
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MITIGATING HALLUCINATION IN MULTIMODAL REA-
SONING VIA FUNCTIONAL ATTENTION CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal large reasoning models (MLRMs) are rapidly advancing vision-
language reasoning and are emerging as a foundation for cross-modal intelligence.
Hallucination remains a persistent failure mode, manifesting itself as erroneous
reasoning chains and misinterpretation of visual content. In this study, we observe
that attention heads exhibit a staged division: shallow heads predominantly serve
perception, while deeper heads shift toward symbolic reasoning, revealing two
major causes of hallucination, namely perceptual bias and reasoning drift. To
address these issues, we propose a lightweight and interpretable two-step plugin,
Functional Head Identification and Class-conditioned Rescaling, which locates
perception- and reasoning-oriented heads and regulates their contributions without
retraining. Evaluations on three real-world MLRMs (Kimi-VL, Ocean-R1,
R1-Onevision), six benchmarks across three domains, and four baselines show
that our plugin achieves an average improvement of 5% and up to 15%, with
only <1% additional computation and 9% of baseline latency. Our approach
is completely model-agnostic and significantly enhances both the reliability and
interpretability of the off-the-shelf MLRMs, thereby enabling their safe deployment
in high-stakes applications. Our code is available at https://anonymous.
4open.science/r/Functional-Attention-Control.

1 INTRODUCTION

Large language models (LLMs) (Team, 2024; Guo et al., 2025; Team et al., 2025) have rapidly
transformed natural language processing, and more recently multimodal large reasoning models
(MLRMs) (Xu et al., 2024; Ming et al., 2025; Bai et al., 2025) are extending this revolution to
vision–language tasks. By integrating powerful language reasoning with visual understanding,
MLRMs are becoming a cornerstone for cross-modal intelligence (Huang et al., 2023), with broad
potential for advancing both research (Wang et al., 2024a) and real-world applications (Yin et al.,
2024). Despite these advances, a fundamental barrier — hallucinations — still remains (Liu et al.,
2024; Wu et al., 2025). Existing models frequently generate conclusions that either conflict with
the visual evidence or contradict their own reasoning chains (Bai et al., 2024). Such failures not
only diminish the reliability of individual predictions but also erode trust in the reasoning process
itself (Ding et al., 2025), posing serious obstacles for deploying MLRMs in high-stakes (Sokol &
Vogt, 2023) domains where accountability and interpretability are crucial.

For LLMs, hallucination phenomena are often attributed to limited knowledge coverage (Huang
et al., 2025) or decoding bias (Rawte et al., 2023; Ji et al., 2023), and mitigation methods include
retrieval-based correction (Lewis et al., 2020), contrastive decoding (Chuang et al., 2023), and self-
consistency (Madaan et al., 2023). In multimodal settings, the causes of hallucinations are more
complex. The prevailing view is that they mainly stem from limited use of visual evidence: MLRMs
may overlook details during encoding or lose critical information during cross-modal alignment (Guan
et al., 2024; Li et al., 2023b). As a result, most existing designs attempt to “compensate for vision”
through stronger supervision (Sun et al., 2024; Liu et al., 2023; Xie et al., 2024), finer-grained
alignment (Peng et al., 2023; Chen et al., 2023a), or the use of external visual priors (Zhao et al.,
2025b; Kim et al., 2024). While these approaches reduce hallucinations to some extent, they share a
common assumption: the root cause lies mainly in under-utilized visual information.

Building on this assumption, recent work (Huang et al., 2024; Kang et al., 2025a) reveals that
hallucinations also involve deeper allocation dynamics inside the model. Interpretability studies (Bi
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Figure 1: Two hallucination examples corresponding to perception layers (Cause I) and reasoning
layers (Cause II). The figure highlights attention patterns over text and image tokens, and the
contribution of tokens at the first position where hallucination emerges.

et al., 2025; Li et al., 2023a) show that MLRMs exhibit a staged division of attention: shallow layers
rely on visual signals to extract evidence, while deeper layers increasingly shift toward symbolic
reasoning over text. This staged allocation suggests that failures may arise not only from limited
perception but also from misaligned usage, reflecting an imbalance in how vision and language are
allocated and utilized across layers. Naturally, this raises a key research question: under off-the-shelf
architectures, how can we effectively identify and regulate the use of visual and textual information at
different stages to mitigate hallucinations in MLRM’s reasoning?

To tackle this issue, we first decompose hallucinations in MLRMs into two primary failure causes.
The first is Perceptual Bias (Pan et al., 2024; Zhao et al., 2025a), which occurs in shallow layers
when attention over visual tokens becomes diffuse and critical evidence is diluted. The second is
Reasoning Drift (Becker et al., 2025), which arises in deeper layers when attention fails to preserve
intermediate steps, causing conclusions to deviate from established premises. To address these two
causes, we proceed from the premise that models may already contain attention heads with the
potential to support perception and reasoning (Jiang et al., 2025), but in their current form, these
heads do not play a dominant role (Gong et al., 2024; Zhang et al., 2024a). Consequently, mitigating
hallucinations requires identifying such heads and amplifying their contributions, so that perception
and reasoning can be more effectively regulated across stages.

In this paper, we propose a lightweight and interpretable two-step plugin: Functional Head Identifi-
cation and Class-Conditioned Rescaling. ✤ The goal of Functional Head Identification is to isolate
heads that naturally specialize in perception or reasoning, so that they can be explicitly leveraged
rather than treated uniformly. To this end, we materialize attention weights, compute modality-specific
attention ratios, and apply depth-aware boundaries to categorize heads into perception-oriented or
reasoning-oriented groups. ✤ The goal of Class-Conditioned Rescaling is to amplify the contribu-
tions of these functional heads, thereby counteracting perceptual bias and reasoning drift without
altering the underlying attention mechanism. This is achieved by assigning targeted multiplicative
gains to the identified heads and rescaling their outputs in a structured yet minimally invasive manner.

Experimental Takeaways. We conduct systematic experiments on three real-world MLRMs
(Kimi-VL, Ocean-R1, R1-Onevision), applying Identification and Rescaling to analyze
their impact on perception and reasoning performance. In the ✤ Identification Step, we evaluate
over 150 boundary configurations across perception and reasoning stages, finding a 27.4% ↑ between
the best and worst settings, an observation that validates the necessity of stage-wise reasoning and
highlights clear functional boundaries. During the ✤ Rescaling Step, we evaluate over 24 scaling
strategies and observe that a moderate factor of 1.14 consistently achieved the best trade-off, under-
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scoring that virtually all attention heads may carry latent contributions. ✤ Overall Performance
indicates that across 6 benchmarks spanning three domains and against four baseline methods, our
approach delivered an average improvement of 8% over the original MLRM, with gains reaching
up to 20% in the most challenging tasks. Moreover, our scheme is plug-and-play without retraining,
reaching SOTA performance with only ∼ 4% extra computation, while introducing merely 7% of the
latency compared to the best performance baseline.

2 MOTIVATION

2.1 MODALITY-INDEXED ATTENTION IN TRANSFORMERS

We begin by formalizing how Transformer attention distributes across modalities. Consider a sequence
of N tokens indexed by {1, . . . , N}, partitioned into disjoint sets Tv (vision) and Tt (text), with
Tv ∪ Tt = {1, . . . , N} and Tv ∩ Tt = ∅. Unless otherwise noted, we use the entire sequence as the
query set, i.e., Tq = {1, . . . , N}.

For layer ℓ and head h, the standard multi-head attention mechanism computes

A(h,ℓ) = Softmaxrow

(
(X(ℓ)W

(h,ℓ)
Q )(X(ℓ)W

(h,ℓ)
K )⊤

√
dk

)
∈ RN×N , (1)

where X(ℓ) denotes the input hidden states at layer ℓ (N tokens, each of dimension d), W (h,ℓ)
Q ,W

(h,ℓ)
K

are the query and key projection matrices, and dk is the key dimension used for scaling. The value
projection is V (h,ℓ) = X(ℓ)W

(h,ℓ)
V , and the per-head output is O(h,ℓ) = A(h,ℓ)V (h,ℓ), which are

concatenated across heads and projected to yield the layer output Y (ℓ).

2.2 PERCEPTION AND REASONING OF LMMS

Most large multimodal models (LMMs; e.g., Qwen, LLaVA) and their long-reasoning extensions
(MLRMs; e.g., Ocean-R1, Kimi) are architecturally composed of a vision encoder coupled
with a language model. This design naturally suggests a division of labor: the encoder perceives
by compressing raw images into visual tokens, while the LM reasons by integrating those tokens
with linguistic knowledge to produce answers. If this intuition is mirrored in internal computation,
attention dynamics should follow the same workflow: early layers emphasize visual tokens, whereas
deeper layers progressively shift focus toward textual tokens.

Many empirical studies support this view. An early analysis (Kang et al., 2025b; Zhang et al.,
2024c) shows that pruning heads with high visual allocation leads to larger performance drops in
vision-conditioned tasks than pruning random heads, with such “visual heads” especially common in
shallow and middle layers. Complementarily, a subsequent study (Bi et al., 2025) reports a consistent
layerwise trajectory: early layers show a high visual ratio with low concentration (broad scanning),
middle layers keep a high ratio while concentration rises (focusing and cross-modal alignment), and
late layers reduce the visual ratio as linguistic cues dominate. Together, the results indicate a stratified
perceive–then–reason pipeline.

Motivated by these findings, we introduce a layerwise abstraction with two boundaries: ℓperc denotes
the last layer where perception dominates, ℓreas denotes the first layer where reasoning dominates.

Lperc = {1, . . . , ℓperc}, Lreas = {ℓreas, . . . , L}, 1 ≤ ℓperc, ℓreas ≤ L, ℓperc ≶ ℓreas. (2)

In Lperc (perception layers), attention is biased toward visual tokens and gradually sharpens its focus,
enabling the extraction and structuring of visual evidence. In Lreas (reasoning layers), attention shifts
toward textual tokens, allowing linguistic context to dominate inference and generation. Notably,
ℓperc and ℓreas need not coincide: the two sets may overlap (if some layers support both perception
and reasoning) or leave a gap (if neither dominates in the intermediate depth).

This flexible abstraction captures the empirical transition from perception to reasoning. It also
provides the basis for our hallucination analysis in Section 2.3.

3
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2.3 HALLUCINATION IN PERCEPTION AND REASONING

Given the perception–reasoning pipeline established in Section 2.2, it is natural to analyze halluci-
nation along these two stages. Figure 1 illustrates how failures in perception and reasoning layers
give rise to two distinct but complementary forms of hallucination, which can be summarized as:

✤ Cause I (Perceptual Bias). Perception layers fail to provide sufficient visual evidence
because it fails to allocate sufficient attention to the most informative regions.

In Lperc, attention is expected to highlight salient cues so that later stages can build on accurate
premises. However, we observe that dominant attention frequently under-represent critical regions,
which may leaving the perceptual foundation incomplete and weakening subsequent reasoning.

✤ Cause II (Reasoning Drift). Reasoning layers fail to retain prior evidence, as attention
often diffuses toward image tokens instead of focusing on critical steps in the reasoning chain.

In Lreas, effective reasoning requires sustained attention to intermediate inference tokens that support
the conclusion. Yet we find that dominating heads are sometimes distracted by residual visual signals,
causing them to overlook core textual cues and thereby weakening the consolidation of prior evidence.

Taken together, perceptual bias and reasoning drift interact synergistically. Perception layers
marginalize accurate visual cues before they reach the deeper network, while reasoning layers amplify
irrelevant or weakly grounded signals. As illustrated in Figure 1, the compounding effect of these
two failures greatly increases the likelihood of hallucination, leading to outputs that contradict the
model’s own intermediate evidence.

3 METHOD

Illustrated in Figure 2, we directly target the two root causes of hallucination identified in Section 2.3:
perceptual bias in shallow and reasoning drift in deeper layers. The key idea is to reweight attention
heads in a depth-aware manner, amplifying early heads that correctly capture visual evidence and
late heads that preserve reasoning chains, while leaving the standard attention computation intact.

Concretely, the method proceeds in two stages. (I) Functional Head Identification: we explicitly
materialize attention weights, compute the visual-attention ratio S

(ℓ)
v (h), and use the perception and

reasoning boundaries (ℓperc, ℓreas) to identify perception- and reasoning-oriented heads. (II) Class-
conditioned Rescaling: we assign multiplicative gains (gperc or greas), lift them to a head-aligned
scaling vector, and apply this vector to rescale the concatenated head outputs.

3.1 FUNCTIONAL HEAD IDENTIFICATION

The first step of our method is to identify attention heads that function primarily as perception
heads or reasoning heads, following the perceive–then–reason pipeline outlined in Section 2.2. This
categorization enables targeted reweighting rather than treating all heads uniformly. For each layer ℓ
and head h, we denote the attention matrix by A(h,ℓ) ∈ RN×N . Its (i, j)-th entry is written as

a
(h,ℓ)
ij =

[
A(h,ℓ)

]
ij
,

N∑
j=1

a
(h,ℓ)
ij = 1, ∀i. (3)

Here, a(h,ℓ)ij is the normalized attention weight from query token i to key token j. In other words,

each row of A(h,ℓ) forms a probability distribution over all keys, and a
(h,ℓ)
ij quantifies how much

information query i draws from token j.

To measure how head h distributes attention across modalities, we compute the modality attention
ratio. Using Tv and Tt to denote the sets of visual and textual tokens, and Tq as the set of query
positions, we define the modality attention ratio:

S(ℓ)
m (h) =

1

|Tq|
∑
i∈Tq

∑
j∈Tm

a
(h,ℓ)
ij , m ∈ {v, t}. (4)
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to become dominating heads, guiding the output toward correct perception and reasoning. The
softmax function is not explicitly shown in the figure.

where m = v corresponds to visual and m = t to textual tokens. Intuitively, S(ℓ)
v (h) measures the

fraction of attention mass allocated to visual tokens, averaged over all queries, while S(ℓ)
t (h) does the

same for textual tokens. Since Tv and Tt partition the sequence, we have S
(ℓ)
v (h) + S

(ℓ)
t (h) = 1. A

larger S(ℓ)
v (h) indicates stronger visual focus, while a smaller value indicates stronger textual focus.

We then combine these attention ratios with depth information to stratify heads. Specifically, we
adopt two ratio thresholds, τperc and τreas with τreas < τperc, which distinguish heads that strongly
attend to visual tokens (above τperc) from those that focus on text (below τreas). In addition, we use
the perception and reasoning layer boundaries ℓperc, ℓreas introduced in Section 2.2 to restrict these
two head types to shallow and deep layers, respectively. Formally, for each layer ℓ we define

H(ℓ)
perc =

{
h : ℓ ≤ ℓperc ∧ S(ℓ)

v (h) ≥ τperc
}
, H(ℓ)

reas =
{
h : ℓ ≥ ℓreas ∧ S(ℓ)

v (h) ≤ τreas
}
. (5)

Heads that fall between thresholds or outside two-layer boundaries remain unlabeled.

Concretely, H(ℓ)
perc denotes shallow heads focusing on visual tokens, while H(ℓ)

reas represents deeper
heads attending to textual tokens. At the layer level, the former strengthens visual grounding in
perception layers (ℓ ≤ ℓperc), and the latter reinforces inference consistency in reasoning layers
(ℓ ≥ ℓreas). Thus, enhancing perception heads mitigates perceptual bias, and enhancing reasoning
heads counters reasoning drift, motivating our targeted rescaling strategy.

3.2 CLASS-CONDITIONED RESCALING

Building on Section 3.1, we target perception-oriented heads in shallow layers and reasoning-
oriented heads in deep layers, denoted by H(ℓ)

perc and H(ℓ)
reas.

Our guiding principle is to intervene on as few heads as possible while maximizing impact on the
final outcome. Prior work (Nam et al., 2025; Michel et al., 2019), as well as our case analysis in
Figure 2, shows that only a small number of dominating heads exert decisive influence on reasoning,
while the majority have limited effect. Consequently, the most effective strategy is to increase the
likelihood that members of H(ℓ)

perc and H(ℓ)
reas enter this dominating subset. Detail in Appx. B.

Based on this insight, we introduce two global gains gperc ≥ 1 and greas ≥ 1 for perception and
reasoning heads, respectively, while leaving all other heads neutral with a factor of 1. Formally, for
each layer ℓ and head h, we define

g(h,ℓ) = gperc · 1
[
h ∈ H(ℓ)

perc

]
+ greas · 1

[
h ∈ H(ℓ)

reas

]
+ 1 · 1

[
h /∈ H(ℓ)

perc ∪H(ℓ)
reas

]
, (6)
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where 1[·] is the indicator function, which returns 1 if true and 0 otherwise. Thus, g(h,ℓ) equals gperc
for perception heads, greas for reasoning heads, and 1 for all other heads. This compact formulation
makes explicit that each head is either amplified according to its functional role or left unchanged.

For each layer ℓ, we apply gains after per-head outputs are computed but before the output projection.
Let Y (ℓ) = Concat(O(1,ℓ), . . . , O(H,ℓ))W

(ℓ)
O be the standard output, the rescaled output is:

Y
(ℓ)
out = Concat

(
g(1,ℓ)O(1,ℓ), . . . , g(H,ℓ)O(H,ℓ)

)
W

(ℓ)
O . (7)

Conceptually, class-conditioned rescaling enhances perception heads in shallow layers and reasoning
heads in deeper layers, thereby addressing the two major failure modes: reinforcing visual grounding
to mitigate Perceptual Bias, and strengthening logical consistency to reduce Reasoning Drift.

Crucially, because the rescaled output Y (ℓ)
out is injected into the residual stream and normalized before

passing forward, these adjustments do not remain local. Their influence compounds across subsequent
layers, meaning that amplifying the correct functional heads shapes the model’s global reasoning
trajectory. In this way, class-conditioned rescaling provides a lightweight yet interpretable mechanism
to strengthen the macro-level functions most critical for reducing hallucination.

The design is intentionally minimal: both class gains are amplifying and layer-agnostic, aiming
to provide a lightweight and implementation-friendly means to emphasise screened heads without
altering the underlying attention weights or value projections.

4 EXPERIMENTS

In this section, we conduct experiments to address the following research questions:

✤ RQ1: Can the proposed method consistently reduce hallucinations across multimodal reasoning
tasks and benchmarks, demonstrating gains over baselines? ✤ RQ2: How do the amplification
of perception and reasoning heads contribute to overall effectiveness? ✤ RQ3: How do different
configurations of layer boundaries (ℓperc and ℓreas) affect the overall performance of the model?
✤ RQ4: How do the visual-attention ratio thresholds (τperc and τreas) impact the head screening
process and the method’s overall performance?

Environment. Experiments with Ocean-R1 use a 24-core Xeon CPU and an A40 GPU, while
R1-Onevision and Kimi-VL use a 16-core Xeon CPU and an A800 GPU. Details in Appx. D.

Datasets. We evaluate on 6 benchmarks: ❶ Mathematics Reasoning: MathVistamini (Lu et al.,
2023), MathVisionmini (Wang et al., 2024b); ❷ Visual Reasoning: CLEVR (Johnson et al., 2017),
HallusionBench (Guan et al., 2024); ❸ Multimodal Integration: MMStar (Chen et al., 2024),
SEED-Bench (Li et al., 2024). Details in Appx. E.

Baselines. We compare with 3 inference-time baselines: VCD (Leng et al., 2024) contrasts original
vs. counterfactual image views; AGLA (An et al., 2025) fuses global and local views to improve
grounding; CGD (Deng et al., 2024) applies CLIP-guided priors during decoding. Details in Appx. F.

4.1 EFFECTIVENESS (RQ1)
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Figure 3: Efficiency comparison. Our
method achieves the best efficiency
while simultaneously improving accuracy.
The x-axis reports (Acc/AvgBatchTime)2
computed over 200 samples from Hallu-
sionBench with Kimi-VL.

To evaluate the effectiveness of our proposed plugin for
MLRMs, we compare it against three state-of-the-art
hallucination mitigation baselines as well as the vanilla
backbone models. The results, summarized in Table 1,
cover six benchmarks spanning mathematics reasoning,
visual reasoning, and multimodal integration. In Obs. 1
and Obs. 2, we further analyze accuracy and efficiency,
confirming that our plug-and-play design delivers per-
formance gains with near-zero inference overhead.

✤ Obs. 1: Jointly optimizing perception and reason-
ing yields broad improvements. Our method achieves
best performance on nearly 95% of the tasks, with an
average gain of 4.8% over the vanilla baseline. Unlike
prior approaches, which often trade improvements be-
tween reasoning (mathematics) and perception (visual)
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Table 1: Overall results. Performance across six benchmarks covering mathematics, visual reasoning, and
multimodal integration. Bold indicate the best results, and underlined numbers indicate the second best.

Mathematics Reasoning Visual Reasoning Multimodal Integration

Method Model MathVistamini MathVisionmini HallusionBench CLEVR MMStar SEED-Bench

Acc Acc Acc F1 Acc Acc F1 Acc F1

Vanilla

K
im

i-
V

L
A

3B
-T

hi
nk

in
g 63.48±0.91 56.24±1.42 64.76±0.52 64.97±0.98 76.77±1.03 59.76±0.49 42.75±1.08 66.26±0.41 49.54±1.12

VCD 63.51±0.82 56.14±0.79 65.68±0.62 67.91±0.54 78.01±1.23 59.48±0.61 42.61±1.12 66.52±1.53 49.69±0.82

CGD 53.18±1.55 49.3±0.80 52.13±0.81 55.73±1.06 58.23±1.33 48.73±1.15 31.09±0.75 43.98±1.59 34.88±1.38

AGLA 67.32±1.11 58.88±1.47 61.36±1.11 63.51±1.23 71.73±1.40 63.76±0.85 47.06±1.01 69.27±1.39 51.48±0.99

Ours 69.78±0.82 60.54±0.98 68.19±1.07 68.32±0.80 81.73±1.30 66.49±1.32 49.78±0.63 69.74±1.18 53.62±1.22

Vanilla

O
ce

an
-R

1
7B

-I
ns

tr
uc

t 54.58±0.87 20.05±0.80 49.41±0.61 49.45±1.60 38.26±1.50 45.24±0.41 29.38±1.12 59.76±0.92 42.61±0.96

VCD 54.51±1.44 19.92±1.34 50.57±0.52 50.66±0.88 39.52±1.21 45.48±0.96 29.23±0.43 59.98±1.30 42.87±1.01

CGD 46.81±0.88 10.4±0.96 33.72±0.56 33.34±1.06 20.77±1.43 36.24±1.45 21.51±1.25 37.76±0.59 17.55±1.29

AGLA 57.49±1.09 23.69±0.73 45.2±0.92 45.07±0.78 33.51±1.29 48.48±0.53 32.27±0.76 63.01±1.04 45.95±0.61

Ours 59.32±0.88 26.01±0.50 53.64±1.58 53.77±0.49 43.01±1.50 50.77±1.14 34.11±0.99 66.51±1.07 49.66±1.33

Vanilla

R
1-

O
ne

vi
si

on
7B

59.92±1.13 33.54±0.72 58.26±1.59 58.49±1.55 47.98±1.00 56.26±0.53 39.11±0.61 68.48±1.53 52.06±0.67

VCD 59.69±1.34 33.44±1.37 58.96±0.53 59.03±0.54 52.24±0.90 56.74±0.62 39.61±1.25 68.76±0.78 52.31±1.36

CGD 52.58±1.56 28.12±1.19 48.89±1.47 48.82±1.16 34.73±1.48 43.48±1.28 26.87±1.53 63.23±0.60 46.58±0.87

AGLA 60.21±1.48 37.03±1.58 55.69±0.76 55.75±0.44 50.51±1.41 54.49±0.49 37.86±1.42 68.11±1.17 51.65±1.48

Ours 60.09±1.48 39.12±0.44 60.77±0.98 60.88±0.54 62.77±1.02 58.02±0.83 40.94±0.49 69.52±1.52 53.01±1.46

tasks, our patch consistently enhances both sides. For example, VCD yields clear gains on visual
benchmarks such as HallusionBench but shows limited benefits on mathematics reasoning tasks,
whereas our method provides more balanced improvements across both categories. Cases in Appx. H.

✤ Obs. 2: Dual-stage gains come with negligible efficiency cost. As illustrated in Figure 3,
our patch introduces only marginal overhead: on HallusionBench (200 samples), vanilla models
take ∼101s on average, while our method adds merely ∼2s (103s total). In contrast, baseline
methods (VCD, CGD, AGLA) incur 1.2×– 6.6× total inference time. This makes our approach highly
pluggable and cost-efficient, substantially improving reliability without sacrificing deployability. A
theoretical analysis and more results are provided in Appx. C.

4.2 ABLATION ON HEAD AMPLIFICATION (RQ2)

To isolate the effect of rescaling each functional group, we conduct ablations as summarized in
Table 2. Concretely, we evaluate: (i) w/o reasoning, which identifies and enhances only perception
heads; and (ii) w/o perception, which identifies and enhances only reasoning heads. All other
hyperparameters are kept identical to the full plugin to ensure a fair comparison.

✤ Obs. 3: Perception-only vs. reasoning-only effects are task-skewed and non-additive. In most
settings, w/o reasoning (enhancing only perception heads) impacts visual tasks more, while w/o
perception (enhancing only reasoning heads) drives the gains in mathematics. However, we also
observe counterexamples: on R1-OneVision with MathVisionmini, strengthening a single group
alone leads to a −3.91 % drop, whereas combining both groups yields a +5.58 % gain. This aligns
with our claim in Sec. 2.3 that hallucination is not a single-capability failure but emerges from the
interaction between perception and reasoning stages.

✤ Obs. 4: Model-specific reliance on perception vs. reasoning. On multimodal integration tasks,
we observe heterogeneous behaviors across architectures. For instance, on Kimi-VL with MMStar,
w/o reasoning yields an +6.71% improvement, whereas on Ocean-R1 the same setting causes a
−1.51% drop. This suggests that different MLRM architectures may emphasize distinct functional
capacities, highlighting the importance of model-specific balancing between perception and reasoning.

4.3 IMPACT OF BOUNDARY CONFIGURATIONS (RQ3)

Our plugin first identifies perception and reasoning heads, followed by rescaling. A key factor is the
choice of layer boundaries (ℓperc, ℓreas), which determines which heads are classified as perception-
or reasoning-oriented. Figure 4 reports results on three representative datasets, each drawn from one
of the evaluation categories, showing how performance varies under different boundary configurations.
Based on these results, we adopt ℓperc = 7 and ℓreas = 3 as our final configuration.
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Table 2: Ablation of perception- and reasoning-head rescaling. We compare the full plugin with variants
that disable either perception or reasoning rescaling, alongside the vanilla model.

Mathematics Reasoning Visual Reasoning Multimodal Integration

Method Model MathVistamini MathVisionmini HallusionBench CLEVR MMStar SEED-Bench

Acc Acc Acc F1 Acc Acc F1 Acc F1

Vanilla
K

im
i-

V
L

A
3B

-
T

hi
nk

in
g 63.48±0.91 56.24±1.42 64.76±0.52 64.97±0.98 76.77±1.03 59.76±0.49 42.75±1.08 66.26±0.41 49.54±1.12

w/o Reason 69.2±0.59 58.54±0.77 65.78±0.90 65.94±1.15 82.27±0.49 66.47±1.44 49.76±0.58 68.49±1.46 52.45±0.78

w/o Percept 69.37±0.62 62.84±0.61 65.32±0.42 65.49±0.66 81.48±0.89 63.23±0.78 46.31±0.61 69.49±1.14 53.62±0.85

Ours 69.78±0.82 60.54±0.98 68.19±1.07 68.32±0.80 81.73±1.30 66.49±1.32 49.78±0.63 69.74±1.18 53.64±1.22

Vanilla

O
ce

an
-R

1
7B

-I
ns

tr
uc

t 54.58±0.87 20.05±0.80 49.41±0.61 49.45±1.60 38.26±1.50 45.24±0.41 29.38±1.12 59.76±0.92 42.61±0.96

w/o Reason 55.11±0.71 26.01±0.58 48.15±1.14 48.16±1.55 40.01±0.86 43.73±1.51 28.18±1.43 60.52±0.70 43.31±0.75

w/o Percept 58.22±0.66 24.35±1.60 54.37±1.34 54.47±0.67 41.01±0.82 50.48±0.73 33.93±1.15 61.99±0.98 44.83±1.26

Ours 59.32±0.88 25.68±0.50 53.64±1.58 53.77±0.49 43.01±1.50 50.77±1.14 34.11±0.99 66.51±1.07 49.66±1.33

Vanilla

R
1-

O
ne

vi
si

on
7B

59.92±1.13 33.54±0.72 58.26±1.59 58.49±1.55 47.98±1.00 56.26±0.53 39.11±0.61 68.48±1.53 52.06±0.67

w/o Reason 59.19±1.18 33.9±1.53 60.66±0.62 60.83±1.23 48.77±0.85 57.77±1.07 40.67±1.38 71.23±0.50 55.41±1.30

w/o Percept 59.29±1.38 29.63±1.12 59.42±0.70 59.51±0.64 55.99±0.42 53.73±0.48 36.82±1.47 68.51±0.93 52.21±0.71

Ours 60.09±1.48 39.12±0.44 60.77±0.98 60.88±0.54 62.77±1.02 58.02±0.83 40.94±0.49 69.52±1.52 53.01±1.46

Max: 27.40% Max: 43.37% Max: 66.50%

SEED-BenchMathVision CLEVR      Selected Hyperparameter

Figure 4: Boundary sweep on Ocean-R1. We fix four hyperparameters (greas=1.3, τreas=0.01,
gperc=1.16, τperc=0.22) and vary the layer boundaries to assess performance sensitivity.

✤ Obs. 5: Task-dependent boundary bands rather than a single split. For visual-dominant
tasks (CLEVR, SEED-Bench), the best scores concentrate in the lower-left of the boundary grid,
pointing to ℓperc ≈ 5–9 and ℓreas ≈ 2–5. Operationally, layers 0–5 act as perception, and ≳ 9 as
reasoning. By contrast, the reasoning-dominant task (MathVision) peaks when ℓreas≈10, forming
a high-performance region that does not overlap with the visual-task region. We hypothesize that
this band marks a perception-to-reasoning transition zone, where control shifts from visual evidence
aggregation to symbolic inference. Hence, the boundaries behave like task-dependent bands, with a
mid-depth transition zone rather than a single crisp threshold.

✤ Obs. 6: Deep-layer reasoning exists but is interaction-sensitive. Strengthening reasoning at
deeper layers (e.g., ℓreas ≈ 24; right-side region) also yields strong performance, suggesting the
presence of reasoning-related functional modules. However, their effect is coupled with perception
(ℓperc) and task type, inducing ∼5% performance swings across settings. This supports our choice to
keep ℓperc and ℓreas in shallow (≤10) layers for more consistent performance across diverse tasks.
Interestingly, the low Acc observed in the intermediate range (ℓ∈ [10, 17]), when contrasted with
both shallow and deep high-Acc regions, reveals the existence of a transitional zone where perception
and reasoning functions are more intricately intertwined rather than cleanly separated.

4.4 EFFECT OF ATTENTION RATIO THRESHOLDS (RQ4)
We further investigate the influence of multiplicative gains (greas, gperc) and ratio thresholds
(τreas, τperc) on model performance. As shown in Figure 5, we report results under the same
evaluation setup as Table 1, with default hyperparameters specified in Figure 5.

✤ Obs. 7: Multiplicative gains show task-dependent yet partially transferable effects. Peaks
appear at similar values (e.g., greas = 1.30, gperc = 1.16) for MathVistamini and MMStar, yielding
∼15% and ∼6% gains, respectively, and suggesting some cross-task generality. From the overall
trend, greas shows a steady pattern, delivering ∼10% improvement already at 1.10, whereas gperc
fluctuates more noticeably across datasets and settings.
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Figure 5: Analysis of multiplicative gains and ratio thresholds. On Ocean-R1 with fixed
boundaries ℓreas=3, ℓperc=7: Left—performance on three datasets under varying multiplicative gains
(greas, gperc); Middle—impact of ratio thresholds (τreas, τperc) on performance; Right—number of
identified heads as a function of (τreas, τperc) (small horizontal jitters are added for visual clarity).
Default settings are greas=1.30, τreas=0.01, gperc=1.16, τperc=0.22.

✤ Obs. 8: Ratio thresholds control intervention sparsity and quality. As shown in the right
panel of Figure 5, varying the ratio thresholds directly changes the number of intervened heads (with
token-dependent variability). For τreas, strong performance concentrates when ∼ 50–150 heads are
selected on average (about 6.4% of all heads), indicating a sparse intervention. As the target set grows
(approximately 6%→18%), performance degrades gradually (e.g., error 0.59→5.7), consistent with
dilution from less functional heads.

5 RELATED WORK

Interpretability of Multimodal Reasoning. Long-chain reasoning is critical for complex multimodal
tasks, yet the opacity of current models limits transparency. Existing research follows two main
directions. Prompting- and data-driven methods extend Chain-of-Thought reasoning to visual inputs
(Wei et al., 2022), either through functionally distinct prompts (Zheng et al., 2023) or curated datasets
with annotated reasoning traces and visual highlights (Shao et al., 2024). Architectural and pipeline
designs restructure the reasoning process via modular agents (Chen et al., 2023b) or explanation-
driven preference optimization (Zhang et al., 2024b). While these approaches expose latent rationales,
they often demand heavy supervision or handcrafted prompting. A growing consensus in this line of
work is that multimodal reasoning unfolds in stages of perception and symbolic reasoning, which
motivates the stage-aware perspective underlying our method (Zheng et al., 2023; Shao et al., 2024).

Multimodal Hallucination. Prior studies attribute hallucination in MLRMs to three recurring
causes: (i) strong language priors and co-occurrence biases, (ii) insufficient cross-modal alignment,
and (iii) training or decoding artifacts (Yue et al., 2024). Analyses across benchmarks such as
CHAIR (Rohrbach et al., 2018), POPE (Li et al., 2023b), and MMHal-Bench (Sun et al., 2024) consis-
tently support these views.Mitigation strategies fall into three families. Contrastive decoding perturbs
inputs or prompts to down-weight unreliable tokens (e.g., VCD (Leng et al., 2024), ICD (Wang et al.,
2024c), LCD (Manevich & Tsarfaty, 2024)) . Alignment and preference learning strengthen visual
grounding through DPO (Yang et al., 2025b) variants or hallucination-aware training (e.g., HACL
(Jiang et al., 2024)). External validation and tool grounding enforce consistency using detectors or
CLIP-based guidance (e.g., MARINE (Zhao et al., 2025b)).

6 CONCLUSION

We introduce a lightweight, interpretable plugin for MLRMs that identifies perception- and reasoning-
oriented heads and selectively enhances them under a minimal-editing principle. Unlike prior
decoding-time or training-based approaches, our method is plug-and-play, requiring no retraining
or architectural changes. Furthermore, the method improves accuracy without introducing any
discernible inference-time overhead. Across diverse benchmarks, it delivers balanced gains on
perception-heavy and reasoning-heavy tasks, confirming that targeted head control can mitigate
hallucination without compromising efficiency. We believe this drop-in, cost-free intervention offers
a practical path to more reliable and interpretable multimodal reasoning in the deployment stage.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used a large language model (LLM) exclusively for stylistic
refinement, such as polishing grammar, improving clarity, and enhancing readability. The LLM
was not involved in formulating research questions, designing methods, analyzing data, or drawing
conclusions. All scientific content, ideas, and experimental results are entirely the work of the authors.
The LLM served purely as an auxiliary tool for language editing.

LIMITATION, DISCUSSION, AND FUTURE WORK

Beyond a single boundary. Our experiments in Sec. 4.3 and Sec. 4.4 show that the division between
perception and reasoning is not determined by a crisp threshold. Instead, performance peaks appear
in bands of layers, and the optimal ℓperc and ℓreas vary across tasks. This suggests that different
layers may play mixed roles, and that the model undergoes a gradual transition from perception
to reasoning rather than a clean separation. Future work could build on interpretability studies to
map these transitions more precisely, moving from a one-dimensional boundary to richer structural
patterns.

Toward more adaptive selection. Our method follows the minimal editing principle, amplifying
a small set of heads without attenuating others. Formally, the gain in task alignment is ∆ =∑

h∈H(γh− 1)uh, where uh measures the usefulness of head h. In this work, we identify perception
and reasoning heads using simple ratio thresholds. A natural extension is to design more fine-grained
classifiers that score each head by multiple signals (e.g., depth, modality ratio, consistency). An
adaptive scheme could then select S(x) depending on the input x, and set γh > 1 only for those
heads. While this may yield larger ∆, it also risks higher variance and efficiency costs. Thus, the
challenge is to balance stronger, adaptive selection with the stability and efficiency of the current
plug-and-play design.

A NOTATIONS AND DEFINITIONS

Table 3: Notations and Definitions

Notation Definition
Tv, Tt, Tq Sets of vision, text tokens and query tokens, respectively.

l, h
Indices for layer and attention head in a Transformer,
respectively.

X(l) Input hidden states at layer l.

W
(h,l)
Q ,W

(h,l)
K ,W

(h,l)
V

Query, key, and value projection matrices for head h in
layer l.

A(h,l) Attention matrix for head h in layer l, A(h,l) ∈ RN×N .

a
(h,l)
ij

Attention weight from query token i to key token j in
matrix A(h,l).

O(h,l) Output vector for head h in layer l, O(l)
h ∈ Rdmodel .

V (h,l) Value tensor for head h in layer l.

Y (l) Standard multi-head output of the Transformer block at
layer l.

Lperc,Lreas
Sets of perception layers and reasoning layers,
respectively.

lperc, lreas
Boundaries for the last layer of the perception stage and
the first layer of the reasoning stage.

S
(l)
v (h), S

(l)
t (h)

Average attention ratio allocated to visual/textual tokens
by head h in layer l.

τperc, τreas
Thresholds of visual attention ratio to distinguish
perception and reasoning heads.

Continued on next page
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Table 3 – Continued from previous page

Notation Definition

H The full set of attention heads in a given multi-head
attention (MHA) sub-layer.

H(l)
perc,H(l)

reas
Sets of perception-oriented and reasoning-oriented heads
identified in layer l.

gperc, greas
Global gain factors applied to perception and reasoning
heads, respectively.

αperc, αreas
Scalar gain assigned to a head based on its attention ratio
(used interchangeably with gperc, greas).

g(h,l) Specific gain value applied to head h in layer l.
OS Aggregated output of a subset of heads S ⊆ H.

B SELECTIVE ENHANCEMENT AS OUR POLICY CHOICE

Problem and Objective (Minimal Editing Principle). When intervening on attention heads, our
objective is to maximize the correction of hallucination while minimizing unnecessary edits to the
model’s internal representations. We formalize this idea as the Minimal Editing Principle: an
effective intervention should (1) amplify signals that are already verified as beneficial, and (2) avoid
suppressing or perturbing heads whose functions remain uncertain.

Let H denote the full set of attention heads in a given multi-head attention (MHA) sub-layer. Each
head h ∈ H produces an output vector O(l)

h ∈ Rdmodel , and the aggregated MHA output can be
expressed as

Ỹ (l) =
∑
h∈H

γ
(l)
h O

(l)
h , (8)

where γ(l)
h is a multiplicative gain applied to head h. In this formulation, any intervention corresponds

to editing the gain pattern {γ(l)
h }h∈H. Minimal editing requires that such modifications keep the

original contributions of most heads, while selectively reinforcing those aligned with perception or
reasoning.

Intuitively, this principle reflects a conservative stance. We cannot guarantee that non-target heads
are harmful. If they are attenuated indiscriminately, the model may lose useful functions and suffer
collateral damage. The safer strategy is therefore to intervene as little as possible: amplify only the
identified functional heads, while keeping the rest unchanged to preserve the existing representation.

Formal Setup and Minimal Assumptions. To make analysis tractable and verifiable, we adopt
two minimal assumptions: (1) interventions operate after attention computation but before residual
and normalization, ensuring that changes are linear and directly comparable; (2) all enhanced heads
share a common amplification factor α > 1, while all attenuated heads (if any) share a common
factor β < 1.

These assumptions preserve the generality of our formulation while guaranteeing that differences
between strategies can be derived in closed form. In the next subsection, we instantiate four policies
under this setup and analyze their functional differences.

Four Strategies and a Core Proposition. Under the above setup, we distinguish four representative
policies for modifying head gains:

• Strategy A (Selective Enhancement).

γ
(l)
h =

{
α, h ∈ Henhance,

1, h ∈ H \ Henhance.
(9)

• Strategy B (Selective Attenuation).

γ
(l)
h =

{
β, h ∈ Hattenuate,

1, h ∈ H \ Hattenuate.
(10)
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• Strategy C (Bipolar Scaling).

γ
(l)
h =

{
α, h ∈ Henhance,

β, h ∈ Hattenuate.
(11)

• Strategy D (Mixed Policy).

γ
(l)
h =


α, h ∈ Henhance,

β, h ∈ Hattenuate,

1, h ∈ Hneutral.

(12)

Proposition (Difference Equation). Let OS =
∑

h∈S O
(l)
h denote the aggregated output of a subset

of heads S ⊆ H. Then, relative to Strategy A, any scheme that introduces attenuation (C or D) differs
by an explicit subtractive term:

Ỹ
(l)
C − Ỹ

(l)
A = (β − 1)OHatt

, (13)

Ỹ
(l)
D − Ỹ

(l)
A = (β − 1)OHatt

, (14)

where Hatt denotes the set of attenuated heads.

Proof. Both Strategy A and Strategy C/D share the amplified component αOHenh
. The difference

arises in the treatment of non-enhanced heads: Strategy A preserves their outputs unchanged, while
C and D rescale them by β < 1. This introduces a correction term (β − 1)OHatt

, representing the
explicit removal of information contributed by attenuated heads.

Interpretation. This difference equation makes the design trade-off explicit: ✤ Strategy A amplifies
useful heads while keeping all others intact. ✤ Strategies C and D apply an additional subtraction to
all attenuated heads, implicitly assuming they are harmful. Since non-target heads may still carry
latent but beneficial functions, attenuation risks collateral degradation. Thus, the minimal editing
choice is Strategy A, which strengthens the identified heads without disturbing the rest of the model.

Expectation-Level Intuition: Why Selective Enhancement is Safer. Consider a task-aligned
direction v ∈ Rdmodel , and let each head’s contribution be

uh := ⟨O(l)
h , v⟩, (15)

which measures how much the head h aligns with the task. For any headset S , we then define its total
contribution as

U(S) =
∑
h∈S

uh. (16)

Ignoring LayerNorm rescaling, the alignment change caused by a gain pattern {γ(l)
h } is

∆({γ}) ≈
∑
h∈H

(γ
(l)
h − 1)uh, (17)

which simply adds the weighted shifts of each head relative to the neutral baseline (γh = 1).

Three Strategies. Applying this formulation, the alignment increments become:

∆A ≈ (α− 1)U(Henhance), (18)

corresponding to selective enhancement, where only useful heads are amplified.

∆B ≈ (β − 1)U(Hattenuate), (19)

for selective attenuation, where some heads are suppressed while all others remain neutral.

∆C ≈ (α− 1)U(Henhance) + (β − 1)U(Hattenuate), (20)

for bipolar scaling, where enhancement and attenuation are applied simultaneously.
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Assumption (non-harmful heads). Prior interpretability studies indicate that most attention heads
carry diverse or weakly positive roles rather than being systematically harmful (Olsson et al., 2022).
Formally, this suggests

E[U(Hattenuate) ] ≥ 0, (21)
meaning that, on average, attenuated heads are not expected to reduce alignment.

Implications. Taking expectations under this assumption yields

E[∆A] > 0, E[∆B ] ≤ 0, E[∆C ] ≤ E[∆A]. (22)

Hence, Strategy A provides a reliably positive gain by amplifying identified functional heads. Strate-
gies B and C both introduce subtractive terms (β − 1)U(Hattenuate), which are non-positive in
expectation, making them less stable. This formalizes why, under the minimal-editing principle,
selective enhancement is the safer choice.

Takeaways. Strategy A yields a guaranteed positive gain by enhancing only functional heads.
Strategies B and C involve attenuation terms (β − 1)U(Hattenuate), which are non-positive in
expectation and risk weakening neutral or beneficial heads. Therefore, under the minimal editing
principle, Strategy A is the most stable and reliable choice.

C TIME COMPLEXITY ANALYSIS

In this section, we present a detailed analysis of the algorithmic time complexity of the standard
attention mechanism and our proposed method in a single multi-head attention block.

Let the input sequence length be N , the model hidden dimension be dmodel, and the number of
attention heads be H . For each attention head, the query, key, and value dimensions are denoted by
dk and dv , with dk = dv = dmodel/H . For notational simplicity, we refer to the per-head dimension
as dh. In the following analysis, we focus on the asymptotic complexity with respect to N , treating
dmodel, H , dk, and dv as constants.

STANDARD ATTENTION

Input Projections. Given the input tensor X ∈ RN×dmodel , three linear projections are applied
to generate the query, key, and value tensors: Q = XWQ, K = XWK , and V = XWV , where
WQ,WK ,WV ∈ Rdmodel×dmodel . Each projection is a matrix multiplication with complexity O(N ·
d2model), resulting in:

T1 = O(3 ·N · d2model) = O(N · d2model) (23)

Attention Score Computation. For each head h ∈ {1, . . . ,H}, unnormalized attention scores are
computed as QhK

T
h , where Qh ∈ RN×dk and KT

h ∈ Rdk×N . The cost per head is O(N2 · dk), and
across all heads:

T2 = O(H ·N2 · dk) (24)

Softmax Normalization. A row-wise softmax is applied to the N ×N score matrix for each head.
Applying softmax to a vector of length N costs O(N), and thus to N rows is O(N2) per head.
Across all heads:

T3 = O(H ·N2) (25)

Value Aggregation. The normalized attention matrix Ah is multiplied by Vh ∈ RN×dv to produce
the head output Oh ∈ RN×dv . The cost per head is O(N2 · dv), yielding:

T4 = O(H ·N2 · dv) (26)

Output Projection. The H head outputs are concatenated into a N × dmodel matrix and projected
via WO ∈ Rdmodel×dmodel with cost:

T5 = O(N · d2model) (27)

Summing all terms gives the total time complexity:

TStandard = T1 + T2 + T3 + T4 + T5 = O(Nd2model +HN2dk +HN2 +HN2dv +Nd2model)
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Table 4: Average per-batch inference time (seconds). Parentheses show relative change vs. Vanilla.

Method MathVistamini MathVisionmini HallusionBench CLEVR MMStar SEED-Bench

Vanilla 98 (+0.0%) 98 (+0.0%) 101 (+0.0%) 74 (+0.0%) 83 (+0.0%) 68 (+0.0%)

VCD 159 (+62.2%) 241 (+145.9%) 170 (+68.3%) 116 (+56.8%) 113 (+36.1%) 98 (+44.1%)
CGD 482 (+391.8%) 709 (+623.5%) 664 (+557.4%) 314 (+324.3%) 297 (+257.8%) 329 (+383.8%)
AGLA 119 (+21.4%) 164 (+67.3%) 123 (+21.7%) 78 (+5.4%) 87 (+4.8%) 88 (+29.4%)
Ours 103 (+5.1%) 101 (+3.1%) 103 (+2.0%) 75 (+1.4%) 83 (+0.0%) 69 (+1.5%)

As N grows, the N2 terms dominate. Therefore, the overall asymptotic time complexity is:

TStandard = O(H ·N2 · (dk + dv + 1)) = O(N2) (28)

OUR METHOD

Standard Attention Score and Softmax Computation. Our method first performs the standard
attention computation as in the baseline, obtaining all H normalized attention matrices Ah ∈ RN×N :

T ′
1 = O(Nd2model +HN2dk +HN2) (29)

Visual Attention Ratio Calculation. We then compute a visual attention ratio for each head based
on Equation 4. This operation traverses all N ×N attention entries, giving:

T ′
2 = O(H ·N2) (30)

Head Categorization and Gain Assignment. Each head is categorized and assigned a scalar gain
αh based on its Sv(h). This involves only O(H) comparisons and assignments, which are negligible
compared to the dominant terms.

Modulated Value Aggregation. The values are aggregated as Oh = AhVh, followed by element-
wise scaling with αh. The aggregation part has cost:

T ′
4a = O(H ·N2 · dv) (31)

and the scaling part adds O(H ·N · dv) = O(N · dmodel), which is dominated by the aggregation
cost. Thus:

T ′
4 = O(H ·N2 · dv) (32)

Final Output Projection. The modulated outputs are concatenated and projected as in the baseline:

T ′
5 = O(N · d2model) (33)

Combining all steps, the total complexity of our method is:

TOurs = T ′
1 + T ′

2 + T ′
4 + T ′

5 = O(Nd2model +HN2dk + 2HN2 +HN2dv +Nd2model)

Focusing on the dominant terms with respect to N , we obtain:

TOurs = O(H ·N2 · (dk + dv + 2)) = O(N2) (34)

EXPERIMENTS

As reported in Table 4, our method attains per-batch inference times that are essentially indistinguish-
able from the Vanilla baseline across all six benchmarks, with only marginal fluctuations of a few
percentage points. This empirical parity aligns with the theoretical expectation that our additional
head-level operations introduce only constant-factor overhead beyond standard multi-head attention.
Consequently, the overall time complexity remains unchanged, and in practice, the runtime of our
approach matches that of the original model.
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C.1 COMPARISON AND CONCLUSION

Although our method introduces an additional O(H ·N2) step for head-level ratio computation, the
total complexity remains dominated by the O(N2) cost of the standard attention mechanism. As
a result, both exhibit the same asymptotic time complexity of O(N2) with respect to the sequence
length N . The additional operations only contribute constant-factor overhead without altering the
overall computational order.

Consequently, in practice, the runtime of our approach is essentially indistinguishable from that of
standard attention.

D IMPLEMENTATION DETAILS

Ocean-R1 (Ming et al., 2025) Ocean-R1 is a large vision-language reasoning model fine-tuned
from Qwen2.5-VL-Instruct (Bai et al., 2025), designed to enhance cross-modal reasoning and
visual understanding capabilities through a two-stage rule-based Reinforcement Learning framework.
The first stage focuses on strengthening the model’s reasoning ability, while the second stage
improves its visual perception. Experimental results demonstrate that Ocean-R1 achieves substantial
performance gains, particularly on visual mathematical reasoning benchmarks such as MathVision
(+2.7/+2.7) and MathVista (+4.9/+4.4), showing strong multimodal reasoning and generalization
capabilities.

R1-Onevision (Yang et al., 2025a) R1-Onevision is a state-of-the-art multimodal reasoning
model designed to bridge the gap between visual perception and deep reasoning. It is fine-tuned
from Qwen2.5-VL (Bai et al., 2025), with a focus on cross-modal reasoning that enables precise
understanding and processing of both visual and textual information. Unlike previous models that
primarily rely on fixed structures for reasoning, R1-Onevision employs a two-stage post-training
strategy: Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), enhancing its ability
to generalize across diverse tasks. The model leverages a cross-modal reasoning pipeline that
transforms images into formal text-based representations, which are then processed to generate
structured reasoning paths. It also incorporates a "role-playing" strategy to iteratively refine visual
comprehension, ensuring robust multimodal coherence. Experimental evaluations on benchmarks like
MathVista and MathVerse demonstrate that R1-Onevision outperforms several state-of-the-art
models, including GPT-4o and Qwen2.5-VL, showcasing its superior reasoning and generalization
capabilities.

Kimi-VL (Team et al., 2025) Kimi-VL is an efficient open-source vision-language model built
upon a Mixture-of-Experts (MoE) language decoder with only 2.8B activated (16B total) parameters,
paired with a 400M native-resolution vision encoder (MoonViT). It is designed to provide advanced
multimodal reasoning, long-context understanding, and strong agent capabilities, while maintaining
high parameter efficiency. Unlike most dense-architecture VLMs, Kimi-VL achieves competitive
or superior performance to larger models on diverse tasks, including college-level problem solving,
OCR, multi-image reasoning, video understanding, and long-document comprehension. Through long
Chain-of-Thought supervised fine-tuning and reinforcement learning, its enhanced variant Kimi-VL-
Thinking demonstrates strong long-horizon multimodal reasoning ability, achieving remarkable results
on benchmarks such as MathVision and MathVista. This demonstrates Kimi-VL’s effectiveness in
combining parameter efficiency with powerful multimodal reasoning capabilities.

Our method is primarily implemented in the eager_attention_forward function within
the modeling file (modeling_qwen2_5_vl.py and modeling_kimi_vl.py). Also, we
incorporate a caching mechanism to store essential information (e.g., the range of visual tokens and
hyperparameters).

Table 5 summarizes the hyperparameters used in our experiments.

E DATASETS

MathVista (Lu et al., 2023) Aggregates 6,141 problems by consolidating 28 existing multimodal
datasets with three newly curated sources—IQTest (puzzle figures), FunctionQA (function plots),
and PaperQA (figures from academic papers)—spanning charts, diagrams, textbook geometry, and
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Table 5: Selected Hyperparameters

Model ℓreas τreas greas ℓperc τperc gperc

Kimi-VL-A3B-Thinking 5 0.01 1.40 10 0.27 1.20
Ocean-R1-7B-Instruct 3 0.01 1.30 7 0.22 1.16
R1-Onevision 3 0.01 1.30 7 0.30 1.20

everyday VQA scenes. It targets cross-domain mathematical reasoning grounded in images, with
compositional perception and minimal leakage, and remains challenging for current models.

MathVision (Wang et al., 2024b) Curated from real math competitions to provide 3,040 image-
based problems across 16 mathematical disciplines (e.g., analytic geometry, topology, graph theory)
and five difficulty levels. Designed to stress rigorous multimodal mathematical reasoning beyond
earlier benchmarks, it exhibits a large human–model gap and offers test and test-mini splits for rapid
benchmarking.

MMStar (Chen et al., 2024) Built by screening items from existing benchmarks and then manually
vetting them to ensure vision indispensability and remove data leakage, yielding 1,500 human-selected
samples covering six core capabilities along 18 axes. Its goal is a purified, balanced test that measures
true multimodal gains—i.e., questions where visual evidence is necessary and difficulty stems from
advanced cross-modal reasoning.

CLEVR (Johnson et al., 2017) A synthetic diagnostic VQA dataset rendered in Blender with simple
3D objects varying in color, shape, size, and material; questions are programmatically generated
and paired with functional programs and scene graphs. The design emphasizes low dataset bias and
compositional reasoning difficulty (counting, comparisons, spatial relations) over 100k images and
1M questions.

HallusionBench (Guan et al., 2024) Comprises 346 figures from diverse sources and formats (e.g.,
charts, tables, maps, famous optical illusions, memes) paired with 1,129 expert-authored questions
structured into control pairs and “visual-dependent” vs. “visual-supplement” settings. It is purpose-
built to disentangle language hallucination from visual illusion and to test consistency under easy/hard
conditions, remaining challenging for state-of-the-art LVLMs.

SEED-Bench (Li et al., 2024) Uses human-verified multiple-choice questions targeted to capability
dimensions; in SEED-Bench-1 (19k), images come from Conceptual Captions and videos from
Something-Something V2, Epic-Kitchens, and Breakfast, covering both spatial and temporal un-
derstanding. The benchmark’s design goal is dimension-specific difficulty and objective automatic
scoring across 12 image/video comprehension dimensions.

F BASELINES

We adopt a deliberately diverse set of baselines. Methods for mitigating inference-time hallucinations
via generation intervention can be grouped into three families: Contrastive Decoding, Guided De-
coding, and Visual Amplification. Accordingly, we select VCD, CGD, and AGLA as representative
instances. These baselines instantiate three complementary mechanisms—probability calibration,
external guidance, and feature enhancement—covering different failure modes while reducing evalua-
tion bias due to methodological homogeneity; together they constitute a representative comparison
suite.

Visual Contrastive Decoding (VCD) (Leng et al., 2024). VCD is a training-free decoding strategy
that explicitly builds a counterfactual view of the image by introducing controlled visual uncertainty
and then contrasts the model’s predictions under the original versus the uncertain view. Tokens that
are preferred only when the image is ambiguous are down-weighted, which directly combats two root
causes of object hallucination: over-reliance on language priors and spurious object co-occurrence.
An adaptive plausibility constraint further preserves fluent generation by truncating to high-confidence
candidates from the original distribution. The key difference from other baselines is that VCD does
not require external models or retraining; it modifies only the sampling distribution and therefore
generalizes across LVLM families.
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Assembly of Global and Local Attention (AGLA) (An et al., 2025). AGLA targets the attention
deficiency behind many hallucinations: LVLMs tend to lock onto prompt-irrelevant global patterns
while missing fine-grained, prompt-relevant regions. It first performs image–prompt matching (via a
Grad-CAM–style analysis) to produce an augmented view that highlights regions tied to the query and
suppresses distractors; decoding then fuses evidence from the global view (original image) and the
local, discriminative view (augmented image). This design differs from VCD and CGD by enriching
the visual features themselves rather than only reshaping probabilities, which improves grounding
without sacrificing generative context. Empirically, it is especially strong under challenging negative
settings, e.g., achieving about 81.36 F1 on the adversarial split of POPE with LLaVA-1.5.

CLIP-Guided Decoding (CGD) (Deng et al., 2024). CGD injects an external, vision-language
prior—CLIP—directly into decoding, but at the sentence level. Instead of judging partial tokens,
CGD scores complete sentence candidates by mixing the LVLM’s length-normalized likelihood
with CLIP image–text similarity and keeps candidates that are both probable and visually grounded.
Two design choices explain its gains: (i) sentence-level guidance avoids the myopia of token-level
heuristics and directly penalizes late-caption drift (later sentences are empirically more hallucinatory),
and (ii) CLIP similarity provides a stronger, more stable signal of image–text alignment than model
likelihood alone. As a result, CGD substantially lowers hallucination while preserving caption quality,
e.g., CHAIRs on COCO with LLaVA-1.5 drops from 44.7 to 29.7.

G METRICS

We adopt the F1 score as the primary evaluation metric, with calculation logic adapted to the nature of
each dataset. Specifically, two distinct evaluation schemes are applied: (1) a binary judgment scheme
for datasets containing binary ground-truth labels (e.g., HallucinationBench), and (2) a multi-class
scheme for datasets containing multiple-choice questions (e.g., MMStar and SEED-Bench). In both
schemes, the final performance is reported using the Weighted F1 score.

Binary Judgment Scheme For binary datasets, we use the standard F1 score, defined as:

F1 =
2× Precision × Recall

Precision + Recall
=

2TP

2TP + FP + FN
. (35)

Multi-class Scheme For multi-class datasets, each sample has a ground-truth label y ∈ {1, . . . ,K}
and a predicted label ŷ ∈ {1, . . . ,K}. For each class i ∈ {1, . . . ,K}, we define:

TPi = |{ŷ = i, y = i}|, FPi = |{ŷ = i, y ̸= i}|, (36)
FNi = |{ŷ ̸= i, y = i}|, TNi = |{ŷ ̸= i, y ̸= i}|. (37)

Then:
Precision(i) =

TPi

TPi + FPi
, Recall(i) =

TPi

TPi + FNi
, (38)

F1(i) =
2× Precision(i)× Recall(i)

Precision(i) + Recall(i)
. (39)

Weighted Aggregation To account for class imbalance, the weighted F1 score is computed as:

Weighted-F1 =

K∑
i=1

Support(i)
N

× F1(i), (40)

where Support(i) denotes the number of samples with ground-truth label i, and N is the total number
of samples.

H CASE ANALYSIS

H.1 CONTRIBUTION MAP

Following Michel et al (Michel et al., 2019)., we quantify the contribution of each attention head
to a specific next-token prediction by inserting differentiable gates on head outputs and reading out
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the loss gradients w.r.t. these gates. Intuitively, if slightly amplifying head (l, h) would decrease the
loss for the current target token, that head is helpful for this token; if it would increase the loss, it is
harmful. We report absolute sensitivities as non-negative importance scores and optionally keep the
signed scores to analyze supportive vs. adversarial heads.

Notation at a glance.

• B: batch size; S: sequence length seen by the model at the current decoding step (includes
prompt and previously generated tokens).

• L: number of transformer layers.
• H: number of attention heads per layer.
• dmodel: hidden size; dhead = dmodel/H: per-head width after splitting.
• x: model inputs (encoded sequence including both image and text); y<τ : generated prefix;
yτ : random variable at current position; t⋆: target token for this step.

• L = − logP (yτ = t⋆ | x,y<τ ): cross-entropy loss defined only for current position τ .

H.1.1 GATE PARAMETER MECHANISM

We insert lightweight gate parameters onto each attention head to directly modulate their outputs
without changing model weights. This setup allows us to treat each gate as a differentiable scalar that
controls the influence of its head. With this mechanism in place, we can measure how scaling a head
affects the model’s loss for the current token.

For layer l, let the standard multi-head output (after attention and output projection, before the MLP)
be

O(l) ∈ RB×S×dmodel . (41)
We reshape to expose heads:

O
(l)
heads = reshape

(
O(l), [B,S,H, dhead]

)
. (42)

We use a trainable-on-the-fly (but not optimized) gate vector g(l) ∈ RH initialized as 1H and
broadcast it multiplicatively:

∀ b∈ [B], s∈ [S], h∈ [H] : O
(l)
gated[b, s, h, :] = g

(l)
h O

(l)
heads[b, s, h, :]. (43)

Finally we fold heads back to dmodel and continue the standard forward. Implementation
uses lightweight forward hooks; model weights remain frozen. Gates are created with
requires_grad=True so that backprop can produce ∂L

∂g
(l)
h

.

Shape sanity check. O
(l)
heads[b, s, h, :] ∈ Rdhead is the contribution of head h at token position s.

Multiplying by g
(l)
h scales the entire vector produced by that head uniformly at all positions in the

current pass; this matches the "masking/scale" abstraction in Michel et al.

H.1.2 GRADIENT-BASED IMPORTANCE

By backpropagating the cross-entropy loss through these gates, we obtain per-head gradients that
quantify how loss would change if a head were amplified. Negative gradients indicate support-
ive heads, while positive gradients reveal harmful ones. Taking the absolute values yields stable
importance scores for both visualization and analysis.

At decoding step τ with target t⋆,

L = − logP (yτ = t⋆ | x,y<τ ). (44)

We define the signed sensitivity and the importance for head (l, h):

S(l,h) =
∂L
∂g

(l)
h

, I(l,h) =
∣∣∣S(l,h)

∣∣∣ . (45)
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Interpretation: a negative S(l,h) means "if we scale up this head, loss goes down" (supportive head);
a positive S(l,h) suggests the opposite (potentially harmful). Reporting |S| yields non-negative
"importance heatmaps", while retaining the sign of S allows for more fine-grained adversarial
analysis.

Connection to first-order Taylor pruning. Expanding L at g = 1, a small perturbation ∆g
(l)
h

changes the loss by ≈ S(l,h)∆g
(l)
h ; therefore |S(l,h)| can directly serve as a "influence measure

for current sample/step", which is the per-sample instantiation of the expected sensitivity Ih =
E |∂L/∂ξh| proposed by Michel et al. under our gate parameterization.

H.1.3 FROM PER-STEP SCORES TO A RANKING

Finally, we aggregate these per-head importance scores and normalize them either layer-wise or
globally. Sorting the normalized scores produces a ranking that highlights which heads are most
influential for the given token (or across tokens when averaged). This ranking provides a principled
basis for head attribution and comparison.

Collect raw scores
I = {I(l,h) | l = 1, . . . , L;h = 1, . . . ,H}. (46)

We consider two normalizations:

Layer-wise (robust to layer-scale differences):

Ĩ
(l,h)
layer =

I(l,h)∑H
h′=1 I

(l,h′)
. (47)

Global (for global ranking across the whole stack):

Ĩ
(l,h)
global =

I(l,h)∑L
l′=1

∑H
h′=1 I

(l′,h′)
. (48)

We then sort
π = argsort

(
Ĩ , descending

)
, (49)

obtaining a head ranking tailored to the current token t⋆ (or to an aggregate of tokens; see below).

H.2 CASE I: REASONING DRIFT

(a) Question (b) Contribution Map (Vanilla) (c) Contribution Map (Ours)

Question - Image (a)

Is the text in this figure trying to talk to Gorbachev?
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Vanilla - Image (b)

<think>
Okay, so I need to figure out whether the text in the image is trying to talk to Gorbachev.
Let’s start out by understanding the context. The image shows a text message or a letter. The
text is talking about change and openness and mentions General Secretary Brezhnev. So,
Brezhnev was the leader of the Soviet Union during the Cold War. Gorbachev came later, so
he might have been the General Secretary later in the 80s.

Looking at the text, it says things like "Come here to this gate!" and "Tear down this wall!".
These phrases sound like they’re addressing someone specific, probably someone in power
authority, which would be the General Secretary. The image also has uses the term "General
Secretary Brezhenve’, which is a typo for Brezhnev. This reinforces the idea that the speaker
is talking to someone in authority.

Also, the message is urgent to to the cause of freedom and peace and economic prosperity
in Eastern Europe. This kind of plea would be directed at someone who is in power, like
a leader. Gorbachev was famous for bringing Soviet policies and for making reforms like
glasuez, which aimed at openness and change in the Soviet Union. So, it makes sense that
this message is addressed to him.

The image shows a letter by someone urging change and openness, asking Brezhnev to
do something, and even mentioning tearing down a wall. All these points to in message
intended at Gorbachev. The reference to Brezhnev being the leader, even if the name spelling
is incorrect, points to the main target of the message. So, yes, the text is trying to talk to
Gorbachev.
</think>

The text in the image is clearly directed at Gorbachev. The mention of General Secretary
Brezhnev, the reference to tearing down a wall, and the plea for change and openness all
point to in address to Gorbachev, who a leader known for the reforms aimed at opening in in
Eastern Europe. Therefore, the message is addressed to Gorbachev.

**Answer:** Yes, the text in the image is trying to talk to Gorbachev.

Ours - Image (c)

<think>
Okay, so I’m trying to determine if the text is trying to talk to Gorbachev. Let’s start with the
image directly.

The image shows a request to open the gates. However, the text in the image is addressed to
General Secretary Brezhnev. The image itself depicts a scene where Gorbachev might be the
leader of the Soviet Union. The image also a reference to " Gorbachev, which gives a hint
that the leader might Gorbachev’s the leader of the Soviet Union.

The image shows a request to open the gates. The text in the image is addressed to General
Secretary Brezhnev. The image itself shows a scene where Gorbachev might be the leader
of the Soviet Union. The image also refers to Gorbachev, but the text is addressed to Brezhnev.

Therefore, the text is not directly addressing Gorbachev; it is instead addressed to Brezhnev,
the leader of the Soviet Union at the time.
</think>

The image shows a request to open the gates. Therefore, the text is not trying to talk to
Gorbachev; it is trying to talk to Brezhnev, the leader of the Soviet Union at the time.
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**Answer:** No, the text in the image is not trying to talk to Gorbachev; it is referring to
Brezhnev, the leader of the Soviet Union at the time.

Analysis. From the contribution maps, our method markedly amplifies the mid-to-deep reasoning
heads in Layer 10–23, thereby substantially improving the model’s reasoning capacity. In contrast,
the Vanilla model shows no obvious perceptual failure but suffers during reasoning: because the
question mentions “Gorbachev”, Vanilla model erroneously binds this cue to the entire message,
accumulates evidence under the hypothesis “target = Gorbachev,” and drifts away from the correct
logical chain, ultimately misclassifying an appeal addressed to Brezhnev as speaking to Gorbachev.
By strengthening these mid-to-deep reasoning heads, our method maintains stable entity grounding
and a consistent causal narrative, preventing reasoning drift and producing the correct negative
answer.

H.3 CASE II: PERCEPTUAL BIAS

(a) Question (b) Contribution Map (Vanilla) (c) Contribution Map (Ours)

Question - Image (a)

Based on the map, did the Republic Party win Texas in the 2020 elections?

Vanilla - Image (b)

<think>
Okay, so I’m trying to determine whether the Republican Party won Texas in the 2020
elections based on the provided map. Let me break this down step.

First, the image shows a map of the United States indicating the election results by state for
the 2020 U.S. presidential election. Each state is colored either **red** or blue, representing
Republican and Democratic wins, respectively. The image shows Texas colored in **red**.

To confirm, the image legend has the **red** color for Republican (Trump) and blue
for Democratic (Biden). Therefore, since Texas is colored **red**, it indicates that the
Republican Party won Texas in the 2020 election.

There are no other states mentioned that would affect this conclusion. The other states might
be colored differently, but Texas being red is the key point of this question.

So, putting it all, the image directly shows Texas as **red**, which means the Republican
Party won Texas in the 2020 election.
</think>
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The image shows Texas colored **red**, which indicates that the Republican Party won
Texas in the 2020 election.

**Answer:** Yes, the Republican Party won Texas in the 2020 election.

Ours - Image (c)

<think>
Okay, so I’m trying to determine whether the Republican Party won Texas in the 2020
elections based on the provided map. Let me go through this step by step.

First, I need to understand what the map is showing. It is an electoral map from the 2020 U.S.
Presidential Election, where each state is colored either **red** or blue. **Red** represents
Republican candidates, and blue represents Democratic candidates. Each state also have a
number 2020, so this is the 2020 election results.

Next, I notice that Texas is colored blue. This indicates that Texas was won by the Democrats.
Therefore, the Republican Party did not win Texas in the 2020 elections.
</think>

The answer is that the Republican Party did not win Texas in the 2020 elections. Texas was
won by the Democrats.

Analysis. In this case, the contribution maps reveal that our method effectively mitigates the
dispersed and unfocused attention observed in the Vanilla model by strengthening both shallow
perception heads and deep reasoning heads. The primary issue with the Vanilla model arises
in the second paragraph of its reasoning, where it misperceives the color of Texas as red. This
initial perceptual bias propagates through its logical reasoning process, ultimately leading to an
incorrect conclusion that the Republican Party won Texas. In contrast, our method, supported by
stronger perceptual attention in shallow layers and more robust reasoning capacity in deeper layers,
accurately perceives Texas as blue and correctly infers that the state was won by the Democrats. This
demonstrates how our approach enhances the interplay between perception and reasoning, enabling
the model to avoid compounding errors and to arrive at the correct answer.

H.4 CASE III: COMPREHENSIVE HALLUCINATION

(a) Question (b) Contribution Map (Vanilla) (c) Contribution Map (Ours)

Question - Image (a)

According to the image, does the value of the square root of 2 range from 1.40 to 1.41?
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Vanilla - Image (b)

<think>

Okay, so I need to determine whether the square root of 2 ranges from 1.40 to 1.41 based on
the image provided. The image shows several square roots, and I need to identify the square
root of 2.
1. As the image shows several square roots, and the first one 2 is approximately 1.44.
2. The image also shows the square root of 2 as approximately 1.44.
3. Therefore, the image shows the square root of 2 as approximately 1.44.

</think>

Answer: The square root of 2 is not between 1.0 and 1.1; it is approximately 1.4.

Ours - Image (c)

<think>
Okay, so I need to figure out whether the value of the square root of 2, denoted as sqrt(2), falls
within the range of 1.40 to 1.41. Let’s start directly based on the image and the information
provided.

The image shows the square root of 2 as approximately 1.41421. The image also shows
various mathematical constants and numbers sequences, including the first 150 decimal places,
and it provides many of the first decimal places as 1.4 ...
</think>
Answer: No. It’s about 1.414, which is slightly above 1.41.

Analysis. In this case, we can clearly observe the differences in perception and reasoning abilities
between the two methods. The Vanilla model, when tasked with identifying the value of the square
root of 2, incorrectly perceived it as 1.44 rather than the correct value of 1.414. This perceptual error
indicates insufficient contribution from the shallow perception heads, leading to poor sensitivity to
numerical details. Furthermore, the subsequent reasoning process in the Vanilla model was unclear,
with its step-by-step logic lacking coherence, and the final answer deviated from the original question.
This combination of perceptual inaccuracy and weak reasoning aligns with the contribution map,
which shows limited activation in both shallow perception heads and mid-to-deep reasoning heads.
In contrast, our method demonstrates significant enhancements in both shallow perception heads
and mid-to-deep reasoning heads, resulting in a more balanced improvement across perception
and reasoning capabilities. Specifically, in this example, our method not only correctly identified
the square root of 2 as 1.41421 but also precisely reasoned that the value is slightly above 1.41,
thereby providing an accurate and contextually relevant answer. This highlights the superiority of our
approach in achieving improvements in both perceptual accuracy and logical reasoning.

H.5 CASE IV: COMPREHENSIVE HALLUCINATION
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(a) Question (b) Contribution Map (Vanilla) (c) Contribution Map (Ours)

Question - Image (a)

There is a big thing that is the same color as the tiny ball; what shape is it?

Vanilla - Image (b)

<think>
Okay, so I’m trying to solve this problem where I need to figure out the shape of a big object
that’s the same color as a tiny ball. Let’s start with understanding the question carefully. The
word "same color" probably refers to the same color group, meaning, or category, but I think
it might be a bit too complicated.

The image shows a 3D geometric composition with a large red sphere, which is the "
same color" of the small red sphere. Hmm, so the question is asking for the shape of a
large object that’s’s the same color as the tiny ball. So the tiny ball is a sphere, and the
large one the same color as the tiny ball would also be a sphere as well, but much bigger in size.

The image shows a large red sphere within other shapes, so the large red sphere stands out
the same color of another 3D object. The only other 3D object that could be described as
the same color would also be another sphere. The image shows a large red sphere, where
another 3D object can be a sphere. Therefore, the large red sphere stands out the same color
of another sphere, which would also be a sphere as well. So, the large red sphere is a sphere,
and another 3D object sharing the same color can be a sphere as well.

So the answer should be a sphere.
</think>

The image shows a large red sphere, which is the same color of another sphere. Therefore,
the large red sphere is a sphere, and the one same color would be a sphere as well. The image
shows a large red sphere, with another shape being a large red sphere. So, the large red sphere
is a sphere, and another 3D object can be a sphere as well.

**Answer:** Sphere

Ours - Image (c)

<think>
Okay, so I’m trying to figure out the answer to this question: There is a big thing that is the
same color as the tiny ball; what shape is it?

The image shows a big red cube next to a tiny red sphere. The tiny ball is a sphere, and the
big thing mentioned is a red cube. Since the image shows a big red cube next to a tiny red
sphere, the big thing must be a red cube.
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Therefore, the answer is a red cube.
</think>

The image shows a big red cube next to a tiny red sphere. The tiny ball is a sphere, and the
big thing mentioned is a red cube.

Answer: The shape is a red cube.

Analysis. The Vanilla model’s reasoning exhibits systemic failure: it is convoluted, opaque, and
internally inconsistent. Contribution maps reveal diffuse attention without stable anchoring, producing
weak and unreliable signals across both perceptual and relational heads. More critically, attribute
cross-talk collapses the distinction between color and shape, preventing the model from executing the
necessary reasoning pipeline of anchoring → same-color filtering → applying the “big” constraint.
As a result, it defaults to a spurious shortcut and outputs the incorrect label “sphere.” In contrast, our
method imposes structured coordination: shallow heads focus sharply on color and size cues, while
deep heads strengthen cross-object reasoning that jointly enforces the predicates “same color as the
tiny ball” and “big,” leading to the correct identification of the large red cube. These results highlight
that without principled alignment between perception and reasoning, models are prone to brittle and
misleading inference.
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