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Abstract

The widespread deployment of machine learning models in various high-stakes
settings has underscored the need for ensuring that individuals who are adversely
impacted by model predictions are provided with a means for recourse. To this end,
several algorithms have been proposed in recent literature to generate recourses.
Recent research has also demonstrated that the recourses generated by these al-
gorithms often correspond to adversarial examples. This key finding emphasizes
the need for a deeper understanding of the impact of adversarially robust models
(which are designed to guard against adversarial examples) on algorithmic recourse.
In this work, we make one of the first attempts at studying the impact of adver-
sarially robust models on algorithmic recourse. We theoretically and empirically
analyze the cost (ease of implementation) and validity (probability of obtaining a
positive model prediction) of the recourses output by state-of-the-art algorithms
when the underlying models are adversarially robust. More specifically, we con-
struct theoretical bounds on the differences between the cost and the validity of
the recourses generated by various state-of-the-art algorithms when the underlying
models are adversarially robust vs. non-robust. We also carry out extensive empiri-
cal analysis with multiple real-world datasets to not only validate our theoretical
results, but also analyze the impact of varying degrees of model robustness on
the cost and validity of the resulting recourses. Our theoretical and empirical
analyses demonstrate that adversarially robust models significantly increase the
cost and reduce the validity of the resulting recourses, thereby shedding light on the
inherent trade-offs between achieving adversarial robustness in predictive models
and providing easy-to-implement and reliable algorithmic recourse.

1 Introduction

As machine learning (ML) models are increasingly being deployed in high-stakes domains such as
banking, healthcare, and criminal justice, it becomes critical to ensure that individuals who have been
adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means for
recourse. To this end, several techniques have been proposed in recent literature to provide recourses
to affected individuals by generating counterfactual explanations which highlight what features need
to be changed and by how much in order to flip a model’s prediction [49, 9,142} 30} 21} 20} 47ﬂ For

'The terms counterfactual explanations [49], contrastive explanations [19], and recourse [42] have often been
used interchangeably in prior literature.
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instance, [49] proposed a gradient-based approach which returns the nearest counterfactual resulting
in the desired prediction. [42] proposed an integer programming-based approach to obtain actionable
recourses for linear classifiers. More recently, [21, 22]] leveraged the causal structure of the underlying
data for generating recourses [3} 27, 30].

Prior research has also theoretically and empirically analyzed the properties of the recourses generated
by state-of-the-art algorithms. For instance, several recent works [33}130,/10}40] demonstrated that the
recourses output by state-of-the-art algorithms are not robust to small perturbations to input instances,
underlying model parameters, and to the recourses themselves. More recently, [28] demonstrated
that the recourses output by state-of-the-art algorithms are very similar to adversarial examples. This
finding is critical because there have been several efforts in the literature on adversarial ML [[17, 24} 4]
to build adversarially robust models that are not susceptible to adversarial examples. However, the
impact of such models on the quality and the correctness of the recourses output by state-of-the-art
algorithms remains unexplored. The aforementioned connections between adversarial examples
and recourses underscore the need for a deeper investigation of the impact of adversarially robust
models (which are designed to guard against adversarial examples) on algorithmic recourse. Such an
investigation becomes particularly critical as the need for adversarial robustness of predictive models
as well as the ability to obtain easy-to-implement and reliable recourses have often been touted as the
cornerstones of trustworthy and safe ML both by prior research as well as recent regulations [48l [15]].
However, there is no prior work that investigates the relationship and/or the trade-offs between these
two critical pillars of trustworthy and safe ML.

In this work, we address the aforementioned gaps by making the first ever attempt at studying the
impact of adversarially robust models on algorithmic recourse. We theoretically and empirically
analyze the cost (ease of implementation) and validity (probability of obtaining a positive model
prediction) of the recourses output by state-of-the-art algorithms when the underlying models are
adversarially robust. More specifically, we construct theoretical bounds on the differences between the
cost and the validity of the recourses generated by various state-of-the-art algorithms (e.g., gradient-
based [49,125] and manifold-based [31] methods) when the underlying models are adversarially robust
vs. non-robust (See Section [3). To this end, we first derive theoretical bounds on the differences
between the weights (parameters) of adversarially robust vs. non-robust models and then leverage
these to bound the differences in the costs and validity of the recourses corresponding to these two
sets of models.

We also carried out extensive empirical analysis with multiple real-world datasets from diverse
domains. This analysis not only validated our theoretical bounds, but also unearthed several inter-
esting insights pertaining to the relationship between adversarial robustness of predictive models and
algorithmic recourse. More specifically, we found that the cost differences between the recourses cor-
responding to adversarially robust vs. non-robust models increase as the degree of robustness of the
adversarially robust models increases. We also observed that the validity of recourses worsens as the
degree of robustness of the underlying models increases. We further probed these insights by visualiz-
ing the resulting recourses in low dimensions using t-SNE plots, and found that the number of valid re-
courses around a given instance reduces as the degree of robustness of the underlying model increases.

This work lies in the intersection of Algorithmic Recourse methods and Adversarial Robustness.
Please refer Appendix [A]for a detailed discussion of related works.

Algorithmic Recourse. Several approaches have been proposed in recent literature to provide
recourses to affected individuals [9, 149} 42114530} 27, |18} 22} |8]]. These approaches can be broadly
categorized along the following dimensions [47]]: type of the underlying predictive model (e.g., tree
based vs. differentiable classifier), type of access they require to the underlying predictive model (e.g.,
black box vs. gradient access), whether they encourage sparsity in counterfactuals (i.e., only a small
number of features should be changed), whether counterfactuals should lie on the data manifold,
whether the underlying causal relationships should be accounted for when generating counterfactuals,
and whether the output produced by the method should be multiple diverse counterfactuals or a single
counterfactual. In addition, [34] also studied how to generate global, interpretable summaries of
counterfactual explanations. Some recent works also demonstrated that the recourses output by state-
of-the-art techniques might not be robust, i.e., small perturbations to the original instance [[11}138]], the
underlying model [41,133], or the recourse [32] itself may render the previously prescribed recourse(s)
invalid. These works also formulated and solved minimax optimization problems to find robust
recourses to address the aforementioned challenges.



Adversarial Examples and RobustnessPrior works have shown that complex machine learning
models, such as deep neural networks, are vulnerable to small changes ii88yptlih[s behavior

of predictive models allows for generating adversarial examples (AEs) by adding in nitesimal
changes to input targeted to achieve adversary-selected outc®®é4][ Prior works have proposed
several techniques to generate AEs using varying degrees of access to the model, training data,
and the training procedur@][ While gradient-based method$4] 24] return the smallest input
perturbations which ip the label as adversarial examples, generative metb@dohstrain the

search for adversarial examples to the training data-manifold. Finally, some methgdaérate
adversarial examples for non-differentiable and non-decomposable measures in complex domains
such as speech recognition and image segmentation. Prior works have shown that Empirical Risk
Minimization (ERM) does not yield models that are robust to adversarial exanigle2]. Hence,

to reliably train adversarially robust model26] proposed the adversarial training objective which
minimizes the worst-case loss within somball perturbation region around the input instances.

Intersections between Adversarial ML and Model Explanations. There has been a growing
interest in studying the intersection of adversarial ML and model explainaldiily Among all the

existing works focusing on this intersection, two explorations are relevant to our @@rk9J|. [36]

studied the interplay between adversarial robustness and post hoc explarggj@ml[demonstrated

that gradient-based feature attribution methods (e.g., vanilla gradients, gradient times input, integrated
gradients, smoothgrad) may severely violate the primary assumption of attribution — features with
higher attribution are more important for model prediction — in case of nhon-robust models. However,
their results also demonstrate that such a violation does not occur when the underlying models are
robust to’ ; and s input perturbations. More recentl2§] demonstrated that recourses generated

by certain state-of-the-art methods are very similar to adversarial examples, and also argued that the
methods proposed to output recourses and adversarial examples are designed with similar goals of
changing the input minimally in order to achieve the desired outcome. While the aforementioned
works explored the connections between adversarial ML and model explanations, none of these
works focus on analyzing the impact of adversarially robust models on the recourses output by
state-of-the-art algorithms.

2 Preliminaries

Notation. In this work, we denote a classi dr: X 'Y mapping featuresz 2 X tolabelsy 2 Y,
wherex is ad-dimensional feature vector. We de ne a non-linear activation functiophsuch that
f(x) = (h(x)), whereh(x) is the logits. In addition, we represent the non-robust and adversarially
robust models usinfiyr(x) andf r(x). Below we describe the methodological frameworks used for
comparing recourses generated from non-robust and adversarially robust models.

Adversarially Robust models. Despite the superior performance of machine learning (ML) models,
they are susceptible to adversarial examples (AEs), i.e., inputs generated by adding in nitesimal
perturbations to the original samples targeted to change prediction 13bélre standard approach to
ameliorate this problem is training a model using adversarial training which minimizes the worst-case
loss within some perturbation region (the perturbation mo@s3J) [In particular, for a classi erf
optimization problem of minimizing the worst-case loss within norm perturbation with radius

is:

X
min =+ max (f (x+ )):y); (1)
1P waind (XY )2D tain 2w
whereDy,in denotes the training dataset ang, = f : k k,  gis the™, ball with radius

centered around sampte

Algorithmic Recourse. One of the ways in which recourse can be realized is by explaining to affected
individuals what features in their pro le need to change and by how much in order to obtain a positive
outcome. Counterfactual explanations which essentially capture the aforementioned information can
therefore be used to provide recourse. The terms "counterfactual explanations" and "algorithmic
recourse" have, in fact, become synonymous in recent literat@elB, 46]. More speci cally,
algorithms that try to nd algorithmic recourses do so by nding a counterfactlal x + thatis

closest to the original instanseand change the model's predictibx + ) to the target label. Next,



we describe three methods we use to understand the implications of adversarially robust models on
algorithmic recourses.

Score CounterFactual Explanations (SCFE)Given the classi eff (x) = (h(x)) and a distance
functiond: RY RY! R, [49 de ne the problem of generating a recouss®= x + for sample
X by minimizing the following objective:

arg [)nin(h(xo) s)2+ d (x%x); (2)

wheres is the target score fo®, is the regularization coef cient, and( ) is the distance between
samplex and its counterfactual counterpaft

C-CHVAE. Given a Variational AutoEncoder (VAE) model with encodierand decode6 trained

on the original data distributioB4jn, C-CHVAE [31] aims to generate recourses in the latent space
Z,whereE : X!Z . The encodeE transforms a given sampleinto a latent representation

z 2 Z and the decode® takesz as input and producesas similar as possible to. To this end,
given a sample, C-CHVAE generates the recourseising the following objective function:

= argzr?in k k suchthatf (G (E (x)+ )) 6 f(x); 3

whereE allows to search for counterfactuals in the data manifold@ngrojects the latent counter-
factuals to the feature space.

Growing Spheres Method (GSM).While the above techniques directly optimize speci ¢ objective
functions for generating counterfactuals, GSBA|[uses a search-based algorithm to generate
recourses by randomly sampling points around the original instaneeil a sample with the target

label is found. In particular, GSM rst draws an-sphere around a given instancerandomly
samples point within that sphere, and checks whether any sampled points result in target prediction.
Finally, they contract or expand the sphere until a (sparse) counterfactual is found and nally returned.
GSM de nes a minimization problem using a functionX X! R, ,wherec(x; x9) is the cost

of moving from instance to counterfactuax®.

x0 = argozmxinfc(x;xo) i f(x%86fx)g; (4)

wherexis sampled from th&,-ball aroundk such thaf (x% 6 f (x), c(x;x% = kx® xko+ kx°
xko, and 2 R, isthe weight associated to the sparsity objective.

3 Theoretical Analysis

Next, we carry out a detailed theoretical analysis to bound the cost and validity differences of recourses
generated by state-of-the-art recourse methods when the underlying models are adversarially robust
vs. non-robust. More speci cally, we compare the cost differences w.r.t. the recourses obtained using
1) gradient-based methods such as SCE#($ec. 3.1.1) and 2) manifold-based methods such as
C-CHVAE [31]] (Sec. 3.1.2). Finally, we show that the validity of algorithmic recourse generated
using existing methods for robust models is lower compared to that of non-robust models (Sec. 3.2).

3.1 Cost Analysis

The cost of a generated algorithmic recourse is de ned as the distance (eqy.,, distance)
between the input instanceand the counterfactual® obtained using a state-of-the-art recourse
nding method [47]. Algorithmic recourses with lower costs are considered better since they enable
minimal changes to input to achieve the desired outcome. Here, we theoretically analyze the cost
difference of generating recourses using algorithmic recourse methods when the underlying models
are non-robust and adversarially robust.

3.1.1 Gradient-based method: SCFE

Next, we carry out a detailed theoretical analysis to bound the cost and validity difference of recourses
generated by state-of-the-art recourse methods when the underlying models are adversarially robust
VS. non-robust.

Here, we derive the lower and upper bound for the cost difference of recourses generated by the
SCFE B9 method when the underlying models are adversarially robust vs. non-robust. Following



previous works 13, 16, 29, 35, 43], we focus on locally linear model approximations as this lays the
foundation for understanding non-linear model behavior. For the cost difference, we rst de ne the
closed-form solution for the optimal cost required to generate a recourse.

De nition 1. (Optimal Cost from 29]) For a given scoring functiori with weightsw the SCFE
method generates a recours&for an inputx using cost such that:

=m— Ww; (5)

+ kwk3
wherem = s h(x9 is the target residuals is the target score fox, h(x) is a local linear score
approximation, and is a given hyperparameter.

Theorem 1. (Cost difference for SCFE) For a given instancelet x{z andx& be the recourse
generated using Wachter's algorithm for non-robust and adversarially robust models. Then, for a
normalized Lipschitz activation functior( ), the cost difference for the recourse generated for both
models can be bounded as:

MNR mgr
kw NRk2 kw sz

———— kwnrk+ ——— kwgk; 6

+ kWNsz NR + kWsz R ( )
wherewyr andwg are the weights of the non-robust and adversarially robust modeis the
regularization coef cient in Wachter's algorithnrmyg = s hyr (X9;mgr = s hr(x9) are the
target residuals for robustfg (x) = (hgr(x))) and non-robust model$ (r (x) = (hnr (X)),
respectively.

j k NR Rk2

Proof SketchWe derive the cost difference of recourses generated for non-robust and adversarially
robust models by comparing their optimal solutions. Similar to [29], the upper bound results follow
from Cauchy-Schwartz and triangle inequality. In addition, we also leverage reverse triangle inequality
to derive a lower bound for the recourse difference. See Appendix B.1 for the complete proof.

The equality of Equation 6 entails that the upper bound of the recourse difference will have a tighter
bound if the  ,-norms of the weighta/g andwg are bounded, and the lower bound of the recourse
difference will be tighter if the output score of the non-robust and adversarially robust models is
similar for the given sample. O

3.1.2 Manifold-based method: C-CHVAE

We extend our analysis of bounding the cost difference of generated recourses using manifold-based
methods for non-robust and adversarially robust models. In particular, we leverage C-CBNAE [

that leverages variational autoencoders to generate counterfactuals. For a fair comparison, we assume
that both models use the same encddeand decode& networks for learning the latent space of

the given input spack .

De nition 2. ([5]) An encoder modek is L -Lipschitz if 8z,;z, 2 Z , we have:

KE(z1) E (z2)kp Lkzi zokp: @)

Using De nition 7, we now derive the lower and upper bounds of the cost difference of recourses
generated for non-robust and adversarially robust models.

Theorem 2. (Cost difference for C-CHVAE) Letr and zg be the generated recourse from C-
CHVAE [31] method in the latent space using an L-Lipschitz generative m@gglfor a non-robust

and adversarially robust model. Then, by de nition of C-CHVAIgRr= G(zng)=X + nr and
Xr=G(zr)=Xx + g are the corresponding recourses in the input space. The cost difference between
the recourses can then be bounded as:

L(re rne) K R nRKp L(rg+ rygr); (8)
wherelL is the Lipschitz constant of the generative model, ggdandr g be the corresponding

radii chosen by the algorithm such that they successfully return a recourse for the non-robust and
adversarially robust model.

Proof Sketch.The proof follows from De nition 7 and the triangle inequality. It shows that the cost
difference for generating recourses using C-CHVAE is bounded by the product of the Lipschitz
constant of the generative model and the radii chosen by the C-CHVAE to generate counterfactuals for
the underlying non-robust and adversarially robust models. See Appendix B.2 for detailed frbof.



3.2 Validity Analysis

The validity of a given recourse® is de ned as the probability that it results in the desired out-
come B7], denoted byPr(f (x% = 1) . Below, we analyze the validity of the recourses by rst
deriving the upper bound of the difference in non-robust and adversarially robust model weights, and
then use this lemma to show that the validity of non-robust model is higher than for the adversarially
robust model.

Lemma 1. (Difference between non-robust and adversarially robust model weights) For a given
instancex, letwygr andwg be weights of the non-robust and adversarially robust model. Then, for a
normalized Lipschitz activation functior( ), the difference in the weights,, can be bounded as:

k wko n (ykxTky+ pa) (9)

where is the learning rate, is the ,-norm perturbation bally is the label forx, n is the total
number of training epochs, andis the dimension of the input features.

Proof Sketch\We derive the upper bound of the difference in non-robust and adversarially robust
model weights, denoted by,, , and show that it is proportional to the dimension of the input features
times the , perturbation ball around the sample See Appendix B.3 for the detailed proof. [

Next, we show that the probability of a recourse action resulting in the desired outcome is greater for
a non-robust model compared to that of the adversarially robust model.

Theorem 3. (Validity Comparison) For a given instance2 RY and desired target label denoted by
unity, letxgr andxygr be the counterfactuals for adversarially robdigi(x) and non-robust yr(X)
models respeé:tively. TheRr (f \r(XnR) = 1) Pr(fr(xgr) = 1) if jfnr(XR)  FNR(XNR)]

n (ykxTko+ = d)kxgk, where is the learning rate, is the ,-norm perturbation bally is the
label forx, andn is the total number of training epochs.

Proof Sketch\We derive the difference between the probability that a valid recourse exists for a
non-robust and adversarially robust model. Using data inequalities and Cauchy-Schwartz, we show
that the condition for the validity is dependent on the weight difference of the models (Lemma 1).
See Appendix B.4 for the detailed proof. O

4 Experimental Evaluation

In this section, we empirically analyze the impact of adversarially robust models on the cost and
validity of recourses. First, we empirically validate our theoretical bounds on differences between
the cost and validity of recourses output by state-of-the-art recourse generation algorithms when the
underlying models are adversarially robust vs. non-robust. Second, we carry out further empirical
analysis to assess the differences in cost and validity of the resulting recourses as the degree of the
adversarial robustness of the underlying model changes on three real-world datasets.

4.1 Experimental Setup

Here, we describe the datasets used for our empirical analysis along with the predictive models,
algorithmic recourse generation methods, and the evaluation metrics.

Datasets.We use three real-world datasets for our experiments: 1)Jdrenan Creditataset
comprises demographic (age, gender), personal (marital status), and nancial (income, credit duration)
features from 1000 credit applicants, with each sample labeled as "good" or "bad" depending on their
credit risk. The task is to successfully predict if a given individual is a "good" or "bad" customer

in terms of associated credit risk. 2) TAdultdataset contains demographic (e.g., age, race, and
gender), education (degree), employment (occupation, hours-per week), personal (marital status,
relationship), and nancial (capital gain/loss) features for 48,842 individuals. The task is to predict if
an individual's income exceeds $50K per year. 3) T@MPASdataset has criminal records and
demographics features for 18,876 defendants who got released on bail at the U.S state courts during

2https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3https://archive.ics.uci.edu/ml/datasets/Adult/
“https://github.com/propublica/compas-analysis
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Figure 1: Empirically calculated cost differences (in orange) and our theoretical lower (in blue) and
upper (in green) bounds for (a) C-CHVAE and (b) SCFE recourses corresponding to adversarially
robust (trained using=0:3) vs. non-robust models trained on the Adult dataset. Figure (c) is the
empirical difference between the validity of recourses for non-robust and adversarially robust model.
Results show no violations of our theoretical bounds. See Appendix C for results using different
values.

1990-2009. The dataset is designed to train a binary classi er to classify defendants into bail (i.e.,
unlikely to commit a violent crime if released) vs. no balil (i.e., likely to commit a violent crime).

Predictive models.We generate recourses for the non-robust and adversarially robust version of
Logistic Regression (linear) and Neural Networks (non-linear) models. We use two linear layers with
sigmoid activation functions as our predictor and set the number of nodes in the intermediate layers to
twice the number of nodes in the input layer, which is the size of the input dimension in each dataset.

Algorithmic Recourse Methods.We analyze the cost and validity for non-robust and adversarially
robust models w.r.t. three popular classes of recourse generation methods, namely, gradient-based
(SCFE), manifold-based (C-CHVAE), and random search-based (GSM) methods (described in Sec. 2).

Evaluation metrics. To concretely measure the impact of adversarial robustness on algorithmic
recourse, we analyze the difference between cost and validity metrics for recourses generated using
non-robust and adversarially robust model. To quantify the cost, we measure the average cost incurred
to act upon the prescribed recourses across all test-set instanceSpskx; x°) = ) tlesﬂ

x%,, wherex is the input and’is its corresponding recourse. To measure validity, we compute
the probability of the generated recourse resulting in the desired outcom¥alidity (x; x% =

B 0. O — 0— . H
IFxr (x )‘le :es); =96)dl \whereg(x; f ) returns recourses for inputand predictive modei.

Implementation details. We train non-robust and adversarially robust predictive models from two
popular model classes (logistic regression and neural networks) for all three datasets. In the case of
adversarially robust models, we adopt the commonly used min-max optimization objective for adver-
sarial training using varying degree of robustness, i.2.f 0; 0:02; 0:05; 0:10; 0:15; 0:20; 0:25; 0:3g.

Note that the model trained with=0 is the non-robust model. Followin@][and [12], we pre-
processed the input data by removing categorical features for ef cient training of our models. We
follow [29] to set the hyperparameters for the algorithmic recourse methods.

4.2 Empirical Analysis

Next, we describe the experiments that we carried out to understand the impact of adversarial robust-
ness of predictive models on algorithmic recourse. More speci cally, we will discuss (1) empirical
veri cation of our theoretical bounds, (2) empirical analysis of the differences between the costs
of recourses corresponding to non-robust vs. adversarially robust models, and (3) empirical analysis
to compare the validity of the recourses corresponding to non-robust vs. adversarially robust models.

Empirical Veri cation of Theoretical Bounds. We empirically validate our theoretical ndings

from Section 3 on real-world datasets. In particular, we rst estimate the empirical bounds (RHS of
Theorems 1-2) for each instance in the test set by plugging the corresponding values of the parameters
in the theorems and compare them with the empirical estimates of the cost differences between
recourses generated using gradient- and manifold-based recourse methods (LHS of Theorems 1-2).



(a) Adult (b) COMPAS (c) German Credit

Figure 2: Analyzing cost differences between recourse generated using non-robust and adversarially
robust neural networks for (a) Adult (b) COMPAS (c) German Credit datasets. We nd that the cost
difference (i.e.,» norm) between the recourses generated for non-robust and adversarially robust
models increases for increasing values.of

Figure 1 show the results obtained from the aforementioned analysis of cost differences. We observe
that our bounds are tight, and the empirical estimates fall well within our theoretical bounds. Similarly,
we observe that the validity of the non-robust model, as denot&rfng(x) = 1) in Theorem 3,

was higher than the validity of the adversarially robust model for all the test samples in Adult, German
Credit, COMPAS datasets, following the condition in Theorem 3 for a large number of training itera-
tions used for training adversarially robust models withf 0; 0:02; 0:05; 0:1; 0:15; 0:2; 0:25; 0:3g.

Cost Analysis. To analyze the impact of adversarial robustness on the cost of recourses, we compute
the difference between the cost for obtaining a recourse using non-robust and adversarially robust
model and plotted this difference for varying degrees of robustnelesults in Figure 2 show a

signi cant increase in incurred costs to nd algorithmic recourse for adversarially robust models
compared to the non-robust model for all the datasets with increasing degrees of robustness. We
observe a similar trend for the case of logistic regression, as shown in Figure 6 in Appendix C.
Further, we observe a relatively smoother increasing trend for cost differences in the case of SCFE
compared to others, which can be attributed to the stochasticity present in C-CHVAE and GSM. We
also observe a higher cost difference in SCFE for most datasets, which could result from the larger
sample size used in C-CHVAE and GSM. We observe a similar trend in cost differences when the
sample size per iteration is reduced, which also resulted in more iterations to nd recourse.

Validity Analysis. To analyze the impact of adversarial robustness on the validity of recourses,
we compute the fraction of recourses resulting in the desired outcome, generated using non-robust
and adversarially robust model under resource constraints, and plot it against varying degrees of
robustness. Results in Figure 3 show that there is an even stronger impact of adversarial training on
validity for neural networks trained on the three datasets. We observe a similar pattern for the case of
the logistic regression model trained on the three datasets, shown in Appendix C. On average, we
observe that the validity drops to zero for models adversarially trained witl®:2. To understand

this further, we use t-SNE visualizatiod4] — a non-linear dimensionality reduction technique —

to map points in the dataset to two-dimensional space and demonstrate a gradual decline in valid
recourses around a local neighborhood with increasing-igure 4, wherex andy be the names of
reduced dimensions. This decline suggests that a large number of recourses in the neighborhood of
the input sample are now being classi ed with the same class as the input. Hence, this supports our
hypothesis that adversarially robust models severely impact the validity of recourses and make the
recourse search computationally expensive.

5 Conclusion

In this work, we theoretically and empirically analyzed the impact of adversarially robust models on
algorithmic recourse. We theoretically bounded the differences between the costs of the recourses
output by two state-of-the-art counterfactual explanation methods (SCFE and C-CHVAE) when



(a) Adult (b) COMPAS (c) German Credit

Figure 3: Analyzing validity of recourse generated using non-robust and adversarially robust neural
networks for (a) Adult (b)) COMPAS (c) German Credit datasets. We nd that the validity decreases
for increasing values of.

Figure 4: A t-SNE visualization of the change in availability of valid recourses (orange) for adversar-
ially robust models trained using= [0; 0:15; 0:25], where a non-robust model is a model trained
using = 0. Results are shown for a neural network model trained on the Adult dataset. We observe
fewer valid recourses for higher values dh this local neighborhood.

the underlying models are adversarially robust vs. non-robust. In addition, we also bounded the
differences between the validity of the recourses corresponding to adversarially robust and non-
robust models. We empirically validated our theoretical results using three real-world datasets
(Adult, COMPAS, and German Credit) and two popular model classes (neural networks and logistic
regression). Our theoretical and empirical analyses demonstrated that adversarially robust models
signi cantly increase the cost and reduce the validity of the resulting recourses, thereby highlighting
the inherent trade-offs between achieving adversarial robustness in predictive models and providing
easy-to-implement and reliable algorithmic recourses. Our work also paves the way for several
interesting future research directions at the intersection of algorithmic recourse and adversarial
robustness in predictive models. For instance, given the aforementioned trade-offs, it would be
interesting to develop novel techniques which enable end users to navigate these trade-offs based on
their personal preferences — e.g., an end user may choose to sacri ce the adversarial robustness of the
underlying model in order to secure lower cost recourses.
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A Related Works

Algorithmic Recourse. Several approaches have been proposed in recent literature to provide
recourses to affected individuals, 49, 42, 45, 30, 27, 18, 22, 8]. These approaches can be broadly
categorized along the following dimensiodsT]: type of the underlying predictive modelg., tree
based vs. differentiable classi erype of accesthey require to the underlying predictive model (e.g.,
black box vs. gradient access), whether they encowspgssityin counterfactuals (i.e., only a small
number of features should be changed), whether counterfactuals should liedatahmaanifold
whether the underlyingausal relationshipshould be accounted for when generating counterfactuals,
and whether the output produced by the method shoutdddgple diverse counterfactuats a single
counterfactual. In addition3H] also studied how to generate global, interpretable summaries of
counterfactual explanations. Some recent works also demonstrated that the recourses output by state-
of-the-art techniques might not be robust, i.e., small perturbations to the original instdn8g][ the
underlying model41, 33], or the recoursed?] itself may render the previously prescribed recourse(s)
invalid. These works also formulated and solved minimax optimization problems toolmgst
recourses to address the aforementioned challenges.

Adversarial Examples and RobustnessPrior works have shown that complex machine learning
models, such as deep neural networks, are vulnerable to small changes ir88ypuh[s behavior

of predictive models allows for generating adversarial examples (AEs) by adding in nitesimal
changes to input targeted to achieve adversary-selected outc®®néd][ Prior works have proposed
several techniques to generate AEs using varying degrees of access to the model, training data,
and the training procedur@&][ While gradient-based method$4 24] return the smallest input
perturbations which ip the label as adversarial examples, generative meth@dsopstrain the

search for adversarial examples to the training data-manifold. Finally, some methgdsaérate
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adversarial examples for non-differentiable and non-decomposable measures in complex domains
such as speech recognition and image segmentation. Prior works have shown that Empirical Risk
Minimization (ERM) does not yield models that are robust to adversarial examiple?4]. Hence,

to reliably train adversarially robust model26] proposed the adversarial training objective which
minimizes the worst-case loss within somball perturbation region around the input instances.

Intersections between Adversarial ML and Model Explanations. There has been a growing
interest in studying the intersection of adversarial ML and model explainatiffy Among all the

existing works focusing on this intersection, two explorations are relevant to our @@rk9|. [36]

studied the interplay between adversarial robustness and post hoc explargfj@msl[demonstrated

that gradient-based feature attribution methods (e.qg., vanilla gradients, gradient times input, integrated
gradients, smoothgrad) may severely violate the primary assumption of attribution — features with
higher attribution are more important for model prediction — in case of non-robust models. However,
their results also demonstrate that such a violation does not occur when the underlying models are
robust to’ , and i input perturbations. More recenth2§] demonstrated that recourses generated

by certain state-of-the-art methods are very similar to adversarial examples, and also argued that the
methods proposed to output recourses and adversarial examples are designed with similar goals of
changing the input minimally in order to achieve the desired outcome. While the aforementioned
works explored the connections between adversarial ML and model explanations, none of these
works focus on analyzing the impact of adversarially robust models on the recourses output by
state-of-the-art algorithms.

B Proof for Theorems in Section 3

Here, we provide detailed proofs of the Lemmas and Theorems de ned in Section 3.

B.1 Proof for Theorem 1

Theorem 1. (Cost difference for SCFE) For a given instancelet x{r andx$ be the recourse
generated using Wachter's algorithm for the non-robust and adversarially robust models. Then, for a
normalized Lipschitz activation functior( ), the difference in the recourse for both models can be
bounded as:

——" (SIX;WNRIWR) K R rK2

1 kWNRk+ ——> kWRk, (10)

+ kwnrk? + kwgk
wherewnr andwg are the weights of the non-robust and adversarially robust modeis,the

regularization coef cient in Wachter's algorithm,( ) is a function that measures the shift in the
model weights using the target and predicted scores.

Proof. Following the de nition of SCFE in Equation 2, we can nd a counterfactual samplbat
is "closest" to the original instanceby minimizing the following objective:

arg Enin(h(xo) y92+ d (x%x); (11)

wheres is the target score, is the regularization coef cient, and( ) is the distance between the
original and counterfactual sampté.

Lower bound. Using Lemma 1, the optimal cost for generating a valid recourse for a non-robust
( yr ) @and adversarially robust{) model can be written as:

NR T MNR—Twrkz WAR (12)

R~ MR—qupkg WRs (13)

wheremyg = s Wwlgx andmgr=s Wgx.

13



Subtracting and taking-norm on both sides of Eqn. 12 and Eqgn. 13, we get:

k I(2: MNR—————7WNR MR————5WR
NRoOR + kwnrk3 + kwgk3 ",

K nRr rK2 ] mNRWWNR , mRWRk%WR 2]
(Using reverse triangle inequality)
1

Kne  rke J mNRmWNR , mRWWR 2]
k k i _ [ i i << kwk
NR rK2 J mNRkWNRk%WNR , mRkWRk%WR 2] (Since, wks)
. 1 1 .
k NR sz JmNRWRk%kWNsz mRikWRk% kWszj
m m
K wr ko NR R

kWNRk2 kWRk2

Upper bound. Again, using the optimal recourse cost (De nition 1), we can derive the upper bound
of the cost difference for generating recourses using non-robust and adversarially robust models:

(s WlrX) (s wgx)
k k= —~ 7w —
NR - RT2 Fkwale R rkwpkl
T T
S W) L WRX 9
+ kWNRk + kWRk
T T
% kwnrk + w kwgrk  (Using Triangle Inequality)
+ kwpnrk + kwgk

Note that the difference between the target and the predicted score for both non-robust and adversari-
ally robust models is upper bounded by a term that is always positive. Hence, we get:

kwnrk + — kwrk

K k
NRoRT2 + Kw gk + kwrk

B.2 Proof for Theorem 2

Theorem 2. (Cost difference for C-CHVAE) Lekr and zg be the solution returned by the C-
CHVAE [31] algorithmic recourse method by sampling frogtnorm ball in the latent space using

an L-Lipschitz generative modé( ) for a non-robust and adversarially robust model. By de nition
of the recourse method, Igtr = G(znr) andxg = G(zr) be the corresponding recourses in the
input space. The difference between them can then be bounded as:

L(re rwr) K Xr XnrRKp L(rg+ ryr); (14)

whereL is the Lipschitz constant of the generative model, ggdandry be the corresponding
radii chosen by the algorithm such that they successfully return a recourse for the non-robust and
adversarially robust model.

Proof. From the formulation of the counterfactual algorithm, we can write the difference between
XRr andxyg as:

kXR XNRkp = kG (ZR) G (ZNR)kp (15)
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Lower bound. Here, we present a lower bound on thenorm of the cost difference between a
baseline and robust model. Using Equation 15, we get:

kXR XNRkp = kG (ZR) G (Z) G (ZNR) + G (Z)kp (16)
kG (zr) G (2)ko kG (znrR) G (2D)kp (sinceka bk, k akp k bkp)
Lkzr zkp Lkzne  Zkp a7
kxr  XnrKp  L(rg  I'nr)s (Using [37])

wherez is the latent space representation for the original pojmi; andr g are the radius of the
“p-norm for generating samples from the robust and baseline model. Note that using the radius of the
“p norm in the above equation provides a tighter lower bound.

Upper bound. Using Equation 15, we can derive the upper bound using Lemma 1 and the triangle
inequality.

kxr  XnrKp KG (zr) xkptkx G (znr)kp (Using triangle inequality)
= kG (zr) G (2)kptkG (z) G (znr)Kp (18)
Lkzr zkpt+Lkz znrKp (Using Lemma 1)
kxr XNRkp L(rg+ ryr); (19)
wherer g andr \y, is the radius of thé,-norm for generating samples from the robust and baseline
model, respectively. O

B.3 Proof for Lemma 1

Lemma 1. (Difference between non-robust and adversarially robust model weights) For a given
instancex, letwygr andwg be weights of the non-robust and adversarially robust model. Then, for a
normalized Lipschitz activation functior( ), the difference in the weights,, can be bounded as:

pP—
K wka n (ykxTko+  d) (20)

where is the learning rate, is the ,-norm perturbation bally is the label forx, n is the total
number of training epochs, ardis the dimension of the input features.

Proof. Without loss of generality, we consider the case of binary classi cation which uses the binary
cross entropy or logistic loss. Let us denote the baseline and robust moflgigas wzx and
fr(X)= WEx, where we have removed the bias term for simplicity. We consider the class label as
y 2 f+1; 1g, and loss functiorn. (f (x)) = log(1 + exp( y:f(x))). Note that an adversarially
robust modef g(x) is commonly trained using a min-max objective, where the inner maximization
problem is given by:

max L(Wg(x + );y); (21)

where is the adversarial perturbation added to a given sampled denotes the the perturbation
norm ball aroundck. Since our loss function is monotonic decreasing, the maximization of the loss
function applied to a scalar is equivalent to just minimizing the scalar quantity itself, i.e.,

maxL y (wh(x+ ) =L miny (wh(x+ ) =L y W)+ miny wi
(22)

The optimal solution tanin, , 'y wg isgivenby kwlk; [23]. Therefore, instead of solving
the min-max problem for an adversarially robust model, we can convert it to a pure minimization
problem, i.e.,
minL y (WRX)  kwgky (23)
R

Correspondingly, the minimization objective for a baseline model is giveniby, . L 'y (W[gX) .
Looking into the training dynamics under gradient descent, we can de ne the weights at epoch "t' for
a baseline and robust model as a function of the Jacobian of the loss function with respect to their
corresponding weights, i.e.,

TR0 = 1 el (i RO (24)
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w w
“R 0 = L (yifR(X)  kwrka) ; (25)

where is the learning rate of the gradient descent optimizerjs the weight initialization of both
models.

exp( y:fnr(x)) T
1+exp( y:fnr(x)”™

exp( y:fr(x)+ kwgkj)
1+exp( y:fr(X)+ kwgki)

M wiel (Y:Fnr(X)) =

r wek (y:fr(X) kwgrki) = ( y:xT+ :sign(wR));

wheresign(x) return +1, -1, 0 foixx > 0, x < 0, x = 0 respectively and (x)= m is the

sigmoid function. Let us denote the weights of the baseline and robust modelrathhigeration

aswyr andwj, respectively. Hence, we can de ne theth step of the gradient-descent for both
models as:

Wi WRr' = T yn ibar() (26)
WR WR T =1 aLRr(): (27)
where is the learning rate of the gradient descent optimizer. Takiggl, we get:

Wi WRr = T o Lnr() (28)

Wi WR = T yolr(); (29)

wherew r andw§ are the same initial weights for the baseline and robust models. Subtracting both
equations, we get:

Wi W
—MR—R =1 o Lnr() T wolr() (30)

Similarly, forn = 2 and using Equation 30, we get the following relation:

2 2 1 1
WNR  WR WNrR  WR

=1 wibne() 1owilr()
=r W%RLNR()-'- r w,{IRLNR() r ngR() r WéLR()

Using the above equations, we can now write the difference between the weights of the baseline and
robust models at the-th iteration as:

n n K 1 X 1
Wik Wr M wizLnR() rwilr()
i=0 i=0
X 1 _ X 1 , , .
= ( (yfR(x)  DyxT | ( (yifR(x)  jiwgiin)  D(y:x"  signiwg))
= (Vi r(X))y:xT | (yifr(x)  jiwgii)(y:xT  signwg))+ signwg)
| (y:f (X)) y:xT | (y:f RGO (y:xT  signwg)) +  signwg)
= = (Using (a b (@) forb>0)
X 1 , , X 1 , _
(ifr(X)  (y:FR(X) yxT + (y:fr(x)) 1 signwg)
i=0 i=0
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Using “2-norm on both sides, we get:

1 n n > i i T > i : i
—kwyr - wrke kK YfwG) (i TR()) yix© + (y:fr(¥) 1 sign(wgr)kz

i=0 i=0
> ) ) . > . _ )
k (V:RROO  (V:TR)) yix ka+k (y:fa(x)) 1 sign(wi)kz
i=0 i=0
(Using Triangle Inequality)
> . . . p_>< .
k (V:RR) (X)) yix ke+ d k (yifR(X)  1ks
i=0 i=0

) ) P )
k (FRE)  (fR()) yxTke+ d  k (y:ifR(x) 1kz

i=0 i=0

. . p_>< )
kK (yFR())  (iFR(X) keky:xTko+ " d  k (y:fp(x)) 1k
i=0 i=0

_<d )
nky:x" ko+ IOd k (y:Fa(x)) 1ko
i=0

_d .
nky:x" ko+ pd (1 (y:Fa(x))) (since the term inside k k; is a scalar)
i=0
nky:x"k,+ = dn
k wka n (ykx"ko+ pa)

B4 Validity

Theorem 3. (Validity Comparison) For a given instance x 2 RY and desired target label denoted by
unity, let xg and Xngr be the counterfactuals for adversarially robust f(x) and non-robust fyg (X)
models respec&iyely. Then, Pr(fNR(XNR) = 1) Pr(fR(XR) = 1) if ijR(XR) fNR(XNR)j
n (ykxTko+ = d)kxgk, where is the learning rate, is the ‘>-norm perturbation ball, y is the
label for x, and n is the total number of training epochs.

WTX

-, which is the sigmoid of the model

Proof. In a logistic regression case, Pr(f(x) = 1) = -&

1+ew
output. Next, we derive the difference in probability of a valid recourse from non-robust and
adversarially robust model:

T T
eWN RXNR eWR XR

Pr(fxe(Xnr) =1)  Pr(fr(xg) =1) (31

1 + eWirXng 1+ eWs Xr
engxNR ewg XR
= - - (32)
(1 + eWr XR)(]_ + eWNRXNR)

Since (1 + W Xk)(1 + eWsw) > 0, s0 Pr(far(Xar) = 1) P r(fr(xr) = 1)) occurs when,

WARXNR W Xk (33)

Wir(Xvg XR)  (Wp  WR)XR (Taking natural logarithm on both sides)
Wik(XR  XnR)  (WiR  W)XR (34)

WI-I\;R (XR  Xnr) (WER Wg )Xr (Taking norm on both sides)
WiR(XR  XNR) kwnr  WrKkXgK (Using Cauchy-Schwartz)
Wig(Xg  Xng) N (ykxTky+ pa)kak (From Lemma 1)
0w TarOom)] N (loTka+ - dloxek (5)
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C Additional Experimental Results

In this section, we have plots for cost differences, validity, and adversarial accuracy for the two
logistic regression and neural network models trained on three real-world datasets.

(a) NN — Adult (b) NN — German Credit (c) NN - COMPAS
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Figure 5: Analyzing validity of recourse generated using non-robust and adversarially robust Logistic

Regression(LR) and Neural Networks (NN) for Adult, COMPAS, and German Credit datasets. We

find that the validity decreases for increasing values of .
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Figure 6: Analyzing cost differences between recourse generated using non-robust and adversarially
robust Logistic Regression (LR) and Neural Networks(NN) for Adult, COMPAS, and German Credit
datasets. We find that the cost difference (i.e., 2 norm) between the recourses generated for non-
robust and adversarially robust models increases for increasing values of .
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