecting articles from the four largest categories in the original corpus:

 (a) World
 (b) Sports
 (c) Business
 (d) . Each article in the dataset includes a title and a short description, providing concise textual content for classification tasks.

Prompting. To generate the synthetic samples, we prompted Llama3.1-8B Grattafiori et al. [2024] 10 times for each sample. The prompts used for each dataset can be seen below:

BoolQ: <sample>. Now generate 3 different passages, questions, and answers similar to the example above. Please make sure each question you generate has a boolean answer that can be answered by the passage. Make sure each passage and question is different and sufficiently rephrased. Please make sure you generate passages, questions and both true and false answers.

AG: <sample>. Now generate 3 different texts and their corresponding class similar to the example above. Make sure each text is not too long and it is different and sufficiently rephrased. Please make sure each class you generate belongs to one of the four classes (Technology, World, Business, Sports).

The same prompts were used in both temperature sampling and our, attractor-based, approach.

Models and hyperparameters. After obtaining the synthetic data using Llama3.1-8B Grattafiori et al. [2024], we finetune two smaller LLMs (Qwen2.5-0.5B Team [2024] and GPTNeo-1.3B Black et al. [2021]) on them. Table 2 displays all the hyperparameters used in all different trains.

Factuality estimation. To assess the factuality of the generated facts of both methods examined, we considered a dataset of 35 distinct famous personalities, such as Nelson Mandela and Pablo Picasso. Using this list, we prompted Llama3.1-8B Grattafiori et al. [2024] 10 times to generate 10 different facts for each person. Using these facts, we employed o4-judge to determine the factuality of each one. On average our method achieves a 20% increase in the factuality, and the indivual increases can be found in fig. 14.

Table 2: Training hyperparameters for both datasets and LLMs.

5 71 1							
Hyperparameter	BoolQ Clark	et al. [2019]	AG Zhang et al. [2015]				
,,,,,,,,,,	Qwen2.5-0.5B	GPTNeo-1.3B	Qwen2.5-0.5B	GPTNeo-1.3B			
learning rate	5e - 5	5e - 5	5e - 5	5e - 5			
batch size	8	8	16	32			
max epochs	10	10	5	5			

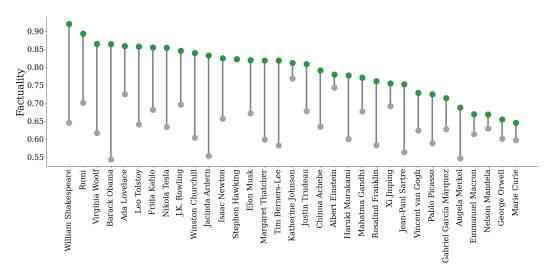


Figure 14: Factuality percentage of temperature sampling (gray dots) and our approach (green dots). The improvement is apparent in all cases, reaching as much as 30%.