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ABSTRACT

Imitation learning (IL) aims at producing agents that can imitate any behavior given
a few expert demonstrations. Yet existing approaches require many demonstrations
and/or running (online or offline) reinforcement learning (RL) algorithms for each
new imitation task. Here we show that recent RL foundation models based on
successor measures can imitate any expert behavior almost instantly with just a few
demonstrations and no need for RL or fine-tuning, while accommodating several
IL principles (behavioral cloning, feature matching, reward-based, and goal-based
reductions). In our experiments, imitation via RL foundation models matches, and
often surpasses, the performance of SOTA offline IL algorithms, and produces
imitation policies from new demonstrations within seconds instead of hours.

1 INTRODUCTION

The objective of imitation learning (Schaal, 1996, IL) is to develop agents that can imitate any
behavior from few demonstrations. For instance, a cooking robot may learn how to prepare a new
recipe from a single demonstration provided by an expert chef. A virtual character may learn to
play different sports in a virtual environment from just a few videos of athletes performing the real
sports. Imitation learning algorithms achieved impressing results in challenging domains such as
autonomous car driving (Bühler et al., 2020; Zhou et al., 2020; George et al., 2018), complex robotic
tasks (Nair et al., 2017; Lioutikov et al., 2017; Zhang et al., 2018; Peng et al., 2020; Mandi et al.,
2022; Pertsch et al., 2022; Haldar et al., 2023), navigation tasks (Hussein et al., 2018; Shou et al.,
2020), cache management (Liu et al., 2020), and virtual character animation (Zhang et al., 2023; Peng
et al., 2018; Wagener et al., 2023). Despite these achievements, existing approaches (see Sec. 2 for a
detailed review) suffer from several limitations: for any new behavior to imitate, they often require
several demonstrations, extensive interaction with the environment, running complex reinforcement
learning routines, or knowing in advance the family of behaviors to be imitated.

In this paper, we tackle these limitations by leveraging behavior foundation models (BFMs)1 to
accurately solve imitation learning tasks from few demonstrations. To achieve this objective, we
want our BFM to have the following properties: 1) When pre-training the BFM, no prior knowledge
or demonstrations of the behaviors to be imitated are available, and only a dataset of unsupervised
transitions/trajectories is provided; 2) The BFM should accurately solve any imitation task without
any additional samples on top of the demonstrations, and without solving any complex reinforcement
learning (RL) problem. This means that the computation needed to return the imitation policy (i.e.,
the inference time) should be minimal; 3) Since many different ways to formalize the imitation
learning problem have been proposed (e.g., behavior cloning, apprenticeship learning, waypoint
imitation), we also want a BFM that is compatible with different imitation learning settings.

Our main contributions can be summarized as follows.

• We leverage recent advances in BFMs based on successor measures, notably the forward-backward
(FB) framework (Touati et al., 2023; Touati & Ollivier, 2021), to build BFMs that can be used
to solve any imitation task, and satisfy the three properties above. We focus on FB for its

*Joint first author, alphabetical order.
†Joint last author, alphabetical order.
1The term “Behavior” emphasizes that the model aims at controlling an agent in a dynamical environment.

This avoids confusion with widely used foundation models for images, videos, motions, and language. See Yang
et al. (2023) for an extensive review of the latter for decision making.
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Figure 1: Imitation score (ratio between the cumulative return of the algorithm and the cumulative
return of the expert) averaged over domains, tasks, and repetitions, for a single expert demonstration.
FB-IL methods reach SOTA performance with a fraction of the test-time computation needed by
offline IL baselines and they perform better than other pre-trained behavior foundation models, while
implementing a wider set of IL principles. Notice that goal-based methods, such as GOAL-TD3 and
GOALFB, work well in this experiment but have more restricted applicability (Sec. 4.4).

demonstrated performance at zero-shot reinforcement learning compared to other approaches
(Touati et al., 2023). We refer to the set of resulting algorithms as FB-IL.

• We test FB-IL algorithms across environments from the DeepMind Control Suite (Tassa et al.,
2018a) with multiple imitation tasks, using different IL principles and settings. We show that
not only do FB-IL algorithms perform on-par or better than the corresponding state-of-the-art
offline imitation learning baselines (Fig. 1), they also solve imitation tasks within a few seconds,
which is three orders of magnitude faster than offline IL methods that need to run full RL routines
to compute an imitation policy (Fig. 2). Furthermore, FB-IL methods perform better than other
BFM methods, while being able to implement a much wider range of imitation principles.

2 RELATED WORK

Offline IL Time
BC 3ℎ14𝑚
TD3-IL 7ℎ3𝑚
Demodice 12ℎ59𝑚

FB-IL Time
BCFB 1𝑚
ERFB < 5𝑠
BBELLFB 4𝑚

Figure 2: Time for computing
an imitation policy from a sin-
gle demonstration for a subset
of offline IL baselines and FB-
IL methods, averaged over all
environments and tasks.

While a thorough literature review and classification is out of the
scope of this work, we recall some of the most popular formulations
of IL, each of which will be implemented via BFMs in Sect. 4.

Behavioral Cloning (Pomerleau, 1988; Bain & Sammut, 1995, BC)
aims at directly reproducing the expert policy by maximizing the
likelihood of the expert actions under the trained imitation policy.
While this is the simplest approach to IL, it needs access to expert
actions, it may suffer from compounding errors caused by covariate
shift (Ross et al., 2011), and it often requires many demonstrations
to learn an accurate imitation policy. Variants of the formulation
include regularized BC (e.g., Piot et al., 2014; Xu et al., 2022) and
BC from observations only (e.g., Torabi et al., 2018).

Another, simple but effective, IL principle is to design (e.g., Ciosek,
2022; Reddy et al., 2020) or infer a reward (e.g., Zolna et al., 2020;
Luo et al., 2023; Kostrikov et al., 2020) from the demonstrations,
then use it to train an RL agent. For instance, SQIL (Reddy et al.,
2020) assigns a reward of 1 to expert samples and 0 to non-expert samples obtained either from an
offline dataset or online from the environment. Other methods (e.g., Ho & Ermon, 2016; Zolna et al.,
2020; Kostrikov et al., 2020; Kim et al., 2022b;a; Ma et al., 2022) learn a discriminator to infer a
reward separating expert from non-expert samples. OTR (Luo et al., 2023) uses optimal transport
to compute a distance between expert and non-expert transitions that is used as a reward. Finally,
other approaches frame IL as a goal-conditioned task (e.g., Ding et al., 2019; Lee et al., 2021), and
leverage advances in goal-oriented RL by using goals extracted from expert trajectories.
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Many imitation learning algorithms can be formally derived through the lens of either Apprenticeship
Learning (AL) (e.g., Abbeel & Ng, 2004; Syed & Schapire, 2007; Ziebart et al., 2008; Syed et al.,
2008; Ho et al., 2016; Ho & Ermon, 2016; Garg et al., 2021; Shani et al., 2022; Viano et al., 2022;
Al-Hafez et al., 2023; Sikchi et al., 2023) or Distribution Matching (DM) (e.g., Kostrikov et al., 2020;
Kim et al., 2022a; Zhu et al., 2020; Kim et al., 2022b; Ma et al., 2022; Yu et al., 2023). AL looks for
a policy that matches or outperforms the expert for any possible reward function in a known class. If
the reward is linearly representable w.r.t. a set of features, a sufficient condition is to find a policy
whose successor features match that of the expert. DM approaches directly aim to minimize some
𝑓 -divergence between the stationary distribution of the learned policy and the one of expert.

The main limitation of these approaches is that they need to solve a new (online or offline) RL
problem for each imitation task from scratch. This often makes their sample and computational
complexity prohibitive. Brandfonbrener et al. (2023) pre-train inverse dynamics representations
from multitask demonstrations, that can be efficiently fine-tuned with BC to solve some IL tasks
with reduced sample complexity. Masked trajectory models (Carroll et al., 2022; Liu et al., 2022;
Wu et al., 2023) pre-train transformer-based architectures using random masking of trajectories and
can perform waypoint-conditioned imitation if provided with sufficiently curated expert datasets
at pre-training. In a similar setting, Reuss et al. (2023) use pre-trained goal-conditioned policies
based on diffusion models for waypoint-conditioned imitation. Wagener et al. (2023) pre-train
autoregressive architectures with multiple experts, but focuses on trajectory completion rather than
“full” imitation learning. One-shot IL (e.g., Duan et al., 2017; Finn et al., 2017; Yu et al., 2018;
Zhao et al., 2022; Chang & Gupta, 2023) uses meta-learning to provide fast adaptation to a new
demonstration at train time. This requires carefully curated datasets at train time with access to
several expert demonstrations. Task-conditioned approaches (e.g., James et al., 2018; Kobayashi
et al., 2019; Dasari & Gupta, 2020; Dance et al., 2021) can solve IL by (meta-)learning a model
conditioned on reward, task or expert embeddings by accessing privileged information at train time.2

3 PRELIMINARIES

Markov decision processes. Letℳ = (𝑆,𝐴, 𝑃, 𝛾) be a reward-free Markov decision process
(MDP), where 𝑆 is the state space, 𝐴 is the state space, 𝑃 (d𝑠′|𝑠, 𝑎) is the probability measure
on 𝑠′ ∈ 𝑆 defining the stochastic transition to the next state obtained by taking action 𝑎 in state
𝑠, and 0 < 𝛾 < 1 is a discount factor (Sutton & Barto, 2018). Given (𝑠0, 𝑎0) ∈ 𝑆 × 𝐴 and
a policy 𝜋 : 𝑆 → Prob(𝐴), we denote Pr(·|𝑠0, 𝑎0, 𝜋) and E[·|𝑠0, 𝑎0, 𝜋] the probabilities and ex-
pectations under state-action sequences (𝑠𝑡, 𝑎𝑡)𝑡≥0 starting at (𝑠0, 𝑎0) and following policy 𝜋 in
the environment, defined by sampling 𝑠𝑡 ∼ 𝑃 (d𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) and 𝑎𝑡 ∼ 𝜋(d𝑎𝑡|𝑠𝑡). We define
𝑃𝜋(d𝑠′|𝑠) :=

∫︀
𝑃 (d𝑠′|𝑠, 𝑎)𝜋(d𝑎|𝑠), the state transition probabilities induced by 𝜋. Given a reward

function 𝑟 : 𝑆 → R, the 𝑄-function of 𝜋 for 𝑟 is 𝑄𝜋
𝑟 (𝑠0, 𝑎0) :=

∑︀
𝑡≥0 𝛾

𝑡 E[𝑟(𝑠𝑡)|𝑠0, 𝑎0, 𝜋]. The
optimal 𝑄-function is 𝑄⋆

𝑟(𝑠, 𝑎) := sup𝜋 𝑄
𝜋(𝑠, 𝑎). (For simplicity, we assume the reward only

depends on 𝑠𝑡+1 instead on the full triplet (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1), but this is not essential.)

For each policy 𝜋 and each 𝑠0 ∈ 𝑆, 𝑎0 ∈ 𝐴, the successor measure 𝑀𝜋(𝑠0, 𝑎0, ·) over 𝑆 describes
the cumulated discounted time spent at each state 𝑠𝑡+1 if starting at (𝑠0, 𝑎0) and following 𝜋, namely,

𝑀𝜋(𝑠0, 𝑎0, 𝑋) :=
∑︀

𝑡≥0 𝛾
𝑡 Pr(𝑠𝑡+1 ∈ 𝑋|𝑠0, 𝑎0, 𝜋) ∀𝑋 ⊂ 𝑆. (1)

The forward-backward (FB) framework. The FB framework (Touati & Ollivier, 2021) learns
a tractable representation of successor measures that provides approximate optimal policies for
any reward. Let R𝑑 be a representation space, and let 𝜌 be an arbitrary distribution over states,
typically the distribution of states in the training set. FB learns two maps 𝐹 : 𝑆 ×𝐴×R𝑑 → R𝑑 and
𝐵 : 𝑆 → R𝑑, and a set of parametrized policies (𝜋𝑧)𝑧∈R𝑑 , such that{︂

𝑀𝜋𝑧 (𝑠0, 𝑎0, 𝑋) ≈
∫︀
𝑋
𝐹 (𝑠0, 𝑎0, 𝑧)

⊤𝐵(𝑠) 𝜌(d𝑠), ∀𝑠0 ∈ 𝑆, 𝑎0 ∈ 𝐴,𝑋 ⊂ 𝑆, 𝑧 ∈ R𝑑

𝜋𝑧(𝑠) ≈ argmax𝑎 𝐹 (𝑠, 𝑎, 𝑧)
⊤𝑧, ∀(𝑠, 𝑎) ∈ 𝑆 ×𝐴, 𝑧 ∈ R𝑑.

(2)

We recall some properties of FB that will be leveraged to derive FB-based imitation methods. In the
following, we use the short forms Cov𝐵 := E𝑠∼𝜌[𝐵(𝑠)𝐵(𝑠)⊤] and

𝑀𝜋(𝑠) := E𝑎∼𝜋(𝑠)𝑀
𝜋(𝑠, 𝑎), 𝐹 (𝑠, 𝑧) := E𝑎∼𝜋𝑧(𝑠) 𝐹 (𝑠, 𝑎, 𝑧). (3)

2A few papers (e.g., Peng et al., 2022; Juravsky et al., 2023) have used expert trajectories to speed up the
learning of task-conditioned policies. Their objective is not IL but task generalization and/or compositionality.
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Proposition 1 (Touati & Ollivier (2021)). Assume (2) holds exactly. Then the following holds.

First, for any reward function 𝑟 : 𝑆 → R, let

𝑧𝑟 = E𝑠∼𝜌[𝑟(𝑠)𝐵(𝑠)]. (4)

Then 𝜋𝑧𝑟 is optimal for 𝑟, i.e., 𝜋𝑧𝑟 ∈ argmax𝜋 𝑄
𝜋
𝑟 (𝑠, 𝑎). Moreover, 𝑄⋆

𝑟(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑟)
⊤𝑧𝑟.

Finally, for each policy 𝜋𝑧 and each (𝑠0, 𝑎0) ∈ 𝑆 ×𝐴, 𝐹 (𝑠0, 𝑎0, 𝑧) ∈ R𝑑 are the successor features
associated to the state embedding 𝜙(𝑠) = (Cov𝐵)−1𝐵(𝑠), i.e.,

𝐹 (𝑠0, 𝑎0, 𝑧) = E
[︁∑︀

𝑡≥0 𝛾
𝑡𝜙(𝑠𝑡+1)|𝑠0, 𝑎0, 𝜋𝑧

]︁
. (5)

In practice, the properties in Prop. 1 only hold approximately, as 𝐹⊤𝐵 is a rank-𝑑 model of the
successor measures, 𝜋𝑧 may not be the exact greedy policy, and all of them are learned from samples.
Moreover, (4) expresses 𝑧𝑟 as an expectation over states from the training distribution 𝜌. If sampling
from a different distribution 𝜌′ at test time, an approximate formula is (Touati & Ollivier, 2021, §B.5):

𝑧𝑟 = (E𝑠∼𝜌𝐵(𝑠)𝐵(𝑠)⊤)(E𝑠∼𝜌′ 𝐵(𝑠)𝐵(𝑠)⊤)−1 E𝑠∼𝜌′ [𝑟(𝑠)𝐵(𝑠)]. (6)

Pre-training an FB model can be done from a non-curated, offline dataset of trajectories or transitions,
thus fulfilling property 1) above. Training is done via the measure-valued Bellman equation satisfied
by successor measures. We refer to (Touati et al., 2023) for a full description of FB training.

FB belongs to a wider class of methods based on successor features (e.g., Borsa et al. (2018)). Many
of our imitation algorithms still make sense with other methods in this class, see App. A.6. We focus
on FB as it has demonstrated better performance for zero-shot reinforcement learning within this
family (Touati et al., 2023).

4 FORWARD-BACKWARD METHODS FOR IMITATION LEARNING

We consider the standard imitation learning problem, where we have access to a few expert trajectories
𝜏 = (𝑠0, 𝑠1, . . . , 𝑠ℓ(𝜏)), each of length ℓ(𝜏), generated by some unknown expert policy 𝜋𝑒, and no
reward function is available. In general, we do not need access to the expert actions, except for
behavioral cloning. We denote by E𝜏 the empirical average over the expert trajectories 𝜏 and by 𝜌𝑒
the empirical distribution of states visited by the expert trajectories.3

We now describe several IL methods based on a pre-trained FB model. These run only from
demonstration data, without solving any complex RL problem at test time (property 2)). Some
methods just require a near-instantaneous forward pass through 𝐵 at test time, while others require a
gradient descent over the small-dimensional parameter 𝑧. The latter is still much faster than solving
a full RL problem, as shown in Fig. 2. At imitation time, we assume access to the functions 𝐹 , 𝐵,
the matrix Cov𝐵, and the policies 𝜋𝑧 , but we do not reuse the unsupervised dataset used for FB
training. To illustrate how FB can accommodate different IL principles, we present the methods in
loose groups by the underlying IL principle.

4.1 BEHAVIORAL CLONING

In case actions are available in the expert trajectories, we can directly implement the behav-
ioral cloning principle using the policies (𝜋𝑧)𝑧 returned by the FB model. Each policy 𝜋𝑧
defines a probability distribution on state-action sequences given the initial state 𝑠0, namely
Pr(𝑎0, 𝑠1, 𝑎1, . . . |𝑠0, 𝜋𝑧) =

∏︀
𝑡≥0 𝜋𝑧(𝑎𝑡|𝑠𝑡)𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). We look for the 𝜋𝑧 for which the expert

trajectories are most likely, by minimizing the loss

ℒ𝐵𝐶(𝑧) := −E𝜏 ln Pr((𝑎0, 𝑠1, 𝑎1, . . . |𝑠0, 𝜋𝑧) = −E𝜏

∑︁
𝑡

ln𝜋𝑧(𝑎𝑡|𝑠𝑡) + cst, (7)

where the constant absorbs the environment transition probabilities 𝑃 (d𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), which do not
depend on 𝑧. Since we have access to 𝜋𝑧(𝑎|𝑠), this can be optimized over 𝑧 given the expert
trajectories, leading to the behavior cloning-FB (BCFB) approach.

3We give each expert trajectory the same weight in 𝜌𝑒 independently of its length, so 𝜌𝑒 corresponds to first
sampling a trajectory, then sampling a state in that trajectory.
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Since the FB policies (𝜋𝑧)𝑧 are trained to be approximately optimal for some reward, we expect FB
(and BFMs in general) to provide a convenient “bias” to identify policies, instead of performing BC
among the set of all (optimal or not) policies.

4.2 REWARD-BASED IMITATION LEARNING

Existing reward-based IL methods require running RL algorithms to optimize an imitation policy
based on a reward function specifically built to mimic the expert’s behavior. Leveraging FB models,
we can avoid solving an RL problem at test time, and directly obtain the imitation policy via a simple
forward pass of the 𝐵 model. Indeed, as mentioned in Sec. 3, FB models can recover a (near-optimal)
policy for any reward function 𝑟 by setting 𝑧 = E𝑠∼𝜌[𝑟(𝑠)𝐵(𝑠)]. Depending on the specific reward
function, we obtain the following algorithms to estimate a 𝑧, after which we just use 𝜋𝑧 .

First, consider the case of 𝑟(·) = 𝜌𝑒(·)/𝜌(·) in (Kim et al., 2022b;a; Ma et al., 2022). This yields

𝑧 = E𝑠∼𝜌[𝑟(𝑠)𝐵(𝑠)] = E𝜌𝑒 [𝐵] = E𝜏

[︁
1

ℓ(𝜏)

∑︀
𝑡≥0𝐵(𝑠𝑡+1)

]︁
(8)

which amounts to using the FB formula (4) for 𝑧 by just putting a reward at every state visited by the
expert. We refer to this as empirical reward via FB (ERFB).

Similarly, the reward 𝑟(·) = 𝜌𝑒(·)/(𝜌(·) + 𝜌𝑒(·)) used in (Reddy et al., 2020; Zolna et al., 2020) leads to
regularized empirical reward via FB (RERFB), derived from (6) in App. A.1:

𝑧 = Cov(𝐵)
(︁
Cov(𝐵) + E𝑠∼𝜌𝑒

[𝐵(𝑠)𝐵(𝑠)⊤]
)︁−1

E𝜌𝑒
[𝐵]. (9)

Even though these reward functions are defined via the distribution 𝜌 of the unsupervised dataset, this
can be instantiated using only the pre-trained FB model, with no access to the unsupervised dataset,
and no need to train a discriminator.

Note that (8) and (9) are independent of the order of states in the expert trajectory. This was not a
problem in our setup, because the states themselves carry dynamical information (speed variables).
If this proves limiting in some environment, this can easily be circumvented by training successor
measures over visited transitions (𝑠𝑡, 𝑠𝑡+1) rather than just states 𝑠𝑡+1, namely, training the FB model
with 𝐵(𝑠𝑡, 𝑠𝑡+1). A similar trick is applied, e.g., in (Zhu et al., 2020; Kim et al., 2022a).

4.3 DISTRIBUTION MATCHING AND FEATURE MATCHING

Apprenticeship learning and distribution matching are popular ways to provide a formal definition
of IL as the problem of imitating the expert’s visited states. We take a unified perspective on these
two categories and derive several FB-IL methods starting from the saddle-point formulation of IL
common to many AL and DM methods. Let 𝜌0 be an arbitrary initial distribution over 𝑆. For any
reward 𝑟 and policy 𝜋, the expected discounted cumulated return of 𝜋 is equal to E𝑠0∼𝜌0⟨𝑀𝜋(𝑠0), 𝑟⟩
by definition of 𝑀𝜋 . Consequently, the AL criterion of minimizing the worst-case performance gap
between 𝜋 and the expert can be seen as a measure of divergence between successor measures:
inf
𝜋

sup
𝑟∈ℛ

E𝑠0∼𝜌0
[⟨𝑀𝜋𝑒(𝑠0), 𝑟⟩−⟨𝑀𝜋(𝑠0), 𝑟⟩] = inf

𝜋
‖E𝑠0∼𝜌0

𝑀𝜋𝑒(𝑠0)− E𝑠0∼𝜌0
𝑀𝜋(𝑠0)‖ℛ⋆ (10)

whereℛ is any class of reward functions, and ‖·‖ℛ⋆ the resulting dual seminorm. Since FB directly
models 𝑀𝜋 , it can directly tackle (10) as finding the policy 𝜋𝑧 that minimizes the loss

ℒ̄ℛ⋆(𝑧) := ‖E𝑠0∼𝜌0
𝑀𝜋𝑧 (𝑠0)− E𝑠0∼𝜌0

𝑀𝜋𝑒(𝑠0)‖2ℛ⋆ . (11)
In practice, instead of (11), we consider the loss

ℒℛ⋆(𝑧) := E𝑠0∼𝜌𝑒
‖𝑀𝜋𝑧 (𝑠0)−𝑀𝜋𝑒(𝑠0)‖2ℛ⋆ . (12)

This is a stricter criterion than (11) as it requires the successor measure of the imitation policy and
the expert policy to be similar for any 𝑠 observed along expert trajectories. This avoids undesirable
effects from averaging successor measures over 𝜌0, which may “erase” too much information about
the policy (e.g., take 𝑆 = {𝑠1, 𝑠2} where one policy swaps 𝑠1 and 𝑠2 and the other policy does
nothing: on average over the starting point, the two policies have the same occupation measure). This
increases robustness in our experiments (see App. E.6).

We can derive a wide range of algorithms depending on the choice of ℛ, how we estimate 𝑀𝜋𝑒

from expert demonstrations, and how we leverage FB models to estimate 𝑀𝜋𝑧 . For instance, our
algorithms can be extended to the KL divergence between the distributions (App. A.5).
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Successor feature matching. A popular choice forℛ is to consider rewards linear in a given feature
basis (Abbeel & Ng, 2004). Here we can leverage the FB property of estimating optimal policies for
rewards in the linear span of 𝐵 (Touati et al., 2023). Takingℛ𝐵 := {𝑟 = 𝑤⊤𝐵, 𝑤 ∈ R𝑑, ‖𝑤‖2 ≤ 1}
in (10) yields the seminorm ‖𝑀‖𝐵* := sup𝑟∈ℛ𝐵

∫︀
𝑟(𝑠)𝑀(d𝑠) =

⃦⃦∫︀
𝐵(𝑠)𝑀(d𝑠)

⃦⃦
2

and the loss

ℒ𝐵⋆(𝑧) := E𝑠0∼𝜌𝑒

⃦⃦∫︀
𝐵(𝑠)𝑀𝜋𝑧 (𝑠0,d𝑠)−

∫︀
𝐵(𝑠)𝑀𝜋𝑒(𝑠0,d𝑠)

⃦⃦2
2

(13)

namely, the averaged features𝐵 of states visited under 𝜋𝑧 and 𝜋𝑒 should match. This can be computed
by using the FB model for 𝑀𝜋𝑧 and the expert trajectories for 𝑀𝜋𝑒 , as follows.
Theorem 2. Assume that the FB successor feature property (5) holds. Then the loss (13) satisfies

ℒ𝐵⋆(𝑧) = E𝑠𝑡∼𝜌𝑒
E
[︂⃦⃦⃦

(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)−
∑︀

𝑘≥0 𝛾
𝑘𝐵(𝑠𝑡+𝑘+1)

⃦⃦⃦2
2
| 𝑠𝑡, 𝜋𝑒

]︂
+ cst. (14)

This can be estimated by sampling a segment (𝑠𝑡, 𝑠𝑡+1, . . .) starting at a random time 𝑡 on an expert
trajectory. Then we can perform gradient descent over 𝑧. We refer to this method as FMFB.

Distribution matching. Ifℛ is restricted to the span of some features, we only get a seminorm on
successor measures (any information not in the features is lost). Instead, one can takeℛ = 𝐿2(𝜌),
which provides a full norm ‖𝑀𝜋𝑒 −𝑀𝜋‖𝐿2(𝜌)⋆ on visited state distributions: this matches state
distributions instead of features. This can be instantiated with FB (App. A.3), but the final loss is
very similar to (67), as FB neglects features outside of 𝐵 anyway. We refer to this method as DMFB.

Bellman residual minimization for distribution matching. An alternative approach is to identify
the best imitation policy or its stationary distribution via the Bellman equations they satisfy. This is
to distribution matching what TD is to direct Monte Carlo estimation of 𝑄-functions.

The successor measure of a policy 𝜋 satisfies the measure-valued Bellman equation 𝑀𝜋(𝑠𝑡,d𝑠
′) =

𝑃𝜋(𝑠𝑡,d𝑠
′)+𝛾

∫︀
𝑠𝑡+1

𝑃𝜋(𝑠𝑡,d𝑠𝑡+1)𝑀
𝜋(𝑠𝑡+1,d𝑠

′), or more compactly𝑀𝜋 = 𝑃𝜋+𝛾𝑃𝜋𝑀𝜋 (Blier
et al., 2021). So the successor measure of the expert policy satisfies 𝑀𝜋𝑒 = 𝑃𝜋𝑒 + 𝛾𝑃𝜋𝑒𝑀𝜋𝑒 .
Therefore, if we want to find a policy 𝜋𝑧 that behaves like 𝜋𝑒, 𝑀𝜋𝑧 should approximately satisfy the
Bellman equation for 𝑃𝜋𝑒 , namely, 𝑀𝜋𝑧 ≈ 𝑃𝜋𝑒 + 𝛾𝑃𝜋𝑒𝑀𝜋𝑧 . Thus, we can look for a policy 𝜋𝑧
whose Bellman gaps for 𝜋𝑒 are small. This leads to the loss

ℒℛ⋆Bell(𝑧) :=
⃦⃦
𝑀𝜋𝑧 − 𝑃𝜋𝑒 − 𝛾𝑃𝜋𝑒�̄�𝜋𝑧

⃦⃦2
ℛ⋆ (15)

where the bar above 𝑀 on the right denotes a stop-grad operator, as usual for deep 𝑄-learning.

The method we call BBELLFB uses the seminorm ‖·‖𝐵⋆ in (15). This amounts to minimizing
Bellman gaps of 𝑄-functions for all rewards linearly spanned by 𝐵. With the FB model, the loss (15)
with this norm takes a tractable form allowing for gradient descent over 𝑧 (App., Thm. 4):

ℒ𝐵⋆Bell(𝑧) = E𝑠𝑡∼𝜌𝑒,𝑠𝑡+1∼𝑃𝜋𝑒 (·|𝑠𝑡)
[︀
−2𝐹 (𝑠𝑡, 𝑧)⊤(Cov𝐵)𝐵(𝑠𝑡+1)

+ (𝐹 (𝑠𝑡, 𝑧)− 𝛾𝐹 (𝑠𝑡+1, 𝑧))
⊤(Cov𝐵)2(𝐹 (𝑠𝑡, 𝑧)− 𝛾𝐹 (𝑠𝑡+1, 𝑧))

]︀
+ cst. (16)

The norm fromℛ = 𝐿2(𝜌) in (15) yields a loss similar to the one used during FB training (indeed,
FB is trained via a similar Bellman equation with 𝜋𝑧 instead of 𝜋𝑒). The final loss only differs from
(16) by Cov𝐵 factors, so we report it in App. A.4 (Thm. 5). We call this method FBLOSSFB.

Relationship between IL principles: loss bounds. Any method that provides a policy close to 𝜋𝑒
will provide state distributions close to that of 𝜋𝑒 as a result, so we expect a relationship between the
losses from different approaches. Indeed, the Bellman gap loss bounds the distribution matching loss
(12), and the BC loss bounds the KL version of (12). This is formalized in Thms. 7 and 8 (App. A.7).

4.4 IMITATING NON-STATIONARY BEHAVIORS: GOAL-BASED IMITATION

While most IL methods are designed to imitate stationary behaviors, we can leverage FB models
to imitate non-stationary behaviors. Consider the case where only a single expert demonstration 𝜏
is available. At each time step 𝑡, we can use the FB method to reach a state 𝑠𝑡+𝑘 slightly ahead of
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𝑠𝑡 in the expert trajectory, where 𝑘 ≥ 0 is a small, fixed integer. Namely, we place a single reward
at 𝑠𝑡+𝑘, use the FB formula (4) to obtain the 𝑧𝑡 corresponding to this reward, 𝑧𝑡 := 𝐵(𝑠𝑡+𝑘), and
use the policy 𝜋𝑧𝑡 . We call this method GOALFB. This is related to settings such as tracking (e.g.,
Wagener et al., 2023; Winkler et al., 2022), waypoint imitation (e.g., Carroll et al., 2022; Chang &
Gupta, 2023; Shi et al., 2023), or goal-based IL (e.g., Liu et al., 2022; Reuss et al., 2023).

GOALFB leverages the possibility to change the reward in real time with FB. A clear advantage is its
ability to reproduce behaviors that do not correspond to optimizing a (Markovian) reward function,
such as cycling over some states, or non-stationary behaviors. GOALFB may have advantages even in
the stationary case, as it may mitigate approximation errors from the policies or the representation
of 𝑀𝜋: by selecting a time-varying 𝑧, the policy can adapt over time and avoid deviations in the
execution of long behaviors through a stationary policy. However, goal-based IL is limited to copying
one single expert trajectory, by reproducing the same state sequence. The behavior cannot necessarily
be extended past the end of the expert trajectory, and no reusable policy is extracted.

5 EXPERIMENTS

In this section, we evaluate FB-IL against the objectives stated in the introduction: Property 2. We
verify if an FB model pre-trained on one specific environment is able to imitate a wide range of tasks
with only access to few demonstrations and without solving any RL problem. Property 3. We assess
the generality of FB-IL by considering a variety of imitation learning principles and settings.

Protocol and baselines. We evaluate IL methods on 21 tasks in 4 domains (Maze, Walker, Cheetah,
Quadruped) from (Touati et al., 2023). We use the standard reward-based evaluation protocol for IL.
For each task, we train expert policies using TD3 (Fujimoto et al., 2018) on a task-specific reward
function (Tassa et al., 2018a). We use the expert policies to generate 200 trajectories for each task to
be used for IL. In our first series of experiments, the IL algorithms are provided with a single expert
demonstration (see App. E.4 for the effect of additional demonstrations). Each experiment (i.e., pair
algorithm and task) was repeated with 20 random seeds. We report the cumulated reward achieved by
the IL policy, computed using the ground-truth task-specific reward and averaged over 1000 episodes
starting from the same initial distribution used to collect the expert demonstrations.

For each environment, we train an FB model using only unsupervised samples generated using
RND (Burda et al., 2019). We repeat the FB pre-training 10 times, and report performance averaged
over the resulting models (variance is reported in App. E.3). For FB-IL methods that require a gradient
descent over 𝑧 (BCFB, BBELLFB, and FMFB), we use warm-start with 𝑧0 = ERFB({𝜏𝑒}) (8), which
can be computed with forward passes on 𝐵 only. GOALFB is run with a lookahead window 𝑘 = 10.

First (Section 5.1), we compare FB-IL to standard offline IL algorithms trained on each specific
imitation task, using the same unsupervised and expert samples as FB-IL. For behavioral cloning
approaches, we use vanilla BC. For reward-based IL, we include SQIL (Reddy et al., 2020) (which
is originally online but can easily be adapted offline; SQIL balances sampling in the update step and
runs SAC); TD3-IL (where we merge all samples in the replay buffer and use TD3 instead of SAC);
ORIL (Zolna et al., 2020) from state-action demonstrations and only state; and OTR (Luo et al.,
2023) using TD3 as the offline RL subroutine. For AL and DM IL, we use DEMODICE (Kim et al.,
2022b), and IQLEARN (Garg et al., 2021). See App. B for details.

Next (Section 5.2), we also include alternative behavior foundation models beyond FB, pre-trained
for each environment on the same unsupervised samples as FB. GOAL-TD3 pre-trains goal-
conditioned policies 𝜋(𝑎|𝑠, 𝑔) on the unsupervised dataset using TD3 with Hindsight Experience
Replay (Andrychowicz et al., 2017). At test time, it can implement goal-based IL, i.e., at each time
step 𝑡 it selects the policy 𝜋(𝑎𝑡|𝑠𝑡, 𝑠𝑒𝑡+𝑘) where the goal 𝑠𝑒𝑡+𝑘 corresponds to a state 𝑘 steps ahead in
the expert trajectory. (Despite the simplicity, we did not find this algorithm proposed in the literature.)
Next, GOAL-GPT (Liu et al., 2022) pre-trains a goal-conditioned, transformer-based auto-regressive
policy 𝜋(𝑎𝑡|(𝑠𝑡, 𝑔), (𝑠𝑡−1, 𝑔), . . . (𝑠𝑡−ℎ+1, 𝑔); 𝑔 = 𝑠𝑡+𝑘) to predict the next action based on last ℎ
states and the state 𝑘 steps in the future as the goal of the policy. MASKDP (Liu et al., 2022) uses a
bidirectional transformer to reconstruct trajectories with randomly masked states and actions. Both
models can be used to perform goal-based IL. We adapt DIAYN (Eysenbach et al., 2018) to pre-train
a set of policies (𝜋𝑧) with 𝑧 ∈ R𝑑 and a skill decoder 𝜙 : 𝑆 → R𝑑 predicting which policy is more
likely to reach a specific state. (This requires online interaction during pre-training.) It can be used to
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Figure 3: Imitation score (i.e., ratio between the cumulative return of the algorithm and the one of the
expert) for each domain averaged over tasks and repetitions for a single expert demonstration.

implement behavioral cloning as in (7), a method similar to ERFB, and goal-based IL by selecting
𝑧𝑡 = 𝜙(𝑠𝑡+𝑘). See App. C for extra details.

Additional results. App. E.1 contains detailed results with additional baselines and FB-IL variants.
App. E.2 ablates over our warm-start strategy for optimization-based FB-IL methods. App. E.4
studies the influence of the number of expert trajectories, with FB methods being the least sensitive,
and BC methods the most. App E.5 tests the methods under a shift between the distribution of the
initial states for imitation at test time and the one of expert trajectories: the overall picture is largely
unchanged from Fig. 1, although the slight lead of goal-based methods disappears. App. E.3 shows
that performance is not very sensitive to variations of the pretrained FB foundation model (estimated
across 10 random seeds for FB training), thus confirming robustness of the overall approach.

5.1 COMPARISON TO OFFLINE IL BASELINES

Fig. 3 compares the performance of FB-IL methods and offline baselines grouped by IL principle. For
ease of presentation, we report the performance averaged over tasks of each environment. Overall, FB-
IL methods perform on-par or better than each of the baselines implementing the same IL principle,
consistently across domains and IL principle. In addition, FB-IL is able to recover the imitation
policy in few seconds, almost three orders of magnitude faster than the baselines, that need to be
re-trained for each expert demonstration (Tab. 2). This confirms that FB models are effective BFMs
for solving a wide range of imitation learning tasks with few demonstrations and minimal compute.

As expected, BC baselines perform poorly with only one expert trajectory. BCFB has a much stronger
performance, confirming that the set (𝜋𝑧) contains good imitation policies for a large majority of
tasks and that they can be recovered by behavioral cloning from even a single demonstration.

Reward-based FB-IL methods –ERFB (8), RERFB (9)– achieve consistent performance across
all environments and perform on par or even better than the baselines sharing the same implicit
reward function. This shows that FB models are effective at recovering near-optimal policies from
rewards. On the other hand, reward-based IL offline baselines display a significant variance in their
performance across environment (e.g., ORIL for state-action completely fails in maze tasks). The
baselines derived from distribution matching and apprenticeship learning perform poorly in almost all
the domains and tasks. This may be because they implement conservative offline RL algorithms that
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Method Score
GOALFB 49.53± 4.06
GOAL-TD3 50.76± 6.52
GOAL-GPT 17.58± 0.82

Figure 4: Imitating a sequence of yoga poses in the walker domain. (left) Example of sequence. (right)
Total reward averaged over 1000 randomly-generated sequences and 10 pretrained BFMs plus/minus
95% confidence interval. The reward of a trajectory is computed by summing the (normalized)
rewards of the poses expected at each time step. See App. F for additional details.

are strongly biased towards the unsupervised data and fail at imitating the expert demonstrations.4
On the other hand, FB-IL variants achieve good results (about 4 times the performance of DICE) in
all domains except maze where they lag behind other FB-IL methods. In general, this shows that FB
models are effective in implementing different IL principles even when offline baselines struggle.

5.2 COMPARISON TO OTHER BFM METHODS

The BFM methods reported in Fig. 3 display a trade-off between generality and performance. DIAYN
pre-trained policies and discriminator can be used to implement a wide range of imitation learning
principles (except for distribution matching), but its performance does not match the corresponding
top offline baselines and it is worse than FB-IL across all domains. Methods based on masked-
trajectory models can implement a goal-based reduction of IL and work better than DIAYN. Finally,
GOAL-TD3 is performing best among the other BFM methods and it is close second w.r.t. GOALFB.
Nonetheless, as discussed in Sect. 4.4, all goal-based reduction methods are more limited in their
applicability, since they can only use a single expert demonstration, cannot generalize beyond the
expert trajectory, and do not produce a policy reusable over the whole space.

5.3 WAYPOINT IMITATION LEARNING

We consider non-realizable and non-stationary experts by generating demonstrations as the concate-
nation of “yoga poses” from (Mendonca et al., 2021), implicitly assuming that the expert policy can
instantaneously switch between any two poses. We keep each pose fixed for 100 steps and generate
trajectories of 1000 steps. In this case, no imitation policy can perfectly reproduce the sequence of
poses and only goal-based IL algorithms can be applied, since all other IL methods assume stationary
expert policies. We evalute the same pre-trained models used in the previous section.

Fig. 4 shows that GOALFB matches the performance of GOAL-TD3 and outperforms GOAL-GPT.
This confirms that even in this specific case, FB-IL is competitive with other BFM models that are
specialized (and limited) to goal-reaching tasks, whereas the same pre-trained FB model can be used
to implement a wide range of imitation learning principles. GOAL-GPT’s poor performance may be
because the algorithm tries to reproduce trajectories in the training dataset rather than learning the
optimal way to reach goals. We refer to App. F for a qualitative evaluation of the imitating behaviors.

6 CONCLUSION

Behavior foundation models offer a new alternative for imitation learning, reducing by orders of
magnitude the time needed to produce an imitation policy from new task demonstrations. This comes
at the cost of pretraining an environment-specific (but task-agnostic) foundation model. BFMs can be
used concurrently with a number of imitation learning design principles, and reach state-of-the-art
performance when evaluated for the ground-truth task reward. One theoretical limitation is that, due
to imperfections in the underlying BFM, one may not recover optimal performance even with infinite
expert demonstrations. This can be mitigated by increasing the BFM capacity, by improving the
training data, or by fine-tuning the BFM at test-time, which we leave to future work.

4In App. G we confirm this intuition by showing that the baselines in this category achieve much better
performance when the unsupervised dataset contains expert samples (e.g., D4RL data). Unfortunately, this
requires curating the dataset for each expert and it would not allow solving multiple tasks in the same environment.
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A ADDITIONAL RESULTS AND PROOFS

A.1 DERIVATION OF THE EXPRESSION FOR FB WITH REWARD 𝜌𝑒/(𝜌+ 𝜌𝑒)

In FB theory, the expression 𝑧 = E𝑠∼𝜌[𝑟(𝑠)𝐵(𝑠)] assumes that we sample rewards 𝑟(𝑠) for states 𝑠
following the original training distribution 𝜌. This is not always possible or desirable. In general, if
we have access to rewards 𝑟(𝑠) for states 𝑠 sampled from some distribution 𝜌′, then the expression
for 𝑧 becomes (Touati & Ollivier, 2021, §B.5)

𝑧 = (Cov𝐵)(E𝑠∼𝜌′ 𝐵(𝑠)𝐵(𝑠)⊤)−1 E𝑠∼𝜌′ [𝑟(𝑠)𝐵(𝑠)] (17)

which reduces to 𝑧 = E𝑠∼𝜌[𝑟(𝑠)𝐵(𝑠)] when 𝜌 = 𝜌′.

Taking 𝑟(𝑠) := 𝜌𝑒(d𝑠)
𝜌(d𝑠)+𝜌𝑒(d𝑠)

and setting 𝜌′ := 1
2 (𝜌+ 𝜌𝑒) yields

𝑧 = (Cov𝐵)

(︂
1

2
Cov𝐵 +

1

2
E𝑠∼𝜌𝑒 𝐵(𝑠)𝐵(𝑠)⊤

)︂−1

E
𝑠∼ 1

2 (𝜌+𝜌𝑒)

[︂
𝜌𝑒(d𝑠)

𝜌(d𝑠) + 𝜌𝑒(d𝑠)
𝐵(𝑠)

]︂
(18)

= (Cov𝐵)

(︂
1

2
Cov𝐵 +

1

2
E𝑠∼𝜌𝑒 𝐵(𝑠)𝐵(𝑠)⊤

)︂−1 ∫︁ (︀
1
2𝜌(d𝑠) +

1
2𝜌𝑒(d𝑠)

)︀ 𝜌𝑒(d𝑠)

𝜌(d𝑠) + 𝜌𝑒(d𝑠)
𝐵(𝑠)

(19)

= (Cov𝐵)
(︀
Cov𝐵 + E𝑠∼𝜌𝑒

𝐵(𝑠)𝐵(𝑠)⊤
)︀−1 E𝑠∼𝜌𝑒

[𝐵(𝑠)] (20)

as needed.

The choice 𝜌′ = 1
2 (𝜌+ 𝜌𝑒) is equivalent to computing 𝑧 from a theoretical dataset that would mix the

unsupervised and expert datasets. Note, though, that the final expression does not explicitly involve
the unsupervised dataset, beyond the covariance matrix Cov𝐵.

A.2 PROOF OF THEOREM 2

The loss is

ℒ𝐵⋆(𝑧) = E𝑠𝑡∼𝜌𝑒

⃦⃦∫︀
𝐵(𝑠)𝑀𝜋𝑧 (𝑠𝑡,d𝑠)−

∫︀
𝐵(𝑠)𝑀𝜋𝑒(𝑠𝑡,d𝑠)

⃦⃦2
2

(21)

= E𝑠𝑡∼𝜌𝑒

⃦⃦∫︀
𝐵(𝑠)𝑀𝜋𝑧 (𝑠𝑡,d𝑠)

⃦⃦2
2
− 2E𝑠𝑡∼𝜌𝑒

(︀∫︀
𝐵(𝑠)𝑀𝜋𝑧 (𝑠𝑡,d𝑠)

)︀⊤ (︀∫︀
𝐵(𝑠)𝑀𝜋𝑒(𝑠𝑡,d𝑠)

)︀
+ cst

(22)

where the constant does not depend on 𝑧.

Under the successor feature property (5) of FB, we have, for all 𝑠 ∈ 𝑆,∫︁
𝐵(𝑠′)𝑀𝜋𝑧 (𝑠,d𝑠′) = E

⎡⎣∑︁
𝑡≥0

𝛾𝑡𝐵(𝑠𝑡+1) | 𝑠0 = 𝑠, 𝜋𝑧

⎤⎦ (23)

= (Cov𝐵)𝐹 (𝑠, 𝑧), (24)

where the first equality follows from the definition of the successor measure 𝑀𝜋𝑧 (𝑠,d𝑠′), and the
second one from (5).

Therefore, the loss ℒ𝐵⋆ rewrites as

ℒ𝐵⋆(𝑧) = E𝑠𝑡∼𝜌𝑒
‖(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)‖22−2E𝑠𝑡∼𝜌𝑒

((Cov𝐵)𝐹 (𝑠𝑡, 𝑧))
⊤ (︀∫︀ 𝐵(𝑠)𝑀𝜋𝑒(𝑠𝑡,d𝑠)

)︀
+cst.

(25)

Note that, for the derivation above, we do not use the full 𝑀𝜋𝑧 = 𝐹⊤𝐵𝜌 property (Equation 2). We
only use that this property holds when integrated against 𝐵. For this, it is enough that (Cov𝐵)𝐹 be
the successor features of 𝐵, which holds by Proposition 1. This is a weaker requirement than the full
successor measure equality 𝑀𝜋𝑧 = 𝐹⊤𝐵𝜌.

Now, in expectation over the expert trajectories (𝑠0, 𝑠1, . . . , 𝑠𝑡, . . .), we have∫︁
𝐵(𝑠′)𝑀𝜋𝑒(𝑠𝑡,d𝑠

′) = E

⎡⎣∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1) | 𝑠𝑡, 𝜋𝑒

⎤⎦ (26)
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by definition of the successor measure 𝑀𝜋𝑒 . So

E𝑠𝑡∼𝜌𝑒((Cov𝐵)𝐹 (𝑠𝑡, 𝑧))
⊤ (︀∫︀ 𝐵(𝑠)𝑀𝜋𝑒(𝑠𝑡,d𝑠)

)︀
= E𝑠𝑡∼𝜌𝑒

⎡⎣((Cov𝐵)𝐹 (𝑠𝑡, 𝑧))
⊤ E

⎡⎣∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1) | 𝑠𝑡, 𝜋𝑒

⎤⎦⎤⎦
= E𝑠𝑡∼𝜌𝑒

E

⎡⎣((Cov𝐵)𝐹 (𝑠𝑡, 𝑧))
⊤
∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1) | 𝑠𝑡, 𝜋𝑒

⎤⎦ (27)

by properties of conditional expectations.

So the loss can be rewritten as

ℒ𝐵⋆(𝑧) = E𝑠𝑡∼𝜌𝑒
E

⎡⎣‖(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)‖22 − 2((Cov𝐵)𝐹 (𝑠𝑡, 𝑧))
⊤
∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1) + cst | 𝑠𝑡, 𝜋𝑒

⎤⎦
(28)

= E𝑠𝑡∼𝜌𝑒
E

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)−

∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1)

⃦⃦⃦⃦
⃦⃦
2

2

+ cst | 𝑠𝑡, 𝜋𝑒

⎤⎥⎦ (29)

for a new constant that does not depend on 𝑧. This ends the proof.

A.3 DISTRIBUTION MATCHING WITH FB: THE FEATURE MATCHING LOSS WITH ℛ = 𝐿2(𝜌)

A general norm on measures is the dual 𝐿2-norm, which corresponds to taking ℛ = 𝐿2(𝜌) in the
distribution matching criterion (10). Explicitly,

‖𝑀‖𝐿2(𝜌)⋆ := sup
𝑟, ‖𝑟‖𝐿2(𝜌)≤1

∫︁
𝑟(𝑠)𝑀(d𝑠) = ‖𝑀/𝜌‖𝐿2(𝜌) . (30)

Since
∫︀
𝑟(𝑠)𝑀𝜋(𝑠0,d𝑠) is the expected total return of policy 𝜋 starting at 𝑠0 for reward 𝑟, this norm

is the worst-case optimality gap on unit-norm rewards. Namely, we compare the worst-case difference
of two measures on all unit-norm reward functions.

The resulting loss in (12) is

ℒ𝐿2(𝜌)⋆(𝑧) := E𝑠∼𝜌𝑒
‖𝑀𝜋𝑧 (𝑠)−𝑀𝜋𝑒(𝑠)‖2𝐿2(𝜌)⋆ (31)

This loss is tractable thanks to the following result.

Theorem 3. Assume that the FB model (2) holds. Then the quantity

E𝑠𝑡∼𝜌𝑒 𝐹 (𝑠𝑡, 𝑧)
⊤(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)− 2E𝑠𝑡∼𝜌𝑒 𝐹 (𝑠𝑡, 𝑧)

⊤
∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1) (32)

is an unbiased estimate of the loss ℒ𝐿2(𝜌)⋆(𝑧), up to an additive constant that does not depend on 𝑧.

So to optimize this loss, we just have to compute the discounted average of features 𝐵 of states along
the expert trajectory starting at each visited state 𝑠𝑡. Then we can perform stochastic gradient descent
with respect to 𝑧. The matrix Cov𝐵 is computed during pretraining.

Comparison of the 𝐿2(𝜌) loss and the feature matching loss. The loss (32) coincides with the
feature matching loss (67) when Cov𝐵 = Id. Standard FB training weakly enforces Cov𝐵 ≈ Id by
an auxiliary loss on Cov𝐵 − Id (Touati et al., 2023), so we do not expect a significant difference
between (32) and (67).

Actually, the 𝐿2 loss (32) could be considered as a “canonical” version of the feature matching loss
(67) that first orthonormalizes the features. The 𝐿2 loss is defined just by the 𝐿2(𝜌) norm without
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any reference to a feature basis, so it is invariant by linear transformations within the features, while
the feature matching loss is not.

Compared to feature matching, Theorem 3 requires stronger properties of FB than Theorem 2. Indeed,
Theorem 2 only requires that the FB equation 𝐹⊤𝐵𝜌 = 𝑀 hold on the span of 𝐵 (and would
hold similarly for other successor feature models), while Theorem 3 really requires 𝐹⊤𝐵𝜌 =𝑀 as
measures.

Proof of Theorem 3. The proof is as follows. We have ‖𝑀‖2𝐿2(𝜌)* =
∫︀
(𝑀(d𝑠′)/𝜌(d𝑠′))2 𝜌(d𝑠′).

Therefore, with starting point 𝑠, we have

‖𝑀𝜋𝑧 (𝑠)−𝑀𝜋𝑒(𝑠)‖2𝐿2(𝜌)* =

∫︁
(𝑀𝜋𝑧 (𝑠,d𝑠′)/𝜌(d𝑠′))2𝜌(d𝑠′)

− 2

∫︁
(𝑀𝜋𝑧 (𝑠,d𝑠′)/𝜌(d𝑠′))(𝑀𝜋𝑒(𝑠,d𝑠′)/𝜌(d𝑠′))𝜌(d𝑠′) + cst

=

∫︁
(𝑀𝜋𝑧 (𝑠,d𝑠′)/𝜌(d𝑠′))2𝜌(d𝑠′)− 2

∫︁
(𝑀𝜋𝑧 (𝑠,d𝑠′)/𝜌(d𝑠′))𝑀𝜋𝑒(𝑠,d𝑠′) + cst (33)

where the constant term does not depend on 𝑠.

If the FB model (2) holds, we have 𝑀𝜋𝑧 (𝑠,d𝑠′)/𝜌(d𝑠′) = 𝐹 (𝑠, 𝑧)⊤𝐵(𝑠′). Therefore,

‖𝑀𝜋𝑧 (𝑠)−𝑀𝜋𝑒(𝑠)‖2𝐿2(𝜌)* =

∫︁
(𝐹 (𝑠, 𝑧)⊤𝐵(𝑠′))2𝜌(d𝑠′)− 2

∫︁
𝐹 (𝑠, 𝑧)⊤𝐵(𝑠′)𝑀𝜋𝑒(𝑠,d𝑠′) (34)

= 𝐹 (𝑠, 𝑧)⊤(Cov𝐵)𝐹 (𝑠, 𝑧)− 2𝐹 (𝑠, 𝑧)⊤
∫︁
𝐵(𝑠′)𝑀𝜋𝑒(𝑠,d𝑠′) (35)

Now, in expectation over the expert trajectories (𝑠0, 𝑠1, . . . , 𝑠𝑡, . . .), we have

E

⎡⎣∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1) | 𝑠𝑡, 𝜋𝑒

⎤⎦ =

∫︁
𝐵(𝑠′)𝑀𝜋𝑒(𝑠𝑡,d𝑠

′) (36)

by definition of the successor measure 𝑀𝜋𝑒 . So

‖𝑀𝜋𝑧 (𝑠𝑡)−𝑀𝜋𝑒(𝑠𝑡)‖2𝐿2(𝜌)* = 𝐹 (𝑠𝑡, 𝑧)
⊤(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)− 2𝐹 (𝑠𝑡, 𝑧)

⊤ E

⎡⎣∑︁
𝑘≥0

𝛾𝑘𝐵(𝑠𝑡+𝑘+1) | 𝑠𝑡, 𝜋𝑒

⎤⎦
(37)

which proves the theorem by taking expectations with respect to 𝑠𝑡 in the expert trajectories. This
proves Theorem 3.

A.4 DERIVATION OF THE BELLMAN GAP LOSS FOR DISTRIBUTION MATCHING

Here we prove the claims in Section 4.3 about the Bellman gap losses.

𝑀𝜋𝑒 satisfies the Bellman equation 𝑀𝜋𝑒 = 𝑃𝜋𝑒 + 𝛾𝑃𝜋𝑒𝑀𝜋𝑒 . So we can look for the 𝑀𝜋𝑧 for
which this Bellman equation is best satisfied. This results in the loss (15).

We deal in turn with the seminorm ‖·‖𝐵⋆ from the choice ℛ = {𝑟 = 𝑤⊤𝐵, 𝑤 ∈ R𝑑, ‖𝑤‖2 ≤ 1}
(Thm. 4), and with the full norm fromℛ = 𝐿2(𝜌) (Thm. 5). The latter loss turns out to be similar to
the loss used for FB training (Touati et al., 2023, §5.2), but using transitions from 𝜋𝑒 instead of 𝜋𝑧 ,
and working with 𝑀(𝑠,d𝑠′) instead of 𝑀(𝑠, 𝑎,d𝑠′).

Theorem 4. Assume the FB successor feature property (5) holds. Let 𝑠𝑡 ∈ 𝑆.

Let �̄� and 𝐹 denote the stop-grad operator over 𝑀 and 𝐹 (still evaluated at 𝑀 = �̄� and 𝐹 = 𝐹 ).

Then the following quantities have equal gradients with respect to 𝑧:

• The 𝐵⋆-norm of the Bellman gap,
⃦⃦
𝑀𝜋𝑧 − 𝑃𝜋𝑒 − 𝛾𝑃𝜋𝑒�̄�𝜋𝑧

⃦⃦2
𝐵⋆ at state 𝑠𝑡.
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• The expectation over transitions 𝑠𝑡 → 𝑠𝑡+1 from policy 𝜋𝑒, of the quantity

− 2𝐹 (𝑠𝑡, 𝑧)
⊤(Cov𝐵)𝐵(𝑠𝑡+1)

+ (𝐹 (𝑠𝑡, 𝑧)− 𝛾𝐹 (𝑠𝑡+1, 𝑧))
⊤(Cov𝐵)2(𝐹 (𝑠𝑡, 𝑧)− 𝛾𝐹 (𝑠𝑡+1, 𝑧)) (38)

Theorem 5. Assume the FB model 𝑀𝜋𝑧 (𝑠,d𝑠′) = 𝐹 (𝑠, 𝑧)⊤𝐵(𝑠′)𝜌(d𝑠′) holds. Let 𝑠𝑡 ∈ 𝑆.

Let �̄� and 𝐹 denote the stop-grad operator over 𝑀 and 𝐹 (still evaluated at 𝑀 = �̄� and 𝐹 = 𝐹 ).

Then the following quantities have equal gradients with respect to 𝑧:

• The 𝐿2(𝜌)⋆-norm of the Bellman gap,
⃦⃦
𝑀𝜋𝑧 − 𝑃𝜋𝑒 − 𝛾𝑃𝜋𝑒�̄�𝜋𝑧

⃦⃦2
𝐿2(𝜌)⋆

at state 𝑠𝑡.
• The expectation over transitions 𝑠𝑡 → 𝑠𝑡+1 from policy 𝜋𝑒, of the quantity

− 2𝐹 (𝑠𝑡, 𝑧)
⊤𝐵(𝑠𝑡+1)

+ (𝐹 (𝑠𝑡, 𝑧)− 𝛾𝐹 (𝑠𝑡+1, 𝑧))
⊤(Cov𝐵)(𝐹 (𝑠𝑡, 𝑧)− 𝛾𝐹 (𝑠𝑡+1, 𝑧)) (39)

This is also the FB training loss from (Touati et al., 2023, §5.2) with transitions from 𝜋𝑒.

The proofs are essentially the derivation used to obtain the FB loss in Touati et al. (2023). In the proof,
we freely use the matrix and operator notation from (Blier et al., 2021) for kernels like 𝑃 (𝑠,d𝑠′) and
𝑀(𝑠,d𝑠′), which amounts to ordinary matrix multiplication when 𝑆 is finite.

For Theorem 4, remember that

‖𝑀(𝑠𝑡)‖𝐵⋆ = sup
𝑤∈R𝑑, ‖𝑤‖2≤1

∫︁
𝑀(𝑠𝑡,d𝑠)𝑤

⊤𝐵(𝑠) (40)

= sup
𝑤∈R𝑑, ‖𝑤‖2≤1

𝑤⊤
∫︁
𝑀(𝑠𝑡,d𝑠)𝐵(𝑠) (41)

=

⃦⃦⃦⃦∫︁
𝑀(𝑠𝑡,d𝑠)𝐵(𝑠)

⃦⃦⃦⃦
2

(42)

Therefore, the norm of the Bellman gap above is⃦⃦
𝑀𝜋𝑧 (𝑠𝑡, ·)− 𝑃𝜋𝑒(𝑠𝑡, ·)− 𝛾𝑃𝜋𝑒(𝑠𝑡, ·)�̄�𝜋𝑧 (·, ·)

⃦⃦2
𝐵⋆

=

⃦⃦⃦⃦∫︁
𝑀𝜋𝑧 (𝑠𝑡,d𝑠)𝐵(𝑠)−

∫︁
𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡)𝐵(𝑠𝑡+1)− 𝛾

∫︁
𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡)

∫︁
�̄�𝜋𝑧 (𝑠𝑡+1,d𝑠)𝐵(𝑠)

⃦⃦⃦⃦2
2
(43)

Now, if the FB successor feature relation (5) holds, we have∫︁
𝑀𝜋𝑧 (𝑠𝑡,d𝑠

′)𝐵(𝑠) = E
[︁∑︀

𝑘≥0𝛾
𝑘𝐵(𝑠𝑡+𝑘+1)|𝑠𝑡, 𝜋𝑧

]︁
(44)

= (Cov𝐵)𝐹 (𝑠𝑡, 𝑧) (45)

via (5). Therefore, the norm above is

· · · =
⃦⃦⃦⃦
(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)−

∫︁
𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡)𝐵(𝑠𝑡+1)− 𝛾

∫︁
𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡)(Cov𝐵)𝐹 (𝑠𝑡+1, 𝑧)

⃦⃦⃦⃦2
2

.

(46)

Now, as usual in deep 𝑄-learning, thanks to the stop-grad operator on 𝐹 (𝑠𝑡+1, 𝑧), we can take the
expectation over 𝑠𝑡+1 ∼ 𝑃 (d𝑠𝑡+1|𝑠𝑡) outside of the norm, because the difference is a constant that
has no gradients with respect to 𝑧. Therefore, the above has the same gradients as

E𝑠𝑡+1∼𝑃𝜋𝑒 (d𝑠𝑡+1|𝑠𝑡)
⃦⃦
(Cov𝐵)𝐹 (𝑠𝑡, 𝑧)−𝐵(𝑠𝑡+1)− 𝛾(Cov𝐵)𝐹 (𝑠𝑡+1, 𝑧)

⃦⃦2
2

(47)

and rearranging yields the result.

For Theorem 5, let us start with the norm of the Bellman gap of 𝑀𝜋𝑧 at 𝑠𝑡,⃦⃦
𝑀𝜋𝑧 (𝑠𝑡)− 𝑃𝜋𝑒(·|𝑠𝑡)− 𝛾𝑃𝜋𝑒(·|𝑠𝑡)�̄�𝜋𝑧 (·, ·)

⃦⃦2
𝐿2(𝜌)⋆

. (48)
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Since ‖𝑀‖𝐿2(𝜌)⋆ = ‖𝑀/𝜌‖𝐿2(𝜌) we have ‖𝑀1 −𝑀2‖2𝐿2(𝜌)⋆ = ‖𝑀1‖2𝐿2(𝜌)⋆ + ‖𝑀2‖2𝐿2(𝜌)⋆ −
2
∫︀
(𝑀1/𝜌) d𝑀2 by a simple computation. Therefore, the norm of the Bellman gap above is

· · · = ‖𝑀𝜋𝑧 (𝑠𝑡)‖2𝐿2(𝜌)⋆ + cst− 2

∫︁
𝑀𝜋𝑧 (𝑠𝑡,d𝑠𝑡+1)

𝜌(d𝑠𝑡+1)
𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡)

− 2𝛾

∫︁
𝑠′

𝑀𝜋𝑧 (𝑠𝑡,d𝑠
′)

𝜌(d𝑠′)

(︃∫︁
𝑠𝑡+1

𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡)�̄�𝜋𝑧 (𝑠𝑡+1,d𝑠
′)

)︃
(49)

where the constant absorbs all terms not containing 𝑀𝜋𝑧 .

Now, if 𝑀𝜋𝑧 (𝑠,d𝑠′) = 𝐹 (𝑠, 𝑧)⊤𝐵(𝑠′)𝜌(d𝑠′), we have

‖𝑀𝜋𝑧 (𝑠𝑡)‖2𝐿2(𝜌)⋆ = ‖𝑀𝜋𝑧 (𝑠𝑡)/𝜌)‖2𝐿2(𝜌) (50)

=

∫︁
(𝐹 (𝑠𝑡, 𝑧)

⊤𝐵(𝑠′))2𝜌(d𝑠′) (51)

=

∫︁
𝐹 (𝑠𝑡, 𝑧)

⊤𝐵(𝑠′)𝐵(𝑠′)⊤𝐹 (𝑠𝑡, 𝑧)𝜌(d𝑠
′) (52)

= 𝐹 (𝑠𝑡, 𝑧)
⊤(Cov𝐵)𝐹 (𝑠𝑡, 𝑧) (53)

and likewise∫︁
𝑀𝜋𝑧 (𝑠𝑡,d𝑠𝑡+1)

𝜌(d𝑠𝑡+1)
𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡) = E𝑠𝑡+1∼𝑃𝜋𝑒 (d𝑠𝑡+1|𝑠𝑡) 𝐹 (𝑠𝑡, 𝑧)

⊤𝐵(𝑠𝑡+1) (54)

and∫︁
𝑠′

𝑀𝜋𝑧 (𝑠𝑡,d𝑠
′)

𝜌(d𝑠′)

(︃∫︁
𝑠𝑡+1

𝑃𝜋𝑒(d𝑠𝑡+1|𝑠𝑡)�̄�𝜋𝑧 (𝑠𝑡+1,d𝑠
′)

)︃

= E𝑠𝑡+1∼𝑃𝜋𝑒 (d𝑠𝑡+1|𝑠𝑡)

∫︁
𝐹 (𝑠𝑡, 𝑧)

⊤𝐵(𝑠′)𝐹 (𝑠𝑡+1, 𝑧)
⊤�̄�(𝑠′)𝜌(d𝑠′)

= E𝑠𝑡+1∼𝑃𝜋𝑒 (d𝑠𝑡+1|𝑠𝑡) 𝐹 (𝑠𝑡, 𝑧)
⊤
(︂∫︁

𝐵(𝑠′)�̄�(𝑠′)⊤𝜌(d𝑠′)

)︂
𝐹 (𝑠𝑡+1, 𝑧)

= E𝑠𝑡+1∼𝑃𝜋𝑒 (d𝑠𝑡+1|𝑠𝑡) 𝐹 (𝑠𝑡, 𝑧)
⊤(Cov𝐵)𝐹 (𝑠𝑡+1, 𝑧) (55)

since �̄� = 𝐵 because 𝐵 does not depend on 𝑧.

Now, the sum of the first and third term is 𝐹 (𝑠𝑡, 𝑧)
⊤(Cov𝐵)𝐹 (𝑠𝑡, 𝑧) −

2𝛾𝐹 (𝑠𝑡, 𝑧)
⊤(Cov𝐵)𝐹 (𝑠𝑡+1, 𝑧), which has the same gradients as (𝐹 (𝑠𝑡, 𝑧) −

𝛾𝐹 (𝑠𝑡+1, 𝑧))
⊤(Cov𝐵)(𝐹 (𝑠𝑡, 𝑧)− 𝛾𝐹 (𝑠𝑡+1, 𝑧)). Collecting yields the result.

A.5 KL DISTRIBUTION MATCHING VIA FB

Here we show how our approach can be extended to another divergence between 𝑀𝜋𝑒 and 𝑀𝜋𝑧 .
Inspired from the generic loss (12), consider the following loss

ℒ𝐾𝐿(𝑧) := E𝑠𝑡∼𝜌𝑒
KL(𝑀𝜋𝑒(𝑠) ||𝑀𝜋𝑧 (𝑠)) (56)

where KL(𝑝 || 𝑞) :=
∫︀
𝑝 ln 𝑝/𝑞 −

∫︀
𝑝+

∫︀
𝑞 is the generalized KL divergence between measures 𝑝

and 𝑞. 5

This can be estimated from expert trajectories, similarly to Theorem 2.
Theorem 6. Assume that the FB model (2) holds. Then the quantity

−E𝑠𝑡∼𝜌𝑒

∑︁
𝑘≥0

𝛾𝑘 ln
(︀
𝐹 (𝑠𝑡, 𝑧)

⊤𝐵(𝑠𝑡+𝑘+1)
)︀

(57)

is an unbiased estimate of the loss ℒ𝐾𝐿(𝑧), up to an additive constant that does not depend on 𝑧.
5This extends the usual KL divergence to measures which may not sum to 1, which is necessary because the

model 𝑀 ≈ 𝐹⊤𝐵 may not be normalized. This is the Bregman divergence associated with the convex function
𝑝 ↦→

∫︀
𝑝 ln 𝑝.
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This estimate only makes sense if the learn model 𝑀𝜋𝑧 ≈ 𝐹⊤𝐵 only produces positive values for
𝐹⊤𝐵.

The proof is as follows. Let 𝑠0 be any state. Then

KL(𝑀𝜋𝑒(𝑠0) ||𝑀𝜋𝑧 (𝑠0)) =

∫︁
ln
𝑀𝜋𝑒(𝑠0,d𝑠

′)

𝑀𝜋𝑧 (𝑠0,d𝑠′)
𝑀𝜋𝑒(𝑠0,d𝑠

′)−
∫︁
𝑀𝜋𝑒(𝑠0,d𝑠

′) +

∫︁
𝑀𝜋𝑧 (𝑠0,d𝑠

′)

(58)

=

∫︁
ln
𝑀𝜋𝑒(𝑠0,d𝑠

′)

𝑀𝜋𝑧 (𝑠0,d𝑠′)
𝑀𝜋𝑒(𝑠0,d𝑠

′) (59)

because both 𝑀𝜋𝑒 and 𝑀𝜋𝑧 are successor measures, so they both integrate to 1/(1− 𝛾).
Plugging in the model 𝑀𝜋𝑧 (𝑠0,d𝑠

′) = 𝐹 (𝑠0, 𝑧)
⊤𝐵(𝑠′)𝜌(d𝑠′), this equals

· · · =
∫︁

ln
𝑀𝜋𝑒(𝑠0,d𝑠

′)

𝐹 (𝑠0, 𝑧)⊤𝐵(𝑠′)𝜌(d𝑠′)
𝑀𝜋𝑒(𝑠0,d𝑠

′) (60)

= −
∫︁

ln(𝐹 (𝑠0, 𝑧)
⊤𝐵(𝑠′))𝑀𝜋𝑒(𝑠0,d𝑠

′) + cst (61)

where the constant does not depend on 𝑧.

Now, given 𝑠0 and any function 𝑓 , we have
∫︀
𝑓(𝑠′)𝑀𝜋𝑒(𝑠0,d𝑠

′) = E
[︁∑︀

𝑡≥0 𝛾
𝑡𝑓(𝑠𝑡+1) | 𝑠0, 𝜋𝑒

]︁
.

This proves the claim up to replacing 𝑠0 with a state 𝑠𝑡 ∼ 𝜌𝑒.

A.6 USING UNIVERSAL SUCCESSOR FEATURES INSTEAD OF FB FOR IMITATION

The FB method belongs to a wider class of methods based on successor features or measures. Many
of the imitation algorithms described here still make sense with other successor feature methods, as
we now briefly describe. 6

We recall the universal successor feature framework (Borsa et al., 2018). This assumes access to
state features 𝜙 : 𝑆 → R𝑑 trained according to some external criterion. Then Borsa et al. (2018) train
a family of policies (𝜋𝑧), together with the successor features 𝜓 of 𝜙:{︃

𝜓(𝑠0, 𝑎0, 𝑧) ≈ E
[︁∑︀

𝑡≥0𝛾
𝑡𝜙(𝑠𝑡+1) | 𝑠0, 𝑎0, 𝜋𝑧

]︁
,

𝜋𝑧(𝑠) ≈ argmax𝑎 𝐹 (𝑠, 𝑎, 𝑧)
⊤𝑧.

(62)

At test time when faced with a reward function 𝑟, USFs perform linear regression of the reward on
the features:

𝑧𝑟 := (E𝑠∼𝜌′ 𝜙(𝑠)𝜙(𝑠)⊤)−1 E𝑠∼𝜌′ [𝑟(𝑠)𝜙(𝑠)] (63)
where 𝜌′ is the data distribution at test time. Then the policy 𝜋𝑧𝑟 is used.

The second equation in (62) is identical to FB, but the first equation is less constrained (𝜓 = 𝜙 = 0
would be a solution if no external criterion is applied to 𝜙, while 𝐹 = 𝐵 = 0 is not a solution of (2)
as 𝐹⊤𝐵 must represent successor measures): it is analogous to (5), which is weaker than (2).

The equation (63) for 𝑧𝑟 is analogous to (4); beware that the 𝑧 variable in FB and the 𝑧 variable in
USFs differ by a Cov𝐵 or (Cov𝜙) factor.

Imitation learning via USFs. All of the FB-IL methods in this paper can be extended from FB
to other USF models, except distribution matching: as USFs don’t represent the successor measure
itself, they can do feature matching but not distribution matching.

We now list the corresponding losses and formulas. The derivations are omitted, since they are
very similar to FB due to the analogies in the equations discussed above. For any distribution 𝜌, we
abbreviate Cov𝜌 𝜙 := E𝑠∼𝜌[𝜙(𝑠)𝜙(𝑠)

⊤].

6We have focused on FB as it has demonstrated better performance for zero-shot reinforcement learning
(Touati et al., 2023), and is arguably better founded theoretically, by training 𝐹 and 𝐵 with a single criterion
with no risk of representation collapse.
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For behavioral cloning, the loss (7) is unchanged: identify the most likely 𝜋𝑧 given the trajectory,
then use 𝜋𝑧 . This applies to any method that pre-trains a family of policies (𝜋𝑧)𝑧 .

For reward-based methods, plugging the reward 𝑟(·) = 𝜌𝑒(·)/𝜌(·) (Kim et al., 2022b;a; Ma et al., 2022)
into (63) with 𝜌′ := 𝜌 yields

𝑧 = (Cov𝜌 𝜙)
−1 E𝜌𝑒

[𝜙] = (Cov𝜌 𝜙)
−1 E𝜏

[︁
1

ℓ(𝜏)

∑︁
𝑡≥0

𝜙(𝑠𝑡+1)
]︁
. (64)

Similarly, the reward 𝑟(·) = 𝜌𝑒(·)/(𝜌(·) + 𝜌𝑒(·)) used in (Reddy et al., 2020; Zolna et al., 2020) leads to

𝑧 = (Cov𝜌 𝜙+Cov𝜌𝑒
𝜙)−1 E𝜌𝑒

[𝜙]. (65)

by using 𝜌′ := 1
2 (𝜌+ 𝜌𝑒) in (63).

Feature matching can be done by starting with the generic loss (12) and choosing ℛ := {𝑟 =
𝑤⊤𝜙,𝑤 ∈ R𝑑, ‖𝑤‖2 ≤ 1}, similarly to FB. The resulting loss

ℒ𝜙⋆(𝑧) := E𝑠0∼𝜌𝑒

⃦⃦∫︀
𝜙(𝑠)𝑀𝜋𝑧 (𝑠0,d𝑠)−

∫︀
𝜙(𝑠)𝑀𝜋𝑒(𝑠0,d𝑠)

⃦⃦2
2

(66)
can be estimated by similar derivations as in Theorem 2, leading to the practical estimate

ℒ𝜙⋆(𝑧) = E𝑠𝑡∼𝜌𝑒
E
[︂⃦⃦⃦
𝜓(𝑠𝑡, 𝑧)−

∑︀
𝑡≥0 𝛾

𝑘𝜙(𝑠𝑡+𝑘+1)
⃦⃦⃦2
2
| 𝑠𝑡, 𝜋𝑒

]︂
+ cst. (67)

where we have abbreviated 𝜓(𝑠𝑡, 𝑧) := E𝑎𝑡∼𝜋𝑧(𝑠𝑡) 𝜓(𝑠𝑡, 𝑎𝑡, 𝑧). Namely, this finds a 𝑧 that matches
the successor features 𝜓(𝑠𝑡, 𝑧) to the empirical successor features computed along the expert trajectory
starting at 𝑠𝑡.

Bellman gap matching can be done with the seminorm associated with ℛ = {𝑟 = 𝑤⊤𝜙,𝑤 ∈
R𝑑, ‖𝑤‖2 ≤ 1}, but not with the full norm fromℛ = 𝐿2(𝜌) (which requires FB). This will minimize
the norm of Bellman gaps for reward functions in the span of 𝜙, using that 𝑀𝜋𝑧𝜙 = 𝜓 if the USF
model (62) holds.

Explicitly, starting with the Bellman gap loss (15),
⃦⃦
𝑀𝜋𝑧 − 𝑃𝜋𝑒 − 𝛾𝑃𝜋𝑒�̄�𝜋𝑧

⃦⃦2
ℛ⋆ with transitions

from the expert trajectories, and plugging in this choice of ℛ together with the USF property
𝑀𝜋𝑧𝜙 = 𝜓, leads to the loss

ℒ𝜙⋆Bell(𝑧) = E𝑠𝑡∼𝜌𝑒

[︀
−2𝜓(𝑠𝑡, 𝑧)⊤𝜙(𝑠𝑡+1)

+ (𝜓(𝑠𝑡, 𝑧)− 𝛾𝜓(𝑠𝑡+1, 𝑧))
⊤(𝜓(𝑠𝑡, 𝑧)− 𝛾𝜓(𝑠𝑡+1, 𝑧))

]︀
+ cst (68)

analogous to (16).

Finally, waypoint imitation can be done in USFs by selecting a goal state 𝑠𝑡+𝑘, and putting a single
reward at 𝑠𝑡+𝑘 in the USF formula (63), which yields

𝑧𝑡 = (Cov𝜌 𝜙)
−1 𝜙(𝑠𝑡+𝑘) (69)

analogously to Sec. 4.4, then using 𝜋𝑧𝑡 at time 𝑡.

A.7 THE BELLMAN GAP LOSS AND THE BEHAVIORAL CLONING LOSS BOUND
DISTRIBUTION MATCHING LOSSES

Any method that provides a policy close to 𝜋𝑒 will provide state distributions close to 𝑑𝜋𝑒 as a result,
so we expect a relationship between the losses from different approaches. Indeed, the Bellman gap
loss (15) bounds the distribution matching loss (12), and the BC loss bounds the KL version of (12).
This is formalized in Theorems 7 and 8, respectively. Theorem 7 is analogous to the bound between
Bellman gaps and errors on the 𝑄-function.
Theorem 7. Let 𝜌𝑒 be a stationary distribution of the expert policy 𝜋𝑒. Then the Bellman gap
loss (15) on successor measures bounds both the feature or distribution matching loss (12) and the
original feature or distribution matching loss (11). Namely, for any choice ofℛ,

‖E𝑠0∼𝜌𝑒 𝑀
𝜋𝑧 (𝑠0)− E𝑠0∼𝜌𝑒 𝑀

𝜋𝑒(𝑠0)‖2ℛ⋆

≤ E𝑠0∼𝜌𝑒 ‖𝑀𝜋𝑧 (𝑠0, ·)−𝑀𝜋𝑒(𝑠0, ·)‖2ℛ⋆

≤ 1

(1− 𝛾)2 E𝑠∼𝜌𝑒 ‖𝑀𝜋𝑧 (𝑠)− 𝑃𝜋𝑒(𝑠)− 𝛾𝑃𝜋𝑒𝑀𝜋𝑧 (𝑠)‖2ℛ⋆ . (70)
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Theorem 8. Let 𝜌𝑒 be a stationary distribution over states and state-actions of the expert policy 𝜋𝑒.
Then

E𝑠∼𝜌𝑒
KL((1− 𝛾)𝑀𝜋𝑒(𝑠) || (1− 𝛾)𝑀𝜋𝑧 (𝑠)) ≤ 1

1− 𝛾 E𝑠∼𝜌𝑒
KL(𝜋𝑒(·|𝑠) ||𝜋𝑧(·|𝑠)) (71)

= − 1

1− 𝛾 E(𝑠,𝑎)∼𝜌𝑒
ln𝜋𝑧(𝑎|𝑠) + cst (72)

where the constant does not depend on 𝑧.

Proof of Theorem 7. The proof is as follows. The first inequality is by convexity of the norm. For
the second one, we have

𝑀𝜋𝑧 (𝑠0)−𝑀𝜋𝑒(𝑠0) =𝑀𝜋𝑧 (𝑠0, ·)− (Id−𝛾𝑃𝜋𝑒)−1𝑃𝜋𝑒(𝑠0, ·) (73)

= (Id−𝛾𝑃𝜋𝑒)−1 ((Id−𝛾𝑃𝜋𝑒)𝑀𝜋𝑧 (𝑠0, ·)− 𝑃𝜋𝑒(𝑠0, ·)) (74)
and therefore
E𝑠0∼𝜌𝑒 ‖𝑀𝜋𝑧 (𝑠0, ·)−𝑀𝜋𝑒(𝑠0, ·)‖2ℛ⋆ (75)

= E𝑠0∼𝜌𝑒

⃦⃦⃦⃦∫︁
𝑠

(Id−𝛾𝑃𝜋𝑒)−1(𝑠0,d𝑠) ((Id−𝛾𝑃𝜋𝑒)𝑀𝜋𝑧 (𝑠, ·)− 𝑃𝜋𝑒(𝑠, ·))
⃦⃦⃦⃦2
ℛ⋆

(76)

and since (Id−𝛾𝑃𝜋𝑒)−1 is the successor measure of 𝜋𝑒, it is a measure with total mass 1/(1− 𝛾),
so the integral under (Id−𝛾𝑃𝜋𝑒)−1 can be rewritten as an expectation under (1− 𝛾)(Id−𝛾𝑃𝜋𝑒)−1:

=
1

(1− 𝛾)2 E𝑠0∼𝜌𝑒

⃦⃦
E𝑠∼(1−𝛾)(Id−𝛾𝑃𝜋𝑒 )−1(𝑠0,d𝑠) [(Id−𝛾𝑃𝜋𝑒)𝑀𝜋𝑧 (𝑠, ·)− 𝑃𝜋𝑒(𝑠, ·)]

⃦⃦2
ℛ⋆

(77)

≤ 1

(1− 𝛾)2 E𝑠0∼𝜌𝑒
E𝑠∼(1−𝛾)(Id−𝛾𝑃𝜋𝑒 )−1(𝑠0,d𝑠) ‖𝑀𝜋𝑧 (𝑠, ·)− 𝑃𝜋𝑒(𝑠, ·)− 𝛾𝑃𝜋𝑒𝑀𝜋𝑧 (𝑠, ·)‖2ℛ⋆

(78)

(by convexity)

=
1

(1− 𝛾)2 E𝑠∼𝜌𝑒
‖𝑀𝜋𝑧 (𝑠, ·)− 𝑃𝜋𝑒(𝑠, ·)− 𝛾𝑃𝜋𝑒𝑀𝜋𝑧 (𝑠, ·)‖2ℛ⋆ (79)

where the last equality uses that 𝜌𝑒 is a stationary distribution of 𝜋𝑒, which implies that the
marginal distribution of 𝑠 in the above is (1 − 𝛾)

∫︀
𝑠0
𝜌𝑒(d𝑠0)(Id−𝛾𝑃𝜋𝑒)−1(𝑠0,d𝑠) = (1 −

𝛾)
∫︀
𝑠0
𝜌𝑒(d𝑠0)

∑︀∞
𝑡=0 𝛾

𝑡(𝑃𝜋𝑒)𝑡(𝑠0,d𝑠) = (1 − 𝛾)
∑︀∞

𝑡=0 𝛾
𝑡
∫︀
𝑠0
𝜌𝑒(d𝑠0)(𝑃

𝜋𝑒)𝑡(𝑠0,d𝑠) = (1 −
𝛾)
∑︀∞

𝑡=0 𝛾
𝑡𝜌𝑒(d𝑠) = 𝜌𝑒(d𝑠) since 𝜌𝑒 is invariant under 𝑃𝜋𝑒 .

Proof of Theorem 8 (the BC loss is an upper bound of the KL successor measure matching
loss). The proof goes as follows. Denote by 𝜋𝑠0,𝑡 the probability distribution of the state 𝑠𝑡 when
starting at 𝑠0 and following policy 𝜋. Denote by 𝜋𝑠0,0:𝑡 the probability distribution of the trajectory
(𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑎𝑡−1, 𝑠𝑡) when starting at 𝑠0 and following policy 𝜋.

Denote by E𝑡 the expectation under a random variable 𝑡 with geometric distribution of parameter
1− 𝛾 starting at 1. By definition,

(1− 𝛾)𝑀𝜋(𝑠0) = E𝑡 𝜋
𝑠0,𝑡. (80)

Then,
KL((1− 𝛾)𝑀𝜋𝑒(𝑠0) || (1− 𝛾)𝑀𝜋(𝑠0)) = KL

(︀
E𝑡 𝜋

𝑠0,𝑡
𝑒 || E𝑡 𝜋

𝑠0,𝑡
)︀

(81)

≤ E𝑡 KL
(︀
𝜋𝑠0,𝑡
𝑒 ||𝜋𝑠0,𝑡

)︀
(82)

≤ E𝑡 KL
(︀
𝜋𝑠0,0:𝑡
𝑒 ||𝜋𝑠0,0:𝑡

)︀
(83)

= E𝑡 E
[︂
ln
𝜋𝑒(𝑠0, 𝑎0, . . . , 𝑠𝑡)

𝜋(𝑠0, 𝑎0, . . . , 𝑠𝑡)
| 𝑠0, 𝜋𝑒

]︂
(84)

= E𝑡 E

[︃
𝑡−1∑︁
𝑘=0

ln𝜋𝑒(𝑎𝑘|𝑠𝑘)− ln𝜋(𝑎𝑘|𝑠𝑘) | 𝑠0, 𝜋𝑒
]︃

(85)
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Now, when integrated over 𝑠0 ∼ 𝜌𝑒 with 𝜌𝑒 a stationary distribution of 𝜋𝑒, then each state 𝑠𝑘 is itself
distributed according to 𝜋𝑒. Thus, the above is equal to

E𝑠0∼𝜌𝑒 KL((1− 𝛾)𝑀𝜋𝑒(𝑠0) || (1− 𝛾)𝑀𝜋(𝑠0)) ≤ (E𝑡 𝑡)E𝑠∼𝜌𝑒 KL(𝜋𝑒(·|𝑠) ||𝜋(·|𝑠)) (86)

where (E𝑡 𝑡) accounts for there being 𝑡 terms in the sum. Under the law of 𝑡, we have E𝑡 𝑡 =
1

1−𝛾 .

Finally, E𝑠∼𝜌𝑒
KL(𝜋𝑒(·|𝑠) ||𝜋𝑧(·|𝑠)) is the behavior cloning loss up to the entropy of 𝜋𝑒, which does

not depend on 𝑧.

B OFFLINE IL BASELINES

In this section, we provide more information about the baselines we considered in the paper. Refer
to App. E for a complete view of the results. In App. G we confirm that our implementation of the
baselines matches results reported in the literature.

Soft Q Imitation Learning (Reddy et al., 2020, SQIL) is a simple imitation algorithm that can be
implemented with little modification to any standard RL algorithm. The idea is to provide a constant
reward 𝑟 = 1 to expert transitions, and a constant reward 𝑟 = 0 to any transition generated by the RL
algorithm.

SQIL has been introduced and shown to perform well in the online setting. In our experiments we
use a straightforward offline adaptation of the algorithm: we provide 𝑟 = 1 to expert transitions
and 𝑟 = 0 to the offline unsupervised transitions and use SAC as RL algorithm. We use balanced
sampling as defined in the original paper, i.e., the batch comprises an equal number of expert and
unsupervised transitions.

Since SQIL underperformed in several tasks, we introduced TD3 Imitation Learning (TD3IL).
TD3IL uses a {0, 1} reward for unsupervised and expert samples as in SQIL, but uses TD3 as the
offline RL algorithm, and does not use balanced sampling. We tested different ways to construct
the batch provided to the agent during training. These methods included sampling expert transitions
based on their proportion relative to the unsupervised transitions and sampling a fixed ratio of expert
transitions. We found the fixed ratio strategy to be consistent across different number of expert
trajectories, thus we used this approach in the experiments.

We also tested TD3 with a soft variant of the {0, 1} reward used by SQIL and TD3IL. In particular,
Luo et al. (2023) suggest to use optimal transport to compute a distance between expert and non-
expert transitions that is used as a reward function. This reward can subsequently used with any RL
algorithm. For the latter, we used TD3 in our experiments since it proved to be the most consistent.
We called this algorithm OTRTD3.

Offline Reinforced Imitation Learning (Zolna et al., 2020, ORIL) trains a discriminator 𝐷(·) to
separate samples from expert and unsupervised trajectories. Then, it trains an offline RL agent by
annotating transitions using the learned reward function 𝑟(·) = log(𝐷(·) + 1). We pretrained the
discriminator using gradient penalty but we did not use positive-unlabeled learning since it did not
improve performance in our tests. We trained three variants of the discriminator, using observation,
(observation,action), and (observation, next-observation).

Similarly to ORIL, *DICE algorithms (Kim et al., 2022b; Ma et al., 2022; Kim et al., 2022a) use a
discriminator to reconstruct the reward function. The main difference is that they aim to reconstruct
a reward function of the form 𝑟(·) = 𝜌𝑒

𝜌𝑒+𝜌 while ORIL targets a reward 𝑟(·) = 𝜌𝑒

𝜌 . We use the
same discriminator training procedure but we relabel the transitions using the parametric reward
function 𝑟(·) = log(𝐷(·)) − log(1 − 𝐷(·)). These methods leverage a regularized RL approach
for training the policy. IQ-Learn (Garg et al., 2021) is a non-adversarial IL method based on the
MaxEnt formulation (Ziebart et al., 2008). Similarly to ValueDice (Kostrikov et al., 2020), the idea
of IQ-Learn is to transform the problem over rewards to a problem over Q-functions. Opposite to
*DICE algorithms, IQ-Learn does not require to explicitly train a discriminator to recover a reward
function.

Discriminator Weighted Behavioral Cloning (Xu et al., 2022, DWBC) proposes to approach offline
IL through weighted behavior cloning, where the weights are provided by a discriminator. This is a
way of leveraging unsupervised samples in BC, on top of expert samples. As suggested in the paper,
we use a discriminator conditioned on the policy learned through weighted BC.
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C BFM BASELINES

In this section we provide a description of the behavior foundational models used in our experiments.

C.1 DIAYN

DIAYN (Eysenbach et al., 2018) is a skill discovery algorithm, commonly used in unsupervised
RL. It learns a set of parametrized policies (𝜋𝑧)𝑧∈𝑅𝑑 by maximising the mutual information 𝐼(𝑠; 𝑧)
between the state produced by policy 𝜋𝑧 and the latent skill 𝑧, drawn from a prior distribution of
skills 𝑧 ∼ 𝑝(𝑧). To obtain a tractable approximation of 𝐼(𝑠; 𝑧), Eysenbach et al. (2018) introduce an
approximate skill posterior (skill encoder) 𝑞(𝑧 | 𝑠) and use the following variational lower bound:

𝐼(𝑠; 𝑧) = 𝐻(𝑧)−𝐻(𝑧 | 𝑠) (87)
= 𝐻(𝑧) + E𝑝(𝑧) E𝑠∼𝑑𝜋𝑧 [log 𝑝(𝑧 | 𝑠)] (88)

≥ 𝐻(𝑧) + E𝑝(𝑧) E𝑠∼𝑑𝜋𝑧 [log 𝑞(𝑧 | 𝑠)] (89)

where 𝐻(𝑧) and 𝐻(𝑧 | 𝑠) are respectively the entropy of the prior distribution 𝑝(𝑧) and the entropy
of the conditional skill distribution 𝑝(𝑧 | 𝑠). The latter is approximated by the skill encoder
𝑞(𝑧 | 𝑠). Similarly to Hansen et al. (2020), we model the latent space as a 𝑑-dimensional hypersphere
{𝑧 : ‖𝑧‖2 = 1} and 𝑝(𝑧) as uniform distribution on the hypersphere. Since latent variables live on
the hypersphere, we model the skill encoder as von Mises-Fisher distribution with a scale parameter
of 1:

𝑞(𝑧 | 𝑠) ∝ exp(𝑧⊤𝜙(𝑠)) (90)

where 𝜙 : 𝑆 → R𝑑 is a feature map restricted to the unit-hypersphere, i.e., ‖𝜙(𝑠)‖ = 1,∀𝑠 ∈ 𝑆.

In practice, we train online both the feature map 𝜙 and policy 𝜋𝑧: the feature map 𝜙 is learned
by maximizing the log-likelihood objective: max𝜙 E𝑝(𝑧) E𝑠∼𝑑𝜋𝑧 [𝑧⊤𝜙(𝑠)], while 𝜋𝑧 is trained to
maximize the intrinsic reward 𝑟DIAYN(𝑠, 𝑧) = 𝑧⊤𝜙(𝑠) by using z-conditioned TD3.

Our first attempt to vanilla online train DIAYN was unsuccessful and leads to near-zero performance.
This is consistent with findings of prior work (Laskin et al., 2022) that DIAYN is not able to learn
diverse skill on DMC environments due to absence of resetting when the agent falls. Therefore, we
decided to incorporate two components in our training that boost performance:

• Posterior Hindsight Experience Replay (Choi et al., 2021, P-Her): instead of considering the
actual 𝑧 that generates the state 𝑠, it consists in relabelling 𝑧 for some states 𝑠𝑡 by a sample drawn
from the skill encoder 𝑞(𝑧|𝑠𝑡+𝑘), where 𝑠𝑡+𝑘 is a future state in the trajectory of 𝑠𝑡. In practice,
we set 𝑧 = 𝜙(𝑠𝑡+𝑘), which is equal to the mean of distribution.

• Exploration bonus: To incentivize the agent to learn diverse skills, we add a 𝑘-nearest
neighbors-based entropy reward similarly to (Liu & Abbeel, 2021): 𝑟explore(𝑠) =

ln
(︁
1 + 1

𝑘

∑︀
𝑧𝑖∈kNN(𝜙(𝑠)) ‖𝜙(𝑠)− 𝑧𝑖‖2

)︁
where 𝑧𝑖 = 𝜙(𝑠𝑖) for a mini-batch of states {𝑠𝑖}. The

policy is then trained to maximise the reward 𝑟(𝑠, 𝑧) = 𝑟DIAYN(𝑠, 𝑧) + 𝜆𝑟explore(𝑠), where 𝜆 is
an exploration coefficient.

DIAYN for Imitation Learning. We devise here three different IL methods based on a pre-trained
DIAYN model:

• Behavioral cloning (BCDIAYN): we look for the policy 𝜋𝑧 that best fits the expert trajectories in
term of its likelihood, by minimizing the loss:

min
𝑧

E𝜏

∑︁
𝑡

ln𝜋𝑧(𝑎𝑡 | 𝑠𝑡) (91)

• Mutual-information maximization (ERDIAYN): we infer the latent variable 𝑧 by maximizing the
mutual information 𝐼(𝑠; 𝑧). In practice, we maximize instead the (tractable) variational lower
bound.

max
𝑧

E𝑠∼𝜌𝑒
[log 𝑞(𝑧 | 𝑠)] = max

𝑧
E𝑠∼𝜌𝑒

[𝑧⊤𝜙(𝑠)] = max
𝑧

𝑧⊤ E𝑠∼𝜌𝑒
[𝜙(𝑠)] (92)
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The above maximization problem admits a closed-form solution: 𝑧 = E𝑠∼𝜌𝑒
[𝜙(𝑠)] which consists

simply in averaging the features of the expert states. This final formula is similar to (8) for ERFB,
hence our notation ERDIAYN. Note that this approach was proposed by Eysenbach et al. (2018)
for descrete skills (see their Appendix G). Here we report the variant for continuous spaces.

• Goal-based Imitation (GOALDIAYN): Consider one single trajectory 𝜏 . At each time step 𝑡, we
can use the DIAYN pretrained behaviors to reach a state 𝑠𝑡+𝑘 slightly ahead of 𝑠𝑡 in the expert
trajectory. Specifically, we set 𝑧𝑡 = 𝜙(𝑠𝑡+𝑘), which corresponds to the mean of the skill encoder
distribution for 𝑠𝑡+𝑘, and use the action given by 𝜋𝑧𝑡(𝑠𝑡).

C.2 GOAL-GPT

GOAL-GPT (Liu et al., 2022) is a goal-conditioned, transformer-based auto-regressive model 𝜋,
trained offline using a behavior cloning objective. At train time, given an offline dataset of trajectories,
we sample sub-trajectories {𝑠𝑡, 𝑎𝑡, . . . , 𝑠𝑡+𝑘} consisting of 𝑘 contiguous state-action pairs, we relabel
the last state as a goal 𝑔 = 𝑠𝑡+𝑘, and then we minimize the following objective:

E𝜏 [ln𝜋 (𝑎𝑡, . . . , 𝑎𝑡+𝑘 | (𝑠𝑡, 𝑔) . . . , (𝑠𝑡+𝑘, 𝑔))] = E𝜏

[︃
𝑘−1∑︁
𝑖=0

ln𝜋 (𝑎𝑡+𝑖 | (𝑠𝑡, 𝑔) . . . , (𝑠𝑡+𝑘, 𝑔))

]︃
.

(93)

The last equality holds since the model uses causal attention masking.

We can use GOAL-GPT to perform goal-based imitation. Given one single expert trajectory 𝜏 =
(𝑠𝑒1, . . . , 𝑠

𝑒
𝑇 ), we divide the trajectory into segments of equal length 𝑘. For the segment (𝑠𝑒𝑡 , . . . , 𝑠

𝑒
𝑡+𝑘),

we set the goal 𝑔 to the last expert’s state, 𝑔 = 𝑠𝑒𝑡+𝑘, and we execute the 𝑘 actions predicted by
the model: 𝜋 (𝑎𝑖, . . . , 𝑎𝑡+𝑘 | (𝑠𝑡, 𝑔) . . . , (𝑠𝑡+𝑖, 𝑔)) for all 𝑖 ∈ {1, . . . , 𝑘}. Here (𝑠𝑡, . . . , 𝑠𝑡+𝑖) is the
history of the last 𝑖 states generated while interacting with the environment to imitate the expert’s
trajectory.

C.3 MASKDP

Masked Decision Prediction (Liu et al., 2022, MASKDP) is a self-supervised pretraining method.
Unlike autoregressive action prediction used in GOAL-GPT, it employs a masked autoencoder to
state-action trajectories, which randomly masks states and actions and is trained to reconstruct the
missing data. It uses encoder-decoder architecture ℎ. Both encoder and decoder are bidirectional
transformers. The model is trained to reconstruct a sub-trajectory given a masked view of itself, i.e.,
𝜏 = ℎ(masked(𝜏)) ≈ 𝜏 .

At train time, given a sub-trajectory 𝜏 of state-action pairs, we apply random masking on states and
actions independently. The encoder processes only the unmasked states and actions. The decoder
operates on the whole sub-trajectory of both visible and masked encoded states and actions, while
replacing each masked element by a shared learned vector (called a mask token). The overall model
is learned end-to-end using reconstructing loss (mean square error).

We can use MASKDP to perform goal-based imitation as follows: Given one single expert trajectory
𝜏 = (𝑠𝑒1, . . . , 𝑠

𝑒
𝑇 ), at each time step 𝑡, we use the MASKDP model to predict the actions necessary to

reach the goal 𝑠𝑒𝑡+𝑘. To this end, we fed the model by the masked sequence (𝑠𝑡, _, _, . . . , _, 𝑠𝑒𝑡+𝑘) of
length 𝑘, where _ denotes the missing element, then, we execute only the first action predicted by the
model.

C.4 GOAL-TD3

For Goal-TD3, we pre-train offline goal-conditioned policies 𝜋(𝑎 | 𝑠, 𝑔) using the sparse reward
𝑟(𝑠, 𝑔) = I{‖𝑠 − 𝑔‖2 ≤ 𝜀} for some small value of 𝜀. Training uses Hindsight Experience Re-
play (Andrychowicz et al., 2017, HER).

At test time, Goal-TD3 can implement goal-based IL: at each time step 𝑡, we select the policy
𝜋(𝑎𝑡 | 𝑠𝑡, 𝑠𝑒𝑡+𝑘) where the goal 𝑠𝑒𝑡+𝑘 is the state 𝑘 steps ahead of 𝑠𝑡 in the expert trajectory.
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Figure 5: Maze, Walker, Cheetah and Quadruped environments used in our experiments.

D EXPERIMENTAL SETUP

In this section we provide additional information about our experiments.

D.1 ENVIRONMENTS

All the environments considered in this paper are based on the DeepMind Control Suite (Tassa et al.,
2018b). In total, we have 4 environments and 21 tasks.

• Point-mass-maze: a 2-dimensional continuous maze with four rooms. The states are 4-
dimensional vectors consisting of positions and velocities of the point mass (𝑥, 𝑦, 𝑣𝑥, 𝑥𝑦),
and the actions are 2-dimensional vectors. The initial state location is sampled uniformly
from the top left room. We consider 8 tasks: four goal-reaching tasks( reach_top_left,
reach_top_right, reach_bottom_left and reach_bottom_left) consist in
reaching a goal in the middle of each room described by their (𝑥, 𝑦) coordinates, 2 looping
tasks encourage the agent to navigate trough the all rooms while drawing two different shapes
(square shape close to maze’s borders for the square task, diamand shape for the diamand
task), fast_slow task encourages the agent to loop around the maze while maintaining large
velocity when moving horizontally and small velocity when moving vertically, and finally,
reach_bottom_left_long consists in reaching the bottom left room following the long
path (by penalizing the agent for moving counterclockwise).

• Walker: a planar walker. States are 24-dimensional vectors consisting of positions and ve-
locities of robot joints, and actions are 6-dimensional vectors. We consider 5 different tasks:
walker_stand reward is a combination of terms encouraging an upright torso and some
minimal torso height, while walker_walk and walker_run rewards include a component
encouraging some minimal forward velocity. walker_flip reward is a combination of terms
encouraging and upright torso and some mininal angular momentum while walker_flip
reward encourages only to have some minimal angular momentum without constraining the torso.

• Cheetah: a running planar biped. States are 17-dimensional vectors consisting of positions
and velocities of robot joints, and actions are 6-dimensional vectors. We consider 4 dif-
ferent tasks: cheetah_walk and cheetah_run rewards are linearly proportional to the
forward velecity up to some desired values: 2 m/s for walk and 10 m/s for run. Simi-
larly, walker_walk_backward and walker_run_backward rewards encourage reach-
ing some minimal backward velocities.

• Quadruped: a four-leg ant navigating in 3D space. States and actions are 78-dimensional and 12-
dimensional vectors, respectively. We consider 4 tasks: quadruped_stand reward encourages
an upright torso. quadruped_walk and quadruped_run include a term encouraging some
minimal torso velecities. quadruped_walk includes a term encouraging some minimal height
of the center of mass. quadruped_jump encourages some minimal height.

D.2 DATASETS AND EXPERT TRAJECTORIES

We used standard unsupervised datasets for the four domains, generated by Random Network Distil-
lation (RND). They can be downloaded following the instructions in the github repository of Yarats
et al. (2022) (https://github.com/denisyarats/exorl). We use 5000 trajectories for
locomotion tasks (walker, cheetah and quadruped) and 10000 trajectories for point-mass-maze.
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Expert trajectories for the 21 tasks are generated by task-specific trained TD3 agents. We train
TD3 online for locomotion tasks. We train TD3 offline for the navigation tasks since the maze’s
unsupervised dataset has a good coverage to learn the optimal behaviors.

D.3 ARCHITECTURES

Forward-Backward:

• The backward representation network 𝐵(𝑠) is represented by a feedforward neural network with
two hidden layers, each with 256 units, that takes as input a state and outputs a 𝑑-dimensional
embedding. The output of B can be either L2-projected into the sphere radius

√
𝑑 or batch-

normalized. Using Batchnorm makes FB invariant to reward translation since it ensures
E𝑠∼𝜌[𝐵(𝑠)] = 1.

• For the forward network 𝐹 (𝑠, 𝑎, 𝑧), we first preprocess separately (𝑠, 𝑎) and (𝑠, 𝑧) by two
feedforward networks with one single hidden layer (with 1024 units) to 512-dimentional space.
Then we concatenate their two outputs and pass it into two heads of feedforward networks (each
with one hidden layer of 1024 units) to output a 𝑑-dimensional vector.

• For the policy network 𝜋(𝑠, 𝑧), we first preprocess separately 𝑠 and (𝑠, 𝑧) by two feedforward
networks with one single hidden layer (with 1024 units) to 512-dimentional space. Then we
concatenate their two outputs and pass it into another one single hidden layer feedforward network
(with 1024 units) to output to output a 𝑑𝐴-dimensional vector, then we apply a Tanh activation
as the action space is [−1, 1]𝑑𝐴 .

For all the architectures, we apply a layer normalization (Ba et al., 2016) and Tanh activation in the
first layer in order to standardize the states and actions. We use Relu for the rest of layers. We also
pre-normalize 𝑧: 𝑧 ←

√
𝑑 𝑧
‖𝑧‖2

in the input of 𝐹 , 𝜋 and 𝜓.

For maze environments, we added an additional hidden layer after the preprocessing (for both policy
and forward) as it helped to improve the results.

Imitation Learning Baselines: For all IL baselines, we use feedforward neural networks with two
hidden layers, each with 1024 units to represent actors, critics and discrimintors networks. We apply
a layer normalization and Tanh activation in the first layer in order to standardize the states and
actions.

BFMs: For DIAYN, we have three networks:

• The policy network 𝜋(𝑠, 𝑧) is similar to that of FB: it preprocesses separately 𝑠 and (𝑠, 𝑧) by two
feedforward networks with one single hidden layer (with 1024 units) to 512-dimentional space.
Then we concatenate their two outputs and pass it into another two-hidden-layer feedforward
network (with 1024 units) to output to output a 𝑑𝐴-dimensional vector, then we apply a Tanh
activation as the action space is [−1, 1]𝑑𝐴 .

• The critic network𝑄(𝑠, 𝑎, 𝑧) is similar to F in FB but with scalar output: it preprocesses separately
(𝑠, 𝑎) and (𝑠, 𝑧) by two feedforward networks with one single hidden layer (with 1024 units)
to 512-dimentional space. Then it concatenates their two outputs and pass it into two heads of
feedforward networks (each with two hidden layers of 1024 units) to output a scalar.

• The skill encoder network 𝜙(𝑠) is represented by a feedforward neural network with two hidden
layers, each with 256 units, that takes as input a state and outputs a d-dimensional embedding.
The output of 𝜙 is L2-projected into the unit-hypersphere.

For GOAL-TD3, we use the same architectures for both policy and critic networks as DIAYN, and
we replace the 𝑧 latent skill by a goal state.

GOAL-GPT uses auto-regressive transformer architecture via causal attention masking with 5
attention layers. Each attention layer has 4 attention heads with 256 hidden dimensions.

MASKDP uses encoder-decoder architecture. Both encoder and decoder are bidirectional transformers
with respectively 3 and 2 attention layers. Each attention layer has 4 attention heads with 256 hidden
dimensions. More details about the architectures for both GOAL-GPT and MASKDP can be found
in (Liu et al., 2022)
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D.4 HYPERPARAMETERS

Table 1: Hyperparameters used for FB pretraining.

Hyperparameter Walker Cheetah Quadruped Maze
Representation dimension 100 50 50 100
Batch size 2048 2048 1024 1024
Discount factor 𝛾 0.98 0.98 0.98 0.99
Optimizer Adam Adam Adam Adam
learning rate of F 10−4 10−4 10−4 10−4

learning rate of B 10−4 10−4 10−4 10−6

learning rate of 𝜋 10−4 10−4 10−4 10−6

Normalization of B L2 None L2 Batchnorm
Momentum for target networks 0.99 0.99 0.99 0.99
Stddev for policy smoothing 0.2 0.2 0.2 0.2
Truncation level for policy smoothing 0.3 0.3 0.3 0.3
Regularization weight for orthonormality 1 1 1 1

Table 2: Hyperparameters used for IL baselines.

Hyperparameter Walker Cheetah Quadruped Maze
Common Batch size 512 512 512 512

Discount factor 𝛾 0.98 0.98 0.98 0.99
Optimizer Adam Adam Adam Adam
learning rate 10−4 10−4 10−4 10−4

Momentum for target networks 0.99 0.99 0.99 0.99
Stddev for policy smoothing 0.2 0.2 0.2 0.2
Truncation level for policy smoothing 0.3 0.3 0.3 0.3
Discriminator’s training steps 5 · 105 5 · 105 5 · 105 5 · 105

ORIL Gradient penalty 2 2 10 10
Positive-unlabeled coefficient 0 0 0 0

SMODICE Gradient penalty 2 10 2 10
Divergence 𝜒2 𝜒2 𝜒2 𝜒2

LOBSDICE Gradient penalty 10 10 2 10
Divergence KL KL KL KL

DEMODICE Gradient penalty 10 10 2 10
Divergence KL KL KL KL

TD3IL Fix Sampling Ratio 0.002 0.002 0.002 0.002

Table 3: Hyperparameters used for DIAYN and GOAL-TD3.

Hyperparameter Walker Cheetah Quadruped Maze
Common Batch size 512 512 512 512

Discount factor 𝛾 0.98 0.98 0.98 0.99
Optimizer Adam Adam Adam Adam
Momentum for target networks 0.99 0.99 0.99 0.99
Stddev for policy smoothing 0.2 0.2 0.2 0.2
Truncation level for policy smoothing 0.3 0.3 0.3 0.3

DIAYN actor learning rate 10−5 10−5 10−5 10−5

critic learning rate 10−4 10−4 10−4 10−4

skill encoder learning rate 10−4 10−4 10−4 10−4

exploration coefficient 1 1 0.1 1
P-Her ratio 0.5 0.5 0.5 0.5
Latent dimension 50 25 25 25

GOAL-TD3 actor learning rate 10−4 10−5 10−4 10−5

critic learning rate 10−4 10−5 10−4 10−4

Her ratio 1 0.5 0.75 1

Table 4: Hyperparameters used for GOAL-GPT and MASKDP.

Hyperparameter Walker Cheetah Quadruped Maze
Common Batch size 512 512 512 512

Optimizer Adam Adam Adam Adam
learning rate 10−4 10−4 10−4 10−4

MASKDP context size 64 64 64 64
GOAL-GPT context size 16 16 32 32
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Hyperparameter finetuning. We finetune the hyperparameters of FB models for each domain by
performing hyperparameter sweeps over the batch size, learning rates, representation dimensions,
orthonormality regularization and normalization of backward output. We evaluate each model using
its reward-based performance on downstream tasks for each domain. We select the hyperparameters
that lead to the best averaged performance over each domain’s tasks and over three random seeds.
We re-train the final FB models with the selected hyperparameters for 10 different random seeds.

For imitation learning baselines, we finetune each baseline’s hyperparameters for each domain by
performing hyperparameter sweep on a representative task (e.g., walker_walk for walker and
cheetah_walk for cheetah). We did not do hyperparameter sweeps for each baseline and task,
since this would have been too intensive given the number of setups.

For the other BFMs (DIAYN, GOAL-TD3, GOAL-GPT and MASKDP), we finetune each of them
by performing hyperparameter sweep on their goal-based imitation performance in a representative
task for each domain. We select the hyperparameters that lead to the best averaged performance over
three random seeds. We re-train the final BFMs models with the selected hyperparameters for 10
different random seeds.

This results in one hyperparameter tuning per domain (not per task), both for BFMs and for the IL
baselines. Importantly, note that the BFM tuning is shared by all algorithms using a given BFM model
(e.g., ERFB, BBELLFB, . . . for FB), while the IL baselines have a separate tuning per algorithm.
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E IMITATION LEARNING EXPERIMENTS

In this section we report the complete set of results for the standard IL protocol described in Sect. 5.
We also present the additional experiments we conducted to assess the performance of FB-IL methods
and baselines.

E.1 DETAILED VIEW OF THE RESULTS WITH 𝐾 = 1 EXPERT DEMONSTRATIONS

We start providing results for each task. Tab. 5, 6 and 7 contain the cumulative reward obtained by
the IL policy recovered by each algorithm. The protocol is the same as in Sect. 5. We further report
the performance of the expert agent, expert performance is computed over the 250 trajectories we
generated for the IL experiment.

In Tab. 8 we further report the average time required by the methods to compute the IL policy.

Maze

Algorithm fast slow loop reach bottom
left

reach bottom
left long

reach bottom
right

reach top
left

reach top
right square

BC 451.7(49.4) 506.9(38.7) 346.9(45.7) 263.4(51.4) 167.5(33.4) 476.3(65.2) 452.6(56.0) 757.8(49.0)

DWBC 327.9(42.2) 634.4(51.1) 273.9(64.0) 91.7(100.4) 120.5(29.8) 453.3(66.9) 205.1(43.6) 587.0(44.6)

ORIL 4.6(4.6) 42.5(5.7) 0.0(0.0) −191.7(132.7) 0.0(0.0) 532.6(37.3) 0.0(0.0) 143.5(2.1)
ORIL-O 144.8(3.9) 524.1(6.5) 756.1(13.0) −244.4(32.6) 298.1(47.1) 952.2(5.0) 785.6(10.6) 390.8(28.4)

ORIL-OO 148.9(6.6) 488.9(9.0) 715.3(25.2) −218.1(33.3) 237.0(52.8) 950.4(10.8) 740.7(23.7) 417.2(30.4)

OTRTD3 121.7(16.4) 675.4(21.2) 486.8(57.4) 361.8(34.6) 274.0(51.5) 401.5(57.0) 549.8(53.8) 640.0(17.8)

SQIL 700.0(54.7) 741.0(54.9) 696.2(37.8) 533.9(51.1) 548.5(40.7) 926.0(18.3) 739.9(27.0) 694.5(60.5)

TD3IL 104.9(28.9) 752.2(36.8) 830.5(0.2) −11.1(5.7) 668.8(35.3) 963.4(1.7) 829.6(0.6) 244.3(55.5)

DEMODICE 107.4(10.9) 432.2(12.7) 20.9(2.5) −928.3(95.5) 19.9(1.3) 111.2(4.6) 26.2(2.5) 416.4(13.4)

SMODICE 117.1(3.1) 442.7(3.1) 105.2(3.0) −1340.2(37.2) 88.0(1.9) 85.9(1.3) 115.5(2.7) 296.7(3.6)
LOBSDICE 86.7(1.4) 409.6(2.3) 15.0(0.2) −2048.2(33.8) 12.2(0.3) 96.0(1.1) 16.5(0.5) 299.9(3.7)
IQLEARN 48.0(15.3) 148.2(16.5) 0.0(0.0) −196.8(73.7) 0.1(0.1) 42.1(11.4) 0.2(0.2) 114.4(15.7)

BCDIAYN 16.0(1.7) 142.3(7.8) 545.8(21.3) −224.6(23.6) 211.4(16.9) 737.5(20.9) 584.6(21.7) 116.1(4.5)
ERDIAYN 0.4(0.0) 87.2(7.3) 517.7(18.4) −374.8(23.0) 33.8(7.3) 568.5(26.0) 559.9(20.7) 46.2(2.9)
GOALDIAYN 215.2(7.6) 388.6(8.5) 580.8(17.9) 47.8(27.1) 299.4(17.1) 585.5(26.3) 619.1(16.2) 414.3(14.5)

GOAL-TD3 824.5(2.6) 800.9(7.9) 781.5(3.1) 473.6(12.3) 335.4(16.3) 948.6(1.3) 760.1(5.6) 904.6(1.2)
MASKDP 692.4(16.0) 763.8(12.1) 592.0(12.9) 461.5(12.9) 293.8(12.3) 913.2(5.6) 654.8(9.3) 821.3(11.1)

GOAL-GPT 710.8(3.5) 843.2(4.6) 713.3(2.6) 606.8(2.7) 471.6(14.5) 665.0(8.2) 716.6(2.5) 840.8(1.7)

BCFB 392.8(9.0) 846.8(5.9) 734.5(11.4) 156.4(19.0) 548.5(12.0) 962.4(2.3) 758.1(8.6) 873.4(7.0)

ERFB 347.1(4.1) 697.6(10.1) 817.4(0.8) −77.3(8.1) 527.7(13.1) 956.5(1.1) 819.5(1.0) 771.9(5.5)

RERFB 284.8(8.9) 637.8(15.6) 776.1(5.2) 347.7(39.7) 570.6(11.2) 945.5(2.9) 760.1(7.4) 718.4(11.7)
BBELLFB 236.2(8.7) 648.8(15.0) 495.8(19.7) 53.9(21.7) 313.3(14.3) 776.5(15.7) 412.4(18.3) 445.1(13.2)
FMFB 221.2(8.3) 598.6(11.8) 356.5(20.6) −129.9(35.3) 178.8(13.5) 754.0(15.4) 432.0(20.0) 413.9(11.6)
FBLOSSFB 219.4(8.4) 638.0(14.0) 377.0(19.2) −20.7(35.4) 375.5(15.0) 824.9(13.6) 297.3(18.3) 473.5(14.3)
DMFB 229.8(7.9) 569.1(13.3) 251.5(17.2) −163.8(41.3) 277.7(16.2) 746.9(19.2) 271.5(18.1) 447.8(14.2)
GOALFB 572.9(3.3) 818.1(3.3) 799.7(1.2) 543.9(9.9) 617.6(4.1) 954.6(1.0) 793.7(1.7) 885.5(1.8)

Expert 935.5(0.6) 912.4(0.5) 813.4(1.3) 666.4(1.2) 710.3(1.0) 949.3(1.1) 813.0(1.2) 952.9(0.8)

Table 5: Cumulative reward for each task in the maze environment, averaged over repetitions. Experi-
ments are done with 𝐾 = 1 expert demonstrations. Standard deviation is reported in parenthesis.

E.2 WARM START FOR FB-IL METHODS

As mentioned in the text, some FB methods require a gradient descent over the policy parameter 𝑧,
and we initialized the gradient descent with a “warm start”, setting the initial guess 𝑧0 to the value (8)
used in ERFB, which can be readily computed.

Fig. 7 illustrates the performance of BCFB and BBELLFB with and without ERFB warm-start
averaged over all environments and tasks. While BBELLFB is relatively robust, BCFB performs
poorly when the policy embedding 𝑧 is optimized starting from a random point on the unit sphere.
While BCFB benefits from warm-start, notice that the initial value 𝑧0 obtained from ERFB is not
stationary and the BC loss keeps decreasing over iterations and eventually converges to a different
policy 𝜋𝑧 . This can lead to policies with significantly different behavior as illustrated in Fig. 6. While
BCFB without warm start tries to imitate the expert and fails in reproducing the trajectory, the policy
returned by ERFB reaches the goal but takes a different path w.r.t. the expert. On the other hand,
BCFB with warm start successfully shifts the initial ERFB policy to better replicate the expert actions
and eventually reproduce its trajectory.
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Walker
Algorithm flip run spin stand walk
BC 28.3(1.8) 26.3(1.4) 21.5(3.3) 166.7(6.0) 27.2(1.0)
DWBC 57.2(2.0) 27.6(1.6) 190.3(13.7) 191.0(11.5) 39.0(2.9)
ORIL 648.0(23.5) 320.2(24.1) 900.1(38.4) 886.9(33.5) 567.3(60.3)
ORIL-O 143.0(20.7) 167.4(22.6) 9.0(0.8) 349.1(8.1) 114.7(16.1)
ORIL-OO 92.2(7.9) 122.5(20.8) 9.3(0.7) 335.7(4.7) 72.8(5.8)
OTRTD3 98.3(4.8) 27.4(1.1) 183.5(15.7) 285.8(18.6) 64.5(5.7)
SQIL 561.0(47.6) 309.1(33.1) 967.5(5.3) 807.2(50.6) 681.4(56.6)
TD3IL 673.7(23.8) 293.4(22.8) 973.0(4.5) 875.5(40.2) 736.0(43.6)
DEMODICE 245.1(1.1) 87.0(0.2) 474.2(8.1) 389.7(0.6) 195.7(0.5)

SMODICE 244.3(0.5) 89.5(0.1) 487.5(0.8) 387.0(0.5) 196.2(0.3)

LOBSDICE 243.6(0.4) 89.1(0.1) 481.9(0.8) 387.3(0.5) 195.1(0.4)

IQLEARN 34.5(2.6) 23.1(0.6) 57.6(10.1) 139.8(6.1) 26.9(1.5)

BCDIAYN 36.6(0.6) 23.5(0.6) 17.5(0.6) 195.6(4.4) 33.3(0.8)
ERDIAYN 77.0(2.8) 25.9(1.0) 89.8(4.8) 151.7(7.2) 104.8(6.6)

GOALDIAYN 104.6(3.2) 26.7(0.7) 451.7(9.3) 145.9(6.7) 131.5(5.5)

GOAL-TD3 593.2(3.3) 216.8(1.4) 859.8(1.5) 908.5(2.3) 865.3(2.2)

MASKDP 65.7(2.4) 67.6(1.0) 116.0(4.5) 162.5(1.2) 32.2(0.3)
GOAL-GPT 253.4(0.2) 102.9(0.1) 375.1(0.4) 406.0(1.1) 214.8(0.3)

BCFB 579.7(6.6) 262.2(2.5) 793.6(13.7) 742.9(9.3) 891.5(2.9)
ERFB 552.0(5.0) 281.2(2.1) 814.4(17.3) 721.7(8.8) 836.3(5.7)
RERFB 553.1(7.7) 343.9(5.2) 900.3(8.9) 672.5(11.5) 735.4(10.8)

BBELLFB 642.6(3.8) 322.1(4.0) 896.0(12.1) 720.7(9.6) 789.2(7.9)
FMFB 606.5(3.8) 228.1(6.1) 836.4(13.8) 706.3(9.8) 808.9(7.6)
FBLOSSFB 643.3(3.7) 282.7(5.0) 910.6(11.3) 706.1(10.9) 811.1(7.0)
DMFB 614.1(3.8) 256.0(5.4) 824.6(15.7) 694.3(10.3) 832.8(4.9)
GOALFB 593.6(3.2) 275.4(1.9) 903.7(2.2) 715.4(8.6) 820.3(4.9)

Expert 977.2(0.8) 845.7(0.7) 986.2(0.4) 987.5(0.6) 978.7(0.8)

Table 6: Cumulative reward for each task in the walker environment, averaged over repetitions. Ex-
periments are done with 𝐾 = 1 expert demonstrations. Standard deviation is reported in parenthesis.

Cheetah Quadruped
Algorithm run run backward walk walk backward jump run stand walk
BC 62.2(1.8) 88.6(10.5) 237.0(31.4) 675.3(35.8) 156.2(12.6) 197.5(19.3) 429.8(42.7) 295.3(39.3)

DWBC 63.8(1.6) 88.6(8.9) 247.9(26.6) 646.5(41.5) 161.1(14.4) 195.6(20.3) 444.5(49.0) 292.0(39.8)

ORIL 200.0(9.8) 365.6(5.8) 655.2(47.1) 952.7(9.5) 801.0(28.3) 571.4(13.6) 953.6(20.6) 763.4(35.2)

ORIL-O 9.6(6.6) 31.0(20.8) 421.8(56.1) 823.6(23.1) 660.7(5.1) 454.1(37.8) 966.4(4.5) 555.8(23.9)

ORIL-OO 103.5(16.7) 243.5(30.2) 459.9(55.7) 820.1(36.4) 677.5(14.7) 449.3(18.1) 958.2(3.4) 584.3(35.0)

OTRTD3 91.2(3.8) 107.5(15.1) 515.4(36.3) 681.6(19.6) 363.2(47.5) 31.6(3.3) 277.1(31.3) 61.6(6.3)
SQIL 194.7(16.9) 187.8(22.8) 120.4(38.8) 569.1(65.9) 266.1(57.2) 473.5(17.3) 361.3(33.9) 273.2(42.2)

TD3IL 214.1(10.2) 347.9(5.1) 861.3(35.9) 968.8(3.2) 808.2(27.8) 552.6(9.7) 855.1(54.8) 813.8(17.5)

DEMODICE 39.6(0.6) 54.4(1.0) 197.3(1.9) 250.9(3.3) 154.1(3.7) 113.8(2.5) 238.1(2.9) 114.1(1.9)
SMODICE 43.1(0.5) 56.9(0.8) 205.5(2.1) 256.7(3.1) 139.0(2.5) 97.8(2.1) 205.9(4.1) 109.4(2.0)
LOBSDICE 47.2(1.5) 53.6(1.0) 234.9(4.4) 225.2(3.8) 172.2(2.8) 126.4(2.4) 242.7(5.6) 123.6(1.6)
IQLEARN 46.5(2.2) 85.2(8.5) 320.9(39.8) 772.5(21.9) 99.8(6.3) 71.3(6.8) 242.7(10.5) 237.0(6.0)

BCDIAYN 1.0(0.0) 0.8(0.0) 4.9(0.2) 4.7(0.2) 153.4(3.8) 169.0(1.7) 272.3(3.5) 147.0(1.7)
ERDIAYN 1.6(0.0) 1.6(0.1) 8.2(0.2) 7.6(0.3) 180.7(2.5) 148.0(1.7) 243.9(5.1) 124.0(2.3)
GOALDIAYN 17.2(1.2) 51.3(3.9) 376.5(8.2) 499.5(10.5) 147.4(3.6) 125.2(2.4) 196.0(4.7) 157.7(4.5)
GOAL-TD3 83.5(2.3) 171.3(3.4) 779.8(5.6) 653.1(7.3) 732.4(5.5) 426.6(4.0) 946.6(1.3) 760.7(4.1)
MASKDP 63.5(1.0) 49.4(1.0) 348.7(7.9) 831.4(8.5) 150.1(3.7) 90.2(2.6) 299.0(6.7) 161.0(4.3)
GOAL-GPT 49.2(0.7) 97.4(1.3) 431.8(11.0) 675.2(5.4) 543.0(3.0) 362.0(0.5) 638.7(3.6) 320.9(1.2)

BCFB 176.6(7.3) 184.5(6.7) 646.9(21.0) 629.4(24.7) 784.2(5.7) 332.4(9.5) 967.3(2.1) 800.2(5.7)

ERFB 303.4(3.5) 207.4(5.7) 888.7(6.5) 885.9(12.0) 798.5(4.4) 437.3(9.5) 971.1(0.4) 703.4(7.7)

RERFB 252.0(3.7) 228.2(4.0) 845.8(6.3) 854.8(16.3) 632.2(16.9) 393.8(10.9) 864.4(13.1) 649.6(10.5)
BBELLFB 305.0(2.7) 231.8(5.6) 674.9(15.8) 829.0(12.5) 629.8(12.4) 338.3(10.0) 941.3(5.4) 762.9(10.1)
FMFB 290.9(3.2) 210.3(6.8) 468.1(22.1) 834.4(15.7) 534.1(14.9) 241.0(11.0) 782.3(16.4) 612.1(11.4)
FBLOSSFB 299.3(3.0) 237.7(4.5) 632.4(18.4) 821.6(15.1) 643.8(10.7) 323.0(10.0) 935.3(6.3) 768.5(9.9)

DMFB 291.1(3.1) 206.9(7.1) 473.4(22.1) 836.9(15.6) 543.7(15.0) 246.4(11.2) 771.1(17.6) 607.3(11.2)
GOALFB 301.4(3.5) 205.7(5.5) 874.8(7.1) 887.4(13.2) 776.6(4.4) 465.5(7.8) 949.8(1.3) 768.6(5.3)

Expert 910.9(0.1) 627.9(1.0) 992.3(0.0) 989.9(0.0) 894.1(1.6) 934.0(1.5) 971.6(1.3) 965.7(1.4)

Table 7: Cumulative reward for each task in the cheetah and quadruped environments, averaged over
repetitions. Experiments are done with 𝐾 = 1 expert demonstrations. Standard deviation is reported
in parenthesis.

E.3 FB MODEL QUALITY

In our experiments we averaged the performance over 10 FB models. To evaluate the robustness of the
pre-trained steps we report in Fig. 8 the fraction of models 𝐹 (𝜏) with a combined normalized score
above a certain threshold 𝜏 . Let𝑀 = 10 be the number of FB models and 𝑥𝑚 be the score of model𝑚
averaged over environments, tasks, FB-IL methods, and repetitions. then 𝐹 (𝜏) = 1

𝑀

∑︀𝑀
𝑚=1 1[𝑥𝑚 >
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Algorithm Time

BC 3h14m
DWBC 9h32m
ORIL 7h45m
ORIL-O 6h56m
ORIL-OO 7h12m
OTRTD3 4h30m
SQIL 10h18m
TD3IL 7h3m
DEMODICE 12h59m
SMODICE 6h35m
LOBSDICE 6h28m
IQLEARN 13h17m

Algorithm Time

BCDIAYN 1m
ERDIAYN <5s
GOALDIAYN <5s
GOAL-TD3 <5s
MASKDP <5s
GOAL-GPT <5s

Algorithm Time

BCFB 1m
ERFB <5s
RERFB <5s
BBELLFB 4m
FMFB 3m
FBLOSSFB 4m
DMFB 3m
GOALFB <5s

Table 8: Average time for generating an imitation learning policy once provided a set expert demon-
strations. This clearly shows the advantage of BFMs that need only to infer one or multiple policies
without explicit training.

(a) BCFBwithout
warm start

(b) ERFB

x
(c) BCFBwith
warm start

Figure 6: Examples of trajectories in the maze with different FB-
IL methods. The expert trajectory is reported in red while the IL
trajectory is reported in green.
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Figure 7: Imitation score averaged
over domains, tasks and repetitions for
ERFB and BCFB with and without
warm start, using 𝐾 = 1 expert demon-
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𝜏 ] (Agarwal et al., 2021). We can notice that all the drop in probability is very concentrated towards
high values (between 0.5 and 0.7) denoting a small variability in the performance of the FB models.
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Figure 8: Performance profiles on combined tasks and FB-IL methods. Shaded regions show point-
wise 95% confidence bands based on percentile bootstrap with stratified sampling.

E.4 EFFECT OF THE NUMBER OF DEMONSTRATIONS

We investigate whether the performance of the IL methods can be improved by increasing the number
of expert demonstrations. In Fig. 9 we report the aggregate performance for all the tested algorithms.
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As expected, BC (similarly DWBC) improves significantly with the number of experts trajectories.
However, even with 100 trajectories (corresponding to 1M number of expert transitions), BC only
marginally outperforms FB-IL methods using only 1 trajectory.

Similarly, DEMODICE and IQ-LEARN enjoy a significant improvement but they are still unable to
match the performance of FB-IL methods.

Other baselines are practically unaffected by the number of expert trajectories given that the bottleneck
is mostly the inefficient usage of unsupervised samples. FB-IL methods are overall stable achieving
very good results already with a single trajectory. We think that increasing the number of trajectories
does not help pre-trained models since we are limited by the approximation errors of the model. We
think we may be able to overcome this limit by allowing fine-tuning the model, but this is outside the
scope of the paper.

Notice that many approaches –GOALDIAYN, MASKDP, GOAL-TD3, GOAL-GPT, GOALFB– are
not able to deal with multiple expert trajectories.

E.5 GENERALIZATION TO DIFFERENT STARTING POINT DISTRIBUTIONS

We investigate how well imitation algorithms generalize when the demonstrations are collected under
a different initial state distribution than the one used for evaluation.

Specifically, we repeat the experiments of Section 5 using 200 new expert trajectories of 1000
steps generated by the same TD3-based expert policies of Section 5 but changing the initial state
distributions as follows:

• for the walker, quadruped, and cheetah domain, we initialize each trajectory directly in the
expected long-term stationary behavior (i.e., a walking position for the walk task, a running
one for run, etc.). Concretely, we achieved that by taking, for each domain and task, the state
observed at step 500 of each of the 200 trajectories used in Section 5 (which we made sure to be
representative of the desired stationary behavior) and by rolling out 1000 steps using the expert
policy starting from each of these 200 new initial states.

• for the maze domain, we randomly initialize the agent position in the upper-right room instead of
the original upper-left one.

Then, we use these new demonstratinos to test all FB-IL methods as well as the most performing
baselines from each IL algorithm family. Everything else (protocol, hyperparameters, etc.) is exactly
the one used in Section 5.

In particular, each imitation policy is tested on the original initial state distributions of each domain
(i.e., a random position and orientation for walker, cheetah, and quadruped, and a random position in
the upper left room for maze), which are now very different from the one used to generate the expert
demonstrations. The main challenge is that now the demonstrations are only showing the desired
behavior (e.g., how to walk) but not how to reach that behavior (e.g., how to move to a walking
position when lying on the floor). The results are shown in Figure 10 and Figure 11.

In Figure 10, we report the average performance loss that each IL method suffers due to distribution
shift (computed as the ratio between the imitation score obtained using the modified demonstrations
in this sections, and the one using the original demonstrations of Section 5).

Overall, methods in the BC and FM/DM classes seem to suffer the largest performance loss. Reward-
based and goal-based methods are the least impacted by distribution shift, with the former being
almost unaffected. Overall all the FB-IL methods consistently achieve good performance even under
distribution shift (with a performance drop between 2% and 22% depending on the method), which is
not the case for some baselines (e.g., those in the BC and FM/DM).

While goal-based methods slightly outperform the task-specific TD3IL baseline in our base setup
(Fig. 1), this is not the case anymore in the generalization setup, with the best pretrained method
now around 93% of the top non-pretrained performance (Fig. 10). Still, the overall picture in Figs. 1
and 10 is largely the same.
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Figure 9: Aggregate normalized score of IL algorithms with different numbers of expert demonstra-
tions. Results are averaged over domains, tasks and repetitions.

E.6 DISTRIBUTION MATCHING: MATCHING THE SUCCESSOR MEASURE ON AVERAGE VS AT
EACH STATE

The classical distribution matching loss (10) amounts to estimating the divergence between the overall
occupation measures of a policy and the expert policy,

ℒ̄ℛ⋆(𝑧) := ‖E𝑠0∼𝜌0
𝑀𝜋𝑧 (𝑠0)− E𝑠0∼𝜌0

𝑀𝜋𝑒(𝑠0)‖2ℛ⋆ , (94)

as E𝑠0∼𝜌0
𝑀𝜋(𝑠0) is the cumulated discounted measure over all states visited by 𝜋 when starting at

𝑠0 ∼ 𝜌0.
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Figure 10: Generalization experiment: (top) average imitation score; (bottom) ratio between the
average imitation score with distribution shift (i.e., using the demonstrations with modified initial
state distribution, as described in the first paragraph of Appendix E.5) and without (i.e., using the
demonstrations of Section 5). Imitation scores are computed by averaging over all domains, tasks,
and repetitions for a single expert demonstrations.
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Figure 11: Generalization experiment: imitation score for each domain averaged over tasks and
repetitions for a single expert demonstration. The imitation score is the ratio between the cumulative
return of the algorithm and the cumulative return of the expert.

But as mentioned in Section 4.3, we have chosen the loss

ℒℛ⋆(𝑧) := E𝑠0∼𝜌𝑒 ‖𝑀𝜋𝑧 (𝑠0)−𝑀𝜋𝑒(𝑠0)‖2ℛ⋆ (95)
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Figure 12: Difference between matching the successor measure at each state, i.e., using the loss
E𝑠0∼𝜌𝑒 ‖𝑀𝜋𝑧 (𝑠0)−𝑀𝜋𝑒(𝑠0)‖2𝐵⋆ , and matching it on average w.r.t. the initial state, i.e., using the
loss ‖E𝑠0∼𝜌𝑒

𝑀𝜋𝑧 (𝑠0)− E𝑠0∼𝜌𝑒
𝑀𝜋𝑒(𝑠0)‖2𝐵⋆ or ‖E𝑠0∼𝜌0

𝑀𝜋𝑧 (𝑠0)− E𝑠0∼𝜌0
𝑀𝜋𝑒(𝑠0)‖2𝐵⋆ .

instead. This compares the successor measures of the expert and 𝜋𝑧 at each point separately.

This is a stricter criterion. For instance, take 𝑆 to be a cycle 𝑆 = {1, . . . , 𝑛}, and take an expert policy
that moves to the right on the cycle, 𝑠 → 𝑠 + 1 mod 𝑛. If 𝜌0 is uniform, the overall occupation
measure E𝑠0∼𝜌0

𝑀𝜋𝑒(𝑠0) of that policy is uniform too, and is the same as for a policy that stays in
place.

Putting E𝑠0 outside the norm is a simple way to solve this problem. Another way would be to consider
distributions over state transitions (𝑠𝑡, 𝑠𝑡+1) instead of just states 𝑠𝑡, as done, e.g., in (Zhu et al.,
2020; Kim et al., 2022a), but this requires changing the foundation model.

In Figure 12, we report the difference in overall performance between three such variants: putting
E𝑠0∼𝜌0

inside the norm as in classical distribution matching, putting E𝑠0∼𝜌𝑒
inside the norm (thus

widening the initial states to all states from which we can estimate successor measures from the
demos), and putting E𝑠0∼𝜌𝑒

outside the norm (our main choice). The norm chosen is ‖·‖𝐵⋆ .

The variant with E𝑠0∼𝜌𝑒 inside underperforms, while the variant with E𝑠0∼𝜌0 inside only works well
in the presence of our warm start initialization 𝑧0 ← E𝜌𝑒 [𝐵].

This is not surprising: indeed, with E𝑠0∼𝜌0
inside the norm, the warm start is the only way the

algorithm can incorporate information from the whole expert trajectory. Without warm start, it only
gets information from the earliest part of the trajectory. More precisely, with the expectation E𝑠0∼𝜌0

inside the norm, the loss in Thm. 2 becomes

ℒ𝐵⋆(𝑧) =
⃦⃦⃦
E𝑠0∼𝜌0

[︁
(Cov𝐵)𝐹 (𝑠0, 𝑧)− E

[︁∑︀
𝑘≥0 𝛾

𝑘𝐵(𝑠𝑘+1) | 𝑠0, 𝜋𝑒
]︁]︁⃦⃦⃦2

2
+ cst (96)

from which it is clear that:

1. The model 𝐹 only matters through 𝐹 (𝑠0, 𝑧).
2. Along the expert trajectories, states far from the initial state distribution 𝜌0 are discounted. So the

later sections of the expert trajectories are largely discarded.

On the other hand, the version with E𝑠0∼𝜌𝑒 outside does not rely on the warm start to incorporate
information from the whole expert trajectory: it demonstrates greater robustness to the initialization
of 𝑧, for a negligible difference in performance compared to E𝑠0∼𝜌0

-inside-with-warm-start. It also
corresponds to a finer theoretical criterion for identifying policies, as explained above.

F WAYPOINT IMITATION LEARNING EXPERIMENT

We consider imitating a sequence of yoga poses from the RoboYoga benchmark (Mendonca et al.,
2021). The RoboYoga benchmark defines 12 different robot positions for the walker and quadruped
domains of the DeepMind Control Suite. Here we focus on walker and generate expert demonstrations
by concatenating different poses, keeping each fixed for 100 time steps. Figure 13 shows an example
of such a demonstration.
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Note that the expert is both non-stationary, as the underlying task (i.e., reaching the pose) changes over
time, and non-realizable, as the transitions between poses are instantaneous and thus not physically
attainable. For this reason, we compare only goal-based IL methods (GOALFB, GOAL-TD3, and
GOAL-GPT) which are the only ones capable of dealing with non-stationarity.

Figure 13: Example of sequence of yoga poses to imitate. From left to right: lie front, legs up, stand
up, lie back, kneel, head stand, bridge.

F.1 DETAILED PROTOCOL

We evaluate each goal-based IL method on 1000 sequences of poses. Each sequence is built by first
sampling 10 out of the 12 yoga poses without replacement and then building a state trajectory of
1000 steps where each of the 10 poses is kept fixed for 100 consecutive steps. For each of the 1000
test sequences, each method is tested starting from a state randomly generated from the standard
initial state distribution of the walker domain.

Each generated trajectory is scored in terms of the rewards of the pose sequence it intends to imitate.
More precisely, each pose in the RoboYoga benchmark is associated to a reward function

𝑟𝑔(𝑠𝑡+1) =

{︂
1 if ‖𝑠𝑡+1 − 𝑔‖∞ ≤ 0.55,

0 otherwise,

where 𝑔 is the state corresponding to the pose. Letting (𝑔𝑡)𝑡≥0 denote a sequence of poses to
imitate, the score we compute for the corresponding trajectory (𝑠𝑡)𝑡≥0 produced by an IL method
is
∑︀1000

𝑡=0 𝑟𝑔𝑡+1
(𝑠𝑡+1). This number is then normalized by the total reward achieved by TD3 trained

offline on each pose separately. Each number in Figure 4 is obtained by averaging the scores obtained
by the IL method over the 1000 test sequences and 10 pretrained BFMs, plus/minus the standard
deviation of the average score of each of the 10 BFMs divided by

√
10.

F.2 ALGORITHMS AND HYPERPARAMETERS

GOALFB. We pretrain 10 FB models (with 10 different random seeds) as described in App. D.3
using the same hyperparameters reported in Table 1 with only three modifications: we add an extra
hidden layer to the 𝐹 and actor networks, we reduce the learning rate of 𝐵 to 10−6, and we train for
3× 106 gradient steps. At test time, we imitate pose sequences by using a lookahead of 1. That is, at
time 𝑡 of the produced trajectory we play 𝑎𝑡 = 𝜋𝑧𝑡(𝑠𝑡) with 𝑧𝑡 = 𝐵(𝑠demo

𝑡+1 ), where 𝑠𝑡 is the current
state and 𝑠demo

𝑡+1 is the state one-step ahead in the demonstration (i.e., the next pose to imitate).

Goal-TD3 and Goal-GPT. We use the same 10 pretrained models considered in the experiments
of Sect. 5.1 and 5.2. See App. C and D for the detailed training protocol and hyperparameters. At
test time, for GOAL-TD3 we use the same lookahead of 1 as for GOALFB. On the other hand, for
GOAL-GPT we use a lookahead of 16 as we found a lookahead of 1 to be working poorly. This
is likely due to the fact that GOAL-GPT is pretrained with a context length of 16, and thus tries to
reach a goal state 16 steps ahead with an autoregressive (i.e., history-dependent) policy. Setting the
lookahead to 1 essentially implies that we execute a Markovian policy as the history is reset every
single step.

F.3 QUALITATIVE EVALUATION

Figure 14 shows an example of trajectory generated by GOALFB when imitating the pose sequence
of Figure 13.
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Figure 14: Imitating the sequence of yoga poses from Figure 13 by GOALFB. The agent learns how
to quickly transition between each pose despite not being demonstrated how to do so.

Besides being able to reproduce each of the seven poses, GOALFB is capable of transitioning between
them despite not being demonstrated how to do so. This is because the underlying FB model, from a
purely unsupervised pre-training, potentially learned how to reach each pose from any other state in
the data.
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ORILIQL ORIL-OIQL ORIL-OOIQL OTRIQL DEMODICE SMODICE LOBSDICE
halfcheetah-medium-expert-v2 70.7(1.5) 83.0(2.7) 78.5(2.7) 70.3(2.8) 43.9(0.2) 59.6(0.5) 69.9(0.7)
halfcheetah-medium-replay-v2 35.0(0.3) 34.2(0.3) 35.1(0.5) 35.0(0.1) 32.0(0.2) 34.0(0.2) 35.1(0.2)
halfcheetah-medium-v2 42.7(0.1) 42.4(0.1) 42.6(0.1) 42.5(0.1) 42.6(0.1) 42.7(0.1) 42.5(0.1)
walker2d-medium-expert-v2 103.1(2.6) 102.8(4.0) 105.4(3.0) 100.1(4.4) 99.8(1.4) 107.9(0.2) 106.2(1.3)

walker2d-medium-replay-v2 32.1(1.3) 43.4(1.5) 42.1(2.4) 50.5(0.9) 36.3(1.5) 20.2(1.1) 37.4(1.2)
walker2d-medium-v2 64.7(2.6) 68.3(2.0) 62.1(2.5) 65.3(4.6) 68.8(1.4) 53.0(1.3) 56.9(1.9)

Table 9: Normalized score for imitation on the D4RL benchmark with 𝐾 = 1 expert demonstrations.

G BASELINE RESULTS ON D4RL

In this section, we check that our baseline implementations achieve comparable performance to the
results reported in the literature.

For this, we report the evaluation of a few baselines on the standard D4RL benchmark (Fu et al.,
2020). We consider the same setting as in (Luo et al., 2023). Similarly to (Luo et al., 2023), we use
IQL as the learning algorithm for ORIL and OTR, which we noticed to be performing better than
TD3 in this particular benchmark.

Tab. 9 shows that our implementations achieve comparable performance to the results in the literature,
confirming their correctness.7 This also shows that our setting is particularly challenging for *DICE
algorithms that are intrinsically tight to conservative updates.

7It is likely that better results can be obtained through hyper-parameter tuning (which we did not perform in
these experiments).
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