
Under review as a conference paper at ICLR 2024

HOW LANGUAGE MODELS LEARN CONTEXT-FREE
GRAMMARS

ABSTRACT

We design experiments to study how generative language models, such as GPT,
learn context-free grammars (CFGs) — complex language systems with tree-like
structures that encapsulate aspects of human logic, natural languages, and pro-
grams. CFGs, comparable in difficulty to pushdown automata, can be ambiguous,
usually requiring dynamic programming for rule verification. We create synthetic
data to show that pre-trained transformers can learn to generate sentences with
near-perfect accuracy and impressive diversity, even for quite challenging CFGs.
Crucially, we uncover the mechanisms behind transformers learning such CFGs.
We find that the hidden states implicitly encode the CFG structure (such as putting
tree node info exactly on the subtree boundary), and that the transformer can form
“boundary to boundary” attentions that mimic dynamic programming. We also
discuss CFG extensions and transformer robustness against grammar errors.

1 INTRODUCTION

Language models (OpenAI, 2023) are neural networks designed to learn the probability distribution
of natural language and generate text. Models like GPT (Radford et al., 2018) can accurately follow
language structures (Shen et al., 2017; Tenney et al., 2019), even in smaller models (Black et al.,
2021). However, the mechanisms and representations these models use to capture language rules
and patterns remain unclear. Despite recent theoretical advances in understanding language mod-
els (Bhattamishra et al., 2020; Jelassi et al., 2022; Li et al., 2023; Liu et al., 2022; Yao et al., 2021),
most are limited to simple settings and fail to account for the complex structure of languages.

In this paper, we explore the mechanisms behind generative language models learning probabilistic
context-free grammars (CFGs) (Lee, 1996). CFGs, capable of generating a diverse set of highly
structured expressions, consist of terminal (T) and nonterminal (NT) symbols, a root symbol, and
production rules. A string belongs to the language generated by a CFG if there is a sequence of rules
that transform the root symbol into the string of T symbols. For instance, the CFG below generates
the language of balanced parentheses:

s → ss | (s) | ∅
where ∅ denotes the empty string. Examples in the language include ∅,(),(()),()(),((())).

Many structures in languages can be viewed as CFGs, including grammars, structures of the codes,
mathematical expressions, music patterns, article formats (for poems, instructions, legal docu-
ments), etc. We use transformer (Vaswani et al., 2017) as the generative language model and study
how it learns the CFGs. Transformers can encode some CFGs, especially those that correspond
to the grammar of natural languages (Arps et al., 2022; Hewitt & Manning, 2019; Manning et al.,
2020; Maudslay & Cotterell, 2021; Shi et al., 2022; Vilares et al., 2020; Wu et al., 2020; Zhao et al.,
2023). However, the mechanism behind how such CFGs can be efficiently learned by transformers
remains unclear. Previous works (Deletang et al., 2023) studied transformer’s learnability on a few
languages in the Chomsky hierarchy (which includes CFGs) but the inner mechanisms regarding
how transformer can or cannot solve those tasks remain unclear.

For a generative language model to learn a long CFG (e.g. hundreds of tokens), it needs to efficiently
learn many non-trivial, long-distance planning. The model cannot just generate tokens that are
“locally consistent.” For example, to generate a string with balanced parentheses, the model must
keep track of the number and type of open and close parentheses globally. Imagine, for complex
CFGs, even verifying that a sequence satisfies a given CFG may require dynamic programming: to
have a memory and a mechanism to access the memory in order to verify the hierarchical structure
of the CFG. Learning CFGs is thus a significant challenge for the transformer model, and it tests the
model’s ability to learn and generate complex and diverse expressions.

1

Under review as a conference paper at ICLR 2024

 18 17 17 17 ...

 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...

 12 12 12 12 12 12 12 11 11 11 11 11 11 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...

 8 8 8 8 8 9 9 9 9 9 7 7 7 9 9 8 8 9 9 7 7 7 9 9 8 8 8 9 9 9 9 7 7 7 ...

1 2 3 3 1 3 3 1 2 1 2 2 1 1 1 1 2 1 1 3 1 2 1 1 3 3 1 1 1 1 1 2 2 1 ...

1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 11 12 12 13 13 14 14 14 ...

 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 ...

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 ...

 1 2 2 2 ...

𝑥 =

𝔰6 =
𝔰5 =

𝔭6 =

𝔰4 =
𝔰3 =

𝔭5 =
𝔭4 =
𝔭3 =

𝔟♯ = 6 6 5 6 5 6 4 6 6 5 6 6 3 6 ...

…

(examples of) rules from cfg3f
…
18|->13 15
13|->12 11 12
15|->10 10
10|->8 9 9
10|->9 7 9
11|->9 7
12|->9 8
12|->8 8 9
...
8|->3 1 1
8|->1 2
8|->3 3 1
9|->1 2 1
9|->3 3
9|->1 1
…

NT boundary 𝔟6=𝔟5=𝔟4=𝔟3=1
NT ancestors 𝔰6=9, 𝔰5=10, 𝔰4=15, 𝔰3=18

NT boundary 𝔟6=𝔟5=1
NT ancestors 𝔰6=9, 𝔰5=10

NT boundary 𝔟6=1
NT ancestor 𝔰6=8

NT boundary 𝔟6=𝔟5=𝔟4=1
NT ancestors 𝔰6=8, 𝔰5=12, 𝔰4=13

… …

… … …

C
FG

/D
P

 p
ar

si
n

g
tr

an
sf

o
rm

er

p
ar

si
n

g

learns boundary-based attention to
most adjacent NT boundaries at all levels

learns NT ancestor/boundary info
linearly encoded in the hidden states

Figure 1: An example string x from G = cfg3f. Though formally defined in Section 2, bold symbols in color
represent NT boundaries which marks the ending positions of the parsed CFG subtrees at various
levels ℓ: we denote by bℓ(i) = 1 if position i is at the NT boundary for level ℓ. The NT ancestor
sℓ(i) represents the tree node’s name at level ℓ for a symbol at position i.

Remark. In this paper, we analyze the transformer’s ability to learn highly ambiguous CFGs. Even
if the CFG rules are given, typically one uses dynamic programming (DP) to decide if x ∈ L(G) .

In this study, we pre-train GPT-2 (Radford et al., 2019) on a language modeling task using a large
corpus of strings sampled from a few very non-trivial CFGs that we construct with different levels
of difficulties — see Figure 1 for an example and Figure 9 in the appendix for more. We test the
model’s accuracy and diversity by feeding it prefixes from the CFG and observing if it can generate
accurate completions.

• We show the model can achieve near-perfect CFG generation accuracies.
• We check the model’s output distribution / diversity show it is close to that of the true CFG.

Our paper’s key contribution is an analysis of how transformers recover the structures of the un-
derlying CFG, examining attention patterns and hidden states. Specifically, we:

• Develop a probing method to verify that the model’s hidden states linearly encode NT informa-
tion almost perfectly, a significant finding as pre-training does not expose the CFG structure.

• Introduce methods to visualize and quantify attention patterns, demonstrating that GPT learns
position-based and boundary-based attentions, contributing to understanding the CFG’s regular-
ity, periodicity, and hierarchical structure.

• Suggest that GPT models learn CFGs by implementing a dynamic programming-like algorithm.
We find that boundary-based attention allows a token to attend to its closest NT symbols in the
CFG tree, even when separated by hundreds of tokens. This resembles dynamic programming,
in which the CFG parsing on a sequence 1...i needs to be “concatenated” with another sequence
i+ 1...j in order to form a solution to a larger problem on 1...j. See Figure 1 for an illustration.

We also explore implicit CFGs (Post & Bergsma, 2013), where each T symbol is a bag of tokens,
and data is generated by randomly sampling tokens. This allows capturing additional structure, like
word categories. We demonstrate that the model learns implicit CFGs by encoding the T symbol
information in its token embedding layer. We also investigate model robustness using CFGs, testing
the model’s ability to correct errors and generate valid CFGs from a corrupted prefix.

2 CONTEXT-FREE GRAMMARS

A probabilistic context-free grammar (CFG) is a formal system defining a string distribution using
production rules. It comprises four components: terminal symbols (T), nonterminal symbols (NT),
a root symbol (root ∈ NT), and production rules (R). We represent a CFG as G = (T,NT,R),
with L(G) denoting the string distribution generated by G.

We mostly focus on L-level CFGs where each level ℓ ∈ [L] corresponds to a set of symbols NTℓ

with NTℓ ⊆ NT for ℓ < L, NTL = T, and NT1 = {root}. Symbols at different levels
are disjoint: NTi ∩ NTj = ∅ for i ̸= j. We consider rules of length 2 or 3, denoted as R =
(R1, . . . ,RL−1), where each Rℓ consists of rules in the form:

r = (a 7→ b, c, d) or r = (a 7→ b, c) for a ∈ NTℓ and b, c, d ∈ NTℓ+1

Given a non-terminal symbol a ∈ NT and any rule r = (a 7→ ⋆), we say a ∈ r. For each a ∈ NT,
its associated set of rules is R(a) :=

{
r | r ∈ Rℓ ∧ a ∈ r

}
, its degree is |R(a)|, and the CFG’s size

is (|NT1|, |NT2|, . . . , |NTL|).
Generating from CFG. To generate samples x from L(G), follow these steps:

2

Under review as a conference paper at ICLR 2024

S
NP VP

TO VP
VBD VP

TO VP
VB NP

NP PP
IN NP

PP
IN NP

.
S

NP
NP

DT NN
PP

IN NP
NP PP

IN NP
DT NN

VP
VBZ VP

VBD SBAR
S

PP
IN NP

, NP
CD NNS

VP
TO VP

VBZ VP
VBD NP

DT JJ NN NN

.

(a) real-life English CFG derived from Penn Treebank, short and simple

S

68

49

45

39

30 28

10 4

36

32

15

11 5

17

7 1

27

4 4

44

35

27

11 7

30

40

31

6 7

26

7 6

49

31

23

4 11

22

8 8

33

16

10 2

22

5 11

68

65

58

54

46

39

29

23

7 6

21

5 10

29

16

5 8

21

3 2

37

21

6 6

16

5 8

45

41

32

15 17

7 1

30

1 3

41

26

17 19

11 7

25

22

10 4

20

4 7

52

35

19

11 7

15

40

18

3 6

18

6 7

57

37

31

23

7 6

22

8 8

33

15 20

4 4

41

31

19 15

11 5

29

23

7 6

21

6 6

66

62

55

53

44

40

21

5 10

17

34

30

22

8 8

24

1 3

26

17

7 1

19

11 7

43

36

26

4 3

32

15 17

7 1

37

16

10 2

21

6 6

54

43

30

24 24

5 1

26

17 19

11 7

42

38

27

6 6

26

4 3

41

32

20

4 7

23

7 6

30

7 1

56

51

41

31

6 7

29

23

4 11

21

6 6

38

29

23

7 6

21

6 6

33

15 20

4 7

52

40

11 5

34

30

22

8 8

24

26

4 3

62

55

50

40

31

19 15

2 4

26

10 2

39

29

20

6 11

17

7 1

29

23

4 3

21

5 10

53

42

37

31

19

9 2

15

33

15

2 4

20

4 4

40

31 26

4 11

47

8 8

56

50

47

40

4 11

35

6 7

42

37

31

6 7

33

21

3 2

23

7 6

40

5 11

49

45

41

31

23

4 3

22

5 11

29

23

7 6

21

5 10

41

31

19

9 2

15

2 4

29

21

3 2

16

10 2

44

40

7 6

34

15

2 4

17

S

68

65

53

42

31 29

23

4 11

21

3 2

47

36

32

20

1 10

23

4 3

27

4 4

36

26

10 2

32

16

5 8

19

11 7

54

45

41

32

23

6 2

23

6 2

30

41

32

16

10 2

19

9 3

30

24 24

45

39

29

20

4 7

17

7 1

29

20

6 11

17

36

26

5 8

32

23

6 2

23

4 3

66

60

52

38

32

20

4 4

23

6 2

29

23

7 6

21

5 10

41

31

19

9 2

15

29

23

4 3

21

5 10

51

46

39

4 4

37

31

19

9 3

15

2 4

33

15

2 4

20

4 4

47

40

20

1 10

19

9 3

35

8 7

60

52

29

20

1 10

17

7 1

33

15

2 4

20

4 7

50

47

36

32

16 19

9 2

27

36

19

9 3

21

6 6

42

38

32

16

5 8

19

9 3

29

23

6 2

21

6 6

41

32

23

4 3

23

7 6

30

68

65

60

53

42

31

23

7 6

22

10 4

29

21

5 10

16

5 8

47

31 26

17 19

52

38

32

16 19

11 7

29

21

3 2

16

10 2

41

26

20

4 7

19

11 7

25

19

9 2

21

3 2

61

47

17 19

9 2

46

39

27

17 24

1 3

33

16 22

5 11

37

30

24

1 3

24

9 4

27

3 2

66

61

57

53

31

19

11 7

15

11 5

26

20

1 10

19

9 3

50

47

35

33

24

1 3

21

3 2

27

17 24

1 3

36

32

23

6 2

23

7 6

27

5 10

42

38

32

16 19

29

23

6 2

21

5 10

41

26

20

6 11

19

25

22

8 9

20

4 4

55

53

48

35

31

23

4 11

22

8 8

25

19

9 2

21

5 10

37

30

22

10 4

24

1 3

27

4 4

44

35

27

9 3

30

40

31

6 7

26

4 3

54

43

36

32

20

4 4

23

7 6

27

4 7

37

31

23

6 2

22

5 11

33

16

10 2

22

8 9

42

38

29

20

6 11

17

7 1

33

15

2 4

20

6 11

41

31

23

7 6

22

10 4

29

21

6 6

16

60

56

40

31

19

9 2

15

11 5

26

5 8

39

27

17 24

33

24

1 3

21

6 6

56

40

20

4 7

19

39

(b) a family of max-depth 11 CFGs where rules have length 1 or 2 that GPT can learn, see cfg0 in Appendix H

Figure 2: CFG visual comparisons: left is a medium-length sample, and right is a 80%-percentile-length sample

1. Start with the root symbol NT1.
2. For each layer ℓ < L, keep a sequence of symbols sℓ =

(
sℓ,1, · · · , sℓ,mℓ

)
.

3. For the next layer, randomly sample a rule r ∈ R(sℓ,i) for each sℓ,i with uniform probability.1
Replace sℓ,i with b, c, d if r = (sℓ,i 7→ b, c, d), or with b, c if r = (sℓ,i 7→ b, c). Let the resulting
sequence be sℓ =

(
sℓ+1,1, · · · , sℓ+1,mℓ+1

)
.

4. During generation, when a rule sℓ,i 7→ sℓ+1,j , sℓ+1,j+1 is applied, define the parent parℓ+1(j) =
parℓ+1(j + 1) := i (and similarly if the rule of sℓ,i is of length 3).

5. Define NT ancestor indices p = (p1(i), . . . , pL(i))i∈[mL] and NT ancestor symbols s =
(s1(i), . . . , sL(i))i∈[mL] as shown in Figure 1:

pL(j) := j , pℓ(j) := parℓ+1(pℓ+1(j)) and sℓ(j) := sℓ,pℓ(j)

The final string is x = sL = (sL,1, · · · , sL,mL
) with xi = sL,i and length len(x) = mL. We

use (x, p, s) ∼ L(G) to represent x with its associated NT ancestor indices and symbols, sampled
according to the generation process. We write x ∼ L(G) when p and s are evident from the context.

Definition 2.1. A symbol xi in a sample (x, p, s) ∼ L(G) is the NT boundary / NT end at level
ℓ ∈ [L − 1] if pℓ(i) ̸= pℓ(i + 1) or i = len(x). We denote bℓ(i) := 1xi is the NT boundary at level ℓ as the
NT-end boundary indicator function. The deepest NT-end of i is

b♯(i) = minℓ∈{2,3,...,L−1}{bℓ(i) = 1} or ⊥ if the set is empty .

The cfg3 synthetic CFG family. We focus on seven synthetic CFGs of depth L = 7 detailed
in Section B.1. The hard datasets cfg3b, cfg3i, cfg3h, cfg3g, cfg3f have sizes (1, 3, 3, 3, 3, 3, 3) and
increasing difficulties cfg3b < cfg3i < cfg3h < cfg3g < cfg3f. The easy datasets cfg3e1 and
cfg3e2 have sizes (1, 3, 9, 27, 81, 27, 9) and (1, 3, 9, 27, 27, 9, 4) respectively. The sequences gener-
ated by these CFGs are up to 36 = 729 in length. Typically, the learning difficulty of CFGs inversely
scales with the number of NT/T symbols or CFG rules, assuming other factors remain constant (see
Figure 3 and more in Appendix H). We thus primarily focus on cfg3b, cfg3i, cfg3h, cfg3g, cfg3f.

Why Such CFGs. In this paper, we use CFG as a proxy to study some rich, recursive structure
in languages, which can cover some logics, grammars, formats, expressions, patterns, etc. Those
structures are diverse yet strict (for example, Section 3.1 should be only followed by Section 3.1.1,
Section 4 or Section 3.2, not others). We create a synthetic CFG to approximate such richness and
structure. The CFGs we consider are non-trivial, with likely over 2270 > 1080 strings in cfg3f among
a total of over 3300 > 10140 possible strings of length 300 or more (see the entropy estimation in
Figure 3). The probability of a random string belonging to this language is nearly zero, and a random
completion of a valid prefix is unlikely to satisfy the CFG.

Moreover, to probe the inner workings of the transformer, we choose a CFG family with a “canonical
representation” and show a high correlation between this representation and the hidden states in
the learned transformer. Such a controlled experiment allows us to better understand the learning
process. We also construct additional CFG families to study “not-so-canonical” CFG trees, with
results deferred to Appendix H. We do not claim our result captures all CFGs, however, we view
our work as a promising starting point: our CFG is already quite challenging for a transformer to
learn — for example, in Appendix H, we show that a CFG derived from English Penn TreeBank can
be learned well using small models (like GPTs with ∼ 100k parameters), whereas our cfg3 family
requires GPT2 with 100M parameters — yet we can still identify how transformer learns it.

1For simplicity, we consider the uniform case, eliminating rules with extremely low probability. Such rules
complicate the learning of the CFG and the investigation of a transformer’s inner workings. Our results can
easily extend to non-uniform cases, provided the distributions are not heavily unbalanced.

3

Under review as a conference paper at ICLR 2024

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

ge
ne

ra
ti

on
 a

cc
 (

%
) 99.8 99.8 99.8 99.9 99.8 99.9 99.9 99.9 99.9 100.0

99.5 99.5 99.8 99.8 99.4 99.5 99.8 99.8 99.6 99.7

96.8 96.9 99.7 99.6 99.6 99.5 99.0 99.0 98.9 98.8

64.1 63.8 99.1 99.2 98.6 98.4 97.0 96.9 96.7 96.9

57.1 57.3 98.8 98.8 97.6 97.7 93.9 93.8 92.8 92.9

98.1 98.9 98.4 99.0 98.2 98.9 98.3 98.9 98.6 99.0

99.3 99.5 99.6 99.7 99.6 99.7 99.5 99.7 99.4 99.6

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni cfg3bcfg3icfg3hcfg3gcfg3fcfg3ecfg3een
tr

op
y

(b
it

s) 169 169 169 169 169 169
185 184 190 191 185 185
204 203 203 203 204 203
269 268 271 260 268 266
276 276 279 252 268 267
216 216 213 213 216 216
257 255 252 252 257 256

GPT GPT_rel GPT_rot GPT_pos GPT_uni
cfg3b
cfg3icfg3h
cfg3g
cfg3fcfg3e
cfg3e

KL
 d

iv
er

ge
nc

e

0.00008 0.00011 0.00009 0.00009 0.00004
0.00025 0.00014 0.00029 0.00015 0.00021
0.00079 0.00023 0.00024 0.00027 0.00036
0.00452 0.00034 0.00047 0.00058 0.00070
0.00486 0.00043 0.00060 0.00094 0.00113
0.00019 0.00014 0.00016 0.00013 0.00011
0.00032 0.00025 0.00025 0.00011 0.00010

Figure 3: Generation accuracy (left), entropy (middle), KL-divergence (right) across multiple CFG datasets.
Observation: Less ambiguous CFGs (cfg3e1, cfg3e2, as they have fewer NT/T symbols) are easier
to learn. Modern transformer variants using relative positional embedding (GPTrel or GPTpos) are
better for learning complex CFGs. We also present weaker variants GPTpos and GPTuni that base their
attention matrices solely on token positions (serving specific purposes in Section 5.1).

3 TRANSFORMER LEARNS SUCH CFGS

In this section, we evaluate the generative capability of the transformer by testing its accuracy in
completing sequences from prefixes of strings in L(G). We also evaluate the diversity of the gener-
ated outputs and verify if the distribution of these strings aligns with the ground truth L(G).
Models. We denote the vanilla GPT2 small architecture (12-layer, 12-head, 768-dimensions) as
GPT (Radford et al., 2019). Given GPT2’s weak performance due to its absolute positional em-
bedding, we implemented two modern variants. We denote GPT with relative positional attention
(He et al., 2020) as GPTrel, and GPT with rotary positional embedding (Black et al., 2022; Su et al.,
2021) as GPTrot. For specific purposes in later sections, we introduce two weaker variants of GPT.
GPTpos replaces the attention matrix with a matrix based solely on tokens’ relative positions, while
GPTuni uses a constant, uniform average of past tokens from various window lengths as the attention
matrix. Detailed explanations of these variants are in Section B.2.

Completion accuracy. We generate a large corpus {x(i)}i∈[N] from a synthetic CFG G as de-
scribed in Section 2. A model F is pretrained on this corpus, treating each terminal symbol as a
separate token, using an auto-regressive task (Section B.3 for details). For evaluation, F gener-
ates completions for prefixes x:c = (x1, x2, · · · , xc) from strings x freshly generated from L(G).
The generation accuracy is measured as Prx∼L(G)+ randomness of F [(x:c, F (x:c)) ∈ L(G)]. We use
multinomial sampling without beam search for generation.2

Figure 3 (left) shows the generation accuracies for cuts c = 0 and c = 50. The c = 0 result tests the
transformer’s ability to generate a sentence in the CFG, while c = 50 tests its ability to complete a
sentence.3 The results show that the pretrained transformers can generate near-perfect strings that
adhere to the CFG rules for the cfg3 data family.

Generation diversity. Could it be possible that the trained transformer only memorized a small
subset of strings from the CFG? We evaluate its learning capability by measuring the diversity of its
generated strings. High diversity suggests a better understanding of the CFG rules.

Diversity can be estimated through entropy. Given a distribution p over strings and a sampled subset
S =

{
x(i)

}
i∈[M]

from p, for any string x ∈ S, denote by len(x) its length so x = (x1, . . . , xlen(x)),
and denote by xlen(x)+1 = eos. The entropy in bits for p can be estimated by

− 1
|S|

∑
x∈S

∑
i∈[len(x)+1] log2 Prp

[
xi | x1, . . . , xi−1

]
We compare the entropy of the true CFG distribution and the transformer’s output distribution using
M = 20000 samples in Figure 3 (middle).

Diversity can also be estimated using the birthday paradox to lower bound the support size of a
distribution (Arora & Zhang, 2017). Given a distribution p over strings and a sampled subset S ={
x(i)

}
i∈[M]

from p, if every pair of samples in S are distinct, then with good probability the support
of p is of size at least Ω(M2). In Appendix C.1, we conducted an experiment with M = 20000.
We performed a birthday paradox experiment from every symbol a ∈ NTℓ1 to some other level

2The last softmax layer converts the model outputs into a probability distribution over (next) symbols.
We follow this distribution to generate the next symbol, reflecting the unaltered distribution learned by the
transformer. This is the source of the “randomness of F ” and is often referred to as using “temperature τ = 1.”

3Our cfg3 family is large enough to ensure a negligible chance of a freshly sampled prefix of length 50
being seen during pretraining.

4

Under review as a conference paper at ICLR 2024

ℓ2 > ℓ1, comparing that with the ground truth. For instance, we confirmed for the cfg3f dataset,
there are at least Ω(M2) distinct sequences to level 5 generated from a symbol a ∈ NT2 — not
to mention from the root in NT1 to the leaf at level 7. In particular, M2 is already more than the
number of parameters in the model. From both experiments, we conclude that the pre-trained model
does not rely on simply memorizing a small set of patterns to learn the CFGs.

Distribution comparison. To fully learn a CFG, it is crucial to learn the distribution of generating
probabilities. However, comparing distributions of exponential support size can be challenging. A
naive approach is to compare the marginal distributions p(a, i), which represent the probability of
symbol a ∈ NTℓ appearing at position i (i.e., the probability that sℓ(i) = a). We observe a strong
alignment between the generation probabilities and the ground-truth distribution, see Appendix C.2.

Another approach is to compute the KL-divergence between the per-symbol conditional distribu-
tions. Let p∗ be the distribution over strings in the true CFG and p be that from the transformer
model. Let S =

{
x(i)

}
i∈[M]

be samples from the true CFG distribution. Then, the KL-divergence

can be estimated as follows:4

1
|S|

∑
x∈S

1
len(x)+1

∑
i∈[len(x)+1]

∑
t∈T∪{eos} Prp∗ [t | x1, . . . , xi−1] log

Prp∗ [t|x1,...,xi−1]

Prp[t|x1,...,xi−1]

In Figure 3 (right) we compare the KL-divergence between the true CFG distribution and the trans-
former’s output distribution using M = 20000 samples.

4 HOW DO TRANSFORMERS LEARN CFGS?

In this section, we delve into the learned representation of the transformer to understand how it
encodes CFGs. We employ various measurements to probe the representation and gain insights.

Recall classical way to solve CFGs. Given CFG G, the classical way to verify if a sequence
x satisfies L(G) is to use dynamic programming (DP) (Sakai, 1961; Sipser, 2012). One possible
implementation of DP involves using the function DP(i, j, a), which determines whether or not
xi, xi+1 . . . , xj can be generated from symbol a following the CFG rules. From this DP represen-
tation, a DP recurrent formula can be easily derived.5

In the context of this paper, any sequence x ∼ L(G) that satisfies the CFG must satisfy the following
conditions (recall the NT-boundary bℓ and the NT-ancestor sℓ notions from Section 2):

bℓ(i− 1) = 1, bℓ(j) = 1,∀k ∈ [i, j), bℓ(k) = 0 and sℓ(i) = a =⇒ DP(i, j, a) = 1 (4.1)

Note that (4.1) is not an “if and only if” condition because there may be a subproblem DP(i, j, a) = 1
that does not lie on the final CFG parsing tree but is still locally parsable by some valid CFG subtree.
However, (4.1) provides a “backbone” of subproblems, where verifying their DP(i, j, a) = 1 values
certifies that the sentence x is a valid string from L(G). It is worth mentioning that depending on the
implementation of a DP program (e.g., different orders on pruning or binarization), not all (i, j, a)
tuples need to be computed in DP(i, j, a). Only those in the “backbone” are necessary.

Connecting to transformer. In this section, we investigate whether pre-trained transformer F not
only generates grammatically correct sequences, but also implicitly encodes the NT ancestor and
boundary information. If it does, this suggests that the transformer contains sufficient information
to support all the DP(i, j, a) values in the backbone. This is a significant finding, considering that
transformer F is trained solely on the auto-regressive task without any exposure to NT information.
If it does encode the NT information after pretraining, it means that the model can both generate and
certify sentences in the CFG language.

4.1 FINDING 1: TRANSFORMER’S HIDDEN STATES ENCODE NT ANCESTORS AND BOUNDARIES

Let l be the last layer of the transformer (other layers are considered in Appendix D.2). Given
an input string x, the hidden state of the transformer at layer l and position i is denoted as

4A nearly identical formula was also used in DuSell & Chiang (2022).
5For example, one can compute DP(i, j, a) = 1 if and only if there exists i = i1 < i2 < · · · < ik = j + 1

such that DP(ir, ir+1−1, br) = 1 for all r ∈ [k−1] and a → b1, b2, . . . , bk is a rule of the CFG. Implementing
this naively would result in a O(len4) algorithm for CFGs with a maximum rule length of 3. However, it can
be implemented more efficiently with O(len3) time by introducing auxiliary nodes (e.g., via binarization).

5

Under review as a conference paper at ICLR 2024

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

an
ce

st
or

 (
%

)

100 99.7 99.9 85.0 65.7 56.8 61.5 62.7

99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.8 99.6 99.7 99.6 99.3 99.8 99.6 99.7 99.6 99.3 99.8 99.7 99.7 99.7 99.2 99.4 84.6 71.7 64.6 66.4 65.2

99.7 98.3 98.3 99.2 100 99.7 98.1 97.8 99.0 100 99.7 98.4 98.2 99.3 100 99.7 98.5 98.5 99.4 100 99.7 98.6 98.6 99.4 100 99.9 99.8 99.8 99.7 100 67.5 47.2 50.6 66.3 92.8

100 99.2 95.6 94.6 97.3 100 99.3 96.7 97.2 99.0 100 99.3 96.6 97.2 99.0 100 99.3 96.7 96.9 98.8 100 99.4 97.0 97.2 98.9 100 99.5 95.5 85.6 90.5 70.8 56.4 49.4 57.0 73.1

100 97.6 94.3 88.4 85.9 100 97.5 94.8 92.9 93.5 100 97.7 95.2 93.3 94.2 100 97.9 95.6 93.5 93.9 100 98.2 95.8 93.2 93.5 100 99.6 96.3 84.0 77.5 71.3 49.9 44.6 59.1 68.6

100 99.8 45.4 27.6 34.6 47.2 76.3

99.9 100 100 100 100 99.8 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 100 100 100 99.9 36.0 16.6 23.5 44.6 78.3

Figure 4: After pre-training, hidden states of generative models implicitly encode the NT ancestors informa-
tion. The NTℓ column represents the accuracy of predicting sℓ, the NT ancestors at level ℓ.

It also encodes NT boundaries, see Appendix D.1; and such information is discovered gradually and
hierarchically, across layers and training epochs, see Appendix D.2 and D.3. We compare against a
baseline which is the encoding from a random GPT. We also compare against DeBERTa, illustrating
that BERT-like models are less effective in learning NT information at levels close to the CFG root.

Ei(x) ∈ Rd. We investigate whether a linear function can predict
(
b1(i), . . . , bL(i)

)
i∈[len(x)] and(

s1(i), . . . , sL(i)
)
i∈[len(x)] using only

(
Ei(x)

)
i∈[len(x)]. If possible, it implies that the last-layer

hidden states encode the CFG’s structural information up to a linear transformation.

Our multi-head linear function. Due to the high dimensionality of this linear function (e.g.,
len(x) = 300 and d = 768 yield 300 × 768 dimensions) and variable string lengths, we propose
a multi-head linear function for efficient learning. We consider a set of linear functions fr : Rd →
R|NT|, where r ∈ [H] and H is the number of “heads”. To predict any sℓ(i), we apply:

Gi(x) =
∑

r∈[H],k∈[len(x)] wr,i→k · fr(Ek(x)) ∈ R|NT| (4.2)

where wr,i→k :=
exp(⟨Pi,r,Pk,r⟩)∑

k′∈[len(x)] exp(⟨Pi,r,Pk′,r⟩)
for trainable parameters Pi,r ∈ Rd′

. Gi can be seen as

a “multi-head attention” over linear functions. We train Gi(x) ∈ R|NT| using the cross-entropy loss
to predict

(
sℓ(i)

)
ℓ∈[L]

. Despite having multiple heads,

Gi(x) is still a linear function over
(
Ek(x)

)
k∈[len(x)]

as the linear weights wr,i→k depend only on positions i and k, not on x. Similarly, we train G′
i(x) ∈

RL using the logistic loss to predict the values
(
bℓ(i)

)
ℓ∈[L]

. Details are in Section B.4.

Results. Our experiments (Figure 4) suggest that pre-training allows the generative models to
almost perfectly encode the NT ancestor and NT boundary information in the last transformer layer’s
hidden states, up to a linear transformation.

4.2 FINDING 2: TRANSFORMER’S HIDDEN STATES ENCODE NT ANCESTORS AT NT BOUNDARIES

We previously used the entire hidden state layer,
(
Ei(x)

)
i∈[len(x)], to predict

(
sℓ(i)

)
ℓ∈[L]

for each
position i. This is essential for a generative/decoder model as it’s impossible to extract i’s NT
ancestors by only examining Ei(x) or the hidden states to its left, especially if a token xi is near the
string’s start or a subtree’s starting token in the CFG.

However, if we only consider a neighborhood of position i in the hidden states, say Ei±1(x), what
can we infer from it through linear probing? We can replace wr,i→k in (4.2) with a replace wr,i→k

with zeros for |i− k| > 1 (tridiagonal masking), or with zeros for i ̸= k (diagonal masking).

Results. We observe two key points. First, diagonal or tridiagonal masking is sufficient for predict-
ing NT boundaries, i.e., bℓ(i), with decent accuracy (deferred to Figure 15 in Appendix D.1). More
importantly, at NT boundaries (i.e., bℓ(x) = 1), such masking is adequate for accurately predicting
the NT ancestors sℓ(x) (see Figure 5). Hence, we conclude that the information of position i’s NT
ancestors is locally encoded around position i when i is on the NT boundary.

Related work. Our probing approach is akin to the seminal work by Hewitt & Manning (2019),
which uses linear probing to examine the correlation between BERT’s hidden states and the parse
tree distance metric (similar to NT-distance in our language). Subsequent studies (Arps et al., 2022;
Manning et al., 2020; Maudslay & Cotterell, 2021; Shi et al., 2022; Vilares et al., 2020; Wu et al.,
2020; Zhao et al., 2023) have explored various probing techniques to suggest that BERT-like trans-
formers can approximate CFGs from natural languages.

6

Under review as a conference paper at ICLR 2024

Observation. BERT-like (encoder-
only) transformers, such as De-
BERTa, trained on a masked lan-
guage modeling (MLM) task, do
not store deep NT ancestor infor-
mation at the NT boundaries.

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

di
ag

on
al

 m
as

ki
ng

) 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 98.9 85.7 85.7 91.3 75.6 66.8 68.0 83.4

97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 99.6 99.6 98.0 89.0 86.2 76.9 67.2 65.4 67.2 81.3

99.8 99.6 99.3 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.3 99.9 100 99.9 99.7 97.8 87.8 98.5 71.8 50.5 53.7 70.2 89.7

100 100 99.6 99.0 99.4 100 100 99.7 99.5 99.9 100 100 99.7 99.5 99.8 100 100 99.6 99.4 99.8 100 100 99.6 99.4 99.8 100 99.1 84.3 74.6 81.8 70.7 59.9 54.2 62.6 79.3

100 99.1 99.1 98.2 96.2 100 99.2 99.2 98.9 98.4 100 99.2 99.3 98.9 98.1 100 99.2 99.2 98.7 97.9 100 99.2 99.2 98.7 97.6 100 99.1 78.2 69.3 80.0 75.4 58.8 54.4 66.4 77.6

100 99.9 100 100 100 89.2 86.1 36.5 26.1 38.2 58.5 82.0

99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 100 100 99.6 90.6 89.4 38.6 23.4 30.4 52.3 82.7

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

tr
id

ia
go

na
l m

as
ki

ng
)

100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.7 99.8 100 100 100 99.0 84.7 84.3 95.0 78.9 68.8 69.2 83.5

99.1 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.6 99.7 99.4 92.0 85.4 83.3 71.2 69.8 72.2 84.5

99.8 99.6 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.0 97.3 90.8 98.1 79.6 52.7 55.2 70.3 91.6

100 100 99.6 99.1 99.5 100 100 99.7 99.5 99.9 100 100 99.7 99.5 99.9 100 100 99.7 99.4 99.8 100 100 99.7 99.4 99.8 100 99.4 90.2 75.3 83.1 76.2 61.2 54.7 62.9 81.5

100 99.2 99.1 98.4 97.6 100 99.3 99.3 99.0 99.3 100 99.3 99.3 99.0 99.1 100 99.2 99.2 98.9 98.9 100 99.2 99.2 98.8 98.8 100 98.7 84.9 69.2 79.9 79.3 60.5 54.7 67.4 83.1

100 94.3 88.7 40.3 30.4 41.3 62.4 89.5

99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 100 100 99.9 94.5 89.8 40.5 24.6 32.4 56.1 85.0

Figure 5: Generative pre-trained transformer encodes NT ancestors almost exactly at NT boundaries. The NTℓ

column represents the linear-probing accuracy of predicting sℓ(i) at locations i with bℓ(i) = 1.

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

(a) Bl,h,j→i for i + δ at NT-end in CFG level
ℓ. Rows represent ℓ = 2, 3, 4, 5 and columns
represent δ = −2,−1, 0, 1, 2.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b) Bl,h,j→i for i+ δ1, j + δ2 at NT-
ends in CFG level ℓ = 4. Rows / columns
represent δ1, δ2 = −1, 0,+1.

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(c) Bend→end
l,h,ℓ′→ℓ,r

for NT-ends between
CFG levels ℓ′ → ℓ. Rows represent r and
columns ℓ′ → ℓ. “×” means empty entries.

Figure 6: Attention has a strong bias towards “ NT-end at level ℓ′ to the most adjacent NT-end at ℓ ”, for even
different ℓ, ℓ′. For definitions see Section 5.2, and more experiments see Appendix E.2, E.3 and E.4.

Our approach differs in that we use synthetic data to demonstrate that linear probing can almost per-
fectly recover NT ancestors and boundaries, even for complex CFGs that generate strings exceeding
hundreds of tokens. We focus on pre-training generative language models. For a non-generative,
BERT-like model pre-trained via language-modeling (MLM), such as the contemporary variant De-
BERTa (He et al., 2020), learning deep NT information (i.e., close to the CFG root) is less effective,
as shown in Figure 4. This is expected, as the MLM task may only require the transformer to learn
NT rules for, say, 20 neighboring tokens. Crucially, BERT-like models do not store deep NT infor-
mation at the NT boundaries (see Figure 5).

Our results, along with Section 5, provide evidence that generative language models like GPT-2 em-
ploy a dynamic-programming-like approach to generate CFGs, while encoder-based models, typi-
cally trained via MLM, struggle to learn more complex/deeper CFGs.

5 HOW DO TRANSFORMERS LEARN NTS?

We now delve into the attention patterns. We demonstrate that these patterns mirror the CFG’s
syntactic structure and rules, with the transformer employing different attention heads to learn NTs
at different CFG levels.

5.1 POSITION-BASED ATTENTION

We first note that the transformer’s attention weights are primarily influenced by the tokens’ relative
distance. This holds true even when trained on the CFG data with absolute positional embedding.
This implies that the transformer learns the CFG’s regularity and periodicity through positional
information, which it then uses for generation. (We defer the figures to Appendix E.1 as this finding
may not surprise some readers.)

Motivated by this, we explore whether position-based attention alone can learn CFGs. In Figure 3,
we find that GPTpos (or even GPTuni) performs well, surpassing the vanilla GPT, but not reaching the
full potential of GPTrel. This supports the superior practical performance of relative-position based
transformer variants (such as GPTrel,GPTrot, DeBERTa) over their base models (GPT or BERT). On
this other hand, this also indicates that position attention along is not enough for transformers
to learn CFGs.

7

Under review as a conference paper at ICLR 2024

5.2 BOUNDARY-BASED ATTENTION

Next, we remove the position-bias from the attention matrix to examine the remaining part. We
find that the transformer also learns a strong boundary-based attention pattern, where tokens on
the NT-end boundaries typically attend to the “most adjacent” NT-end boundaries, similar to
standard dynamic programming for parsing CFGs (see Figure 1). This attention pattern enables the
transformer to effectively learn the hierarchical and recursive structure of the CFG, and generate
output tokens based on the NT symbols and rules.

Formally, let Al,h,j→i(x) for j ≥ i denote the attention weight for positions j → i at layer l and
head h of the transformer, on input sequence x. Given a sample pool {x(n)}n∈[N] ∈ L(G), we
compute for each layer l, head h,6

Al,h,p = AverageJAl,h,j→i(x
(n)) | n ∈ N, 1 ≤ i ≤ j ≤ len(x(n)) s.t. j − i = pK ,

which represents the average attention between any token pairs of distance p over the sample pool.
To remove position-bias, we focus on Bl,h,j→i(x) := Al,h,j→i(x)−Al,h,j−i in this subsection. Our
observation can be broken down into three steps.

• Firstly, Bl,h,j→i(x) exhibits a strong bias towards tokens i at NT ends. As shown in Figure 6(a),
we present the average value of Bl,h,j→i(x) over data x and pairs i, j where i+ δ is the deepest
NT-end at level ℓ (symbolically, b♯(i + δ) = ℓ). The attention weights are highest when δ = 0
and decrease rapidly for surrounding tokens.

• Secondly, Bl,h,j→i(x) also favors pairs i, j both at NT ends at some level ℓ. In Figure 6(b), we
show the average value of Bl,h,j→i(x) over data x and pairs i, j where bℓ(i+δ1) = bℓ(j+δ2) =
1 for δ1, δ2 ∈ {−1, 0, 1}.

• Thirdly, Bl,h,j→i(x) favors “adjacent” NT-end token pairs i, j. We define “adjacency” as fol-
lows: We introduce Bend→end

l,h,ℓ′→ℓ,r to represent the average value of Bl,h,j→i(x) over samples x

and token pairs i, j that are at the deepest NT-ends on levels ℓ, ℓ′ respectively (symbolically,
b♯(i) = ℓ ∧ b♯(j) = ℓ′), and are at a distance r based on the ancestor indices at level ℓ (symbol-
ically, pℓ(j) − pℓ(i) = r). In Figure 6(c), we observe that Bend→end

l,h,ℓ′→ℓ,r decreases as r increases,
and is highest when r = 0 (or r = 1 for pairs ℓ′ → ℓ without an r = 0 entry).7

In conclusion, tokens corresponding to NT-ends at level ℓ′ statistically have higher attention weights
to their most adjacent NT-ends at every level ℓ, even after removing position-bias.8

Connection to DP. Recall that dynamic programming (DP) comprises two components: storage
and recurrent formula. While it’s impractical to identify a specific DP implementation that the trans-
former follows since there are countless many ways to implement a DP, we can highlight common
elements in DP implementations and their correlation with the transformer. In Section 4, we demon-
strated that the generative transformer can encode the DP’s storage “backbone”, encompassing all
necessary DP(i, j, a) on the correct CFG parsing tree of a given string.

For the recurrent formula, consider a CFG rule a 7→ b, c, d in the correct CFG parsing tree. If
non-terminal (NT) b spans positions 21-30, c spans 31-40, and d spans 41-50, the DP must establish
“memory links” between positions 30-40 and 40-50. This can be achieved by storing the [bc] infor-
mation at position 40 and merging it with [d] at position 50, or by storing [cd] at position 50 and
merging it with [b] at position 30. Regardless of the method, a common feature is the memory link
from 30 to 40 and from 40 to 50. Hence, we have been examining such NT-end to NT-end attention
links among adjacent NTs in this section.

The transformer is not only a parsing algorithm but also a generative one. Suppose a 7→ b, c and
c 7→ d, e, f are on the correct parsing tree. When generating symbol e, the model, not having
finished reading def , must access the precomputed knowledge from the uncle node b. This is why
we also visualized those attentions from an NT-end to its most adjacent NT-end at a different level.

6Throughout this paper, we use J·K to denote multi-sets that allow multiplicity, such as J1, 2, 2, 3K. This
allows us to conveniently talk about its set average.

7For any token pair j → i with ℓ = b♯(i) ≥ b♯(j) = ℓ′ — meaning i is at an NT-end closer to the root than
j — it satisfies pℓ(j)− pℓ(i) ≥ 1 so their distance r is strictly positive.

8Without removing position-bias, such a statement might be meaningless as the position-bias may favor
“adjacent” anything, including NT-end pairs.

8

Under review as a conference paper at ICLR 2024

000 001 010 011 100 101 110 111

000

001

010
011
100
101
110111co

rr
el

at
io

ns
 o

f w
or

d
em

be
dd

in
gs

un
ifo

rm
 O

T
di

st
ri

bu
ti

on

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

000 001 010 011 100 101 110 111

000

001

010
011
100
101
110111co

rr
el

at
io

ns
 o

f w
or

d
em

be
dd

in
gs

no
n-

un
ifo

rm
 O

T
di

st
ri

bu
ti

on

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: Language models learn implicit CFGs by using word embeddings to encode terminal symbol.

In implicit CFGs, the terminal symbols t ∈ T are associated with bags of tokens OTt from which
observable tokens are sampled. We present word embedding correlations pre-trained on an implicit
CFG with |T| = 3 and vocabulary size 300. Details are in Section A.1.

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

b

100 99.8 100 100 100 100 100 100 100 100 100 100
98.7 100 100 100 100 100 100 100 100 100 99.2 99.9 100 100 100 99.9 100 100 100 100 98.5 100 100 100 100 100 100 100 100 100 100
0.0 14.3 24.7 39.8 44.4 55.7 64.5 73.5 82.6 91.8 0.0 14.1 22.8 35.3 44.9 58.2 65.4 75.5 83.6 92.5 0.0 14.7 26.9 38.5 49.8 56.8 65.5 75.2 81.5 91.8 99.8
78.3 78.9 80.6 78.0 79.1 78.6 79.5 78.6 76.4 77.9 82.6 80.4 80.6 80.4 81.7 82.6 81.4 81.7 80.8 80.8 60.4 58.3 56.5 58.1 60.4 59.1 60.6 57.5 58.9 56.9 30.0
77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9 81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4 59.5 57.7 55.9 57.6 59.2 58.8 59.7 57.2 57.8 57.1 30.3
0.0 0.5 0.5 0.6 0.5 0.3 0.6 0.4 0.5 0.7 0.0 0.4 0.5 0.8 0.2 0.3 0.5 0.6 0.7 0.6 0.0 0.1 0.4 0.4 0.4 0.5 0.9 0.5 0.3 0.3 29.6
100 99.4 100 100 100 100 100 100 100 100 100 100
99.2 100 100 100 100 100 100 100 100 100 99.6 100 100 100 100 100 100 100 100 100 98.4 100 100 100 100 100 100 100 100 100 100
0.0 91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99.4 0.0 92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7 0.0 83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3 99.9

--------------------pre-training method--------------------

Figure 8: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean or
corrupted prefixes with cuts c = 0 or c = 50, using generation temperatures τ = 0.1, 0.2, 1.0.

Observation. In Rows 4/5, by comparing against the last column, we see it is beneficial to include
low-quality data (e.g. grammar mistakes) during pre-training. The amount of low-quality data could
be little (γ = 0.1 fraction) or large (every training sentence may have grammar mistake). The
transformer also learns a “mode switch” between the “correct mode” or not; details in Section A.2.

In sum, while defining a good backbone for the DP recurrent formula may be challenging, we have
demonstrated several attention patterns in this section that largely mimic dynamic programming
regardless of the DP implementations.

6 CONCLUSION

Extensions. We defer implicit CFGs and robust CFGs to Appendix A, but briefly showcase the
main discoveries in Figure 7 and 8.

Other related works. Numerous studies aim to uncover the inner workings of pretrained trans-
formers. Some have observed attention heads that pair closing brackets with open ones, as noted
in a concurrent study Zhang et al. (2023). Some have investigated induction heads applying logic
operations to the input Olsson et al. (2022). Wang et al. (2022) explored many different types of
attention heads, including “copy head” and “name mover head”. While our paper differs from these
studies due to the distinct tasks we examine, we highlight that CFG is a deep, recursive task. Nev-
ertheless, we still manage to reveal that the inner layers execute attentions in a complex, recursive,
dynamic-programming-like manner, not immediately evident at the input level.

On the other hand, some studies can precisely determine each neuron’s function after training, typi-
cally on a simpler task using simpler architecture. For instance, Nanda et al. (2023) examined 1- or
2-layer transformers with a context length of 3 for the arithmetic addition. Our analysis focuses on
the inner workings of GPT2-small, which has 12 layers and a context length exceeding 300. While
we cannot precisely determine each neuron’s function, we have identified the roles of some heads
and some hidden states, which correlate with dynamic programming.

Conclusion. In this paper, we studied how a transformer learns the CFGs structures in pretrain-
ing. CFGs in a language can include grammar, format, expressions, patterns, etc. We consider a
synthetic, yet quite challenging family of CFGs to show how the inner workings of trained lan-
guage models on these CFGs are highly correlated with the internal states of dynamic programming
algorithms to parse those CFGs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. In COLT, 2023. Full version available at http://arxiv.org/abs/2001.04413.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019. Full version available at http://arxiv.org/abs/1811.
03962.

Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical study. arXiv
preprint arXiv:1706.08224, 2017.

David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure
in neural language models. arXiv preprint arXiv:2204.06201, 2022.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.
org/10.5281/zenodo.5297715.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. In ICLR, 2023.

Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nondetermin-
istic stacks. In ICLR, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1419. URL https://aclanthology.org/N19-1419.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Lillian Lee. Learning of context-free languages: A survey of the literature. Techn. Rep. TR-12-96,
Harvard University, 1996.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emergent
linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the
National Academy of Sciences, 117(48):30046–30054, 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004.

10

http://arxiv.org/abs/2001.04413
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://aclanthology.org/N19-1419
https://aclanthology.org/J93-2004

Under review as a conference paper at ICLR 2024

Rowan Hall Maudslay and Ryan Cotterell. Do syntactic probes probe syntax? experiments with
jabberwocky probing. arXiv preprint arXiv:2106.02559, 2021.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 technical report, 2023.
Matt Post and Shane Bergsma. Explicit and implicit syntactic features for text classification. In

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 866–872, 2013.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Itiroo Sakai. Syntax in universal translation. In Proceedings of the International Conference on
Machine Translation and Applied Language Analysis, 1961.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and Aaron Courville. Neural language modeling by
jointly learning syntax and lexicon. arXiv preprint arXiv:1711.02013, 2017.

Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, and Jishen Zhao. Learning bounded context-
free-grammar via lstm and the transformer: Difference and the explanations. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pp. 8267–8276, 2022.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.
Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer

with rotary position embedding, 2021.
Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim,

Benjamin Van Durme, Samuel R Bowman, Dipanjan Das, et al. What do you learn from con-
text? probing for sentence structure in contextualized word representations. arXiv preprint
arXiv:1905.06316, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

David Vilares, Michalina Strzyz, Anders Søgaard, and Carlos Gómez-Rodrı́guez. Parsing as pre-
training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 9114–
9121, 2020.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for
analyzing and interpreting bert. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4166–4176, 2020.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. arXiv preprint arXiv:2105.11115, 2021.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
transformers learn to solve problems recursively? arXiv preprint arXiv:2305.14699, 2023.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
dicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

11

	1 Introduction
	2 Context-Free Grammars
	3 Transformer Learns Such CFGs
	4 How Do Transformers Learn CFGs?
	4.1 Finding 1: Transformer's Hidden States Encode NT Ancestors and Boundaries
	4.2 Finding 2: Transformer's Hidden States Encode NT Ancestors At NT Boundaries

	5 How Do Transformers Learn NTs?
	5.1 Position-Based Attention
	5.2 Boundary-Based Attention

	6 Conclusion
	A Extensions of CFGs
	A.1 Implicit CFG
	A.2 Robustness on Corrupted CFG

	B Experiment Setups
	B.1 Dataset Details
	B.2 Model Architecture Details
	B.3 Pre-Training Details
	B.4 Predict NT ancestor and NT boundary

	C More Experiments on Generation
	C.1 Generation Diversity via Birthday Paradox
	C.2 Marginal Distribution Comparison

	D More Experiments on NT Ancestor and NT Boundary Predictions
	D.1 NT Ancestor and NT Boundary Predictions
	D.2 NT Predictions Across Transformer's Layers
	D.3 NT Predictions Across Training Epochs

	E More Experiments on Attention Patterns
	E.1 Position-Based Attention Pattern
	E.2 From Anywhere to NT-ends
	E.3 From NT-ends to NT-ends
	E.4 From NT-ends to Adjacent NT-ends

	F More Experiments on Implict CFGs
	G More Experiments on Robustness
	H Beyond the CFG3 Data Family
	H.1 The Penn TreeBank CFG
	H.2 More Synthetic CFGs

