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ABSTRACT

Large language models (LLMs) often map semantically related prompts to similar
internal representations at specific layers, even when their surface forms differ
widely. We show that this behavior can be explained through Iterated Function
Systems (IFS), where layers act as contractive mappings toward concept-specific
Attractors. We leverage this insight and develop simple, training-free methods that
operate directly on these Attractors to solve a wide range of practical tasks, includ-
ing language translation, hallucination reduction, guardrailing, and synthetic
data generation. Despite their simplicity, these Attractor-based interventions
match or exceed specialized baselines, offering an efficient alternative to heavy
fine-tuning, generalizable in scenarios where baselines underperform.

1 INTRODUCTION

Figure 1: A t-snevan der Maaten & Hinton [2008]
plot of the latent representations of Llama3.1-8B for
7×4 = 28 different prompts, seven each, for the Lord of
the Rings universe, Narnia, Star Wars, and Harry Potter.
Although the prompts explore different aspects of the
universes and share almost no common keywords, we
observe a clear clustering based on the different worlds.

Consider three distinct concepts: the Lord of
the Rings universe, the Python programming
language, and 19th-century romantic literature.
When prompts from these concepts are given to
a large language model (LLM) such as Llama
3.1 Grattafiori et al. [2024], we see an interesting
phenomenon. For each concept, despite lexical
variations among its prompts, their intermedi-
ate representations appear to collapse to distinct
regions at specific layers – at which layer this
happens varies based on the concept. For in-
stance, prompts such as “Who is Gandalf the
Grey?” and “What is the significance of Mount
Doom?” share minimal similarity on the sur-
face, yet their representations converge to nearly
identical locations at layer 24. We see a sim-
ilar behavior for Python-related queries such
as “Help me implement a binary search tree in
Python” versus “How can I find the longest non-repeating substring in Python?” and for prompts
for the same genre in literature: “Discuss themes in Pride and Prejudice” and “Any easy way to
recognize Byron’s poetry?”. Such a semantic collapse has been reported in some recent results. For
instance, Shai et al. [2024] notes that transformer models develop a structured latent representations
that encode belief states. Separately, Fernando & Guitchounts [2025] suggests that due to the internal
dynamics of the model, representations converge to “stable” configurations. From a more practical
perspective, Hendel et al. [2023]; Liu et al. [2024d]; Skean et al. [2024] showed that transformers and
LLMs shape their latent space according to the underlying task. These findings, while restricted to
smaller models and/or for specific contexts, cumulatively support the idea of representation collapse.

A natural question is whether this concept-specific collapse is implied as a property of some underlying
dynamical system already studied in the literature, and if so, what guidance can these existing results
provide? Specifically, can we obtain strategies for important downstream use-cases? If p1, · · · , pn
are a set of prompts related to a specific concept C, we conjecture that the layers of our model may be
acting like a dynamical system that maps semantically related inputs to proximal regions, regardless
of their form at the “surface”. In other words, the full sequence of layers (leading up to where the
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representations collapse), if viewed as a unit, implements an iterative (contractive) mapping process
to an Attractor set, one for each concept. We will see shortly that – to the extent that our hypothesis
holds – how existing results are consistent with this view of the collapse phenomena.

Contributions. We show that viewing the LLMs through the lens of Iterated Function Systems
Barnsley [1988]; Hutchinson [1981] offers a meaningful (or at worst, plausible) explanation for
both the layer-specific concept clustering and the subsequent generative process. The main practical
benefit is that for a wide-variety of downstream tasks, which are often handled piecemeal in the
literature, we can obtain a generic scheme that operates under the assumption that operating with the
Attractors alone is sufficient. We demonstrate that careful interventions on Attractors can provide
us lightweight, training-free solutions to a wide array of problems, from programming language
translation and guardrailing, to hallucination reduction and synthetic data generation. Despite
the simplicity as well as limited data/compute needs, these solutions turn out to be comparable to
existing specialized approaches. Our experiments focus on Llama3.1 8B Grattafiori et al. [2024].
However, we see a similar behavior on other LLM families too (in particular, Gemma Team et al.
[2024] and Qwen Team [2024]), but avoid an exhaustive analysis of all LLMs.

2 ITERATED FUNCTION SYSTEMS AND LLMS

There is mounting evidence that large language models (LLMs) possess emergent capabilities beyond
simple rote memorization and statistical pattern matching Bender et al. [2021]. Among the many
phenomena observed in these models – from in-context learning Dong et al. [2024] to compositional
reasoning Lu et al. [2023]; Li et al. [2024b] – we focus on a particular representation-convergence
property. Our scope is specifically the collapse phenomena at specific intermediate layers. To
understand this behavior through the lens of dynamical systems, we hypothesize that LLMs implicitly
implement a collection of Iterated Function Systems (IFS) during forward propagation through the
layers (Fig. 2).

2.1 LLMS IMPLEMENT ITERATED FUNCTION SYSTEMS?

Empirically, we see that for prompts pi, pj in each concept C, there exists a layer l where:

lim
l→lC

1

n2

n∑
i,j=1

|hl(pi)− hl(pj)| ≪
1

n2

n∑
i,j=1

|h0(pi)− h0(pj)| (1)

Figure 2: An LLM can be viewed as an
IFS that transforms the non-linear manifold
of texts into a well-behaving collection of
Attractors.

with hl denoting the implicit transformation by the LLM
up to layer l. This “squashing” of inter-prompt distances
suggests that a contractive mapping process is taking place
through the layers. Our hypothesis is that this can be un-
derstood via the framework of Iterated Function Systems
(IFS) Barnsley [1988]; Hutchinson [1981].

An IFS is defined as a finite set of contractive mappings
on a complete metric space. The collective action of these
mappings, defined by the Hutchinson operator Hutchinson
[1981] is:

F(S) =

N⋃
i=1

fi(S) (2)

and induces a compact invariant set i.e., F(S∗) = S∗,
which is called the Attractor of the IFS. More generally, for
any initial non-empty compact set S0 ∈ X, the sequence
{S0,S1 := F(S0),S2 := F(S1), · · · } converges to S∗

in the Haussdorf metric. More generally, an Attractor in
a dynamical system is a closed invariant set toward which trajectories from a wide class of initial
conditions evolve asymptotically within its basin of attraction, and may take the form of fixed points,
periodic orbits, tori, or other Attractors characterized by sensitive dependence on initial conditions
Barnsley [1988].
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Dynamical systems often exhibit Attractors—sets toward which trajectories converge. Simple systems
satisfying Banach’s fixed-point conditions Banach [1922] converge to a single point, while others
yield more complex structures like limit cycles or strange Attractors Strogatz [2024]. We hypothesize
that the iterative application of layer transformations in an LLM induces concept-specific invariant
sets –semantic Attractors (AC

l ) for each concept C– within the latent space at layer l. These compact
regions characterize specific concepts, with convergence potentially occurring at different depths
depending on the concept.

Once a sequence’s representation enters AC
l , it is further processed by the remaining layers and

output matrix Wout to yield a token distribution. Each Attractor may have an invariant measure µC
l ,

describing the distribution of states within it under stochastic dynamics (e.g., varied inputs aligned
with concept C). While µC

l is useful for tasks like synthetic data generation, it does not directly define
next-token probabilities in autoregressive inference, which depend on the specific input-driven state.

The attractors, AC
l , are linked to the LLM’s operational prefill and decode stages. During prefill,

the LLM’s composed layer transformations guide initial representations of an input prompt, h0(p),
towards AC

l , with the representation hl(p) landing within this attractor to give the initial semantic
context. Then, during decode, each incremental update to the context (by newly generated tokens) is
processed by these same underlying layer dynamics. For coherent generation aligned with concept C,
the evolving sequence representation at layer l is continually guided towards or kept within the basin
of attraction of AC

l . Thus, AC
l acts like a stabilizing latent structure.

Figure 3: 4 different concepts in layer 0 (before any application
of the underlying IFS, and one of the contractions of the under-
lying IFS we recover by solving the inverse problem for each
concept separately. The circles correspond to the true vectors as
obtained from the LLM in layer 24 and the stars correspond to
the application of the contractions to the points in layer 0.

Collage theorem. Our operational
model takes the transformation per-
formed by the LLM for a concept and
approximates it by repeatedly iterating a
single affine contractive map Balestriero
& Baraniuk [2021], ϕeff = MeffV + teff
(with V as a placeholder hidden represen-
tation), suggesting that the overall trans-
formation, for a specific concept, can
be roughly approximated by an iterated
affine dynamics. We want to estimate the
parameters (i.e., the matrix Meff and vec-
tor teff ) and the number of iterations iter, that best reproduce the observed mapping (Figure 3).
This is achieved by minimizing the discrepancy between the LLM’s observed states at the Attractor
layer and the states predicted by iterating ϕeff from the initial prompt representations:

min
Meff ,teff ,iter

N∑
j=1

D
(
hl(pj), ϕ

iter
eff (h0(pj))

)
(3)

subject to Meff being contractive (e.g., its operator norm |Meff |op < 1). We apply this iter times, and
D is a suitable distance metric. This single map ϕeff defines a simple Iterated Function System (IFS).
The unique Attractor of this 1-map IFS is its fixed point, V ∗ to which all trajectories ϕk

eff(V ) (for any
initial V ) converge as k grows. The observed empirical set AC is then interpreted as the collection of
states reached after iter applications of ϕeff starting from the initial set S0. If, as empirical evidence
for many concepts suggests, this 1-map model provides a good first-order approximation, then AC

would be expected to lie in the vicinity of V ∗. The Collage Theorem Barnsley [1988] states that
if AC is indeed close to the true Attractor V ∗ of our fitted ϕeff , then AC should be well “collaged”
by ϕeff itself; i.e., d

(
AC , ϕeff(A

C)
)

should be small. While the iterated single affine map is simple,
for concepts whose empirical Attractors AC exhibit more complex geometries (e.g., disjoint sets or
intricate fractal structures not well approximated by convergence to a single point), a richer effective
IFS comprising multiple affine maps might be necessary. This would involve finding ϕ’s and an
iteration count iter′ that minimize d

(
AC ,Fiter′(S0)

)
, where F is the Hutchinson operator for the

candidate set of ϕ’s. Alternatively, one could model the geometry of AC directly by finding an IFS
whose intrinsic Attractor matches AC , by minimizing the collage error. These approaches are more
involved but grounded in IFS theory.

Does this perspective add to existing results? Several recent results have indirectly hinted at
the IFS-like nature of the LLMs, and more generally transformers, for specific tasks, datasets, and
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Figure 4: Attractors in Llama3.1-8B Grattafiori et al. [2024] and Qwen2.5-7B Yang et al. [2024]; Team [2024].
From the fractal-like structure of the task vectors in layer 16/14, to literature-based Attractors in layer 18/23 and
programming-based in layer 19/22, the treatment of an LLM as an IFS allows us to recover (and use) them in
multiple applications, invariant to the underlying LLM.

architectures. Fernando & Guitchounts [2025] describes how the intermediate layers of an LLM
converge to different “Attractor” points/vectors as the context window of the LLM increases. The
result in Wang et al. [2025] examines the Attractors formed in the output layer of an LLM, discovering
that paraphrasing results in 2-period cycles. The authors in Shai et al. [2024] present evidence that
transformers develop internal representations corresponding to “belief states” over hidden variables
in the data-generating process. This phenomenon mirrors the behavior of an IFS, belief states in
Shai et al. [2024] can be viewed as specific points within concept Attractors that encode probabilistic
information about possible continuations. Notice that the fractal structures reported in Shai et al.
[2024] arises naturally from known properties of IFS: systems whose repeated application to an initial
set converges to a unique invariant set with so-called self-similar properties.

2.2 A PRELIMINARY INVESTIGATION OF ATTRACTORS

Table 1: Top induced tokens of At-
tractors.
Concept Tokens

Harry Potter
Harry, wizard, Hogwarts,

magical, Voldermort,
London, British, £

Lord of the Rings
Lord, Tolkien,

Middle, Auckland, NZ

Narnia
Kingdom, Tolkien,

British, Oxford, Aslan

Star Wars
Imperial, Star, galaxy,

Galactic, Jedi, Empire,
Skywalker, Force, powerful

Before evaluating their practical utility, we first examine the nature
of Attractors and their underlying IFS across various concepts and
datasets as a sanity check.

Induced tokens. To understand what the Attractors represent,
we average the vectors for each of the four fictional worlds from
Fig. 1 to approximate their Attractor points, then project them to
vocabulary space via the LLM’s final linear layer. The top induced
tokens (Table 1) support our hypothesis, revealing meaningful
associations—including tokens not present in the original texts,
such as the pound symbol (£), filming locations (Auckland, NZ), or
author connections (C.S. Lewis and J.R.R. Tolkien). This suggests
the Attractors capture the underlying “essence” of each world,
beyond surface-level content.

Different concepts, different layers. While for functional worlds, as in Figure 1, we see that
the LLM forms clear Attractors in layer 24, this is not the case for all families of concepts, and
not discussed in many existing results. We will see later that different families of concepts form
Attractors in different layers. For example, we observe the same behavior in layer 19 for programming
languages, in layer 27 for natural languages, and in layer 18 for literature books (Figure 4).

Same concept, multiple Attractors. Previously, we modeled each concept as a single
Attractor (or Concept Vector) in the LLM’s latent space. However, some concepts may
decompose into multiple sub-concepts. For instance, English forms two distinct Attrac-
tors when combining datasets with different semantic styles (https://www.manythings.
org/anki/spa-eng.zip, https://huggingface.co/datasets/swaption2009/
20k-en-zh-translation-pinyin-hsk; see Figure 4). This fragmentation is even clearer
in layer 16, where tasks produce multiple Attractors based on the number of digits per example.

A fractal-like structure in the Attractors. In Figure 4 (left), replicating the setup from Hendel et al.
[2023], we observe a structure in the Attractors that empirically resembles that of a fractal. At a high
level, Attractors cluster by the number of digits in the examples. Zooming in, subclusters emerge
based on task type (addition vs. subtraction), and further divisions align with specific values being
added or subtracted. Similarly, the single cluster of Python programs is further divided into two,
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based on the solution style (object-oriented vs procedural). This hierarchical structure aligns with
theoretical findings in Shai et al. [2024], suggesting a fractal organization of Attractors in this setting.
A complete analytical characterization of this phenomenon remains beyond reach with conventional
theoretical tools (e.g., box-counting Feldman [2012]). The empirical analysis, however, supports the
view that LLMs appear to operate in practice according to this fractal hypothesis.

LLMs and World Models. There is much discussion related to whether LLMs operate with an
explicit, internal world model Ha & Schmidhuber [2018]. Based on the empirical analysis described
so far, we find that there is at least partial evidence to support the idea that the models indeed harbor a
fuzzy understanding of the world, which is better expressed partially across many of these intermediate
layers. In the subsequent section, we will focus on how we can better exploit this fuzzy world model
of the LLMs and propose practical, training free solutions to a number of use cases.

3 ATTRACTOR FOR CONCEPT DETECTION

Figure 5: Cosine similarity between all prompts’ from TOFU forget05 Maini et al. [2024]. The first 20
rows/columns of each heatmap correspond to questions about the first author, the second 20 about the second
author, and so on. The forming of author-based Attractors is apparent and it becomes clearer in layer 24.

Machine unlearning is a active research area, with initial work in computer vision Xu et al. [2023]
where many widely used datasets included images of individuals who did not consent to their use.
The training datasets of contemporary LLMs are also prompting concern about compliance with
the Right to Be Forgotten Chenou & Radu [2019] and similar regulations. Due to the size of these
models, retraining or fine-tuning (e.g., Fan et al. [2024]; Jia et al. [2023]; Kurmanji et al. [2023];
Chen et al. [2023]) is often too costly. Moreover, since removal requests are continuous, efficient
online unlearning is desirable. To evaluate unlearning in LLMs, Maini et al. [2024] proposed the
TOFU benchmark, where models must forget certain fictional authors while retaining performance
on others and unrelated tasks.

Existing solutions. LLM unlearning methods fall into two main categories: (1) weight reversion
and (2) guardrailing. Weight reversion seeks new parameters θ′ close to those of a model trained
without the forget set, θ∗. Early work Eldan & Russinovich [2023]; Mehta et al. [2022] proposed
lightweight fine-tuning to forget specific content (e.g., Harry Potter), but it does not scale to frequent
or multi-instance requests. Recent PEFT-based methods Liu et al. [2024h]; Ni et al. [2024] improve
efficiency but still require retraining and access to retention data, making them impractical for
continuous unlearning. Guardrailing avoids changing model weights by intervening at input/output
levels. While widely used, such techniques are typically shallow and vulnerable to jailbreaking Jin
et al. [2024]; Andriushchenko et al. [2024]. Hybrid approaches like Preference Optimization Maini
et al. [2024] use gradient ascent and placeholder outputs but still involve full model fine-tuning and
retention data. Other methods (e.g., Liu et al. [2024a]) inject noise using concept classifiers, offering
improved efficiency but still need training and retention data for each concept.

A training-free approach.We propose a train-free concept guardrailing method for LLMs that
requires only data from the concept to be removed – no retention data needed – making it both
compute and data efficient. As shown in fig. 5, certain concepts (e.g., TOFU authors) form clear
attractors in intermediate layer 24. We estimate each attractor by averaging hidden activations across
the concept’s samples. At inference, we compute the cosine similarity between the output’s attractor
and the stored one; if it exceeds a threshold τ , the response is blocked and replaced with a fixed
message (e.g., “I cannot provide information about author X due to removal request <id>”). This
requires only a single forward pass and no training.

Evaluation. Figure 6 (left) shows the cutoff percentage and the model’s utility for different values of
τ and for all 3 versions of the TOFU benchmark Maini et al. [2024]. We can observe that even for
the hardest version (forget10), the model’s utility remains high while we enjoy a cutoff percentage of
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Figure 6: (left) Model utility and cutoff percentage as functions of the threshold τ for TOFU forget10 Maini
et al. [2024]. Model utility measures the effect of guardrailing on the LLM’s general answering ability, while
cutoff is the percentage of forget-set questions detected and guardrailed. (right) Model utility and Forget Rouge
of our train-free method compared with typical (e.g., Gradient Ascent) and recent trainable methods (e.g., NPO
Zhang et al. [2024], ECO Liu et al. [2024b]). Despite requiring no retention data, our approach outperforms
most baselines and offers finer control over the tradeoff between model utility and cutoff/Rouge through the
parameter τ .

more than 90%. For specifically chosen values of τ , we show in Figure 6 (right) that our train-free
approach is competitive with many heavier, trainable solutions. At the same time, the use of τ allows
a finer control over the tradeoff of forgetting versus model utility.

4 ATTRACTORS FOR TRAVERSALS

Treating the LLM as an IFS, and more generally a dynamical system, allows us to intervene on
its trajectory and guide it towards specific Attractors. From a dynamical system perspective, if we
assume that the LLM can be characterized from a function f such that dx/dt = f(x), then, given
a target Attractor y, we can modify the system as dx/dt = f(x) + λ(y − x) and steer it towards
another Attractor y, with λ being influenced by the underlying dynamics of the system (robustness to
perturbations, distance of Attractors, etc.).

Figure 7: Influencing the dynamics of
the LLM by adding the target Attrac-
tor. The only modification needed is
the introduction of a forward hook on
the appropriate layer.

Such an approach, called steering, has been variously studied.
We know that carefully chosen vectors can steer a model’s
behavior so that its output is less toxic, more poetic, etc. Li et al.
[2024a]; Liu et al. [2024f]; Beaglehole et al. [2025], essentially
steering the model internally to different Attractors. However,
many of these approaches require training the model itself
or auxiliary smaller networks (e.g., Beaglehole et al. [2025];
Postmus & Abreu [2024]; Huang [2024]), while other works
require carefully chosen data that satisfy some, more or less
restrictive, assumptions (e.g., Liu et al. [2024f]; Gu et al. [2024];
Song et al. [2025]).

Unlike methods requiring extensive retraining or retention data,
we show that simply adding or subtracting Attractors at selected
intermediate layers can influence LLM behavior across tasks
– from detoxification to code translation – without these con-
straints. Surprisingly, in practice, the before Attractor is mostly unnecessary, removing the need for
retention data entirely. Despite requiring only a single forward pass over target data and no training,
our approach matches the performance of more resource-intensive methods.

4.1 DRIFTING AWAY FROM THE TOXICITY ATTRACTOR

Multiple works have shown that careful manipulation of the activations across the LLM’s layers
allows us to control its behavior, and a common application is toxicity reduction. We note that these
ideas impose one or more restrictive requirements on the data format, such as the need for retention
data, or even the existence of paired data Liu et al. [2024f]; Li et al. [2024a]. Here, we check whether
the estimation of the toxicity Attractor alone allows us steer the generation away from it and thereby,
reducing the toxicity content of the LLM’s output. No additional assumptions on the data are needed.
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Figure 8: (left) Toxicity score and Rouge on ParaDetox. Although our lightweight approach requires no training
or even retention data, it is reducing significantly the toxicity while maintaining the textual quality. (right) Toxic
examples and the modified passages according to our method.

Using the ParaDetox Logacheva et al. [2022] dataset, we obtain a single vector estimate of the toxicity
Attractor on layer 16 and, then, during generation, we subtract this value from each token’s activation
on layer 16, essentially discouraging the generation to converge to the toxicity Attractor. Although
we only require the toxicity Attractor/vector, our targeted approach performs better than many of the
existing (but more restrictive) solutions.

Evaluation. In Figure 8, we show that our approach, without any need for training/retention data,
performs similar as ICV Liu et al. [2024f] which needs a PCA projection of the differences between
paired samples. We also appear to perform better than LoRA fine-tuning or the more lightweight
In-Context Learning Dong et al. [2024]. To assess both the reduction in toxicity as well as any
potential drop in the quality of the generated text, we report both Toxicity Miller et al. [2017], as
well as the Rouge score Lin [2004]. Our approach is one of the few training free methods and the
only one that requires no retention data. We find that relaxing these requirements does not lead to
a performance drop, instead a performance gain. Finally, we should note that there are practical
benefits of our lightweight approach.

4.2 SWITCHING LANGUAGE ATTRACTOR ON THE FLY

Figure 9: (left) LLM as a transpiler. For all pairs of the four considered languages, switching the Attractor to
the target language can successfully make the LLM act as a transpiler without any specific such instructions or
retention data. (right) Using o4 to judge the quality of the generated translations.

LLMs are extremely capable at code comprehension and composition Fang et al. [2024]; Denny et al.
[2024]; Wadhwa et al. [2024]. Other than use as a code-generation assistant, an important use case is
as a transpiler, especially for programming languages with limited support. Typically, the approach
involves a data-intense stage of fine-tuning on code-specific data (e.g., Roziere et al. [2023]; Li et al.
[2022]). Some recent works have evaluated the limits of zero/few-shot transpiling in LLMs Bhatia
et al. [2024]; Beaglehole et al. [2025].

As shown in Figure 4, some programming languages form Attractors on layer 19 of Llama3.1-8B. We
test whether these Attractors let the LLM act as a transpiler: given only a code block in one language,
can it translate to a target language without special instructions? Using 100 LeetCode solutions in
Python, Java, C++, and JavaScript, we estimate the layer-19 Attractors. Assuming input code in
language X converges to Attractor X, we then examine generation when traversing the Attractor
space to the Attractor of another language Y.

Evaluation. To evaluate the quality of the generated code, we use o4-judge to provide us with a
score of the quality of the generated code in the target language. As shown in Figure 9, we can
successfully repurpose the LLM as a transpiler without any demonstrations (zero-shot) as well as
no other relevant information in the prompt. We achieve impressive results for all pairs of the 4
considered languages. We do not require any retention data, additional training, or an increase in the
inference time. We obtain a score better than other simple, train-free approaches (e.g., Difference of
Means (DM) Beaglehole et al. [2025] and ICV Liu et al. [2024f]) as well as approaches that involve
training auxiliary classifiers (e.g., RFM, LR Beaglehole et al. [2025]).
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Figure 10: CHAIR Rohrbach et al. [2018] and POPE Yifan Li & Wen [2023] on Llava-1.5 Liu et al. [2024c]
and InstructBLIP Dai et al. [2023]. While our approach maintains performance on the discriminative questions
(POPE) it significantly reduces the hallucinations in the generative tasks (CHAIR), without affecting the length
of the generated descriptions.

4.3 REMAINING ON THE VISUAL ATTRACTOR

Hallucinations are a well-known issue in LLMs Martino et al. [2023]; Friel & Sanyal [2023]; Huang
et al. [2025], amplified in Vision-Language Models (VLMs) by a fading memory effect where
attention to visual input diminishes Favero et al. [2024]; Liu et al. [2024g]. We hypothesize this
stems from a shift between Attractors: VLMs start aligned with a visual Attractor but drift toward a
text-only Attractor due to LLM pretraining. To counter this, we add the initial visual Attractor vector
(computed at the first generation step) to the hidden state at each subsequent step, reinforcing visual
grounding. Unlike prior methods (Figure 7), our approach dynamically computes and maintains the
visual Attractor throughout generation.

Evaluation. Compared to other train-free approaches (e.g., Favero et al. [2024]; Woo et al. [2024];
Leng et al. [2024]), our algorithm does not lead to an increase in inference time, since it does not
require multiple forward passes. Despite its simplicity, the results are strong, leading to a significant
reduction in the hallucination rate of two widely used VLMs (InstructBLIP Dai et al. [2023] and
Llava-1.5 Liu et al. [2024c]), as shown in Figure 10 (CHAIR). Our modification also does not
affect the general abilities of the VLM, resulting in a similar (or slightly improved) performance on
discriminative questions.

5 ATTRACTORS PERTURBATION FOR DATA GENERATION

Recent studies show that LLMs can generate new samples resembling small real datasets. Various
works explore prompting strategies and multi-step methods to improve sample quality Long et al.
[2024]. Others note the challenge of prompt design and propose minimal fine-tuning to turn an LLM
into an autoencoder that produces new samples via high-temperature sampling DeSalvo et al. [2024].

Figure 11: Sample-based Attrac-
tors for different generation in-
structions. Each Attractor cor-
responds to one sample from
BoolQ.

Limitations of Temperature sampling. LLM output variability is
typically controlled by Temperature and related parameters (top-K,
top-P), which add stochasticity. Yet even with high randomness,
outputs often remain limited and lack diversity when generating text
similar to existing data Gandhi et al. [2024]; Liu et al. [2024e]; Long
et al. [2024]. This is usually mitigated through carefully tuned or
multiple prompts, but that approach does not scale or suit large-scale
synthetic data generation.

A common approach to boost diversity beyond temperature sam-
pling is running multiple forward passes with varied prompts while
keeping the same original sample. Studies show that carefully tuned
instructions can yield more diverse synthetic outputs Gandhi et al. [2024]; Liu et al. [2024e]; Long
et al. [2024]. However, this demands laborious, non-automated prompt design with trial-and-error
and becomes impractical for large, heterogeneous datasets like BoolQ Clark et al. [2019].
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Figure 12: (left) Test-set accuracy on BoolQ and AG when trained with synthetic datasets generated through
temperature sampling and our approach. In all cases, our dataset results in a more generalizable model with
better performance. (right) Factuality of generated facts about popular figures with temperature sampling (gray)
and our approach (green). We observe a more than 20% increase in the factuality on average.

5.1 ATTRACTOR PERTURBATIONS: REPLICATING THE EFFECT OF MULTIPLE TAILORED
INSTRUCTIONS

Similar to previous experiments, we investigate whether sample-wise Attractors exist for diverse
instructions. Is there a layer where different instruction trajectories “collapse” for the same sample?
Yes—Figure 11 shows that with 10 BoolQ-specific instructions, all trajectories converge on layer 16,
forming sample-wise Attractors. Building on this, we test whether perturbing the Attractor estimated
from a single instruction can replicate the diversity achieved with multiple prompts. Using only one
(possibly simple) prompt, can we generate multiple diverse samples without raising temperature and
risking corrupted, nonsensical outputs? As shown later, this simple, train- and tuning-free approach
yields higher-quality data, validated through both direct and indirect evaluations.

Estimating the quality of the generated data. We evaluate two textual datasets, BoolQ Clark
et al. [2019] and AG Zhang et al. [2015]. Although both are relatively large and diverse, we
use minimal versions of 100 samples each to reduce the original train set’s influence and better
assess each generation method. Using these 100 samples, we prompt Llama3.1-8B to generate new
synthetic samples via both typical temperature sampling and our approach. To assess the quality of
the generated data, we perform indirect evaluation by fine-tuning smaller LLMs on the synthetic
collections Long et al. [2024]. Specifically, we use Qwen2.5-0.5B Team [2024] and GPTNeo-1.3B
Black et al. [2021]. In Figure 12 (left), we report test accuracy when training each model on each
dataset version. The quality improvements are clear, yielding better results in all cases.

Estimating the factuality of the generated data. Besides the indirect comparison, we also evaluate
the generated samples’ quality directly. Following Tian et al. [2024], we prompt the model to produce
facts for a collection of randomly selected celebrities and historical figures. To assess factuality we
use o4-judge, prompting it to label each generated fact as true or false. In Figure 12 (right) we
show that factuality is much lower with temperature sampling; using Attractors yields an absolute
increase of 20% on average. Detailed per-person improvements are reported in the appendix.

6 CONCLUSION

This work is based on the hypothesis that the evolution of hidden representations of prompts in Large
Language Models (LLMs), specifically their convergence to distinct internal representations (for
semantically related prompts), can be understood through the framework of Iterated Function Systems
(IFS). We check that LLM layers progressively map inputs towards concept-specific “Attractors” in
their latent space. Building on this perspective, we evaluated a range of simple, training-free ideas
that directly manipulate these identified Attractors. On a diverse set of practical tasks, including
machine unlearning (guardrailing against specific concepts), guiding LLM generation for tasks like
code translation and toxicity reduction, mitigating hallucinations in vision-language models, and
improving the diversity and factuality of synthetic data generation, we find that our proposal offers
surprisingly strong performance. It is computationally efficient and there is no need of re-training or
fine-tuning, and offers a clear and promising direction for evaluating applicability in other use-cases.

Impact & Limitations. Modeling LLMs as IFS can yield solutions to diverse problems and
potentially extend their capabilities. A key limitation is the need for direct access to hidden activations
to estimate and manipulate the concept Attractors, which standard black-box APIs do not provide.
Due to computational limits, we evaluated models up to 8B parameters, leaving it to future work to
test whether similar Attractor phenomena appear in larger models.
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A ATTRACTOR FOR CONCEPT DETECTION

Data. The TOFU benchmark Maini et al. [2024] uses a synthetic dataset crafted to test how well
LLMs can forget specific information. It features 200 made-up author profiles, each with 20 question-
answer pairs detailing aspects like birthplace, genre, and awards. These profiles were generated using
GPT-4, ensuring they don’t exist in any real-world data. To evaluate unlearning, a subset of these
profiles, called the “forget set”, is designated for the model to forget. Three different variations were
introduced –forget01, forget05, and forget10– that correspond to different percentages of the authors
to be forgotten. The rest form the “retain set” which the model should remember. Additionally, TOFU
includes evaluation datasets with real authors and general world facts to assess whether unlearning
specific information affects the model’s broader knowledge.

Models. Using the fictitious data from above, TOFU then finetuned multiple LLMs on different
subsets of them. One was trained on everything but forget10, one in everything but forget05, one in
everything but forget01, and finally one was trained on the whole dataset. The fully-trained model is
the one used to test different unlearning methods, while the three partially-trained models correspond
to the ideal models and parameters (θ∗) that unlearning methods seek.

Evaluation metrics.

1. Probability: The Probability metric assesses the model’s confidence in generating the
correct answer a given a question q. To normalize for answer length, the probability is
adjusted as follows:

P (a | q)1/|a| (4)
where |a| denotes the number of tokens in the answer. This normalization ensures fair
comparison across answers of varying lengths.

2. ROUGE-L Recall Score: The ROUGE-L Recall Score measures the overlap between the
model’s generated answer and the ground truth answer, focusing on the longest common
subsequence. It captures the model’s ability to produce answers that are similar in content
and structure to the expected responses, even if the wording differs.

3. Truth Ratio The Truth Ratio compares the model’s confidence in a paraphrased correct
answer ã to its confidence in several perturbed (incorrect) versions â ∈ Apert. It is defined
as:

Rtruth = min

 1

|Apert|
∑

â∈Apert

P (â | q)1/|â|

P (ã | q)1/|ã|
,

P (ã | q)1/|ã|
1

|Apert|
∑

â∈Apert
P (â | q)1/|â|

 (5)

This metric reflects the model’s ability to distinguish correct answers from incorrect ones. A
lower Truth Ratio indicates better unlearning performance.

4. Model Utility: The utility score of the model is derived from the harmonic mean of nine
individual measures: answer probability, truth ratio, and ROUGE recall for each of the three
evaluation subsets –retain, real authors, and world facts. A higher utility score is indicative
of better model performance.

5. Forget Cutoff: This metric is introduced by us, and it is depicted in Figure 6 (left). Since
our method is about guardrailing specific authors, we are interested in the percentage of
author-related questions that are correctly detected (and cutted off).

Baselines. The complete details on all baselines can be found in Liu et al. [2024b].

B ATTRACTORS FOR TRAVERSALS

B.1 DRIFTING AWAY FROM THE TOXICITY ATTRACTOR

Data. The ParaDetox dataset is a key resource for training models to rephrase toxic language into
neutral expressions Logacheva et al. [2022]. It comprises over 10,000 English sentence pairs, each
featuring a toxic sentence and its non-toxic paraphrase. The dataset was created through a structured
crowdsourcing process on Toloka.ai, involving paraphrasing, content preservation checks, and toxicity
verification. This approach ensured high-quality data for developing effective detoxification models.
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Baselines. In Figure 8 we compared our method against 3 different baselines. Here is a breakdown
of each one:

1. ICL: ICL, which stands for In-Context Learning Dong et al. [2024], utilizes the LLM
with specific prompts and a few examples (demonstrations) to guide detoxification without
altering model weights.

2. LoRA: LoRA, which stands for Low Rank Adaptation Hu et al. [2022], finetunes the model
on the specific dataset (ParaDetox Logacheva et al. [2022]). Although the “heaviest” of all
methods, since it evolves training (some) of the LLM’s parameters, the results are not better
than more lightweight approaches, like ours.

3. ICV: ICV, which stands for In-Context Vectors Liu et al. [2024f], calculates a “task vector”
using a small set of (paired) in-context examples. This vector encapsulates the task’s essence
and is used to modulate the model’s behavior for detoxification tasks without additional
fine-tuning.

B.2 SWITCHING LANGUAGE ATTRACTORS ON THE FLY

Data. To estimate the programming languages Attractors we used solutions from LeetCode’s
problems from https://huggingface.co/datasets/greengerong/leetcode. Each
sample of the dataset consists of the question and its difficulty, as well as the corresponding solutions
in Python, Java, C++, and Javascript.

Baselines. In Figure 9 we compared our method against 5 different baselines. Here is the details of
each one:

1. ICV: ICV, which stands for In-Context Vectors Liu et al. [2024f], calculates a “task vector”
using a small set of (paired) in-context examples. In Beaglehole et al. [2025] it can be also
found as “PCA”.

2. Logistic Regression: A linear classifier applied to the activations of a single layer within
the LLM. It serves as a baseline in Beaglehole et al. [2025] to assess the effectiveness of
simple linear decision boundaries in detecting specific concepts.

3. Linear Regression: Similar to logistic regression, the underlying classifier in this case is
linear regression.

4. Diference of Means (DM): A method that involves directly matching the hidden representa-
tions corresponding to specific concepts without any learned transformation.

5. Recursive Feature Machine (RFM): Beaglehole et al. [2025] novel approach that leverages
nonlinear feature learning across multiple layers of an LLM to identify and manipulate
semantic concepts. RFM combines features from different layers to build powerful con-
cept detectors and steering mechanisms, demonstrating state-of-the-art results on various
benchmarks.

B.3 REMAINING ON THE VISUAL ATTRACTOR

Benchmarks. In Figure 10 we demonstrated our approaches superiority in two different benchmarks.
Each one evaluates a different hallucination aspect and the details can be found below:

1. POPE: POPEYifan Li & Wen [2023] –short for Polling-based Object Probing Evaluation–
is a tool designed to assess object hallucination in VLMs. POPE evaluates this by prompting
models with simple yes-or-no questions about specific objects in an image (e.g., “Is there a
cat in the image?”) and comparing the responses to ground-truth annotations. This method
provides a straightforward way to quantify hallucination rates across different models and
datasets, with the focus being on discriminative questions.

2. CHAIR: CHAIRRohrbach et al. [2018], which stands for Caption Hallucination Assessment
with Image Relevance, is a metric designed to evaluate object hallucinations in image
captioning models. It measures the proportion of objects mentioned in a generated caption
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that are not present in the corresponding image. This helps in assessing how often a model
“hallucinates” objects, i.e., describes items that are not actually in the image.
The CHAIR metric operates at two levels:

• Instance-level (CHAIRi): Calculates the percentage of hallucinated object instances
relative to all object instances mentioned in the caption.

• Sentence-level (CHAIRs): Determines the percentage of sentences that contain at least
one hallucinated object.

By analyzing both levels, CHAIR provides a comprehensive view of a model’s tendency
to hallucinate objects in image captions. It has been widely adopted in the evaluation
of vision-language models, especially when assessing their performance on datasets like
MSCOCO Lin et al. [2014].

Baselines. We consider three contemporary, train-free methods for hallucation reduction. In contrast
to our approach, these methods require multiple inference passes, increasing the generation time for
each new query.

• VCD: VCD Leng et al. [2024] operates as a training-free technique that modifies the
decoding process during inference. It contrasts the model’s output distributions when
provided with the original image versus a deliberately distorted version of the same image.
The core idea is that by comparing these outputs, the model can identify and suppress
content that is overly influenced by language priors rather than the actual visual input.

• M3ID: M3ID Favero et al. [2024] addresses the issue of hallucinations by maximizing the
mutual information between the generated text and the visual input. The method operates
during inference and can be applied to any pre-trained autoregressive LVLM without
additional training. By focusing on enhancing the alignment between visual and textual
modalities, M3ID encourages the model to generate outputs that are more grounded in the
visual content.

• AvisC: AVISC Woo et al. [2024] addresses hallucinations by analyzing and adjusting the
attention distribution over visual tokens during the decoding phase. The method identifies
“blind tokens”, which are tokens that receive disproportionately low attention weights yet
may contain critical visual information. By contrasting the model’s output logits conditioned
on the original visual tokens with those conditioned on the blind tokens, AVISC dynamically
adjusts the logits to reduce the model’s dependency on blind tokens. This encourages a more
balanced consideration of all visual tokens, leading to outputs that are more grounded in the
visual content.

Additional results. Figure 13 depicts the impact of re-enforcing the visual Attractor on Llava1.5
Liu et al. [2024c]. In all cases, we are able to eliminate the hallucinations of the unmodified model,
without introducing new ones.

C ATTRACTORS PERTURBATION FOR DATA GENERATION

Datasets. Our experiments deal with the following two datasets. Despite their quite large size, to
better assess the quality of the synthetically generated data, we considered only a small subset of 100
real samples.

1. BoolQ: BoolQ Clark et al. [2019] is a benchmark designed for evaluating reading com-
prehension systems on yes/no questions. The dataset comprises 15,942 examples, each
consisting of a naturally occurring question, a passage from a Wikipedia article, and a
boolean answer (true or false). These questions are not artificially generated; instead, they
are real queries posed by users, making the dataset particularly valuable for assessing models
in realistic scenarios.
Each sample in BoolQ includes:

(a) Passage: A segment of text from a Wikipedia article that contains information relevant
to the question.
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Figure 13: Before and after re-enforcing the visual Attractor, on Llava1.5 Liu et al. [2024c]

(b) Question: A naturally occurring yes/no question that can be answered solely on the
information provided on the passage.

(c) Answer: A boolean value indicating the correct answer to the question based on the
passage.

The questions in BoolQ often require complex reasoning and understanding of the passage,
making it a challenging benchmark for models.

2. AG: The AG News dataset is a subset of the AG’s corpus of news articles Zhang et al. [2015].
It was constructed by selecting articles from the four largest categories in the original corpus:
(a) World (b) Sports (c) Business (d) . Each article in the dataset includes a title and a short
description, providing concise textual content for classification tasks.

Prompting. To generate the synthetic samples, we prompted Llama3.1-8B Grattafiori et al. [2024]
10 times for each sample. The prompts used for each dataset can be seen below:

BoolQ: <sample>. Now generate 3 different passages, questions, and answers similar to the example
above. Please make sure each question you generate has a boolean answer that can be answered by
the passage. Make sure each passage and question is different and sufficiently rephrased. Please
make sure you generate passages, questions and both true and false answers.

AG: <sample>. Now generate 3 different texts and their corresponding class similar to the example
above. Make sure each text is not too long and it is different and sufficiently rephrased. Please
make sure each class you generate belongs to one of the four classes (Technology, World, Business,
Sports).

The same prompts were used in both temperature sampling and our, attractor-based, approach.

Models and hyperparameters. After obtaining the synthetic data using Llama3.1-8B Grattafiori
et al. [2024], we finetune two smaller LLMs (Qwen2.5-0.5B Team [2024] and GPTNeo-1.3B Black
et al. [2021]) on them. Table 2 displays all the hyperparameters used in all different trains.

Factuality estimation. To assess the factuality of the generated facts of both methods examined, we
considered a dataset of 35 distinct famous personalities, such as Nelson Mandela and Pablo Picasso.
Using this list, we prompted Llama3.1-8B Grattafiori et al. [2024] 10 times to generate 10 different
facts for each person. Using these facts, we employed o4-judge to determine the factuality of each
one. On average our method achieves a 20% increase in the factuality, and the indivual increases can
be found in fig. 14.
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Table 2: Training hyperparameters for both datasets and LLMs.

Hyperparameter BoolQ Clark et al. [2019] AG Zhang et al. [2015]

Qwen2.5-0.5B GPTNeo-1.3B Qwen2.5-0.5B GPTNeo-1.3B

learning rate 5e− 5 5e− 5 5e− 5 5e− 5
batch size 8 8 16 32
max epochs 10 10 5 5

Figure 14: Factuality percentage of temperature sampling (gray dots) and our approach (green dots). The
improvement is apparent in all cases, reaching as much as 30%.
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