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Abstract

The widespread deployment of machine learning models in various high-stakes
settings has underscored the need for ensuring that individuals who are adversely
impacted by model predictions are provided with a means for recourse. To this end,
several algorithms have been proposed in recent literature to generate recourses.
Recent research has also demonstrated that the recourses generated by these al-
gorithms often correspond to adversarial examples. This key finding emphasizes
the need for a deeper understanding of the impact of adversarially robust models
(which are designed to guard against adversarial examples) on algorithmic recourse.
In this work, we make one of the first attempts at studying the impact of adver-
sarially robust models on algorithmic recourse. We theoretically and empirically
analyze the cost (ease of implementation) and validity (probability of obtaining a
positive model prediction) of the recourses output by state-of-the-art algorithms
when the underlying models are adversarially robust. More specifically, we con-
struct theoretical bounds on the differences between the cost and the validity of
the recourses generated by various state-of-the-art algorithms when the underlying
models are adversarially robust vs. non-robust. We also carry out extensive empiri-
cal analysis with multiple real-world datasets to not only validate our theoretical
results, but also analyze the impact of varying degrees of model robustness on
the cost and validity of the resulting recourses. Our theoretical and empirical
analyses demonstrate that adversarially robust models significantly increase the
cost and reduce the validity of the resulting recourses, thereby shedding light on the
inherent trade-offs between achieving adversarial robustness in predictive models
and providing easy-to-implement and reliable algorithmic recourse.

1 Introduction

As machine learning (ML) models are increasingly being deployed in high-stakes domains such as
banking, healthcare, and criminal justice, it becomes critical to ensure that individuals who have been
adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means for
recourse. To this end, several techniques have been proposed in recent literature to provide recourses
to affected individuals by generating counterfactual explanations which highlight what features need
to be changed and by how much in order to flip a model’s prediction [49, 9, 42, 30, 21, 20, 47]1. For

1The terms counterfactual explanations [49], contrastive explanations [19], and recourse [42] have often been
used interchangeably in prior literature.
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instance, [49] proposed a gradient-based approach which returns the nearest counterfactual resulting
in the desired prediction. [42] proposed an integer programming-based approach to obtain actionable
recourses for linear classifiers. More recently, [21, 22] leveraged the causal structure of the underlying
data for generating recourses [3, 27, 30].

Prior research has also theoretically and empirically analyzed the properties of the recourses generated
by state-of-the-art algorithms. For instance, several recent works [33, 30, 10, 40] demonstrated that the
recourses output by state-of-the-art algorithms are not robust to small perturbations to input instances,
underlying model parameters, and to the recourses themselves. More recently, [28] demonstrated
that the recourses output by state-of-the-art algorithms are very similar to adversarial examples. This
finding is critical because there have been several efforts in the literature on adversarial ML [17, 24, 4]
to build adversarially robust models that are not susceptible to adversarial examples. However, the
impact of such models on the quality and the correctness of the recourses output by state-of-the-art
algorithms remains unexplored. The aforementioned connections between adversarial examples
and recourses underscore the need for a deeper investigation of the impact of adversarially robust
models (which are designed to guard against adversarial examples) on algorithmic recourse. Such an
investigation becomes particularly critical as the need for adversarial robustness of predictive models
as well as the ability to obtain easy-to-implement and reliable recourses have often been touted as the
cornerstones of trustworthy and safe ML both by prior research as well as recent regulations [48, 15].
However, there is no prior work that investigates the relationship and/or the trade-offs between these
two critical pillars of trustworthy and safe ML.

In this work, we address the aforementioned gaps by making the first ever attempt at studying the
impact of adversarially robust models on algorithmic recourse. We theoretically and empirically
analyze the cost (ease of implementation) and validity (probability of obtaining a positive model
prediction) of the recourses output by state-of-the-art algorithms when the underlying models are
adversarially robust. More specifically, we construct theoretical bounds on the differences between the
cost and the validity of the recourses generated by various state-of-the-art algorithms (e.g., gradient-
based [49, 25] and manifold-based [31] methods) when the underlying models are adversarially robust
vs. non-robust (See Section 3). To this end, we first derive theoretical bounds on the differences
between the weights (parameters) of adversarially robust vs. non-robust models and then leverage
these to bound the differences in the costs and validity of the recourses corresponding to these two
sets of models.

We also carried out extensive empirical analysis with multiple real-world datasets from diverse
domains. This analysis not only validated our theoretical bounds, but also unearthed several inter-
esting insights pertaining to the relationship between adversarial robustness of predictive models and
algorithmic recourse. More specifically, we found that the cost differences between the recourses cor-
responding to adversarially robust vs. non-robust models increase as the degree of robustness of the
adversarially robust models increases. We also observed that the validity of recourses worsens as the
degree of robustness of the underlying models increases. We further probed these insights by visualiz-
ing the resulting recourses in low dimensions using t-SNE plots, and found that the number of valid re-
courses around a given instance reduces as the degree of robustness of the underlying model increases.

This work lies in the intersection of Algorithmic Recourse methods and Adversarial Robustness.
Please refer Appendix A for a detailed discussion of related works.

Algorithmic Recourse. Several approaches have been proposed in recent literature to provide
recourses to affected individuals [9, 49, 42, 45, 30, 27, 18, 22, 8]. These approaches can be broadly
categorized along the following dimensions [47]: type of the underlying predictive model (e.g., tree
based vs. differentiable classifier), type of access they require to the underlying predictive model (e.g.,
black box vs. gradient access), whether they encourage sparsity in counterfactuals (i.e., only a small
number of features should be changed), whether counterfactuals should lie on the data manifold,
whether the underlying causal relationships should be accounted for when generating counterfactuals,
and whether the output produced by the method should be multiple diverse counterfactuals or a single
counterfactual. In addition, [34] also studied how to generate global, interpretable summaries of
counterfactual explanations. Some recent works also demonstrated that the recourses output by state-
of-the-art techniques might not be robust, i.e., small perturbations to the original instance [11, 38], the
underlying model [41, 33], or the recourse [32] itself may render the previously prescribed recourse(s)
invalid. These works also formulated and solved minimax optimization problems to find robust
recourses to address the aforementioned challenges.
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Adversarial Examples and Robustness. Prior works have shown that complex machine learning
models, such as deep neural networks, are vulnerable to small changes in input [39]. This behavior
of predictive models allows for generating adversarial examples (AEs) by adding infinitesimal
changes to input targeted to achieve adversary-selected outcomes [39, 14]. Prior works have proposed
several techniques to generate AEs using varying degrees of access to the model, training data,
and the training procedure [6]. While gradient-based methods [14, 24] return the smallest input
perturbations which flip the label as adversarial examples, generative methods [50] constrain the
search for adversarial examples to the training data-manifold. Finally, some methods [7] generate
adversarial examples for non-differentiable and non-decomposable measures in complex domains
such as speech recognition and image segmentation. Prior works have shown that Empirical Risk
Minimization (ERM) does not yield models that are robust to adversarial examples [14, 24]. Hence,
to reliably train adversarially robust models, [26] proposed the adversarial training objective which
minimizes the worst-case loss within some ϵ-ball perturbation region around the input instances.

Intersections between Adversarial ML and Model Explanations. There has been a growing
interest in studying the intersection of adversarial ML and model explainability [15]. Among all the
existing works focusing on this intersection, two explorations are relevant to our work [36, 29]. [36]
studied the interplay between adversarial robustness and post hoc explanations [36] and demonstrated
that gradient-based feature attribution methods (e.g., vanilla gradients, gradient times input, integrated
gradients, smoothgrad) may severely violate the primary assumption of attribution – features with
higher attribution are more important for model prediction – in case of non-robust models. However,
their results also demonstrate that such a violation does not occur when the underlying models are
robust to ℓ2 and ℓinf input perturbations. More recently, [28] demonstrated that recourses generated
by certain state-of-the-art methods are very similar to adversarial examples, and also argued that the
methods proposed to output recourses and adversarial examples are designed with similar goals of
changing the input minimally in order to achieve the desired outcome. While the aforementioned
works explored the connections between adversarial ML and model explanations, none of these
works focus on analyzing the impact of adversarially robust models on the recourses output by
state-of-the-art algorithms.

2 Preliminaries

Notation. In this work, we denote a classifier f : X →Y mapping features x ∈ X to labels y ∈ Y ,
where x is a d-dimensional feature vector. We define a non-linear activation function ϕ(·) such that
f(x) = ϕ(h(x)), where h(x) is the logits. In addition, we represent the non-robust and adversarially
robust models using fNR(x) and fR(x). Below we describe the methodological frameworks used for
comparing recourses generated from non-robust and adversarially robust models.

Adversarially Robust models. Despite the superior performance of machine learning (ML) models,
they are susceptible to adversarial examples (AEs), i.e., inputs generated by adding infinitesimal
perturbations to the original samples targeted to change prediction label [1]. One standard approach to
ameliorate this problem is training a model using adversarial training which minimizes the worst-case
loss within some perturbation region (the perturbation model) [23]. In particular, for a classifier, f
parameterized by weights θ, loss function ℓ(·), and training data {xi, yi}i={1,2,...,n} ∈ Dtrain, the
optimization problem of minimizing the worst-case loss within ℓp−norm perturbation with radius ϵ
is:

min
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

max
δ∈∆p,ϵ

ℓ(fθ(x+ δ)), y), (1)

where Dtrain denotes the training dataset and ∆p,ϵ = {δ : ∥δ∥p≤ ϵ} is the ℓp ball with radius ϵ
centered around sample x.

Algorithmic Recourse. One of the ways in which recourse can be realized is by explaining to affected
individuals what features in their profile need to change and by how much in order to obtain a positive
outcome. Counterfactual explanations which essentially capture the aforementioned information can
therefore be used to provide recourse. The terms "counterfactual explanations" and "algorithmic
recourse" have, in fact, become synonymous in recent literature [19, 43, 46]. More specifically,
algorithms that try to find algorithmic recourses do so by finding a counterfactual x′ = x+ ζ that is
closest to the original instance x and change the model’s prediction f(x+ ζ) to the target label. Next,
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we describe three methods we use to understand the implications of adversarially robust models on
algorithmic recourses.

Score CounterFactual Explanations (SCFE). Given the classifier f(x) = ϕ(h(x)) and a distance
function d : Rd ×Rd →R+, [49] define the problem of generating a recourse x′ = x+ ζ for sample
x by minimizing the following objective:

argmin
x′

(h(x′)− s)2 + λd(x′,x), (2)

where s is the target score for x′, λ is the regularization coefficient, and d(·) is the distance between
sample x and its counterfactual counterpart x′.

C-CHVAE. Given a Variational AutoEncoder (VAE) model with encoder Eγ and decoder Gθ trained
on the original data distribution Dtrain, C-CHVAE [31] aims to generate recourses in the latent space
Z , where Eγ : X →Z . The encoder Eγ transforms a given sample x into a latent representation
z ∈ Z and the decoder Gθ takes z as input and produces x̂ as similar as possible to x. To this end,
given a sample x, C-CHVAE generates the recourse ζ using the following objective function:

ζ∗ = argmin
ζ∈Z

∥ζ∥ such that f(Gθ(Eγ(x) + ζ)) ̸= f(x), (3)

where Eγ allows to search for counterfactuals in the data manifold and Gθ projects the latent counter-
factuals to the feature space.

Growing Spheres Method (GSM). While the above techniques directly optimize specific objective
functions for generating counterfactuals, GSM [25] uses a search-based algorithm to generate
recourses by randomly sampling points around the original instance x until a sample with the target
label is found. In particular, GSM first draws an ℓ2-sphere around a given instance x, randomly
samples point within that sphere, and checks whether any sampled points result in target prediction.
Finally, they contract or expand the sphere until a (sparse) counterfactual is found and finally returned.
GSM defines a minimization problem using a function c : X × X →R+, where c(x,x′) is the cost
of moving from instance x to counterfactual x′.

x′∗ = argmin
x′∈X

{c(x,x′) | f(x′) ̸= f(x)}, (4)

where x′ is sampled from the ℓ2-ball around x such that f(x′) ̸= f(x), c(x,x′) = ∥x′−x∥2+γ∥x′−
x∥0, and γ ∈ R+ is the weight associated to the sparsity objective.

3 Theoretical Analysis

Next, we carry out a detailed theoretical analysis to bound the cost and validity differences of recourses
generated by state-of-the-art recourse methods when the underlying models are adversarially robust
vs. non-robust. More specifically, we compare the cost differences w.r.t. the recourses obtained using
1) gradient-based methods such as SCFE [49](Sec. 3.1.1) and 2) manifold-based methods such as
C-CHVAE [31] (Sec. 3.1.2). Finally, we show that the validity of algorithmic recourse generated
using existing methods for robust models is lower compared to that of non-robust models (Sec. 3.2).

3.1 Cost Analysis

The cost of a generated algorithmic recourse is defined as the distance (e.g., ℓ1 or ℓ2 distance)
between the input instance x and the counterfactual x′ obtained using a state-of-the-art recourse
finding method [47]. Algorithmic recourses with lower costs are considered better since they enable
minimal changes to input to achieve the desired outcome. Here, we theoretically analyze the cost
difference of generating recourses using algorithmic recourse methods when the underlying models
are non-robust and adversarially robust.

3.1.1 Gradient-based method: SCFE

Next, we carry out a detailed theoretical analysis to bound the cost and validity difference of recourses
generated by state-of-the-art recourse methods when the underlying models are adversarially robust
vs. non-robust.

Here, we derive the lower and upper bound for the cost difference of recourses generated by the
SCFE [49] method when the underlying models are adversarially robust vs. non-robust. Following
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previous works [13, 16, 29, 35, 43], we focus on locally linear model approximations as this lays the
foundation for understanding non-linear model behavior. For the cost difference, we first define the
closed-form solution for the optimal cost ζ∗ required to generate a recourse.
Definition 1. (Optimal Cost from [29]) For a given scoring function f with weights w the SCFE
method generates a recourse x′ for an input x using cost ζ such that:

ζ∗ = m
λ

λ+ ∥w∥22
·w, (5)

where m = s− h(x′) is the target residual, s is the target score for x, h(x) is a local linear score
approximation, and λ is a given hyperparameter.
Theorem 1. (Cost difference for SCFE) For a given instance x, let x′

NR and x′
R be the recourse

generated using Wachter’s algorithm for non-robust and adversarially robust models. Then, for a
normalized Lipschitz activation function σ(·), the cost difference for the recourse generated for both
models can be bounded as:

λ| mNR

∥wNR∥2
− mR

∥wR∥2
| ≤ ∥ζ∗NR − ζ∗R∥2≤

∣∣∣∣∣ λ

λ+ ∥wNR∥2

∣∣∣∣∣ ∥wNR∥+

∣∣∣∣∣ λ

λ+ ∥wR∥2

∣∣∣∣∣ ∥wR∥, (6)

where wNR and wR are the weights of the non-robust and adversarially robust models, λ is the
regularization coefficient in Wachter’s algorithm, mNR = s− hNR(x

′),mR = s− hR(x
′) are the

target residuals for robust (fR(x) = ϕ(hR(x))) and non-robust models (fNR(x) = ϕ(hNR(x))),
respectively.

Proof Sketch. We derive the cost difference of recourses generated for non-robust and adversarially
robust models by comparing their optimal solutions. Similar to [29], the upper bound results follow
from Cauchy-Schwartz and triangle inequality. In addition, we also leverage reverse triangle inequality
to derive a lower bound for the recourse difference. See Appendix B.1 for the complete proof.

The equality of Equation 6 entails that the upper bound of the recourse difference will have a tighter
bound if the ℓ2-norms of the weights wR and wB are bounded, and the lower bound of the recourse
difference will be tighter if the output score of the non-robust and adversarially robust models is
similar for the given sample x.

3.1.2 Manifold-based method: C-CHVAE

We extend our analysis of bounding the cost difference of generated recourses using manifold-based
methods for non-robust and adversarially robust models. In particular, we leverage C-CHVAE [31]
that leverages variational autoencoders to generate counterfactuals. For a fair comparison, we assume
that both models use the same encoder Iγ and decoder Gθ networks for learning the latent space of
the given input space X .
Definition 2. ([5]) An encoder model E is L-Lipschitz if ∀z1, z2 ∈ Z , we have:

∥E(z1)− E(z2)∥p≤ L∥z1 − z2∥p. (7)

Using Definition 7, we now derive the lower and upper bounds of the cost difference of recourses
generated for non-robust and adversarially robust models.
Theorem 2. (Cost difference for C-CHVAE) Let zNR and zR be the generated recourse from C-
CHVAE [31] method in the latent space using an L-Lipschitz generative model G(·) for a non-robust
and adversarially robust model. Then, by definition of C-CHVAE, xNR=G(zNR)=x + ζNR and
xR=G(zR)=x+ ζR are the corresponding recourses in the input space. The cost difference between
the recourses can then be bounded as:

L(r∗R − r∗NR) ≤ ∥ζR − ζNR∥p≤ L(r∗R + r∗NR), (8)
where L is the Lipschitz constant of the generative model, and r∗NR and r∗R be the corresponding
radii chosen by the algorithm such that they successfully return a recourse for the non-robust and
adversarially robust model.

Proof Sketch. The proof follows from Definition 7 and the triangle inequality. It shows that the cost
difference for generating recourses using C-CHVAE is bounded by the product of the Lipschitz
constant of the generative model and the radii chosen by the C-CHVAE to generate counterfactuals for
the underlying non-robust and adversarially robust models. See Appendix B.2 for detailed proof.
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3.2 Validity Analysis

The validity of a given recourse x′ is defined as the probability that it results in the desired out-
come [47], denoted by Pr(f(x′) = 1). Below, we analyze the validity of the recourses by first
deriving the upper bound of the difference in non-robust and adversarially robust model weights, and
then use this lemma to show that the validity of non-robust model is higher than for the adversarially
robust model.
Lemma 1. (Difference between non-robust and adversarially robust model weights) For a given
instance x, let wNR and wR be weights of the non-robust and adversarially robust model. Then, for a
normalized Lipschitz activation function σ(·), the difference in the weights ∆w can be bounded as:

∥∆w∥2≤ nη(y∥xT ∥2+ϵ
√
d) (9)

where η is the learning rate, ϵ is the ℓ2-norm perturbation ball, y is the label for x, n is the total
number of training epochs, and d is the dimension of the input features.

Proof Sketch. We derive the upper bound of the difference in non-robust and adversarially robust
model weights, denoted by ∆w, and show that it is proportional to the dimension of the input features
times the ℓ2 perturbation ball around the sample x. See Appendix B.3 for the detailed proof.

Next, we show that the probability of a recourse action resulting in the desired outcome is greater for
a non-robust model compared to that of the adversarially robust model.
Theorem 3. (Validity Comparison) For a given instance x ∈ Rd and desired target label denoted by
unity, let xR and xNR be the counterfactuals for adversarially robust fR(x) and non-robust fNR(x)
models respectively. Then, Pr(fNR(xNR) = 1) ≥ Pr(fR(xR) = 1) if |fNR(xR) − fNR(xNR)|≤
nη(y∥xT ∥2+ϵ

√
d)∥xR∥, where η is the learning rate, ϵ is the ℓ2-norm perturbation ball, y is the

label for x, and n is the total number of training epochs.

Proof Sketch. We derive the difference between the probability that a valid recourse exists for a
non-robust and adversarially robust model. Using data inequalities and Cauchy-Schwartz, we show
that the condition for the validity is dependent on the weight difference of the models (Lemma 1).
See Appendix B.4 for the detailed proof.

4 Experimental Evaluation

In this section, we empirically analyze the impact of adversarially robust models on the cost and
validity of recourses. First, we empirically validate our theoretical bounds on differences between
the cost and validity of recourses output by state-of-the-art recourse generation algorithms when the
underlying models are adversarially robust vs. non-robust. Second, we carry out further empirical
analysis to assess the differences in cost and validity of the resulting recourses as the degree of the
adversarial robustness of the underlying model changes on three real-world datasets.

4.1 Experimental Setup

Here, we describe the datasets used for our empirical analysis along with the predictive models,
algorithmic recourse generation methods, and the evaluation metrics.

Datasets. We use three real-world datasets for our experiments: 1) The German Credit dataset 2

comprises demographic (age, gender), personal (marital status), and financial (income, credit duration)
features from 1000 credit applicants, with each sample labeled as "good" or "bad" depending on their
credit risk. The task is to successfully predict if a given individual is a "good" or "bad" customer
in terms of associated credit risk. 2) The Adult dataset 3 contains demographic (e.g., age, race, and
gender), education (degree), employment (occupation, hours-per week), personal (marital status,
relationship), and financial (capital gain/loss) features for 48,842 individuals. The task is to predict if
an individual’s income exceeds $50K per year. 3) The COMPAS dataset4 has criminal records and
demographics features for 18,876 defendants who got released on bail at the U.S state courts during

2https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3https://archive.ics.uci.edu/ml/datasets/Adult/
4https://github.com/propublica/compas-analysis
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(a) (b) (c)

Figure 1: Empirically calculated cost differences (in orange) and our theoretical lower (in blue) and
upper (in green) bounds for (a) C-CHVAE and (b) SCFE recourses corresponding to adversarially
robust (trained using ϵ=0.3) vs. non-robust models trained on the Adult dataset. Figure (c) is the
empirical difference between the validity of recourses for non-robust and adversarially robust model.
Results show no violations of our theoretical bounds. See Appendix C for results using different ϵ
values.

1990-2009. The dataset is designed to train a binary classifier to classify defendants into bail (i.e.,
unlikely to commit a violent crime if released) vs. no bail (i.e., likely to commit a violent crime).

Predictive models. We generate recourses for the non-robust and adversarially robust version of
Logistic Regression (linear) and Neural Networks (non-linear) models. We use two linear layers with
sigmoid activation functions as our predictor and set the number of nodes in the intermediate layers to
twice the number of nodes in the input layer, which is the size of the input dimension in each dataset.

Algorithmic Recourse Methods. We analyze the cost and validity for non-robust and adversarially
robust models w.r.t. three popular classes of recourse generation methods, namely, gradient-based
(SCFE), manifold-based (C-CHVAE), and random search-based (GSM) methods (described in Sec. 2).

Evaluation metrics. To concretely measure the impact of adversarial robustness on algorithmic
recourse, we analyze the difference between cost and validity metrics for recourses generated using
non-robust and adversarially robust model. To quantify the cost, we measure the average cost incurred
to act upon the prescribed recourses across all test-set instances, i.e., Cost(x,x′) = 1

|Dtest|
∥x −

x′∥2, where x is the input and x′ is its corresponding recourse. To measure validity, we compute
the probability of the generated recourse resulting in the desired outcome, i.e., Validity(x,x′) =
|{x′:f(x′)=1 ∩ x′=g(x,f)}|

|Dtest|
, where g(x, f) returns recourses for input x and predictive model f .

Implementation details. We train non-robust and adversarially robust predictive models from two
popular model classes (logistic regression and neural networks) for all three datasets. In the case of
adversarially robust models, we adopt the commonly used min-max optimization objective for adver-
sarial training using varying degree of robustness, i.e., ϵ ∈ {0, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.3}.
Note that the model trained with ϵ=0 is the non-robust model. Following [2] and [12], we pre-
processed the input data by removing categorical features for efficient training of our models. We
follow [29] to set the hyperparameters for the algorithmic recourse methods.

4.2 Empirical Analysis

Next, we describe the experiments that we carried out to understand the impact of adversarial robust-
ness of predictive models on algorithmic recourse. More specifically, we will discuss (1) empirical
verification of our theoretical bounds, (2) empirical analysis of the differences between the costs
of recourses corresponding to non-robust vs. adversarially robust models, and (3) empirical analysis
to compare the validity of the recourses corresponding to non-robust vs. adversarially robust models.

Empirical Verification of Theoretical Bounds. We empirically validate our theoretical findings
from Section 3 on real-world datasets. In particular, we first estimate the empirical bounds (RHS of
Theorems 1-2) for each instance in the test set by plugging the corresponding values of the parameters
in the theorems and compare them with the empirical estimates of the cost differences between
recourses generated using gradient- and manifold-based recourse methods (LHS of Theorems 1-2).
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(a) Adult (b) COMPAS (c) German Credit

Figure 2: Analyzing cost differences between recourse generated using non-robust and adversarially
robust neural networks for (a) Adult (b) COMPAS (c) German Credit datasets. We find that the cost
difference (i.e., ℓ2−norm) between the recourses generated for non-robust and adversarially robust
models increases for increasing values of ϵ.

Figure 1 show the results obtained from the aforementioned analysis of cost differences. We observe
that our bounds are tight, and the empirical estimates fall well within our theoretical bounds. Similarly,
we observe that the validity of the non-robust model, as denoted by Pr(fNR(x) = 1) in Theorem 3,
was higher than the validity of the adversarially robust model for all the test samples in Adult, German
Credit, COMPAS datasets, following the condition in Theorem 3 for a large number of training itera-
tions used for training adversarially robust models with ϵ ∈ {0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

Cost Analysis. To analyze the impact of adversarial robustness on the cost of recourses, we compute
the difference between the cost for obtaining a recourse using non-robust and adversarially robust
model and plotted this difference for varying degrees of robustness ϵ. Results in Figure 2 show a
significant increase in incurred costs to find algorithmic recourse for adversarially robust models
compared to the non-robust model for all the datasets with increasing degrees of robustness. We
observe a similar trend for the case of logistic regression, as shown in Figure 6 in Appendix C.
Further, we observe a relatively smoother increasing trend for cost differences in the case of SCFE
compared to others, which can be attributed to the stochasticity present in C-CHVAE and GSM. We
also observe a higher cost difference in SCFE for most datasets, which could result from the larger
sample size used in C-CHVAE and GSM. We observe a similar trend in cost differences when the
sample size per iteration is reduced, which also resulted in more iterations to find recourse.

Validity Analysis. To analyze the impact of adversarial robustness on the validity of recourses,
we compute the fraction of recourses resulting in the desired outcome, generated using non-robust
and adversarially robust model under resource constraints, and plot it against varying degrees of
robustness ϵ. Results in Figure 3 show that there is an even stronger impact of adversarial training on
validity for neural networks trained on the three datasets. We observe a similar pattern for the case of
the logistic regression model trained on the three datasets, shown in Appendix C. On average, we
observe that the validity drops to zero for models adversarially trained with ϵ > 0.2. To understand
this further, we use t-SNE visualization [44] – a non-linear dimensionality reduction technique –
to map points in the dataset to two-dimensional space and demonstrate a gradual decline in valid
recourses around a local neighborhood with increasing ϵ in Figure 4, where x and y be the names of
reduced dimensions. This decline suggests that a large number of recourses in the neighborhood of
the input sample are now being classified with the same class as the input. Hence, this supports our
hypothesis that adversarially robust models severely impact the validity of recourses and make the
recourse search computationally expensive.

5 Conclusion

In this work, we theoretically and empirically analyzed the impact of adversarially robust models on
algorithmic recourse. We theoretically bounded the differences between the costs of the recourses
output by two state-of-the-art counterfactual explanation methods (SCFE and C-CHVAE) when
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(a) Adult (b) COMPAS (c) German Credit

Figure 3: Analyzing validity of recourse generated using non-robust and adversarially robust neural
networks for (a) Adult (b) COMPAS (c) German Credit datasets. We find that the validity decreases
for increasing values of ϵ.

Figure 4: A t-SNE visualization of the change in availability of valid recourses (orange) for adversar-
ially robust models trained using ϵ = [0, 0.15, 0.25], where a non-robust model is a model trained
using ϵ = 0. Results are shown for a neural network model trained on the Adult dataset. We observe
fewer valid recourses for higher values of ϵ in this local neighborhood.

the underlying models are adversarially robust vs. non-robust. In addition, we also bounded the
differences between the validity of the recourses corresponding to adversarially robust and non-
robust models. We empirically validated our theoretical results using three real-world datasets
(Adult, COMPAS, and German Credit) and two popular model classes (neural networks and logistic
regression). Our theoretical and empirical analyses demonstrated that adversarially robust models
significantly increase the cost and reduce the validity of the resulting recourses, thereby highlighting
the inherent trade-offs between achieving adversarial robustness in predictive models and providing
easy-to-implement and reliable algorithmic recourses. Our work also paves the way for several
interesting future research directions at the intersection of algorithmic recourse and adversarial
robustness in predictive models. For instance, given the aforementioned trade-offs, it would be
interesting to develop novel techniques which enable end users to navigate these trade-offs based on
their personal preferences – e.g., an end user may choose to sacrifice the adversarial robustness of the
underlying model in order to secure lower cost recourses.
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A Related Works

Algorithmic Recourse. Several approaches have been proposed in recent literature to provide
recourses to affected individuals [9, 49, 42, 45, 30, 27, 18, 22, 8]. These approaches can be broadly
categorized along the following dimensions [47]: type of the underlying predictive model (e.g., tree
based vs. differentiable classifier), type of access they require to the underlying predictive model (e.g.,
black box vs. gradient access), whether they encourage sparsity in counterfactuals (i.e., only a small
number of features should be changed), whether counterfactuals should lie on the data manifold,
whether the underlying causal relationships should be accounted for when generating counterfactuals,
and whether the output produced by the method should be multiple diverse counterfactuals or a single
counterfactual. In addition, [34] also studied how to generate global, interpretable summaries of
counterfactual explanations. Some recent works also demonstrated that the recourses output by state-
of-the-art techniques might not be robust, i.e., small perturbations to the original instance [11, 38], the
underlying model [41, 33], or the recourse [32] itself may render the previously prescribed recourse(s)
invalid. These works also formulated and solved minimax optimization problems to find robust
recourses to address the aforementioned challenges.

Adversarial Examples and Robustness. Prior works have shown that complex machine learning
models, such as deep neural networks, are vulnerable to small changes in input [39]. This behavior
of predictive models allows for generating adversarial examples (AEs) by adding infinitesimal
changes to input targeted to achieve adversary-selected outcomes [39, 14]. Prior works have proposed
several techniques to generate AEs using varying degrees of access to the model, training data,
and the training procedure [6]. While gradient-based methods [14, 24] return the smallest input
perturbations which flip the label as adversarial examples, generative methods [50] constrain the
search for adversarial examples to the training data-manifold. Finally, some methods [7] generate

12



adversarial examples for non-differentiable and non-decomposable measures in complex domains
such as speech recognition and image segmentation. Prior works have shown that Empirical Risk
Minimization (ERM) does not yield models that are robust to adversarial examples [14, 24]. Hence,
to reliably train adversarially robust models, [26] proposed the adversarial training objective which
minimizes the worst-case loss within some ϵ-ball perturbation region around the input instances.

Intersections between Adversarial ML and Model Explanations. There has been a growing
interest in studying the intersection of adversarial ML and model explainability [15]. Among all the
existing works focusing on this intersection, two explorations are relevant to our work [36, 29]. [36]
studied the interplay between adversarial robustness and post hoc explanations [36] and demonstrated
that gradient-based feature attribution methods (e.g., vanilla gradients, gradient times input, integrated
gradients, smoothgrad) may severely violate the primary assumption of attribution – features with
higher attribution are more important for model prediction – in case of non-robust models. However,
their results also demonstrate that such a violation does not occur when the underlying models are
robust to ℓ2 and ℓinf input perturbations. More recently, [28] demonstrated that recourses generated
by certain state-of-the-art methods are very similar to adversarial examples, and also argued that the
methods proposed to output recourses and adversarial examples are designed with similar goals of
changing the input minimally in order to achieve the desired outcome. While the aforementioned
works explored the connections between adversarial ML and model explanations, none of these
works focus on analyzing the impact of adversarially robust models on the recourses output by
state-of-the-art algorithms.

B Proof for Theorems in Section 3

Here, we provide detailed proofs of the Lemmas and Theorems defined in Section 3.

B.1 Proof for Theorem 1

Theorem 1. (Cost difference for SCFE) For a given instance x, let x′
NR and x′

R be the recourse
generated using Wachter’s algorithm for the non-robust and adversarially robust models. Then, for a
normalized Lipschitz activation function σ(·), the difference in the recourse for both models can be
bounded as:

λ

λ+ 1
φ(s,x,wNR,wR) ≤ ∥ζ∗NR − ζ∗R∥2≤

∣∣∣∣∣ λ

λ+ ∥wNR∥2

∣∣∣∣∣ ∥wNR∥+

∣∣∣∣∣ λ

λ+ ∥wR∥2

∣∣∣∣∣ ∥wR∥, (10)

where wNR and wR are the weights of the non-robust and adversarially robust models, λ is the
regularization coefficient in Wachter’s algorithm, φ(·) is a function that measures the shift in the
model weights using the target and predicted scores.

Proof. Following the definition of SCFE in Equation 2, we can find a counterfactual sample x′ that
is "closest" to the original instance x by minimizing the following objective:

argmin
x′

(h(x′)− y′)2 + λd(x′,x), (11)

where s is the target score, λ is the regularization coefficient, and d(·) is the distance between the
original and counterfactual sample x′.

Lower bound. Using Lemma 1, the optimal cost for generating a valid recourse for a non-robust
(ζ∗NR) and adversarially robust (ζ∗R) model can be written as:

ζ∗NR = mNR
λ

λ+∥wNR∥2
2
·wNR (12)

ζ∗R = mR
λ

λ+∥wR∥2
2
·wR, (13)

where mNR = s−wT
NRx and mR = s−wT

R x.
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Subtracting and taking ℓ2-norm on both sides of Eqn. 12 and Eqn. 13, we get:

∥ζ∗NR − ζ∗R∥2 =

∥∥∥∥mNR
λ

λ+ ∥wNR∥22
wNR −mR

λ

λ+ ∥wR∥22
wR

∥∥∥∥
2

∥ζ∗NR − ζ∗R∥2 ≥ |
∥∥∥∥mNR

λ

λ+ ∥wNR∥22
wNR

∥∥∥∥
2

−
∥∥∥∥mR

λ

λ+ ∥wR∥22
wR

∥∥∥∥
2

|

(Using reverse triangle inequality)

∥ζ∗NR − ζ∗R∥2 ≥ λ|
∥∥∥∥mNR

1

λ+ ∥wNR∥22
wNR

∥∥∥∥
2

−
∥∥∥∥mR

1

λ+ ∥wR∥22
wR

∥∥∥∥
2

|

∥ζ∗NR − ζ∗R∥2 ≥ λ|
∥∥∥∥mNR

1

∥wNR∥22
wNR

∥∥∥∥
2

−
∥∥∥∥mR

1

∥wR∥22
wR

∥∥∥∥
2

| (Since, λ << ∥w∥2)

∥ζ∗NR − ζ∗R∥2 ≥ λ|mNR
1

∥wNR∥22
∥wNR∥2 −mR

1

∥wR∥22
∥wR∥2|

∥ζ∗NR − ζ∗R∥2 ≥ λ| mNR

∥wNR∥2
− mR

∥wR∥2
|

Upper bound. Again, using the optimal recourse cost (Definition 1), we can derive the upper bound
of the cost difference for generating recourses using non-robust and adversarially robust models:

∥ζ∗NR − ζ∗R∥2 =

∥∥∥∥∥ (s−wT
NRx)λ

λ+ ∥wNR∥2
·wNR − (s−wT

R x)λ

λ+ ∥wR∥2
·wR

∥∥∥∥∥
=

∥∥∥∥∥ (s−wT
NRx)λ

λ+ ∥wNR∥2
·wNR +

(wT
R x− s)λ

λ+ ∥wR∥2
·wR

∥∥∥∥∥
≤

∣∣∣∣∣ (s−wT
NRx)λ

λ+ ∥wNR∥2

∣∣∣∣∣ ∥wNR∥+

∣∣∣∣∣ (s−wT
R x)λ

λ+ ∥wR∥2

∣∣∣∣∣ ∥wR∥ (Using Triangle Inequality)

Note that the difference between the target and the predicted score for both non-robust and adversari-
ally robust models is upper bounded by a term that is always positive. Hence, we get:

∥ζ∗NR − ζ∗R∥2 ≤

∣∣∣∣∣ λ

λ+ ∥wNR∥2

∣∣∣∣∣ ∥wNR∥+

∣∣∣∣∣ λ

λ+ ∥wR∥2

∣∣∣∣∣ ∥wR∥

B.2 Proof for Theorem 2

Theorem 2. (Cost difference for C-CHVAE) Let zNR and zR be the solution returned by the C-
CHVAE [31] algorithmic recourse method by sampling from ℓp-norm ball in the latent space using
an L-Lipschitz generative model G(·) for a non-robust and adversarially robust model. By definition
of the recourse method, let xNR = G(zNR) and xR = G(zR) be the corresponding recourses in the
input space. The difference between them can then be bounded as:

L(r∗R − r∗NR) ≤ ∥xR − xNR∥p≤ L(r∗R + r∗NR), (14)

where L is the Lipschitz constant of the generative model, and r∗NR and r∗R be the corresponding
radii chosen by the algorithm such that they successfully return a recourse for the non-robust and
adversarially robust model.

Proof. From the formulation of the counterfactual algorithm, we can write the difference between
xR and xNR as:

∥xR − xNR∥p = ∥Gθ(zR)− Gθ(zNR)∥p (15)
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Lower bound. Here, we present a lower bound on the ℓp norm of the cost difference between a
baseline and robust model. Using Equation 15, we get:

∥xR − xNR∥p = ∥Gθ(zR)− Gθ(z)− Gθ(zNR) + Gθ(z)∥p (16)
≥ ∥Gθ(zR)− Gθ(z)∥p−∥Gθ(zNR)− Gθ(z)∥p (since ∥a− b∥p≥ ∥a∥p−∥b∥p)
≥ L∥zR − z∥p−L∥zNR − z∥p (17)

∥xR − xNR∥p ≥ L(r∗R − r∗NR), (Using [37])

where z is the latent space representation for the original point x, r∗R and r∗NR are the radius of the
ℓp-norm for generating samples from the robust and baseline model. Note that using the radius of the
ℓp norm in the above equation provides a tighter lower bound.

Upper bound. Using Equation 15, we can derive the upper bound using Lemma 1 and the triangle
inequality.

∥xR − xNR∥p ≤ ∥Gθ(zR)− x∥p+∥x− Gθ(zNR)∥p (Using triangle inequality)
= ∥Gθ(zR)− Gθ(z)∥p+∥Gθ(z)− Gθ(zNR)∥p (18)
≤ L∥zR − z∥p+L∥z− zNR∥p (Using Lemma 1)

∥xR − xNR∥p ≤ L(r∗R + r∗NR), (19)

where r∗R and r∗NR is the radius of the ℓp-norm for generating samples from the robust and baseline
model, respectively.

B.3 Proof for Lemma 1

Lemma 1. (Difference between non-robust and adversarially robust model weights) For a given
instance x, let wNR and wR be weights of the non-robust and adversarially robust model. Then, for a
normalized Lipschitz activation function σ(·), the difference in the weights ∆w can be bounded as:

∥∆w∥2≤ nη(y∥xT ∥2+ϵ
√
d) (20)

where η is the learning rate, ϵ is the ℓ2-norm perturbation ball, y is the label for x, n is the total
number of training epochs, and d is the dimension of the input features.

Proof. Without loss of generality, we consider the case of binary classification which uses the binary
cross entropy or logistic loss. Let us denote the baseline and robust models as fNR(x)=wT

NRx and
fR(x)=wT

Rx, where we have removed the bias term for simplicity. We consider the class label as
y ∈ {+1,−1}, and loss function L(f(x)) = log(1 + exp(−y.f(x))). Note that an adversarially
robust model fR(x) is commonly trained using a min-max objective, where the inner maximization
problem is given by:

max
∥δ∥≤ϵ

L(wT
R(x+ δ), y), (21)

where δ is the adversarial perturbation added to a given sample x and ϵ denotes the the perturbation
norm ball around x. Since our loss function is monotonic decreasing, the maximization of the loss
function applied to a scalar is equivalent to just minimizing the scalar quantity itself, i.e.,

max
∥δ∥≤ϵ

L
(
y · (wT

R(x+ δ))
)
= L

(
min
∥δ∥≤ϵ

y · (wT
R(x+ δ))

)
= L

(
y · (wT

Rx) + min
∥δ∥≤ϵ

y ·wT
Rδ

)
(22)

The optimal solution to min∥δ∥≤ϵ y ·wT
Rδ is given by −ϵ∥wT

R∥1 [23]. Therefore, instead of solving
the min-max problem for an adversarially robust model, we can convert it to a pure minimization
problem, i.e.,

min
wR

L
(
y · (wT

Rx)− ϵ∥wR∥1
)

(23)

Correspondingly, the minimization objective for a baseline model is given by minwNR L
(
y · (wT

NRx)
)
.

Looking into the training dynamics under gradient descent, we can define the weights at epoch ‘t’ for
a baseline and robust model as a function of the Jacobian of the loss function with respect to their
corresponding weights, i.e.,

wNR −w0

η
= ∇wNRL (y.fNR(x)) , (24)
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wR −w0

η
= ∇wRL (y.fR(x)− ϵ∥wR∥1) , (25)

where η is the learning rate of the gradient descent optimizer, w0 is the weight initialization of both
models.

∇wNRL (y.fNR(x)) = − exp(−y.fNR(x))

1 + exp(−y.fNR(x))
y.xT

∇wRL (y.fR(x)− ϵ∥wR∥1) = − exp(−y.fR(x) + ϵ∥wR∥1)
1 + exp(−y.fR(x) + ϵ∥wR∥1)

(−y.xT + ϵ.sign(wR)),

where sign(x) return +1, -1, 0 for x > 0, x < 0, x = 0 respectively and σ(x)= 1
1+exp(−x) is the

sigmoid function. Let us denote the weights of the baseline and robust model at the n-th iteration
as wn

NR and wn
R , respectively. Hence, we can define the n-th step of the gradient-descent for both

models as:

wn
NR −wn−1

NR = η∇wn−1
NR

LNR(·) (26)

wn
R −wn−1

R = η∇wn−1
R

LR(·), (27)

where η is the learning rate of the gradient descent optimizer. Taking n = 1, we get:

w1
NR −w0

NR = η∇w0
NR
LNR(·) (28)

w1
R −w0

R = η∇w0
R
LR(·), (29)

where w0
NR and w0

R are the same initial weights for the baseline and robust models. Subtracting both
equations, we get:

w1
NR −w1

R

η
= ∇w0

NR
LNR(·)−∇w0

R
LR(·) (30)

Similarly, for n = 2 and using Equation 30, we get the following relation:

w2
NR −w2

R

η
−
(w1

NR −w1
R

η

)
= ∇w1

NR
LNR(·)−∇w1

R
LR(·)

w2
NR −w2

R

η
= ∇w0

NR
LNR(·) +∇w1

NR
LNR(·)−∇w0

R
LR(·)−∇w1

R
LR(·)

Using the above equations, we can now write the difference between the weights of the baseline and
robust models at the n-th iteration as:

wn
NR −wn

R

η
=

n−1∑
i=0

∇wi
NR
LNR(·)−

n−1∑
i=0

∇wi
R
LR(·)

=

n−1∑
i=0

(σ(y.f i
NR(x))− 1)y.xT −

n−1∑
i=0

(σ(y.f i
R(x)− ϵ||wi

R||1)− 1)(y.xT − ϵ sign(wi
R))

=

n−1∑
i=0

σ(y.f i
NR(x))y.x

T −
n−1∑
i=0

(
σ(y.f i

R(x)− ϵ||wi
R||1)(y.xT − ϵ sign(wi

R)) + ϵ sign(wi
R)

)
≤

n−1∑
i=0

σ(y.f i
NR(x))y.x

T −
n−1∑
i=0

(
σ(y.f i

R(x))(y.x
T − ϵ sign(wi

R)) + ϵ sign(wi
R)

)
(Using σ(a− b) ≤ σ(a) for b > 0)

≤
n−1∑
i=0

(
σ(y.f i

NR(x)− σ(y.f i
R(x))

)
y.xT +

n−1∑
i=0

(
σ(y.f i

R(x))− 1
)
ϵ sign(wi

R)

16



Using ℓ2-norm on both sides, we get:

1

η
∥wn

NR −wn
R∥2 ≤ ∥

n−1∑
i=0

(
σ(y.f i

NR(x)− σ(y.f i
R(x))

)
y.xT +

n−1∑
i=0

(
σ(y.f i

R(x))− 1
)
ϵ sign(wi

R)∥2

≤ ∥
n−1∑
i=0

(
σ(y.f i

NR(x)− σ(y.f i
R(x))

)
y.xT ∥2+∥

n−1∑
i=0

(
σ(y.f i

R(x))− 1
)
ϵ sign(wi

R)∥2

(Using Triangle Inequality)

≤ ∥
n−1∑
i=0

(
σ(y.f i

NR(x)− σ(y.f i
R(x))

)
y.xT ∥2+ϵ

√
d

n−1∑
i=0

∥σ(y.f i
R(x))− 1∥2

≤
n−1∑
i=0

∥
(
σ(y.f i

NR(x)− σ(y.f i
R(x))

)
y.xT ∥2+ϵ

√
d

n−1∑
i=0

∥σ(y.f i
R(x))− 1∥2

≤
n−1∑
i=0

∥
(
σ(y.f i

NR(x))− σ(y.f i
R(x))

)
∥2∥y.xT ∥2+ϵ

√
d

n−1∑
i=0

∥σ(y.f i
R(x))− 1∥2

≤ n∥y.xT ∥2+ϵ
√
d
n−1∑
i=0

∥σ(y.f i
R(x))− 1∥2

≤ n∥y.xT ∥2+ϵ
√
d

n−1∑
i=0

(1− σ(y.f i
R(x))) (since the term inside ∥·∥2 is a scalar)

≤ n∥y.xT ∥2+ϵ
√
dn

∥∆w∥2 ≤ nη(y∥xT ∥2+ϵ
√
d)

B.4 Validity

Theorem 3. (Validity Comparison) For a given instance x ∈ Rd and desired target label denoted by
unity, let xR and xNR be the counterfactuals for adversarially robust fR(x) and non-robust fNR(x)
models respectively. Then, Pr(fNR(xNR) = 1) ≥ Pr(fR(xR) = 1) if |fNR(xR) − fNR(xNR)|≤
nη(y∥xT ∥2+ϵ

√
d)∥xR∥, where η is the learning rate, ϵ is the ℓ2-norm perturbation ball, y is the

label for x, and n is the total number of training epochs.

Proof. In a logistic regression case, Pr(f(x) = 1) = ew
T x

1+ewT x
, which is the sigmoid of the model

output. Next, we derive the difference in probability of a valid recourse from non-robust and
adversarially robust model:

Pr(fNR(xNR) = 1)− Pr(fR(xR) = 1) =
ew

T
NRxNR

1 + ew
T
NRxNR

− ew
T
R xR

1 + ew
T
R xR

(31)

=
ew

T
NRxNR − ew

T
R xR

(1 + ew
T
R xR)(1 + ew

T
NRxNR)

(32)

Since (1 + ew
T
R xR)(1 + ew

T
NRxNR) > 0, so Pr(fNR(xNR) = 1) ≥ Pr(fR(xR) = 1)) occurs when,

ew
T
NRxNR ≥ ew

T
R xR (33)

wT
NR(xNR − xR) ≥ (wT

R −wT
NR)xR (Taking natural logarithm on both sides)

wT
NR(xR − xNR) ≤ (wT

NR −wT
R )xR (34)∥∥wT

NR(xR − xNR)
∥∥ ≤

∥∥(wT
NR −wT

R )xR
∥∥ (Taking norm on both sides)∥∥wT

NR(xR − xNR)
∥∥ ≤ ∥wNR −wR∥∥xR∥ (Using Cauchy-Schwartz)∥∥wT

NR(xR − xNR)
∥∥ ≤ nη(y∥xT ∥2+ϵ

√
d)∥xR∥ (From Lemma 1)

|fNR(xR)− fNR(xNR)| ≤ nη(y∥xT ∥2+ϵ
√
d)∥xR∥ (35)
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C Additional Experimental Results

In this section, we have plots for cost differences, validity, and adversarial accuracy for the two
logistic regression and neural network models trained on three real-world datasets.

(a) NN – Adult (b) NN – German Credit (c) NN – COMPAS

(d) LR – Adult (e) LR – German Credit (f) LR – COMPAS

Figure 5: Analyzing validity of recourse generated using non-robust and adversarially robust Logistic
Regression(LR) and Neural Networks (NN) for Adult, COMPAS, and German Credit datasets. We
find that the validity decreases for increasing values of ϵ.
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(a) NN – Adult (b) NN – German Credit (c) NN – COMPAS

(d) LR – Adult (e) LR – German Credit (f) LR – COMPAS

Figure 6: Analyzing cost differences between recourse generated using non-robust and adversarially
robust Logistic Regression (LR) and Neural Networks(NN) for Adult, COMPAS, and German Credit
datasets. We find that the cost difference (i.e., ℓ2−norm) between the recourses generated for non-
robust and adversarially robust models increases for increasing values of ϵ.
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(a) NN – Adult (b) NN – German Credit (c) NN – COMPAS

(d) LR – Adult (e) LR – German Credit (f) LR – COMPAS

Figure 7: Here we plot the adversarial accuracy of the different models we trained on varying degree
of robustness (ϵ). As expected, we observe the adversarial accuracy for the non-robust model is
lowest out of all, and gradually gets better when the model is adversarially trained.

(a) ϵ = 0.05 (b) ϵ = 0.2 (c) ϵ = 0.3

Figure 8: Comparison between the validity of recourses generated for non-robust and adversarially
robust model for varying degrees of robustness (ϵ)
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