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Abstract

Depth sensors have been used extensively for perception in robotics. Typically these sensors have a fixed angular resolu-

tion and field of view (FOV). This is in contrast to human perception, which involves foveating: scanning with the eyes’

highest angular resolution over regions of interest (ROIs). We build a scanning depth sensor that can control its angular

resolution over the FOV. This opens up new directions for robotics research, because many algorithms in localization,

mapping, exploration, and manipulation make implicit assumptions about the fixed resolution of a depth sensor, impact-

ing latency, energy efficiency, and accuracy. Our algorithms increase resolution in ROIs either through deconvolutions or

intelligent sample distribution across the FOV. The areas of high resolution in the sensor FOV act as artificial fovea and

we adaptively vary the fovea locations to maximize a well-known information theoretic measure. We demonstrate novel

applications such as adaptive time-of-flight (TOF) sensing, LiDAR zoom, gradient-based LiDAR sensing, and energy-

efficient LiDAR scanning. As a proof of concept, we mount the sensor on a ground robot platform, showing how to reduce

robot motion to obtain a desired scanning resolution. We also present a ROS wrapper for active simulation for our novel

sensor in Gazebo. Finally, we provide extensive empirical analysis of all our algorithms, demonstrating trade-offs between

time, resolution and stand-off distance.
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1. Introduction

Depth sensors such as LiDARs, ultrasound rangers, and

others have been used for perception in robotics (Bailey

and Durrant-Whyte, 2006; Durrant-Whyte and Bailey,

2006), computer vision, augmented reality (Izadi et al.,

2011), and other applications over the last two decades.

They have been empirically determined to complement

RGB cameras well for spatial perception in both indoor

and outdoor scenes. Recently, a new wave of time-of-flight

(TOF) depth sensors have transformed robot perception.

These sensors modulate scene illumination and extract

depth from time-related features in the reflected radiance,

such as phase change or temporal delays. Autonomous cars,

drone surveillance, service robots, and wearable devices

have been influenced by commercially available TOF sen-

sors such as the Microsoft Kinect (Izadi et al., 2011) and

the Velodyne Puck (Halterman and Bruch, 2010).

This article describes a new scanning TOF sensor

design, which allows for novel adaptive angular resolution

in depth sensing. Our work is broadly related to classical

approaches for camera parameter control for perception,

such as active vision (Bajcsy, 1988; Bandopadhay et al.,

1988) and active illumination (Will and Pennington, 1972).

However, our sensor can quickly vary angular resolution in

a manner tailored over different parts of the field of view

(FOV) and has the potential to impact fast simultaneous

localization and mapping (SLAM) robotics methods

(Carlone and Karaman, 2017). Our new design is in con-

trast to mechanical methods (e.g., for focus, zoom, pose in

pan–tilt–zoom (PTZ) cameras (Del Bimbo et al., 2010))

that are slow and affect the entire FOV.

Our sensor allows angular resolution control of depth

measurements, much like eye foveation. Our design uses a

single LiDAR beam reflected off a microelectromechanical

system (MEMS) mirror. The voltages that control the

MEMS actuators allow analog (continuous) TOF sensing

angles. As a modulator, MEMS mirrors have well-known
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advantages of high-speed and fast response to control

(Petersen, 1980).

Our designs provide a new framework to exploit direc-

tional control for depth sensing for applications relevant to

small robotic platforms. Our experiments use a pulse-based

LiDAR, but because the algorithms use direct depth mea-

surements, it is safe to assume that they can easily be

extended to continuous wave systems, as well as any other

method for modulation such as mechanical (Halterman and

Bruch, 2010) or optoelectronic (Poulton et al., 2017).

Our contributions are as follows.

� We provide imaging strategies for directional control of

TOF samples, with a particular focus on the angular

support of the sensing beam. We demonstrate, through

real experiments and simulations, that deblurring the

measurements using the sensor’s angular support can

recover high-frequency edges, correct non-uniform

sampling, and is robust through wide FOV distortions.
� We discuss a information-theory-based control algo-

rithm for the MEMS mirror to decide which scan to

generate, given the previous measurements. By chang-

ing the cost function in the control algorithm, we can

create energy-efficient TOF 3D sensing, where the

algorithm places samples where they are most needed.

Our method optimizes 3D sensing accuracy along with

physical constraints such as range-derived power con-

sumption, motion of objects, and free-space coverage.
� We demonstrate all of our algorithms on a real sensor,

and show additional applications that are relevant for

small robotic platforms, such as LiDAR zoom, which

allows the controller to investigate interesting regions

in the scene, as well as gradient-based estimation,

which allows a constrained system to place its samples

along edges, and reconstructs the scene post-capture.
� We demonstrate the advantages of LiDAR zoom over a

fixed angular resolution sensor in terms of spatial den-

sity, angular resolution, and scanning efficiency on a

small robotic platform.

This article is an extension of our conference paper

(Tasneem et al., 2018) published at Robotics: Science and

Systems in 2018. For this submission, we add the analysis

of the design parameters for our adaptive sensing algo-

rithm, demonstrate the advantages of our zooming algo-

rithm over legacy TOF sensors on a robotic platform,

release a wrapper in Gazebo to simulate the sensor, and

present a foveated sensor model that allows for efficient

robot motion in SLAM algorithms.

To better view the visualizations of our results in three

dimensions, please see the video on our website.1

2. Related work

2.1. 3D range sensing

The techniques used for 3D sensing can be classified in to

three categories based on the measuring principles they rely

on (Beraldin et al., 2003). (i) Disparity has been used in

stereo cameras (Murray and Jennings, 1997) and structured

light setups (Scharstein and Szeliski, 2003) to measure

depth information. Both methods rely on finding exact cor-

respondences and fail in cases of occlusion, camera defocus

blur, etc. There have been many advances in structured

light setups (Zabatani et al., 2019) to improve the frame

rate and depth resolution using spatiotemporal coded pro-

jections. (ii) The focus/defocus information in an image can

also be used to estimate depth, but needs multiple images

and might not work for dynamic scenes. (iii) TOF, on the

other hand, uses the time/phase delay between sent and

received light to directly estimate depth of a scene

2.2. TOF imaging and adaptive optics

Efficient TOF reconstruction is possible in the face of glo-

bal illumination by encoding phase frequencies (Gupta

et al., 2015) or through efficient probing (O’Toole et al.,

2014). Camera exposure synchronization has enabled

reconstruction in ambient light (Achar et al., 2017).

Transient imaging is possible using ultra-fast lasers (Velten

et al., 2016), and has recently been demonstrated using

mobile off-the-shelf devices (Heide et al., 2013). In addi-

tion, spatiotemporal encodings have been shown to be effi-

cient for both structured light illumination (O’Toole et al.,

2015) and TOF illumination (O’Toole et al., 2014). We

focus on 3D reconstruction and show that directional con-

trol can allow for novel types of efficiencies in sampling

and energy consumption. Finally, TOF sensors for long-

range sensing through atmosphere uses fast adaptive optics

to remove atmospheric turbulence effects (Beckers, 1993;

Tyson, 2015), whereas we target scene-adaptive sensing for

autonomous systems.

2.3. Adaptive sampling in 3D models

Adaptive sampling techniques from signal processing

(Principe et al., 2000) are used extensively for efficient

mesh representations of computer-generated scenes

(Campbell and Fussell, 1990; Terzopoulos and Vasilescu,

1991). In robotics and vision, information theoretic

approaches are used to model adaptive 3D sensing for

SLAM and other applications (Charrow et al., 2015;

Hollinger and Sukhatme, 2014; Thrun et al., 2005).

Although, there has been work in the robotics and vision

community on adaptive sensing of features in the scene rel-

evant to a particular inference task, they do not incorporate

the working principles of a particular 3D sensor in their

algorithm design (Denzler and Brown, 2002; Paletta et al.,

2000). In the field of structured light, Zhang et al. (2014)

and Rosman et al. (2016) incorporate the number of pro-

jected patterns as a resource expenditure which they try to

minimize while maximizing the information gain from the

scene. In this article, we are interested in adaptive algo-

rithms for LiDAR sensors that take into account physical

constraints such as the power expended on far away objects

838 The International Journal of Robotics Research 39(7)



or on objects moving out of the FOV. We demonstrate the

balancing of such efficiency goals with 3D reconstruction

quality.

2.4. MEMS mirrors for vision

The speed and control of MEMS mirrors have been

exploited for creating imperceptible structured light for

futuristic office applications (Raskar et al., 1998) and

interactive-rate glasses-free 3D displays (Jones et al.,

2007). MEMS mirror-modulated imaging was introduced

through reverse engineering a digital light processing

(DLP) projector (Nayar et al., 2006) for tasks such as edge

detection and object recognition. Coupling a DLP projector

with a high-speed camera allows for fast structured light

and photometric stereo (Koppal et al., 2012). Adding a spa-

tial light modulator in front of the camera allows for dual

masks enabling a variety of applications (O’Toole et al.,

2015), such as vision in ambient light. In contrast to these

methods, we propose to use angular control to enable new

types of applications for 3D imaging. We are able to play off

angular, spatial and temporal sampling to allow, for example,

increased sampling in regions of interest (ROIs).

2.5. Scanning LiDARs

Most commercially available LiDARs scan a fixed FOV

with mechanical motors, with no directional control.

MEMS modulated LiDARs have been used by NASA

Goddard’s GRSSLi (Flatley, 2015), ARL’s Spectroscan sys-

tem (Stann et al., 2014), and Innoluce, Inc. (Krastev et al.,

2013). In all these cases, the MEMS mirrors are run using

a fixed waveform, while we control the MEMS mirror scan

path depending on scene information to demonstrate novel

imaging strategies. MEMS mirror control was achieved by

Kasturi et al. (2016) at Mirrorcle, Inc., who track specially

placed highly reflective fiducials in the scene, for both fast

3D tracking and virtual reality (VR) applications

(Milanović et al., 2011, 2017). We do not use special

reflective fiducials and utilize sensing algorithms for

MEMS mirror control. Finally, in Sandner et al. (2015) a

MEMS mirror-modulated 3D sensor was created, with the

potential for foveal sensing, but without the type of adap-

tive algorithms that we discuss.

3. Why adaptively control depth sensing?

Most robotic depth sensors obtain depths in a fixed angular

resolution over the scene. For example, TOF sensors such

as Pico Flexx, Kinect V2, or stereo-based sensors such as

Realsense or the Kinect V1 have fixed photodetector arrays

that, with a fixed lens, induce a constant set of samples of

the FOV.

Instead of naive uniform sampling, it would be useful if

depth sensors placed their samples where they are needed.

For example, the Velodyne Puck, used in many autono-

mous vehicles, might benefit navigation by controlling its

mechanical motor to spend more time sampling pedestrians

and cars. However, doing such adaptive sensing using slow,

mechanical motors is inefficient and causes wear and tear.

Instead, we build a LiDAR whose pulsed laser is reflected

off a small mirror. By moving the mirror through a desired

path, we can efficiently, adaptively sample the scene.

4. MEMS-modulated LiDAR imaging

A MEMS-modulated LiDAR imager has the following

advantages.

� The MEMS mirror’s angular motion is continuous over

its FOV.
� The MEMS mirror can move selectively over angular

ROIs.

In this section, we discuss some preliminaries that are

needed to actualize these advantages in imaging algo-

rithms. We first show how to use the advantage of continu-

ous motion to remove deblurring artifacts. We then discuss

how to use the advantage of selective motion to enable

TOF measurements that maximize an information theoretic

metric.

4.1. Sensor design and calibration

A MEMS-modulated LiDAR imager consists of a TOF

engine and a MEMS modulator, as shown in Figure 1(a).

The engine contains a modulated laser transmitter, a receiv-

ing photodetector that measures the return pulses, and addi-

tional electronics to calculate the time between transmitted

and received pulses.

To avoid errors due to triangulation, we co-locate the

centers of projection of the transmitter and receiver, as

shown in Figure 1. Unlike previous efforts, such as those

by Flatley (2015) and Stann et al. (2014), we do not co-

locate the FOVs of the transmitter and receiver, i.e., the

MEMS mirror is not our transmitter’s optical aperture. This

allows us to avoid expensive and heavy gradient-index

(GRIN) lenses to focus the laser onto the MEMS device.

Instead we use a simple, cheap, lightweight short=focus

thin lens to defocus the receiver over the sensor’s FOV. This

introduces a directionally varying map between the time

location of the returned pulses’s peak, and the actual depth.

We correct for this with a one-time calibration, obtained by

recovering 36 measurement profiles across 5 fronto-parallel

calibration planes placed at known locations, as shown in

Figure 2.

4.1.1. Current configuration specs. In Figure 1(b), we

show our current configuration, where we use open-source

1:35 W Lightware SF02/F LiDAR and a Mirrorcle 3.6 mm

Al-coated electrostatic MEMS mirror. The LiDAR operates

in near-infrared (NIR; 905 nm) and the MEMS response is

broadband up to long-wave IR (14 mm). As shown in

Figure 2(a), voltages from an oscilloscope control the

Tasneem et al. 839



MEMS mirror direction, and the synchronized received

pulses are inverted.

The short-focus lens introduces an interesting trade-off

among FOV, range, and accuracy. At the extreme case, with

no lens, our FOV reduces to a single receiving direction

with the full range of the LiDAR (nearly 50 m). As we

increase the FOV, and the defocus, the signal-to-noise ratio

(SNR) received at the transducer decreases, reducing range.

While we can compensate with increased gain, this intro-

duces noise and reduces accuracy. In this article, we traded-

off range for accuracy and FOV, and our device has a FOV

of ’158, a range of 0:5 m, and is set at the lowest gain

(highest SNR).

The Lightware LiDAR sampling rate is 32 Hz, which,

in this article, restricts us to static scenes. We prefer this

LiDAR, despite the low rate, because it allows for raw data

capture, enabling design-specific calibration. We perform

multiple scans of the static scene and average our measure-

ments to improve accuracy. After the calibration in Figure

2(b) we reconstruct a plane at 27 cm (not in our calibration

set) and obtained a standard deviation of 0.61 cm (i.e.,

almost all points are measured in a 61:5 cm error range),

as shown in Figure 2(c).

The total weight of our system is approximately 500 g;

however, most of that weight (;350g) is contained in a

general-purpose oscilloscope and MEMS controller, and it

would be trivial to replace these with simple, dedicated cir-

cuits (67 g Lidar, 187 g oscilloscope, 74 g enclosure, 10 g

optics, and 147 g MEMS controller).

4.2. Directional control of TOF sensing

Voltages over the MEMS device’s range physically shift the

mirror position to a desired angle, allowing for range sen-

sing over the direction corresponding to this angle. Let the

function controlling the azimuth be f(V (t)) and the func-

tion controlling elevation be u(V (t)), where V is the input

voltage that varies with time t. Without loss of generality,

we assume a pulse-based system, and let the firing

rate of the LiDAR/TOF engine be 1
Tf

Hz, or Tf seconds

(a) (b)

Fig. 1. (a) Co-located ray-diagram of the pulsed LiDAR modulated by a MEMS mirror and setup of our sensor: Lightware LiDAR

and Mirrorcle mirror.

(a)

(b)

(c)

Fig. 2. Calibration. In (a), we show a screenshot of the voltages

that control the MEMS mirror pose, as well as an example of the

return pulse. We fit a fourth-order polynomial to the return pulse

to detect the extrema location. In (b), we show how to map this

extrema location to depth in centimeters, by collecting data across

five planes at known depths. This calibration also involves a

vignetting step, to remove effects in the receiver optics. In (c), we

validate our sensor by reconstructing a fronto-parallel plane at 27

cm, showing a standard deviation of 0:61 cm (i.e., almost all

points are measured in a 61:5 cm error range). In the current

configuration, the FOV is ’158 and the range is 0:5 m.
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between each pulse. For continuous wave-based systems 1
Tf

Hz is equivalent to the frequency of emission. Therefore,

the nth measurement of the sensor happens along the ray

direction given by the angles (u(V (n Tf )),f(V (n Tf ))).
The world around a miniature vision sensor can be mod-

eled as a hemisphere of directions (Figure 1(a) center), i.e.,

the plenoptic function around the sensor is an environment

map parameterized by the azimuth and elevation angles.

Conventional imaging systems are characterized by their

point-spread function (PSF) (Goodman, 2005) whereas

miniature vision systems are characterized by their angular

support v (standard symbol) (Koppal et al., 2013). For min-

iature active scanning TOF systems, the angular spread of

the laser beam determines the angular support, which we

term as vlaser in Figure 1(a).

4.3. Correlated depth measurements over the

FOV

Each sensor measurement occurs across the laser’s dot size,

given by the angular support vlaser. Let us now define the

separation between measurements in angular terms, as

vdiff. For many commercial LiDARs, such as the Velodyne

HDL-32E, the measurement directions are further apart

than the angular support, i.e., vdiff ø vlaser.

For our system, the measurement separation vdiff depends

on the differential azimuth elevation, given by

vdiff = df du sin (f), where f and u were defined previ-

ously. MEMS modulation allows almost any angle inside the

sensor’s FOV. Therefore, if the measurements satisfy the

inequality vdiff ł vlaser, then the measurements are correlated.

4.4. Linear filtering with MEMS mirrors

The correlation-enabling inequality defined above allows

us to think about our MEMS modulated sensor as similar in

properties to fixed-resolution imagers. In particular, if the

inequality is satisfied, then the measured LiDAR depth

measurements y are some linear transform B of the ‘‘ground

truth’’ LiDAR measurements defined at some canonical,

desired resolution as z

y =Bz ð1Þ

where, crucially, B can be full rank only if the inequality

vdiff ł vlaser is true. Many conventional LiDAR systems

have large gaps between measurements, implying that B

has many zero rows and the inequality is not held. On the

other hand, if this inequality is satisfied, then the rich body

of work in vision using controllable PSFs can be applied

here, including image deblurring (Raskar et al., 2006),

refocussing (Ng, 2005), depth sensing (Levin et al., 2007),

and compressive sensing (Fergus et al., 2006). We now pro-

vide some examples, augmented by illustrations and noisy

simulations in Figure 3 of a 2D toy scene where a MEMS

modulated LiDAR is shown to be scanning a circular scene

with a sharp discontinuity. In these examples, the rows of

the measurement matrix are the indices of different mea-

surements, and the columns cover discrete viewing direc-

tions across the FOV. Assuming uniform laser dot intensity,

we can represent the angular support for any particular

MEMS mirror position as an indicator vector along view-

ing direction. Any measurement collects information across

the angular support in this FOV, given as white, and ignores

the rest, shown as black.

4.4.1. Uniform sampling and fixed filter. In Figure 3(a),

the angular support vlaser is larger than the angle offset

vdiff, and therefore the direct measurements blur the high-

frequency information in the sharp discontinuity in Figure

3(a)(center left). The measured, received pulses at the sen-

sor are, given the measurement equation mentioned above,

y =Bz, and recovering the ideal depths z is a deblurring

problem. In the case of uniform motion, the angular support

of the sensor is constant across viewing direction, because

it is simply the angular spread of the laser being reflected

off the MEMS mirror. The uniform sampling and constant

filter size (angular support) result in measurements offset

by the same step, creating a near-perfect banded diagonal

matrix B in Figure 3(a)(center right), which is invertible.

We apply non-negative least squares to obtain measure-

ments as shown in Figure 3(a)(right), with zero root-mean-

squared error (RMSE).

4.4.2. Non-uniform sampling and fixed filter. We note that

the angular support can be affected by adding laser optics,

as shown in Figure 3(b), where the angular support vlaser is

increased. This would be necessary if the maximum angu-

lar spread between measurements is much larger than the

original angular support vlaser, due to non-uniform MEMS

mirror control. In fact, such control occurs naturally with

MEMS devices driven by linear signals, since the MEMS

device’s forces follow Hooke’s law of springs (Yang et al.,

2013). In Figure 3(b)(center right), the non-uniform and

blurred measurements result in a banded matrix with vary-

ing bandwidth. The ground-truth recovered by inverting B

is both accurate and has the desired uniform density

sampling.

4.4.3. Non-uniform sampling and variable filter. Finally,

consider the effect of a wide-angle optical system, such as

a fish-eye lens. This would shear the diagonal band in the

matrix B, where extreme angles would integrate large por-

tions of the FOV, which samples closer to the optical axis

would show finer angular resolution. The smooth motion

of the MEMS mirror allows us to invert or redistribute the

samples across the FOV, removing wide-angle distortion. In

Figure 3(c), we show an example of such optics (Koppal

et al., 2013; Yang et al., 2017), which has been used

recently in wide-angle MEMS modulation. Using the equa-

tion from Koppal et al. (2013), we generate the viewing-

dependent angular support that creates a blurred version of

Tasneem et al. 841



(a)

(b)

(c)

(d)

Fig. 3. Deblurring using angular support: (a) deblurring 1D simulated data with uniform sampling; (b) deblurring 1D simulated data

with non-uniform sampling; (c) deblurring 1D simulated data with wide-angle optics; (d) deblurring real 3D edge data. In (a)–(c). we

show simulations of pulse-based LiDAR with 2% noise on a simple 2D circular scene with a sharp protrusion. In (a), the native laser

dot size blurs the scene equiangularly, resulting in a banded matrix (center right) that is invertible and the measurements are recovered

(right). In (b), a larger angular support is created with additional optics, for a sensor with non-uniform angular sampling. The matrix is

still invertible, and can be used to resample the scene uniformly. In (c), the effect of wide-angle optics is shown, modeled from the

refractive optics in Koppal et al. (2013) and Yang et al. (2017), where deblurring is still successful. Finally, (d) shows real experiments

across a depth edge. Without deblurring, measurements are hallucinated across the gap.
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the scene in Figure 3(c)(center left) and a corresponding B

matrix in Figure 3(c)(center right). This matrix is geometri-

cally constructed to be invertible because all its values are

positive and its trace is non-zero, and allows for scene

recovery in Figure 3(d).

4.4.4. Real result. In Figure 3(d) we show a real deblurring

result. The scene is two planes at 27 and 30 cm, where the

sensing angles follow a great arc in the hemisphere of direc-

tions, as shown by the line segment in Figure 3(d)(left). We

measure the angular support vlaser as 0:98 as shown in

Figure 3(d)(center left). Without deblurring, the original

measurements result in a smoothed edge, as shown in blue.

We use the damped Richardson–Lucy deconvolution opti-

mization algorithm that takes our measured angular support

as a starting point. This results in a strong edge recovery,

with fewer incorrect measurements, as shown in red in the

figure.

4.5. Adaptive sensing strategy overview

Our adaptive sensing strategy is to bring active vision (i.e.,

path planning) into the LiDAR sensor. Instead of control-

ling a robot, the planning algorithm control the scan path

of the MEMS mirror, which translates into a new measure-

ment of the scene structure.

Like many planning techniques, our approach relies on

first specifying local quality measures of the image. Once

local weights are known, candidate global trajectories are

proposed that are subject to physical constraints. In

robotics, these are usually constraints on where and how

fast the robot can move. For our adaptive LiDAR, the con-

straints are on how fast the MEMS can move and what tra-

jectories are physically feasible.

4.6. Adaptive TOF sensing in selected ROIs

The MEMS mirror can modulate the LiDAR beam through

a range of smooth trajectories. A unique characteristic of

our setup is that we can adapt this motion to the current set

of scene measurements. We control the MEMS mirror over

the FOV by exploiting strategies used for LiDAR sensing

in robotics (Charrow et al., 2015; Julian et al., 2014; Thrun

et al., 2005). In particular, we first generate a series of can-

didate trajectories that conform to any desired global physi-

cal constraints on the sensor. We then select from these

candidates by maximizing a local information theoretic

measure that has had success in active vision for robotics

(Charrow et al., 2015).

4.6.1. Candidate trajectories from global physical

constraints. To generate a series of candidate trajectories,

we encode the scene into regions where the sensing beam

should spend more time collecting many measurements,

and regions where the beam should move quickly, collect-

ing fewer measurements. We achieve this by clustering the

scene into ROIs based on a desired physical metric. In the

applications section, we show that different metrics can

enable, for example, scanning the scene under the con-

straint of limited power. Similar metrics can be specified

for time or scene complexity.

We first tessellate the current scene scan in three dimen-

sions into bounding boxes Bi(Xc, Yc, Zc,H), which contain

all points (X , Y , Z) in the current scan such that these lie in

a box centered at (Xc, Yc, Zc) with side length given by H.

We require that a metric M be designed such that

M(Bi) 2 R. We then apply an unsupervised clustering

mechanism, such as k-means, to the set of boxes, where

the feature to be clustered from each box Bi is

(M(Bi),Xc, Yc, Zc). Automatically finding the number of

clusters is an open problem in pattern recognition, and

while a variety of methods exist to find an optimal k, for

simplicity we generate candidate trajectories over a range

of cluster centers, from 2 until kmax, which we leave as a

design parameter.

Each cluster of boxes defines a ROI in the scene. Let us

describe the solid angle subtended by the ROI onto the

MEMS mirror, indexed by j as vj, and let the weighted

average physical metric of all the boxes in the jth ROI be

mj. If there are n samples across the FOV, then our goal is

to create a series of voltages V (t), such that the angles gen-

erated maximize the following cost function,

max
V (t)

S
(n Tf )
i S

k
j F(u(V (i)),f(V (i)),vj,mj) ð2Þ

where i varies from 1 to the number of LiDAR samples

nTf , where k is the number of ROI clusters in that scan

(varying from j = 1 to the number of clusters k), 1
Tf

is the

firing of the LiDAR/TOF engine and where F is a function

that outputs eamk if (u(V (n Tf )),f(V (n Tf )) lie inside vk .

Here a is a user-defined weight that controls the impact of

the relative score of the different ROIs on the time spent in

each ROI. If mtotal = S
k
j mj, we pick a weight a such that

the time spent in each ROI is proportional to
mj

mtotal
.

Note that the above equation does not contain a deriva-

tive term V
0
(t) to enforce smoothness, because we generate

only candidate trajectories that conform to physically rea-

lizable MEMS mirror trajectories, such as sinusoids, trian-

gular wave functions, and raster scans. We generate p such

trajectories c1, . . . ,cp from a global level algorithm

detailed in Algorithm 1 and pick the scan that maximizes

the sum of the information gain from each scanned ray

max
Vp(t),m

I(mjci) ð3Þ

where ci is the current scan and m is the probabilistic occu-

pancy map of the scene calculated by tessellating the scene

into voxels B
0
i(X

0
c, Y

0
c, Z

0
c,H

0
), and where the probability of

occupancy is given by e�0:5r, where r is the radial distance

between the voxel center and the nearest measured scan

point. In other words, our strategy is to optimize the goal
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in Equation (2) by optimizing the gain within each cluster

as in Equation (3).

We do this by utilizing a form for I(mjci) in Equation

(3) derived from the Cauchy–Schwarz quadratic mutual

information (CSQMI) for a single laser beam (Charrow

et al., 2015). The expression for CSQMI is reproduced here

Charrow et al. (2015),

log
XC

l = 0

wlN (0, 2s2)+ log
YC

i = 1

(o2
i + (1� oi)

2)

XC

j = 0

XC

l = 0

p(ej)p(el)N (ml � mj, 2s2)

� 2 log
XC

j = 0

XC

l = 0

p(ej)wlN (ml � mj, 2s2)

ð4Þ

where C refers to the number of ‘‘cells,’’ voxels intersected

by the current laser ray direction, N and s define the mean

and variance of a Gaussian model of the return pulse, oi is

the probability that the ith cell is occupied, p(ej) is the prob-

ability that the jth cell is the first occupied cells (with all

before being unoccupied), and wl is a weight defined by

wl = p2(el)PC
j = l + 1(o

2
j + (1� oj)

2). As we have multiple

ray directions in each candidate scan, we aggregate each of

these to produce a single, overall CSQMI value for that can-

didate scan and pick the scan with the maximum score.

4.6.2. Simulation example. In Figure 4, we show a scene

created with BlenSor (Gschwandtner et al., 2011) with

three objects in front of a fronto-parallel plane. We start

with an equiangular base scan shown in Figure 4(a)

because all directions have uniform prior. We tessellate the

scene into boxes B of size 25 cm× 25 cm× 25 cm and

use the residuals of a 2D principal component analysis fit

to score the complexity of each box, as in Figure 4(b).

Clustering the boxes, Figure 4(c) creates ROIs. Varying the

number of clusters and varying scan parameters creates a

variety of candidate, each of which have a CSQMI score

(Figure 4(d)). We pick the best such score, as shown in

Figure 4(e), where it is contrasted with the worst such scan.

Note that, in the best scan, the neck of the vase is captured

in detail and the sphere is captured equally densely across

u and f angles.

4.6.3. Design parameters of adaptive TOF sensing

algorithm. The performance of adaptive sensing algo-

rithms depends on certain design parameter settings. Here

we present some empirical analysis of these parameters.

First, we present the robustness of the algorithm to base

scan resolution, which affects the reliability of the cluster-

ing component of our method.

4.6.4. Practical issues regarding clustering. Instead of

generating random trajectories globally and then using

CSQMI gain measure, we use a clustering technique to

segment the scene into objects (ROIs) and then the CSQMI

measure to decide the best physically feasible trajectory

scan within these ROIs. The assumption here is that the

scene is made up of some number of ‘‘interesting’’ objects

and a background. In other words, clustering helps us

decide where to focus scanning whereas the CSQMI gain

measure helps us decide what trajectory to follow in these

regions. Generating random trajectories would also be

unfeasible for the MEMS mirror to physically reproduce.

Although we use a naive k-means technique, any more

advanced clustering algorithm could be used including

neural-network-based unsupervised segmentation (Qi et al.,

2017). If a more advanced algorithm is used, we expect the

results to be even better. Of course, as with all such meth-

ods, the number of objects (i.e., k) is not known a priori

and is estimated through heuristics, and in our experiments

we vary the number of clusters from k = 2 to 5 for ROI

generation in the previous presented simulation where the

ground truth is k = 3. As k-means is an unsupervised and

non-deterministic clustering algorithm, we take the average

over 50 different random seeds for each cluster number.

We then calculate the CSQMI gain for the proposed scans

using our ROI generation and importance weight (a) distri-

bution algorithm. We vary the base scan resolution from

Fig. 4. Simulation of adaptive LiDAR. In (a), we show a base scan of a scene with three simple objects. This base scan is tessellated

into boxes, which are scored according to some desired metric. In (b), we show a geometric score based on the residual of 2D

principal component analysis of points in a box. Note the background plane has a low score. This score is used with multiple values of

cluster number k to generate many ROI segmentations, as in (c). The ROIs globally direct the MEMS mirror to scan longer in regions

with a higher average box score. For each ROI segmentation, many candidate scans are generated by varying scan parameters such as

phase, shape, directionality, etc., whose CSQMI scores are shown in (d). In (e), we show the highest and lowest average CSQMI

scores of these scans, and the highest scan’s MEMS mirror motions would be the actual trajectories scanned next.
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20× 20 to 60× 60 and repeat the same procedure plotting

the CSQMI values against the base scan resolution, as

shown in Figure 5(a). A good adaptive scanning strategy

would be the one that leads to the maximum information

gain in the subsequent scans.

From this figure, we can infer that as we increase the

base scan density the proposed scan CSQMI gain decreases,

which indicates that the adaptive TOF sensing algorithm is

advantageous in gaining more information when the base

scan density is low, whereas that advantage becomes less

prominent for high base scan densities. In addition, when

the number of clusters is precisely the ground truth k = 3,

the algorithm closely follows the expected monotonously

decreasing trend. However, this fails when k is wrong,

demonstrating clustering failures across the different trials.

In this analysis, the number of samples in the proposed

scans is equal to the base scan resolution.

Next, we ask the question whether it is possible to save

scan time and energy in consequent scans by reducing the

number of samples, i.e., once the importance of the tessel-

lated boxes has been obtained, how do the increased measure-

ments affect CSQMI. To do this empirically, we fix the scan

resolution at 50× 50 and segment the base scan into the

ground truth k = 3 clusters. In Figure 5(b), we vary the num-

ber of points in the consecutive scan from 1,000 to 2,500

(i.e., 0.4–1 times the samples in base scan) and observe that

even though the information gain is proportional to the num-

ber of points in the consecutive scan, the scale of change is

not large enough and, hence, we can save samples based on

the application such as performing consequent scans at a low

resolution while being fairly robust.

5. Applications

As described earlier, our TOF sensor has wide-ranging

applications in robotics, computer vision, augmented reality

(AR), and other domains. To demonstrate this, we imple-

ment a few novel applications using our sensor.

5.1. Smart LiDAR zoom

Optical zoom with a conventional fixed array of detectors

involves changing the FOV so that the measurements are

closer together in the angular domain. Intelligent zoom

exists for conventional cameras using PTZ transformations

(Deselaers et al., 2008) and light-fields (Badki et al., 2017).

Here we demonstrate, for the first time, intelligent LiDAR

zoom.

Suppose we are provided with angular supports of n

interesting ROIs in the scene (v1
zoom,v

2
zoom, . . . ,vn

zoom)
and a corresponding series of importance weights

(w1,w2, . . . ,wn). These could come from another algo-

rithm, say face detection, or from a user giving high-level

commands to the system.

We can use these regions and weights to modify the

default effect of the adaptive LiDAR framework described

in Section 4.6. For example, if a box is contained in vi
zoom,

then we can increase the geometric score in the boxes by a

factor determined by the corresponding importance weight

wi. This would increase the amount of time that the sensor

spends in the angular support corresponding to the box.

Smart LiDAR zoom has a clear advantage over naive

zoom, which would place all LiDAR samples exclusively

in ROIs. This because any zoom interface must also offer

scrolling. As is known in computer graphics (Nehab et al.,

2006), efficient scrolling requires caching motion and data

near user viewpoints, to allow for fast rendering for real-

time interaction.

In Figure 6(a), we show a scene with a 3D printed flower

and a bottle. We show a base scan of the scene in Figure

6(b) with equiangular samples. The user places a zoom

ROI around the flower. We show that naive zoom directs

the measurements entirely on the flower, with almost zero

measurements around the zoomed-in area.

Although we have not implemented real-time scrolling,

in Figure 6(c)–(g) we simulate the effect of scroll in naive

zoom, showing a jarring transition period in the image,

Algorithm 1 Global-level trajectory planning algorithm

Require: Generating candidate trajectories from base scan (X ,Y , Z)
Input: Base Scan (X ,Y ,Z) 2 R3, Number of Regions of Interest k 2 R, Dimension of bounding boxes H 2 R
Output: Candidate trajectories
1: c = ffu1, . . . , ua1 + ... + ak , . . . , unTf g,
2: ff1, . . . ,fa1 + ... + ak , . . . ,fnTf gg1, ..., p {p is the number of candidate trajectories and aj is the number of samples in the jth ROI

for adaptive scans}
3: Tessellate base scan into bounding boxes Bi(Xc, Yc,Zc,H)
4: Calculate complexity score at each box cj and other physical metrics
5: Cluster the boxes into ROIs vj based on (Xc, Yc,Zc,mj)
6: Initialization c = ffg, fgg
7: for j 1 to k do
8: Calculate the average of different physical metrics over all the boxes in jth ROI
9: Calculate a weighted average physical metric mj

10: Calculate aj =
mj × nTf

mtotal
{where mtotal = S

k
j mj}

11: Generate q probable raster scans pj within the ROI, pj = ffu1, . . . , uajg, ff1, . . . ,fajgg1, ..., q {probable scans are generated by
varying resolution in u and f}

12: Append pj to c
13: end for
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because the measurements suddenly appear in a previously

blank image. Instead, our method spreads the samples

across the two complex objects in the scene, allowing for a

more meaningful transition when scrolling is simulated in

Figure 6(g) to the dense scan when the bottle is zoomed.

Note, that while the scroll motion is simulated, all the zoom

measurements are real measurements from our sensor per-

forming directionally varying sampling, based on the

desired zoom area.

5.2. Zooming for mobile robotic applications

Our sensor and algorithms provide the ability to zoom into

ROIs in the FOV and enable a new set of more efficient

robot algorithms for various applications. In this section,

we perform simple experiments with a Turtlebot2 to demon-

strate this potential. Our experimental setup is shown in

Figure 7(a). Our sensor is used on the Turtlebot in three dif-

ferent modes.

(a) (b)

Fig. 5. Adaptive TOF sensing algorithm’s design parameters. We take the simple scene from the simulation example created with

Blensor, as shown in Figure 4(a), and vary the adaptive TOF sensing algorithm’s parameters. In (a), we vary the angular resolution in

base scan and the number of clusters in segmentation and observe the CSQMI values of the proposed scans. Our algorithm shows a

clear advantage of retrieving more information from the scan if the base scan density is low. In (b), we vary the number of samples in

the next scan for the base scan angular resolution of 50× 50 and observe that we retrieve more information for more samples in the

next scan but overall the scale of variation is not considerable.

Fig. 6. Our smart LiDAR zoom versus naive LiDAR zoom. By moving the MEMS mirror to certain ROIs, we can ‘‘zoom’’ or capture

more angular resolution in that desired region. In (a), we show a scene with two objects, and in (b), we show the output of our sensor

with equiangular sampling. If the zoom shifts to the flower, then the naive zoom concentrates the samples in the base scan on the

flower exclusively, in (c). On the other hand, our smart zoom (d) takes measurements outside the zoom region, depending on

neighboring object’s complexity and proximity. A naive approach does not visually support scrolling, because other areas of the scene

are blank (e). Our smart zoom allows for scrolling to nearby objects that have some measurements (f). This allows for a smoother

transition when the zoom shifts to that object (g), compared with naive zoom.
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� Mode A: We keep the angular resolution fixed at dif-

ferent distances, simulating the fixed resolution capa-

bility legacy TOF sensors such as Velodyne Puck and

Kinect provide. Scan time and scan pattern are the

same, and the robot is moving forward. In the various

graphs of Figure 7(c) and (d), this is shown as a solid

black line.
� Mode B: This mode demonstrates our zoom capability

in one possible way. We keep the spatial scan density

the same by adjusting the angular resolution. The scan

pattern changes as the solid angle subtended by the

object at the sensor origin increases as the robot moves

closer. We have to readjust the zoom extents at every

step. In the various graphs of Figure 7(c) and (d), this

is shown as a solid red line.
� Mode C: This mode demonstrates our zoom capability

in another possible way. We zoom in at the farthest dis-

tance, record the angular resolution in this configura-

tion, and keep the same angular resolution as the robot

moves closer to the object while the zoom extent

increases. This, in turn, increases the scan time consid-

erably. In the various graphs of Figure 7(c) and (d), this

is shown as a solid blue line.

In the section on adaptive TOF sensing above, we use

global physical constraints to decide the ROI and the

amount of zoom given a base scan. Within these ROIs we

choose the best scanning trajectory using a CSQMI mea-

sure locally. In this section though, scanning in mode A is

done to give a fair comparison with fixed resolution legacy

sensors and has no adaptive component. Modes B and C,

on the other hand, use the guiding rule of fixed spatial scan

density and fixed angular resolution, respectively, to decide

the scan density after adaptive ROI prediction at every dis-

tance through clustering on mode A scan. We perform each

scan independently of past information to show variation in

modes and distance from scene. Locally, we keep the scan

pattern fixed to a raster scan instead of varying the candi-

date trajectories and selecting the best one using a CSQMI

measure for simplicity of comparison between modes and

not within modes.

5.2.1. Comparison metrics. In order to quantitatively ana-

lyze the advantages of the different modes over each other,

we define several metrics. Spatial density is the most

important as the final output of our sensor is a point cloud

and this metric represents the number of points per square

centimeter of the object we were able to scan. Scanning

time is the time spent per scan frame and is directly propor-

tional to the total number of samples the sensor captured.

This is important because all LiDAR engines have a given

frequency at which they can sample points and having a

low scan time can increase the frame rate, which is desir-

able for most applications. Scanning efficiency is the num-

ber of samples the sensor was able to capture in a scan that

came from the object and not empty space. This represents

the percentage of the scene that was actually of interest and

was captured by our sensor.

5.2.2. Line sensor simulation. We first perform a simula-

tion to predict the consequences of different modes on

these metrics. We do the analysis within a plane parallel to

the ground plane and passing through the sensor origin as

shown in Figure 7(a) (right) so the sensor can be seen

assumed as a line sensor with our FOV and zoom capabil-

ities capturing an object of width 20 cm perpendicular to

the scanning direction and the robot is continuously mov-

ing towards the object of interest and scanning from a

range of 10 to 100 cm. From Figure 7(b), we hypothesize

that the spatial density for mode C is the highest, but has

the trade-off of having high scan time for objects at close

distances. Mode B, on the other hand, allows for constant

spatial density throughout scanning while keeping the scan

time constant. Because mode A cannot readjust its scan

pattern, its spatial density is the worst. In addition, it is

important to note that even though mode A can achieve the

same scan density at close distances without zooming, the

extent of the object captured clearly decreases as every sen-

sor is limited by its FOV which dictates a stand-off distance

as described in Figure 13. This is well simulated in Figure

7(b)(right).

5.2.3. Experimental results. To validate the hypothesis

from our simulations, we ran the same experiments on a

Turtlebot with our sensor mounted on it and scanned the

cutout of a cross and circle separately in three different

modes at 5 different distance ranges from 22 to 36 cm. We

choose symmetric objects so that the angular resolution

becomes equal, simplifying our analysis. Figure 7(c) and

(d) show the scans and the graphs for the cross and the cir-

cle objects, respectively. The top row of Figure 7(c) shows

the reconstructions achieved by mode A (left) fixed resolu-

tion at furthest distance of 36 cm, mode B (center) zoom-

ing from 36 cm distance, and again mode A (right) fixed

resolution at the nearest distance of 22 cm. We can clearly

see the superiority of mode B over mode A as it is able to

recover a comparable spatial density from a stand-off dis-

tance of 36 cm as it would have in mode A but from a

closer distance of 24 cm. This is also clearly evident in the

spatial density graph in bottom row center left. In the bot-

tom row, we measure angular resolution (left), spatial den-

sity (center left), scanning time (center right), and scanning

efficiency (right).

Even though the angular resolutions of modes A and C

remain constant over distance, mode C still achieves a bet-

ter angular resolution. Mode B demonstrates the ability to

change angular based on stand-off distance. We observe

that for mode A, the scanning efficiency falls off with dis-

tance, but for modes B and C, it remains reasonably con-

stant. Spatial density decreases for both mode A and mode

C because of fixed angular resolution, but is higher for

mode C showing its superiority. Modes A and B take the
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(a)

(b)

(c)

(d)

Fig. 7. Zooming for mobile robotic applications. We show the clear advantages that zooming in provides over traditional fixed

angular resolution sensors in terms of spatial density, angular resolution, scanning efficiency, and robustness at different scan

distances. (a) Our experimental setup. In (b), we simulate the effects of different modes. In (c) and (d), we demonstrate the clear

advantage of modes B and C over traditional sensors simulated in mode A. Modes A, B, and C are shown as black, red, and blue

lines, respectively. In both (c) and (d), the top row shows the reconstructions achieved by mode A (left) fixed resolution at furthest

distance of 36 cm, mode B (center) zooming from 36 cm distance, and again mode A (right) fixed resolution at the nearest distance of

22 cm. We conclude qualitatively that mode B (zooming) allows us to perform 3D imaging from a far stand-off distance with the same

spatial density as the robot would have achieved in mode A (fixed resolution) from a closer distance. From the bottom rows of (c) and

(d), we quantitatively conclude the advantage of modes B and C over mode A in terms of angular resolution (left), spatial density

(center left), scanning time (center right), and scanning efficiency (right) at different depths.
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same amount of scanning time, but for mode C it could be

as much as three times as high for objects in close range.

Finally, scanning efficiency for modes B and C is almost

always higher than mode A. In conclusion, both mode B

and mode C have clear advantages in spatial density and

scanning efficiency over mode A, which was a simulation

of commercially available scanning TOF sensors using our

sensor. Further, modes B and C represent fairly simple

zooming rules, and these already demonstrate improved

perception. We envision complex zooming in policies

based on application and the ROI, allowing for dramatic

improvements to previously proposed algorithms for robot

perception. Although, we do not demonstrate usage of past

information we can envision such online implementations

demonstrating temporal intelligence for the case of active

SLAM which is touched upon in Section 7.

5.3. Energy-aware adaptive sampling

In its current form, the adaptive TOF sensing algorithm

only uses a geometric goodness metric. To augment the

algorithm for mobile-based platforms, we wish to include

multiple, say n, physical constraints into the metric.

Therefore, we redefine the metric as M(Bi) 2 Rn, where Bi

is the ith box in the tessellated current scan.

To illustrate the redefined metric, we point out differ-

ences between adaptive sensing when compared with adap-

tive sampling literature in image processing and graphics.

First, for a given pulse signal and desired SNR, distant

objects require more pulses. Therefore, geometric complex-

ity must trade-off with range, and a distant, intricate object

may not be sampled at the required resolution, to save

energy. Second, temporal relevance matters, and a nearby,

intricate object that is rapidly moving out of the FOV need

(a) (b)

(c) (d)

Fig. 8. Energy-aware adaptive sampling: (a) energy-efficient LiDAR simulation; (b) energy-efficient LiDAR with real scenes. We

augment our directional control algorithm for adaptive TOF with physical constraints that capture the energy budget of the system.

Here we use two constraints: the inverse fall-off of light beam intensity and the motion of scene objects with respect to the sensor

FOV. In (a), we show simulations of three objects, one of which is given a motion perpendicular to the optical axis (i.e., leaving the

sensor FOV cone). Compared with the base scan (left), the efficiency scan reduces sampling on objects that move beyond the FOV

cone and distant objects, despite their complexity. In (b), we show a real example using our MEMS mirror-based sensor, where, again,

distant objects are subsampled.
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not be sampled at high resolution. Third, unlike virtual

scenes, free space must be sampled periodically, because

new obstacles may emerge. Finally, the sensor’s measure-

ment rate implies finite samples that must be shared across

all objects, complex or simple.

The issues of free space and infinite samples are already

handled by the adaptive algorithm described in Section 4.6,

and we augment it with two new metrics in M(Bi). The first

takes into account the dissipation of the laser, and scores

distant objects by two-way inverse square reduction in radi-

ance, or 1
Z4. The second is simply a scaled version of the

object’s velocity l~v, where l is 1 if the direction~v is con-

tained in the FOV cone of the sensor, and zero otherwise.

Figure 8 shows both simulated and real scenes, where

objects are at different distances from the sensor. In the

simulated scene, the vase is given a motion away from the

sensor’s visual cone. In the first column, we see the base

scan of the scene, where samples are taken equiangularly.

Applying the physical restrictions discussed above and

using the adaptive algorithm described in Section 4.6 pro-

duces the results in the second column, where samples are

reduced to save energy consumption and time.

5.3.1. Design parameters for energy-aware adaptive

sampling. The various parameters of the algorithm

described previously are the weights in the optimization,

i.e., the penalty for motion out of the FOV and the trade-off

between geometric goodness (complexity) and distance

from the sensor origin. We analyze the effect of varying

these parameters by observing the variation in CSQMI gain

over probable scans for the simulation example described

in Figure 8(a). In Figure 9(a), we observe that the CSQMI

gain for probable scans is high for parameters where com-

plexity is weighed more against the distance metric. The

CSQMI gain value does not vary much on varying the pen-

alty for clusters perpendicularly with respect to the FOV. In

Figure 9(b), we scan the scene using the trajectories gener-

ated for the worst CSQMI gain values, and we observe a

distant object (bottle) is scanned thoroughly (wasting

energy) owing to its complexity.

5.4. Edge sensing for gradient-based

reconstruction

Gradient-based methods (Pérez et al., 2003) have had sig-

nificant impact on vision, graphics, and imaging. Given a

base scan of the scene, we can focus our sensor to place

samples only on regions of high-frequency changes in

depth. Placing all our samples in these regions, over the

same time it took to previously scan the entire scene, pro-

duces more robust data because averaging can reduce noise

in these edge regions.

Our goal is to estimate scene depths Z, from a small

number of captured depths Ẑ. A popular solution is to mini-

mize some norm between the numerically computed real

and estimated x and y gradients. Formulating this for our

scenario,

min
Z

dẐ

dx
� dZ

dx

����

����
2

+
dẐ

dy
� dZ

dy

����

����
2

ð5Þ

Note that the minimization estimates scene depth Z,

which has values outside the sparse locations where we

have measurements, i.e., it is a full scene reconstruction. In

Figure 10 we show a real example of gradient-based recon-

struction for a scene with two planes at 27 and 37 cm. We

captured a base scan in Figure 10(a) of the scene and, using

its depth gradients, captured a new set of measurements

along edges (Figure 10(b)). These were used with a widely

available gradient reconstruction method (Harker and

O’Leary, 2015), which reduced the corresponding RSMEs

in Figure 10(e) by a third.

5.4.1. Discussion of advantages and brief qualitative com-

parisons to other reconstruction methods. Our approach

offers a choice of trade-offs compared with standard,

equiangular LiDAR reconstruction. For example, in the

same time period, one could focus the samples onto the

depth edges and recover the scene quickly. On the other

hand, if time is not an issue, fewer samples are needed to

achieve the same reconstruction quality, because these can

be averaged only on the edges (rather than throughout the

scene).

Finally, the approach and sensor design we have proposed

focuses all the light into one LiDAR ‘‘dot’’ and scans it onto

ROIs. Other active reconstruction approaches, such as phase-

based TOF sensors, structured light sensors, or photometric

stereo approaches, require illuminating all the scenes points

in parallel. This allows for faster capture compared with our

scanning technique, yet, for a fixed power budget, the illumi-

nation is spread over the entire scene FOV, in contrast to our

focused LiDAR ‘‘dot.’’ Our advantage in SNR, rather than

(a) (b)

Fig. 9. Design parameters for energy-aware adaptive sampling:

(a) variation in energy aware parameters; (b) scan with the worst

CSQMI. We heuristically determine the parameters that decide

the relative weight between the complexity and distance from the

sensor as well as the importance given to clusters moving out of

the FOV. In (a), we vary these parameters and observe the trend

in average CSQMI over probable scans for the base scan in

Figure 8(a). In (b), we scan with the worst CSQMI parameters,

showing more samples on the distant complex object.
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time, is particularly relevant for MEMS modulated LiDAR.

First, MEMS motion can be very fast, reducing the disadvan-

tage of time in scanning sensors. Second, the aperture of the

system is the small MEMS mirror area, and therefore con-

centrating light into a dot improves SNR and range. In con-

clusion, our approach offers a different, scanning-based

strategy to scene reconstruction, and the use of MEMS mir-

rors, with fast speed and foveated sensing, reduces the disad-

vantages of scanning.

6. Gazebo simulation

As the sensor proposed in this work is relatively new,

obtaining a physical sensor for experiments can be challen-

ging. An alternate way to enable quick use of such sensors

is simulation. However, most sensor implementations in

simulation have been passive. For active perception, the

sensor is usually added to a moveable platform, which is

then controlled though user input. We could not find any

simulations for an adaptive sensor such as that described in

this work. We therefore created a simulation for the sensor

to enable others to perform experiments with this new kind

of sensor.

We used the Gazebo simulation platform (Koenig and

Howard, 2004) because it:

� supports various physics engines, ODE, Bullet, DART,

and SimBody;
� integrates well with ROS;
� is widely used by the robotics community, both acade-

mia and industry;
� is open source and is widely available.

The simulation enables users to dynamically control dif-

ferent aspects of the sensor including the horizontal and

vertical resolution, minimum and maximum angles, as well

as the minimum and maximum range and noise parameters.

Currently, the simulation supports Gaussian noise.

However, it can be extended to different noise models.

Figure 11 shows the sensor in the simulated environment.

The image on the left shows the sensor initialized with the

default parameters. The image on the right shows the result

of a user input changing the parameters of the sensor. An

example program that alters the parameters of the adaptive

LiDAR sensor during execution is shown in Listing 1. The

available API methods and the parameters affected by them

are listed in Table 1.

The code and assets for the simulation can be found at:

https://github.com/droneslab/AdaptiveLidarGazebo

Simulation

Listing 1 An example program altering parameters of

sensor

Fig. 10. Gradient-based reconstruction. Directional control allows a capture of the scene, where samples are only made in high-

frequency (i.e., edge) regions of the scene. In (a), we see the original scan of the two planes, and (b) illustrates their noise levels. In

(c), we directly capture only edge regions, placing the same number of samples as in (a) in high-frequency areas, improving averaging

and reducing error. We use these edges with a gradient-based reconstruction algorithm to recover the meshes in (d). Note that the

noise levels are reduced significantly, as shown in (e).

Fig. 11. Adaptive LiDAR sensor simulated in Gazebo. Sensor

initialized with default parameters (left). Sensor parameters are

changed through user input (right).

Table 1. Programming API to control various parameters on the

sensor

Method Parameter affected

set_hminangle Horizontal minimum angle
set_hmaxangle Horizontal maximum angle
set_hsamples Horizontal number of samples
set_hres Horizontal resolution
set_vminangle Vertical minimum angle
set_vmaxangle Vertical maximum angle
set_vsamples Vertical number of samples
set_vres Vertical resolution
set_rmin Minimum range
set_rmax Maximum range
set_rres Range resolution
set_nmean Noise mean
set_nstd Noise standard deviation
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With an active LiDAR, such as that proposed in this

work, mobile robots will have the ability to reduce the

entropy in the map without the need for movement by vir-

tue of its capability to zoom in on portions of the map. The

control inputs to reduce map entropy in local regions, by

zooming in, can be made independent of control inputs for

navigation. Therefore, the objective of optimizing for map-

ping and localization accuracy can be decoupled from other

objectives such as minimizing distance traveled.

7. Discussion

Although we show only static scene reconstructions, our

adaptive angular framework impacts any scanning TOF

sensor.

7.1. Deblurring trade-off

Given a minimum, required incident radiance at the photo-

detector, our sensor range Z and FOV Y are inversely

proportional, Z2} 1

tan Y
2ð Þ

(Figure 13(a)). Our results have

significant scope for improvement in measurement SNR of

the reconstructions, and we will focus on better optical

designs in the future.

7.2. System performance

In Figure 13(b), we compare the ability to induce desired

sample density on targets. For conventional sensors, as the

density increases, the robot–target distance goes to zero.

For our sensor design, a stand-off distance is possible

because we can concentrate samples on the target.

7.3. Efficiency/power reduction applications

We will use energy-efficient adaptive sensing for unmanned

aerial vehicles (UAVs) and other power-constrained robots

to place the samples on nearby obstacles and targets, accru-

ing power savings.

7.4. Toward a foveated sensor model

A probabilistic sensor model for our scanning LiDAR is

crucial for a variety of intelligent robot applications, such

as SLAM (Thrun et al., 2005). Here we show the first step

toward creating that model for our new sensor design.

Most TOF sensors provide readings that follow a normal

distribution. We now discuss this normal distribution for

the five-plane calibration of our sensor described earlier.

Our model consists of fitting Gaussian parameters

(m(u,f, Z) and s(u,f, Z)) that vary with direction (u,f)
and depth Z. Gaussian is a simple and popular choice for

beam models for range sensors. Our experiments show that

this is a fair choice. Figure 12(a)(left) shows results from

multiple depth measurements made to a plane placed 25

cm from the sensor. We observe that the measurements can

be fit with a Gaussian. From Figure 12(a)(center left), we

observe that the standard deviation changes as the plane is

moved farther away from the sensor. Therefore, the sensor

model must account for the change in depth. We also

observe that the measurements depend on the angle of the

beam. Figure 12(a)(center right) shows measurements from

36 viewing directions and we observe that a Gaussian model

fits well with these measurements. For a particular fit of the

model in Figure 12(a)(center right), we demonstrate the recon-

struction (in simulation) of a 3D ‘‘tree’’ object as shown in

Figure 12(b). Figures 12(a)(right) and 12(b) show the decrease

in error as we take multiple scans and average. Note that there

is still some bias between the model and real sensor, which

will need further calibration. However, the trend of these

curves show that our model does correctly follow the sensor

behavior.

#include "gazebo/gazebo.hh"
#include "gazebo/common/common.hh"
#include "gazebo/transport/transport.hh"
#include "gazebo/physics/physics.hh"
#include "gazebo/msgs/msgs.hh"
#include "adaptive_lidar_request.pb.h"
int main(){
AdaptiveLidarRequest request;
// Horizontal
request.set_hminangle(-0.52);
request.set_hmaxangle(0.52);
request.set_hsamples(32);
request.set_hres(1.0);
// Vertical
request.set_vminangle(-0.52);
request.set_vmaxangle(0.52);
request.set_vsamples(32);
request.set_vres(1.0);
// Range parameters
request.set_rmin(0.4);
request.set_rmax(2.4);
request.set_rres(0.1);
// Noise parameters
request.set_nmean(0.0);
request.set_nstd(0.1);
gazebo::transport::NodePtr node(
new gazebo::transport::Node());
node-.Init("default");
gazebo::transport::PublisherPtr pub =
node-.Advertise\AdaptiveLidarRequest.(
"~/collision_map/command");
pub-.WaitForConnection();
pub-.Publish(request);
gazebo::transport::fini();
return 0;
}
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7.5. Performance improvements in mobile robots

Localization, mapping, and navigation accuracy is

improved with increased sensor resolution. While improved

mapping accuracy is a direct result of increased resolution,

improvements in localization and navigation accuracy are a

result of better feature matching, scan matching, and loop

closures. In this context, active SLAM is the problem of

finding trajectories that reduces mapping and localization

error through exploration. Typically, implementations of

active SLAM use an information gain formulation to reduce

map entropy. Some implementations such as Zhang et al.

(2006) use formulations that balance the objective of reduc-

ing the entropy in the map while minimizing the cost of

navigation. Other implementations such as Mu et al. (2016)

plan control inputs that increase the number of features in

the map. We note that in real-world scenarios, trajectories

that conform to other constraints such as minimizing dis-

tance, minimizing battery usage, etc., are usually desired or

necessary. Incorporating such constraints into active SLAM

would lead to complex joint optimization problems.

With an active LiDAR, such as that proposed in this

work, mobile robots will have the ability to reduce the

entropy in the map without the need for movement by vir-

tue of its capability to zoom in on portions of the map. The

control inputs to reduce map entropy in local regions, by

zooming in, can be made independent of control inputs for

navigation. Therefore, the objective of optimizing for map-

ping and localization accuracy can be decoupled from other

objectives such as minimizing distance travelled.

8. Conclusion

In this work, we have presented the design of a scanning

depth sensor, which can control its angular resolution over

its FOV. Such a sensor is different from existing depth sen-

sors in vision/robotics that typically have a fixed angular

resolution, and opens up novel possibilities in design of

algorithms in localization, mapping, exploration, and

manipulation in robotics.

We continue to work on improvements to the hardware

and software implementations to allow real-time capture

(a)

(b)

Fig. 12. Toward a foveated sensor model. In (a), we learn the sensor model for our TOF sensor, and in (b), we simulate scans using

the learned sensor model to show the improvement of reconstructions through simple averaging.

(a) (b)

Fig. 13. In (a), we depict the deblurring trade-off in our setup, where increasing FOV results in reduced SNR and range. In (b), we

compare our LiDAR zoom with other available depth sensors that have fixed acuity.
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and processing of dynamic scenes with robot motion. If

this is enabled, then there is no barrier to demonstrating

joint robot pose and LiDAR zoom that allow for efficient

SLAM. Finding the efficiencies in capture time and robot

motion for such algorithms, when compared with conven-

tional SLAM, is one of the potential directions of future

work.
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Milanović V, Kasturi A, Yang J and Hu F (2017) A fast single-

pixel laser imager for VR/AR headset tracking. Proceedings of

SPIE 10116: 101160E–1.

Mu B, Giamou M, Paull L, Agha-mohammadi A, Leonard J and

How J (2016) Information-based active SLAM via topological

feature graphs. In: 2016 IEEE 55th Conference on Decision

and Control (CDC), pp. 5583–5590.

Murray D and Jennings C (1997) Stereo vision based mapping

and navigation for mobile robots. In: Proceedings of Interna-

tional Conference on Robotics and Automation, Vol. 2. IEEE,

pp. 1694–1699.

Nayar SK, Branzoi V and Boult TE (2006) Programmable ima-

ging: Towards a flexible camera. International Journal of Com-

puter Vision 70(1): 7–22.

Nehab D, Sander PV and Isidoro JR (2006) The real-time repro-

jection cache. In: ACM SIGGRAPH 2006 Sketches. New York:

ACM Press, p. 185.

Ng R (2005) Fourier slice photography. ACM Transactions on

Graphics 24: 735–744.

O’Toole M, Achar S, Narasimhan SG and Kutulakos KN (2015)

Homogeneous codes for energy-efficient illumination and ima-

ging. ACM Transactions on Graphics 34(4): 35.

O’Toole M, Heide F, Xiao L, Hullin MB, Heidrich W and Kutula-

kos KN (2014) Temporal frequency probing for 5D transient

analysis of global light transport. ACM Transactions on Gra-

phics 33(4): 87.

Paletta L, Prantl M and Pinz A (2000) Learning temporal context

in active object recognition using Bayesian analysis. In: Pro-

ceedings 15th International Conference on Pattern Recogni-

tion (ICPR-2000), Vol. 1. IEEE, pp. 695–699.
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