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ABSTRACT

We present TabRet, a pre-trainable Transformer-based model for tabular data.
TabRet is designed to work on a downstream task that contains columns not
seen in pre-training. Unlike other methods, TabRet has an extra learning step
before fine-tuning called retokenizing, which calibrates feature embeddings based
on the masked autoencoding loss. In experiments, we pre-trained TabRet with a
large collection of public health surveys and fine-tuned it on classification tasks
in healthcare, and TabRet achieved the best AUC performance on four datasets.
In addition, an ablation study shows retokenizing and random shuffle augmenta-
tion of columns during pre-training contributed to performance gains. The code is
available at https://github.com/pfnet-research/tabret.

1 INTRODUCTION

Transformer-based pre-trained models have been successfully applied to various domains such as
text and images (Bommasani et al., 2021). The Transformer-like architecture consists of two mod-
ules: a tokenizer, which converts an input feature into a token embedding, and a mixer, which
repeatedly manipulates the tokens with attention and Feed-Forward Networks (FFN) (Lin et al.,
2021; Yu et al., 2022). During pre-training, both modules are trained to learn representations that
generalize to downstream tasks.

What has often been overlooked in the literature are scenarios where the input space change between
pretext and downstream tasks. A supervised problem on tabular data is a typical example, where
rows or records represent data points and columns represent input features. Since the data scale
is not as large as text and images, pre-trained models are expected to be beneficial (Borisov et al.,
2022). A key challenge is that each table has a different set of columns, and it is difficult to know
at the pre-training phase which columns will appear in the downstream task. We need to train the
tokenizers from scratch for unseen columns with a small amount of data. Previous studies use text
data such as a column name or a description to obtain the embeddings directly from language pre-
trained models (Wang & Sun, 2022; Hegselmann et al., 2022), but we cannot do this when there is
no such side information.

To address the above issue, we propose TabRet, a pre-trainable Transformer network that can adapt
to unseen columns in downstream tasks. First, TabRet is pre-trained based on the reconstruction
loss with masking augmentation (Devlin et al., 2019; He et al., 2022). Then, when unseen columns
appear in a downstream task, their tokenizers are trained through masked modeling while freezing
the mixer before fine-tuning, which we call retokenizing. In experiments, we pre-trained TabRet with
a table having more than two million rows and evaluated the performance on four tables containing ∼
50% unseen columns. The results show TabRet outperformed baseline methods for all the datasets.
Furthermore, the ablation study confirmed that retokenizing and random shuffling of columns within
a batch further enhanced the pre-training effect.

∗Work done during internship at Preferred Networks, Inc.
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Figure 1: Problem setting and our approach. (a) We consider transfer learning across tables that
have different columns, where the pretext data is not available in the downstream task, and vice
versa. (b) Our model consists of two modules: a tokenizer for each column and a mixer. We train
the two modules based on the masked autoencoder loss in pre-training. (c) We introduce additional
tokenizers for new columns and train them while freezing the old tokenizers and the mixer in a
downstream task.

2 RELATED WORK

Deep learning (DL)-based and tree-based methods are the two main streams of supervised learning
for tabular data. Which one works better depends on the task, as they capture different aspects
of the input characteristics (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). However, DL-
based methods are primarily adapted to transfer learning because they are easier to pre-train than
tree-based methods. Among others, self-supervised learning with Transformers is the most common
pre-training approach of DL-based methods (see, e.g., Badaro et al. (2023) for the survey).

Despite the popularity, most Transformer-based methods have not adapted to the case where
pre-training and fine-tuning tasks have different column sets. To the best of our knowledge,
TransTab (Wang & Sun, 2022), TabLLM (Hegselmann et al., 2022), and LIFT (Dinh et al., 2022)
are the few exceptions that can train on tabular datasets with different column sets. TransTab creates
column-by-column representations of each row from the column name and value, allowing pre-
trained models to be applied to unseen columns. TabLLM and LIFT convert a row into a sequence
of tokens and feed them to a pre-trained language model (Sanh et al., 2022; Wang & Komatsuzaki,
2021). They assumed there were semantic correspondences of column descriptions between dif-
ferent columns. In practice, however, there are many cases where column descriptions are not
informative (e.g., random alphabet) or do not exist. Since TabRet does not explicitly use the column
description information, it can transfer to a different column set in such a situation.

3 METHOD

Problem Formulation. In pre-training, suppose we have a table consisting of a finite set of
columns C. Let Xc be the space where column c ∈ C takes its value. A row x is then defined
on the product space X (C) =

∏
c∈C Xc. Suppose a downstream task is defined as a supervised

task on an input-output pair (x′, y). Here we consider the case where the input x′ ∈ X (C′) is a
row of another column set C′ ̸= C (Figure 1 a). As an example, consider healthcare records where
C = {age, gender, weight} are given as a column set in pre-training and C′ = {gender, BMI}
are in fine-tuning. In this case, the column gender appears in common, but other columns
{age, weight, BMI} appear only in either pre-training or fine-tuning. We assume that the pre-
training table is inaccessible during fine-tuning.

Model Structure. Given a set of columns C, we define a tokenizer tc : Xc → E for each column
c ∈ C as a function that converts the column value xc ∈ Xc into an embedding vector ec ∈ E . The
tokenizers then map an entire row x to a set of embeddings {ec | c ∈ C}, which are passed to a
transformer-based encoder h : EC → Z to produce a latent representation z ∈ Z . We also use a
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decoder d : Z → X (C) to reconstruct the input in pre-training/retokenizing and a head p : Z → Y
to predict the target variable in fine-tuning. Note that part of the decoder and the head have the
same network structure, and their parameters are partially shared. More details about the network
architecture are described in Appendix A.

Pre-training with Shuffle Augmentation. We train the tokenizers of the columns C, the encoder,
and the decoder by following the approach of the masked autoencoder (He et al., 2022); that is, we
randomly select the columns with a masking ratio and replace the corresponding embeddings with a
special embedding called a mask token. We then reconstruct the values of the masked columns and
compute the loss to update the parameters. We empirically find that the masking ratio = 0.7 works
well for pre-training and 0.5 for retokenizing. We use these values throughout the experiments
unless otherwise mentioned.

During pre-training, we apply the shuffle augmentation as follows. Let xc = (x1c, . . . , xnc) ∈ Xn
c

be a batch of column c of size n and perm(·) be a random permutation. Suppose C̃ ⊆ C is a set
of columns chosen uniformly randomly based on a shuffle ratio. Then the shuffle augmentation
replaces xc with perm(xc) for c ∈ C̃. We set the shuffle ratio to 0.1.

Retokenizing and Fine-tuning. In a downstream task, we first add initialized tokenizers for the
newly appearing columns. Part of the decoder is also initialized to match the fine-tuning table. Then
we train them by masked autoencoding. During this time, we do not update the parameters of the
old tokenizers, encoder, and decoder (Figure 1 c). Afterward, the head is added to the backbone
network (tokenizer + encoder) and fine-tuned to predict the target variable.

The primary motivation for retokenizing is to efficiently train the new tokenizers with a relatively
small number of data points. Although we can train them in a supervised manner, the model is easily
overfitted because, in addition to the tokenizers, the head must be trained with a single target signal.
In contrast, the masked autoencoding loss used in retokenizing provides more signals to reconstruct
than the target variable, which is expected to induce better token representations.

4 EXPERIMENTS

Datasets. As pre-training data, we preprocessed behavioral risk factor surveillance system
(BRFSS), a collection of public health surveys in the US, and created a single table consisting of
2.03 million rows and 74 columns. As downstream tasks, we selected four classification datasets in
the healthcare domain from Kaggle: Diabetes, HDHI, PKIHD, and Stroke. Each dataset has about
50% overlap with BRFSS columns. However, some of these overlapping columns have different
representations of their values. For example, the age column in BRFSS is categorical, but is rep-
resented as continuous in the downstream datasets, such as Stroke. We pre-processed the column
representations of the downstream datasets to adjust BRFSS columns. We used 20% of the data as
a test set, 100 data points from 80% for fine-tuning (and retokenizing), and the remaining data as a
validation set. The dataset specifications are described in Appendix B.1.

Baselines. We used two groups of baselines: supervised methods trained only on the down-
stream tasks and self-supervised methods pre-trained on BRFSS. As supervised methods, we com-
pared logistic regression (LR), XGBoost, CatBoost, MLP, and Feature Tokenizer Transformer (Gor-
ishniy et al., 2021) (FTTrans). Self-supervised methods were SCARF (Bahri et al., 2022) and
TransTab (Wang & Sun, 2022). The hyperparameters, such as learning rate, were optimized by
Optuna (Akiba et al., 2019) with the validation set for each method. Details of the baseline methods
are described in Appendix B.2.

Results. Table 1 shows that TabRet outperformed the baselines for all the datasets. Among the pre-
trained models, TabRet consistently achieved the best. In addition to absolute performance, TabRet
had relatively little variability (i.e., small variance) in the results, which is one of the desirable
properties of pre-training.

We also ablated TabRet. Since the default masking ratios mentioned in Section 3 were determined
based on the performance with all the learning options (pre-training, shuffle augmentation, reto-
kenizing), we also optimized them as hyperparameters here for a fair comparison. The results
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Table 1: Test AUC performance. The methods from LR to FTTrans were trained only on fine-
tuning data (i.e., no pre-training). Each cell reports the mean and standard deviation over 20 random
seeds. The best scores are underlined, and those with statistical significance at a significance level
of 0.05 (Welch’s t-test) are in bold.

Methods Diabetes HDHI PKIHD Stroke

LR 75.10± 3.55 75.55± 3.43 76.91± 2.52 74.29± 6.08
XGBoost 79.52± 0.79 80.29± 1.25 79.74± 0.93 69.02± 9.63
CatBoost 77.83± 1.40 77.65± 1.82 76.50± 1.79 76.14± 3.46

MLP 78.20± 1.02 79.39± 1.09 77.51± 1.68 76.27± 5.92
FTTrans 79.11± 1.07 78.96± 1.30 76.45± 2.38 76.48± 4.92

SCARF 78.43± 1.35 80.36± 1.26 81.01± 0.94 76.74± 5.04
TransTab 78.30± 1.18 78.77± 1.34 78.56± 1.58 75.00± 4.80

TabRet 79.94± 1.03 81.65± 1.60 82.70± 0.79 80.73± 3.83

Table 2: Ablation study. Supervised indicates TabRet that was trained only with fine-tuning data.
Supervised row reports AUC scores and the remaining rows report the performance gains averaged
over 10 random seeds.

Diabetes HDHI PKIHD Stroke Ave. Gain

Supervised 78.71 78.42 75.47 74.29 N/A

+ Pre-training +0.12 +2.06 +4.98 +6.12 +3.07
+ Shuffle aug. +0.90 +2.86 +4.99 +5.16 +3.21
+ Retokenizing +0.64 +2.65 +6.89 +5.30 +3.87

(Table 2) show a positive trend of pre-training. Although shuffle augmentation and retokenizing
sometimes worked negatively, they provide additional gains on average.

To make a fair comparison, we evaluated if the shuffle augmentation is effective for TransTab. How-
ever, the performance did not consistently improve (refer to AppendixC.1).

5 DISCUSSION

Tabular data have been notorious for transfer learning due to the difference in column sets. We
addressed the problem and presented the transformer network with two additional steps — random
shuffling in pre-training and retokenizing before fine-tuning — excelled in its potential as a pre-
trained model. We hope our results will open a new research direction of pre-trained models on
tabular data or other data domains where the input space can be changed.

The current limitation is that pre-training does not always provide performance gain, especially
when the domain of a downstream task is irrelevant to the pretext data. We evaluated the pre-trained
model used in the experiments on several datasets having no column overlap. The preliminary result
was that the performance was worse than the supervised methods. It may be because the generative
data process is entirely different, and there is no transferable knowledge in the task pair. Another
possibility is that there was transferable knowledge, but our framework failed to capture it. Further
investigation of this topic would be promising as future work.
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R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
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A MODEL

(a) Pre-training phase (b) Retokenizing phase

(c) Fine-tuning phase

Figure 2: Schematic view of our model and training phases. (a): Pre-training phase trains all mod-
ules by reconstructing masked features. (b) Retokenizing phase trains the modules corresponding to
newly added columns. In this figure, the 0-th to (i − 1)-th columns are removed, and the (n + 1)-
th to m-th columns are added. Feature Tokenizer FTj , Positional Embedding posj , and Projector
projj are trained for j = n+ 1, . . . ,m. (c): Fine-tuning phase freezes all parameters trained in the
pre-training and retokenizing phases and trains the positional embedding and Projector for the target
variable (post and projt in the figure, respectively).
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A.1 ARCHITECTURE

A.1.1 OVERVIEW

This section describes the architecture of our proposed model TabRet. TabRet consists of Feature
Tokenizer, Alignment Layer, Random Masking, Encoder, Post-Encoder, and Projector. Feature To-
kenizer converts each feature into a token. Alignment Layer normalizes the set of tokens and adjusts
the tokens’ dimensionality. Random Masking masks some tokens and feeds the remaining tokens
to Encoder. Masked tokens are replaced with the mask token [mask] before Post-Encoder. Finally,
Projector sends back tokens to the input domains. Figure 2 shows the schematic view of our model.

A.1.2 FEATURE TOKENIZER

Feature Tokenizer module converts an input x to an embedding TFT, whose dimensions will
be determined later. We assume that each column is either numerical or categorical. Since
the order of the feature does not matter, as we see in this section, we write the input as x =
(xnum

1 , . . . , xnum
knum , xcat

1 , . . . , xcat
kcat). Here, knum and kcat are the number of numerical and cate-

gorical features, respectively. xnum
j ∈ R is the j-th numerical feature and xcat

j ∈ [Cj ] is the j-th
categorical feature, where Cj is the number of categories of j-th categorical feature.

Feature Tokenizer embeds numerical features using the weight matrix W num ∈ Rk×dFT and the
bias vector bnum ∈ Rd as follows:

T num
j = xnum

j W num
j + bnumj ∈ RdFT .

For categorical features, Feature Tokenizer converts the input xcat
j to a one-hot vector ecatj ∈

{0, 1}Cj and embeds it using the lookup table W cat ∈ RCj×dFT and bias bcat ∈ RdFT :

T cat
j = e⊤j W

cat
j + bcatj ∈ RdFT .

W num, bnum, W cat, bcat are learnable parameters. Then, embeddings are concatenated for further
processing:

TFT = Concat(T num
1 , . . . , T num

knum , T cat
1 , . . . , T cat

kcat) ∈ Rk×dFT ,

where k = knum + kcat.

A.1.3 ALIGNMENT LAYER

We employed different dimensions for Feature Tokenizer and Encoder for the model’s flexibility.
Alignment Layer changes the token dimensions to adjust Encoder using a linear layer. Alignment
Layer also normalizes the scale of tokens using Layer Normalization Ba et al. (2016):

TAL = Linear(LayerNorm(TFT)) ∈ Rk×dAL ,

where dAL is the dimension of tokens that Alignment Layer outputs.

A.1.4 RANDOM MASKING

Random Masking behaves differently depending on training phases (see Appendices A.2.1 and A.2.2
for the definition of the phases.) In the pre-training and retokenizing phases, Random Masking
masks some tokens randomly. More specifically, we set the mask ratio α, chose m′ = ⌊αk⌋ tokens
uniformly randomly from the set of tokens for each data point and dropped the chosen tokens. If
m′ = 0, we overrode the value of m′ by 1. That is, Random Masking removes one token uniformly
randomly. Consequently, the feature size becomes from TAL ∈ Rk×dAL to TRM ∈ Rm×dAL , where
m = k−m′ is the number of tokens that are not dropped. In the fine-tuning phase, Random Masking
does nothing, that is, TRM = TAL.

A.1.5 ENCODER

Encoder is an N -layer Transformer. We use the Pre-Norm variant, which is reportedly easy for
optimization Wang et al. (2019). In addition, we add one Layer Normalization after the final Trans-

8
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former block. Mathematically, the computation of Encoder can be described as follows:

T0 = TRM,

Ti = Fi(Ti−1) i = 1, . . . N,

T enc = LayerNorm(TN ),

where Fi is the i-th Transformer block. The output T enc of Post-Encoder is the m-tuple of denc-
dimensional tokens: T enc = (T enc

1 , . . . , T enc
m ) ∈ Rm×denc .

A.1.6 POST-ENCODER

Post-Encoder first applies a linear layer to project embeddings to the Post-Encoder’s input dimension
dPE. Then, a mask token [mask], which is a RdPE -dimensional learnable vector, is inserted into
each position where Random Masking removes the encoder token. Additionally, Post-Encoder adds
learnable positional embedding [pos] = ([pos]1, . . . , [pos]k) ∈ Rk×dPE to the embeddings, which
are expected to learn column-specific information. Finally, the embeddings are transformed by a
one-layer Transformer block F . In summary, the architecture of Post-Encoder is as follows:

T1 = Linear(T enc),

T2 = AddMaskToken(T1, [mask]),

T3 = T2 + [pos],

T4 = F (T3),

TPE = LayerNorm(T4).

Similarly to Encoder, the output TPE of Post-Encoder is the k-tuple of dPE-dimensional tokens:
TPE ∈ Rk×dPE .

A.1.7 PROJECTOR

Projector sends back the tokens to column feature spaces using linear layers. We prepare one
projector per column since each column has different scales and dimension. Specifically, let
T dec = (T num

1 , . . . , T num
knum

, T cat
1 , . . . , T cat

kcat
) ∈ Rk×dPE be the Post-Encoder’s output. Then, the

output of the j-th projector is as follows:

x̂∗
j = Linear(T ∗

j ),

where ∗ ∈ {num, cat}. The dimensionality of x̂num
j is 1 for numerical features for all j =

1, . . . , knum, and x̂cat
j is Cj for the j-th categorical feature for j = 1, . . . , kcat.

We can think of our model as an encoder-decoder model by interpreting the pair of Post-Encoder and
Projector as a decoder. While the original masked autoencoder in He et al. (2022) uses its decoder
only in the pretext task and removes it in the downstream task, our model uses the decoder trained
on the pretext task in the downstream tasks. This architectural difference comes from the modality
of data. In He et al. (2022), whose modality of interest is images, models have to solve qualitatively
different problems as the pretext and downstream tasks – for example, image inpainting for the
pretext task object classification for the downstream task. On the other hand, in tabular learning
settings, both pretext and downstream tasks are supervised learning tasks on columns. We expect
the decoder is more likely to learn the knowledge beneficial for the downstream task in the fine-
tuning phase. Therefore, we design our model to reuse the same decoder in the fine-tuning phases.

A.2 TRAINING

A.2.1 PRETEXT TASK

The pretext task consists of a single phase, namely, the pre-training phase (Figure 2(a)).

Shuffle Augmentation In the pre-training phase, we apply shuffle augmentation (Figure 3) to the
input minibatches. We set the shuffle ratio β ∈ (0, 1). Given a minibatch x, we choose ℓ = ⌊βk⌋
features uniformly randomly. For each chosen column, we permute the features in the minibatch as
described in Section 3.

9
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Figure 3: Schematic view of shuffle augmentation. Shuffle augmentation applies column-wise per-
mutation within a minibatch to a randomly chosen subset of columns. This figure shows the shuffle
ratio β = 0.4, and the first and fourth columns out of five are shuffled.

A.2.2 DOWNSTREAM TASK

We considered two types of downstream tasks. The first one was the independently-and-identically-
distributed (IID) transfer learning (Appendix C.2), where pretext and downstream tasks have the
same column sets. In the IID transfer learning setting, the downstream task has a single phase,
namely, the fine-tuning phase (Figure 2(c)). The task is equivalent to the usual supervised learning
task in the IID case. The other type was the out-of-distribution (OOD) transfer learning (Section 4),
where column sets of pretext and downstream tasks could be different. The downstream task in the
OOD transfer learning additionally has the retokenizing phase (Figure 2(b)) before the fine-tuning
phase.

Retokenizing Phase TabRet has Feature Tokenizer, Positional Embedding, and Projector for each
column, as explained in Appendix A.1. Therefore, we needed to learn these modules for columns
unseen in the pretext task. In the retokenizing phase, we freeze all parameters except these modules
for columns unseen in the pretext task. We employ the same masked modeling training as the pretext
task. We treat the unseen columns as masked and feed the frozen mask tokens [mask] as the input to
Post-Encoder corresponding to the columns.

Fine-tuning Phase The target value y of the downstream task is treated as a masked entry in the
newly added column during the fine-tuning phase. All parameters learned during the pre-training
and retokenizing phases are frozen. The Positional Embedding and Projector are then trained for the
target value column, similarly to the retokenizing phase. By doing so, this approach significantly
reduces the number of learning parameters, which in turn reduces the required sample size of the
training dataset for the downstream task. Furthermore, we note that our model does not use the
[cls] token, unlike the approach by He et al. (2022).

A.2.3 LOSS FUNCTION

For pre-training and retokenizing phases, we define the loss value L(x) of the data point x as the
sum of losses for those features that are masked by Random Masking and are not shuffled by the
shuffle augmentation:

L(x) =

knum∑
j=1

ℓnum(xnum
j , x̂num

j ) +

kcat∑
j=1

ℓcat(xcat
j , x̂cat

j ).

For fine-tuning phase, we compute the loss value L(x, y) of a data point (x, y) as the loss for its
target value:

L(x, y) =

{
ℓnum(y, ŷ) if y is numerical,
ℓcat(y, ŷ) if y is categorical,

where ŷ is the output of Projector corresponding to the target feature when the input is x. The
loss function ℓnum for numerical features is the mean squared loss, and the loss function ℓcat for
categorical features is the cross-entropy loss. The training objective is the sum of the loss values for
all instances in the training dataset.

10
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Table 3: Dataset specifications. All datasets are binary classification tasks. Cat: the number of
categorical features. Num.: the number of numerical features. Positive: the ratio of data points with
the positive target. Overlap: the ratio of columns that exist in the pre-training dataset BRFSS.

Name Data Points Cat. Num. Positive Overlap

Diabetes 253,680 20 1 0.139 0.524
HDHI 253,680 20 1 0.094 0.524
PKIHD 319,795 15 2 0.086 0.529
Stroke 4,909 2 8 0.049 0.5

Table 4: Splitting of BRFSS dataset. The numbers represent the sample sizes. The fine-tuning and
test data were used in the experiments in Appendix C.2.

All
2,038,772

Train Test
1,631,018 497,754

Pre-training Validation Fine-tuning
1,453,235 163,102 100

B DETAILS OF EXPERIMENT SETTINGS

B.1 DATASETS

We used 4 datasets in OOD experiment. Table 3 summarizes the specifications of the datasets and
Table 18 lists their sources.

B.1.1 PRE-TRAINING DATASETS

We used telephone survey datasets obtained from Behavioral Risk Factor Surveillance System
(BRFSS)1 as a pre-training dataset. These datasets collected state-specific risk behaviors related
to chronic diseases, injuries, and preventable infectious diseases of adults in the United States. We
combined the datasets from 2011–2015 and removed missing values by deleting rows and columns
by the following steps: 1. deleted columns with more than 10% missing values; 2. deleted rows
with missing values. We call the resulting dataset BRFSS. We split the BRFSS as shown in Table 4
and used the pre-train and validation datasets.

B.1.2 FINE-TUNING DATASETS

We prepared four datasets for the OOD Transfer Learning:

• Diabetes: The dataset made from the BRFSS dataset of 2015 to predict whether a subject
had diabetes.

• HDHI (Heart Disease Health Indicator): The dataset made from the BRFSS dataset of
2015 to predict whether the subject has heart disease.

• PKIHD (Personal Key Indicator of Heart Disease): Similarly to HDHI, the task is to predict
whether the patient has heart disease, but was made from the BRFSS dataset of 2020.

• Stroke: The dataset recording clinical events. The task is to predict whether a subject is
likely to get a stroke using 10 features: gender, age, hypertension, heart disease, marriage,
work type, residence type, glucose, BMI, and smoking status.

These datasets were divided into 80% training dataset and 20% test dataset. Of the training data,
100 samples were separated as a fine-tuning dataset.

In some columns, BRFSS and the above four data are named differently but have the same meaning.
Therefore, to create overlap, the column names of the above four data were changed to match the

1https://www.cdc.gov/brfss
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Table 5: Hyperparameters of Transformer layer in TransTab. The default value of n layer is 2. FFN
stands for Feed-Forward Network and is often used in the Transformer layer.

n layer 2 6

Hidden size 128 384
Num attention head 8
Hidden dropout prob 0.0
FFN dim 128 512
Activation ReLU

column names in BRFSS. In addition, we performed the same feature engineering performed in
BRFSS, such as categorizing age.

B.1.3 DATA PREPROCESSING

For all methods except the tree-based methods, numerical features were transformed using the Quan-
tile Transformation from the scikit-learn library (Pedregosa et al., 2011), and categorical features
were transformed using the Ordinal Encoder. For the tree-based methods, only categorical features
were transformed using the Ordinal Encoder.

B.2 BASELINES

We compared our model with the following baselines:

• Logistic Regression (LR). We implemented it using LogisticRegression module of
the scikit-learn package

• Multi-layer Perceptron (MLP). A simple deep learning model. We implemented using
PyTorch (Paszke et al., 2019).

• Gradient Boosting Decision Tree: One of the most standard tree-based algorithms. We
used two implementations in the experiments, XGBoost (Chen & Guestrin, 2016) and Cat-
Boost (Prokhorenkova et al., 2018).

• FT-Transformer (Gorishniy et al., 2021). One of the standard Transformer models for
tabular data, on which our model is based. We implemented using rtdl package2.

• SCARF (Bahri et al., 2022) with FT-Transformer. Self-supervised learning for tabular
data using contrastive learning. Although Bahri et al. (2022) employed a multi-layer per-
ceptron as an encoder, we substituted it with FT-Transformer to remove the effect of the
choice of backbones. In the pre-training phase, the class token in the Encoder’s output was
fed to Projector, and computed the infoNCE loss using the output of Projector. In the fine-
tuning phase, the class token of the Encoder’s output was fed to the classification head to
solve the downstream task. We set the number of Encoder’s blocks to 6. Details of Encoder
are shown in Table 6.

• TransTab (Wang & Sun, 2022). A transformer-based model that supports transfer learning
across different column sets. TransTab assumes that column names have semantic mean-
ings, which may not be the case in the BRFSS dataset (see Section 4 and Appendix B.1
for details of dataset characteristics.) For a fair comparison, we used the same Feature
Tokenizer as our model for the tokenization of features. We set the number of Encoder’s
blocks to 6. Details of Encoder are shown in Table 5.

We applied only supervised learning using the fine-tuning dataset to those methods that did not
support transfer learning, namely LR, MLP, GBDT, and FT-Transformer. For SCARF and TransTab,
we used part of the authors’ implementation and modified the model as described above. Even
for those models, we implemented the training part of the models by ourselves. For the methods
that require pre-training, including our model, we trained the pre-trained models with multi-node
distributed learning using PyTorch’s DistributedDataParallel.

2https://github.com/Yura52/rtdl
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Table 6: Hyperparameters of Transformer layer. FFN stands for Feed-Forward Network and is often
used in the Transformer layer.

n blocks 1 2 3 4 5 6

Token size 96 128 192 256 320 384
Head count 8
Activation & FFN size factor (ReGLU, 4/3)
Attention dropout 0.1
FFN dropout 0.0 0.05 0.1 0.15 0.2 0.25
Residual dropout 0.0
Initialization Kaiming

B.3 IMPLEMENTATION OF TABRET

In all experiments, unless otherwise specified, We set the number of Encoder blocks to 6. Details of
each hyperparameter are shown in Table 6. We changed only the FFN dropout of Encoder to 0.1.
The output dimension of the Feature Tokenizer and the input/output dimension of the Alignment
Layer were aligned with the input dimension of the Encoder: dFT = dAL = denc.

B.4 TRAINING AND HYPERPARAMETER OPTIMIZATION

We performed hyperparameter optimization with Optuna (Akiba et al., 2019) for all methods ex-
cept Logistic Regression, where the number of optimization trials was 500 trials for the tree-based
method and 100 trials for the DL-based method. And we set the early stopping patience to 20 for all
methods except Logistic Regression.

B.4.1 NON-DL METHODS

Logistic Regression (LR). We used the default settings, except that the maximum number of
iterations was set to 1000.

XGBoost. The hyperparameter space for Optuna is shown in Table 7.

CatBoost. The hyperparameter space for Optuna is shown in Table 8.

Table 7: XGBoost hyperparameter space, the same hyperparameter space searched by Grinsztajn
et al. (2022). We used defaults for the other hyperparameters.

Parameter Distribution

max depth UniformInt[1, 11]
n estimators UniformInt[100, 6000, 200]
min child weight UniformInt[1, 1e2]
subsample Uniform[0.5, 1.0]
learning rate LogUniform[1e-5, 0.7]
colsample bylevel Uniform[0.5, 1.0]
colsample bytree Uniform[0.5, 1.0]
gamma LogUniform[1e-8, 7]
lambda LogUniform[1, 4]
alpha LogUniform[1e-8, 1e2]

B.4.2 DL METHODS

Table 9 shows the details of training for DL methods. For pre-training and fine-tuning, we use the
linear lr scaling rule (Goyal et al., 2017) for both pre-training and fine-tuning: lr = base lr ×
batchsize/256.
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Table 8: CatBoost hyperparameter space. We used defaults for the other hyperparameters.
Parameter Distribution

max depth UniformInt[3, 10]
learning rate LogUniform[1e-5, 1]
bagging temperature Uniform[0, 1]
l2 leaf reg LogUniform[1, 10]
leaf estimation iterations UniformInt[1, 10]

Table 9: Detail about training for DL methods.
Config Pre-training Fine-tuning

optimizer AdamW
weight decay 1e-5
optimizer momentum β1, β2 = 0.9, 0.99
learning rate schedule cosine decay (Loshchilov & Hutter, 2017)

epochs 1000 200
base learning rate 1.5e-5 Searched by Optuna
batch size 4096 32
warmup epochs (Goyal et al., 2017) 40 5

Multi-layer Perceptron (MLP). The hyperparameter space for Optuna is shown in Table 10.
Note that the sizes of the first and last layers were tuned and set separately, while the size of the
in-between layers is the same for all of them.

FT-Transfomrer. The hyperparameter space for Optuna is shown in Table 11. Other parameters,
such as token size, are determined from the corresponding parameters in Table 6 according to the
selected n blocks.

SCARF. We corrupted features independently using the Bernoulli distribution. For all datasets, the
probability of corruption was fixed at 0.6. The Feature Tokenizer and Encoder parameters learned
during pre-training were frozen for all fine-tuning phases, as it was confirmed that this improved the
fine-tuning accuracy. The hyperparameter space for Optuna is shown in Table 12.

TransTab. We used Self-VPCL proposed by Wang & Sun (2022) and pre-trained with overlap
ratio = 0.1 and num partition = {2, 3, 4}. The hyperparameter space for Optuna is shown in Table 13.

TabRet. For all datasets, the mask ratio for pre-training was fixed at 0.7 and the mask ratio for
retokenizing was fixed at 0.5.The hyperparameter space for Optuna is shown in Table 14.

Table 10: MLP hyperparameter space.
Parameter Distribution

layers UniformInt[1, 8]
layer size UniformInt[1, 512]
dropout Uniform[0, 0.5]
category embedding size UniformInt[64, 512]
base learning rate LogUniform[1e-4, 1e-1]

14



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Table 11: FT-Transformer hyperparameter space.
Parameter Distribution

n blocks UniformInt[1, 6]
base learning rate LogUniform[1e-4, 1e-1]

Table 12: SCARF hyperparameter space.
Parameter Distribution

base learning rate LogUniform[1e-4, 1e-1]

C ADDITIONAL EXPERIMENTS

C.1 TRANSTAB WITH SHUFFLE AUGMENTATION

For a fair comparison, the test AUC performance for fine-tuning in TransTab applied shuffle aug-
mentation during pre-training has been presented in Table 15. It was observed that TransTab applied
shuffle augmentation during pre-training did not result in a consistent performance improvement.

C.2 IID EXPERIMENT

We investigate how TabRet is competitive with the existing self-supervised tabular models in the
same column setting.

C.2.1 DATASETS

We used four popular benchmarks listed in Table 16, in addition to BRFSS.

Each of the newly added datasets was split into 4 subset, each of which is for pre-training (pre),
fine-tuning (fine), validation (val), and test (test). The ratio of these subsets is as follows:

1. all→ train0 : test = 0.8 : 0.2
2. train0 → train1 : val = 0.9 : 0.1
3. train1 → pre : fine0 = 0.8 : 0.2
4. fine0 → fine : none = 100 : Remaining

The splitting of BRFSS is shown in Table 4.

C.2.2 BASELINE

We compared FTTrans, SCARF, and TransTab. Except for BRFSS, we decreased the batch size for
pre-training to 512. We used 3 transformer blocks for SCARF and TabRet (see Table 6; the number
of Post-Encoder blocks is 1) and 2 for TransTab as the default value of (Wang & Sun, 2022). Other
settings were the same as described in Appendix B.4.

C.2.3 RESULT

Table 17 shows the results. TabRet outperformed the baselines on BRFSS, but the performance was
not stable for other datasets. In contrast to the pre-trained models, FTTrans achieved competitive
performance for all the datasets. The results suggest the size of the datasets was not large enough to
surpass the supervised method.
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Table 13: TransTab hyperparameter space.
Parameter Distribution

num partitions UniformInt[2, 4]
base learning rate LogUniform[1e-4, 1e-1]

Table 14: TabRet hyperparameter space.
Parameter Distribution

base learning rate (Retokenizing) LogUniform[1e-4, 1e-1]
base learning rate LogUniform[1e-4, 1e-1]

Table 15: Test AUC performance. Comparison of Transtab with and without shuffle augmentation
during pre-training. We set the shuffle ratio to 0.1, similar to the shuffle ratio in TabRet.

Method Diabetes HDHI PKIHD Stroke

TransTab 78.30± 1.18 78.77± 1.34 78.56± 1.58 75.00± 4.80
TransTab w/ shuffle aug. 77.21± 1.30 77.75± 1.71 79.36± 1.50 76.26± 4.82

Table 16: Self-Supervised datasets.
Name Data Points Cat. Num. Positive

BRFSS (2011–2015) 2,038,772 64 10 0.127
Adult (AD) 32,561 8 6 0.241
Bank Marketing (BM) 45,211 10 6 0.117
HTRU2 (HR) 17,898 0 8 0.092
Online Shoppers (OS) 12,330 7 10 0.155

Table 17: Test AUC performance in IID setting. The number of random seeds is 10.
Method BRFSS AD BM HR OS

FTTrans 77.77± 1.18 88.11± 0.46 86.92± 0.70 96.82± 0.47 89.89± 0.68

SCARF 75.36± 2.27 88.00± 0.29 74.92± 2.38 96.34± 0.41 80.19± 3.75
TransTab 77.41± 2.11 88.32± 0.45 85.65± 1.35 96.74± 0.49 89.85± 0.83
TabRet 79.67± 1.19 88.08± 0.39 76.93± 1.21 96.90± 0.39 84.96± 2.21

Table 18: Dataset source.
Dataset Name URL

BRFSS https://www.kaggle.com/datasets/cdc/behavioral-risk-factor-surveillance-system

Diabetes https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

HDHI https://www.kaggle.com/datasets/alexteboul/heart-disease-health-indicators-dataset

PKIHD https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease

Stroke https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

Adult https://archive.ics.uci.edu/ml/machine-learning-databases/adult/

Bank Marketing https://archive.ics.uci.edu/ml/datasets/bank+marketing

HTRU2 https://archive.ics.uci.edu/ml/datasets/HTRU2

Online Shoppers https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset
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