
DATABASE-AWARE ASR ERROR CORRECTION FOR SPEECH-TO-SQL PARSING

Yutong Shao, Arun Kumar, Ndapa Nakashole

University of California, San Diego
Computer Science and Engineering

9500 Gilman Drive, La Jolla, CA 92093

ABSTRACT
We study the task of spoken natural language to SQL pars-
ing (speech-to-SQL), where the goal is to map a spoken
utterance to the corresponding SQL. A simple way to de-
velop a speech-to-SQL parser is to pass the speech to an
automatic speech recognition (ASR) system, and pass the
transcription to a text-to-SQL parser. However, ASR is
still error-prone. We propose an ASR correction method,
DBATI (DataBase-Aware TaggerILM). The method first
detects erroneous spans in the input, and rewrites each
span. Our method leverages a novel joint representation
of text and the database (DB). Our experiments show that
our method yields better performance on both text qual-
ity and downstream SQL accuracy, compared to existing
ASR error correction methods.

Index Terms— Speech-to-SQL, ASR error correc-
tion, database, natural language interface

1. INTRODUCTION

Interfaces that support human language as a medium of
communication between humans and computers have
been of interest for decades [1, 2]. Known as Natural
Language Interfaces (NLIs), early systems saw limited
success due to the difficult problem of endowing com-
puters with the ability to understand natural language.
Progress in language understanding has led to renewed
interest in NLIs [3]. In particular, several studies have fo-
cused on NLIs to databases (NLIDBs) [4, 5, 6]. NLIDBs,
when fully realized, stand to support users who are not
proficient in query languages. The primary focus of
NLIDBs has been on parsing natural language text utter-
ances into executable SQL queries (text-to-SQL parsing).
Motivated by the rise of speech-driven digital assistants
on smartphones, tablets, and other small handheld de-
vices, we study the task of parsing spoken natural lan-

Fig. 1: Overview of the speech-to-SQL task and our
method. (A) Directly passing the erroneous ASR tran-
scription to text-to-SQL parser will likely produce wrong
SQL output. We apply a Tagger (B) and an ILM rewriter
(C) to fix the transcription, incorporating ASR transcrip-
tion and DB information, in order to obtain the correct
user utterance.

guage to executable SQL queries (speech-to-SQL pars-
ing).

Motivation. A speech-to-SQL parser has a number
of potential use cases. For example, in the healthcare
domain, a nurse practitioner at a patient bedside typically
looks up patient details on a desktop in the patient’s room
by filling out forms whose back-end is a database. In
such a scenario, speech-to-SQL could be used instead,
for faster results. Furthermore, speech-to-SQL removes
the need for keyboards that can be slow and cumbersome
on small devices, when querying databases.

Gold Whose name has substring ABC ?

ASR Who’s name has a sub string ABC .

Tags U-EDIT KEEP KEEP U-DEL B-EDIT L-EDIT KEEP U-EDIT

ILM Input Who’s name has sub string ABC .
ILM Pred. Whose [ANS] substring [ANS] ? [ANS]
Final Output Whose name has substring ABC ?

Table 1: Infilling Language Model (ILM) example. Ac-
cording to the tags, “Who’s”, “sub string” and “.” are
EDIT spans (shown as underlined) and “a” is a DEL span.

Approach. To build a speech-to-SQL parser, we can
leverage progress in text-to-SQL parsing, and automatic
speech recognition (ASR). However, ASR is still error-
prone. To deal with ASR errors, we propose an error
correction method that fixes ASR errors in the context of
the DB. Our error correction method, DBATI (DataBase-
Aware TaggerILM), edits the ASR transcription by tag-
ging tokens to indicate if they should be edited (Tagger),
and then rewriting the appropriate tokens using an Infill-
ing language model (ILM). We build both the Tagger and
ILM on top of a novel joint representation of text and DB
schema. Figure 1 illustrates the task and our approach.

Summary of Contributions. We make the following
contributions: i) bring attention to the practical problem
of ASR error correction for speech-to-SQL parsing. ii)
propose an ASR error correction method, DBATI, with
a novel joint encoder of text and DB and outperforms
other ASR error correction methods. iii) present a new
dataset which is a spoken version of the Spider text-to-
SQL benchmark [5], named Spoken Spider. We make
our data available for reproducing our experiments, and
to facilitate future research on this important but under-
studied problem.1

2. METHOD

Our method, DBATI, consists of two components: a
Tagger and an Infilling Language Model (ILM) rewriter.
The input to the two components includes the potentially
erroneous ASR transcription and the DB schema. The
desired output is a corrected ASR transcription.

Tagging Tokens. The Tagger aims to classify errors
in the ASR transcription. It assigns one of three tags to
each token in the input transcription: KEEP, DEL or EDIT.
These tags are denoted as rewriter tags. The DEL and

1Our code, dataset, and more elaborations and illustrations
of method details are available at: https://github.com/
sythello/SpeakQL-DBATI-ICASSP2023.git

EDIT tags are based on the BILOU tagging schema, thus
marking certain spans in the sentence to be deleted or
edited2. See Table 1 for a example.

Rewriting Spans. After tagging, the ILM rewriter pre-
dicts the text rewrites for each EDIT span. The rewriter is
an Infilling Language Model (ILM) [7], which is an au-
toregressive generation model for blank filling. A work-
ing example of the ILM rewriter is shown in Table 1. It
takes a tagged sentence, and predicts a sequence with
new text for each EDIT span. Text for different spans is
separated by a special [ANS] token.

In what follows, we describe the technical details
of the Tagger and the ILM rewriter. They share a joint
encoder, but have separate decoders. The encoder fuses
free text and structured DB representations.

2.1. Joint Encoder

Database Cells Extraction. As a pre-processing step,
we extract cells from the DB that could be relevant for
the correction task. Conceptually, cell values are can
be useful because they tend to be domain-specific val-
ues that can appear in utterances but might not be in
general-domain text, therefore often wrongly transcribed.
However, the number of cells in a DB can be very large.
It is impractical to add all cells to the input, thus we
propose a cell extraction step. We select cells with the
highest pronunciation similarities with the tagged EDIT
spans. This step is only applied in the ILM rewriter step
when EDIT spans are available.

The pronunciations are represented by phoneme se-
quences. The phonemes of each utterance token or DB
cell token are obtained from the CMU pronunciation dic-
tionary3; if not found, they are inferred from Espeak4.
We compute the similarity of phoneme sequences using
s(p1, p2) = 1− d(p1,p2)

max(|p1|,|p2|) where d is the edit-distance
and |pi| denotes the length of pi. We select K cells from
the DB with highest similarities with each EDIT span,
a total of K × E cells where E is the number of EDIT
spans in the input. The selected cells are then added to
the DB token sequence. The DB token sequence includes
tables and columns from the DB schema; for the ILM
rewriter, the extracted cell values are also included. The

2BILOU: Begin, Inside, Last, Outside, Unit. Tokens with tags
from B-DEL to L-DEL, or a single U-DEL, make a DEL span; same for
EDIT spans. The KEEP tags are O tags for DEL and EDIT spans.

3https://github.com/cmusphinx/cmudict
4http://espeak.sourceforge.net

DB token sequence is transformed using DB serializa-
tion, and takes the form: “Table1 : col1 (cell1, cell2, ...),
col2 (cell1, cell2, ...), ... ; Table2 : col1 ...”, following
previous work [8].

PLM Encoding of Text + DB. We encode both the text
ASR transcription and the DB token sequence using a
pre-trained language model (PLM). We chose a BART
encoder because its pre-training objective involves de-
noising, which is relevant to our task. We concatenate the
text with the DB token sequence and feed the sequence
into the PLM to get a contextualized text-DB encoding
for each token (using a learnable scalar mix of the hidden
representations from each encoder layer).

Other features. We use align tags which mark whether
all ASR candidates agree on a token, providing addi-
tional information for token correctness. Futhermore,
the ILM rewriter, the rewriter tags are utilized as input
features. These features are vector-embedded using a
look-up embedding table.

Joint Representation. We concatenate the PLM en-
codings and tag embeddings of each token, and feed the
result into a self-attention layer and a standard LSTM
sequence encoder to get the joint representation. The
joint representation is then used by the decoder of either
the Tagger or the rewriter.

2.2. Decoders

Tagger Decoder. The Tagger decoder is an LSTM-
CRF sequence labeler. During training, we require “gold
rewriter tags” to supervise the Tagger. We leverage work
on aligning tokens in machine translation. Specifically,
we apply Fast Aligner [9] to every ASR candidate and its
corresponding clean text, and obtain the “gold rewriter
tags” for each token based on the output alignment.

Infilling LM Decoder. The ILM rewriter decoder is a
standard LSTM-based decoder with a copy mechanism
[10]. The target output is the sequence of tokens that fill
in the blanks as shown in Table 1.

3. EXPERIMENTS

Our baselines and proposed methods make use of an ex-
ternal ASR system and text-to-SQL system. For ASR,
we use Amazon Transcribe, which is a state-of-the-art
commercial ASR system whose outputs includes the tran-
scription candidate list. It also outputs the timestamps

and confidence scores of each transcribed token in each
candidate. For text-to-SQL parsing, our experiments use
three representative parsers: RAT-SQL [6], T5-base, and
T5-large [11, 12].

Dataset. The main dataset we use is Spider [5]. Spider
is a large-scale text-to-SQL dataset in which the train,
dev, and test data are different subsets of the DB, thus
models must generalize to unseen DBs. In order to evalu-
ate speech-to-SQL systems, we created a spoken version
of Spider, named Spoken Spider. We used Amazon Polly
text-to-speech (TTS) synthesizer to obtain the audio of
all natural language queries. We also collected real hu-
man speech on a subset of test samples; the details are
described in section 3.1.

Evaluation Metrics. For evaluation, we use Word Error
Rate (WER) and BLEU score as metrics for text quality.
To measure the end-to-end speech-to-SQL performance,
we use the SQL exact match and execution match score
provided in the Spider official evaluation script, corre-
sponding to the Spider leaderboards.

Baselines. We compare to the following baseline meth-
ods for ASR error correction. To mirror the settings
in previous work [13, 14], for all baselines, we use our
encoder without DB tokens and other features.
1) Blackbox. This baseline applies ASR to the spoken
query, and passes the transcription to a text-to-SQL parser.
No ASR error correction is performed.
2) Re-ranking Methods. These methods re-rank the N-
best candidates from ASR system [13]. No DB infor-
mation is considered by these methods, and the output
is limited to be one of the ASR transcription candidates.
For our Reranker baseline, the “decoder” is a multi-layer
perceptron (MLP) predicting the probability of an ASR
candidate to be the best one among all candidates.
3) Rewriting Methods. Rewriting methods aim to directly
reconstruct the correct text from the ASR transcription.
Previous work applies a Seq2seq (S2S) model to map
ASR output directly into the full sentence of corrected
text, without tagging and ILM as we have [14] and no DB
information is considered. For our S2S-rewriter baseline,
we use the same decoder architecture as our ILM rewriter
decoder, but removing the rewriter tags and use the full
sentence as target output.

Evaluation Results. The main results are shown in
Table 2. We trained each model at least 4 times, only
varying the random seeds between runs, and report the
mean and standard deviations of each metric.

Method WER(↓) BLEU(↑) RAT-SQL T5-base T5-large
Exact(↑) Exec Exact(↑) Exec(↑) Exact(↑) Exec(↑)

Blackbox 0.1194 0.8010 0.4552 n/a 0.4570 0.4570 0.5265 0.5119
Reranker 0.1029±0.0017 0.8163±0.0022 0.4859±0.0046 n/a 0.4859±0.0041 0.4900±0.0058 0.5370±0.0087 0.5393±0.0054

S2S-rewriter 0.0912±0.0051 0.8350±0.0055 0.4858±0.0135 n/a 0.4584±0.0085 0.4470±0.0144 0.5407±0.0157 0.5018±0.0116

TI (TaggerILM w/o JE.) 0.0689±0.0050 0.8725±0.0093 0.5270±0.0097 n/a 0.4927±0.0106 0.4877±0.0137 0.5786±0.0170 0.5681±0.0148

DBATI (TaggerILM w/ JE.) 0.0651±0.0051 0.8778±0.0092 0.5393±0.0144 n/a 0.5018±0.0097 0.4913±0.0118 0.5950±0.0116 0.5859±0.0150

Gold query 0.0000 1.0000 0.6234 n/a 0.5832 0.6033 0.6746 0.6929

Table 2: Main results on Spoken Spider (Spider with TTS-generated speech). JE denotes the joint encoder structure
we propose in this work for TaggerILM. The w/o JE. corresponds to settings in previous work. In bold are the best
results; in italic are the results within the range of 1× standard deviation from the best results. RAT-SQL predictions
do not include value literals, thus we do not report its execution match.

All three methods substantially improve the text qual-
ity (on WER and BLEU) upon the baseline which does
not address ASR errors, consistent with findings in pre-
vious work. On SQL accuracy, all the methods also
yield a large performance gain, except for S2S-rewriter
which has no clear improvement when using T5 parsers.
Among all methods, our DBATI achieves the overall best
performance, achieving the highest score on all metrics.
Without the joint encoder incorporating DB information,
the TaggerILM framework still outperforms other base-
lines, but underperforms full DBATI. Lastly, there is large
performance gap between all methods and directly pass-
ing the gold queries to text-to-SQL parser. This shows
room for further improvement on this task.

3.1. Human Speech Test

To test the domain-transfer capabilities of each method
from Text-to-Speech (TTS) data to the real world setting,
we sampled a subset of 100 queries from our test set
and collected spoken queries from a human speaker on
each sample. Evaluation results are shown in Table 3.
First, performance of all methods dropped compared to
the TTS-synthesized data, showing that human speech
is indeed noisier and challenging. Compared to baseline
methods, DBATI still improves the text quality and SQL
accuracy with T5-large parser, and achieves comparable
performance with RAT-SQL and T5-base. Given that
T5-large is the best parser in our study, having outstand-
ing performances on this parser is promising. Overall,
our model trained on TTS data maintains a very strong
performance on real data in comparison to baselines.

4. RELATED WORK

While there is previous work on speech-to-SQL [15, 16,
17], to our knowledge, our work is the first to systemati-

Method WER Exact (RAT-SQL) Exec (T5-base) Exec (T5-large)
Blackbox 0.1733 0.3500 0.4200 0.4600
Reranker 0.1689±0.0055 0.3725±0.0096 0.4075±0.0236 0.4775±0.0222

S2S-rewriter 0.1427±0.0046 0.3950±0.0404 0.4050±0.0252 0.4625±0.0310

TI 0.1347±0.0020 0.4175±0.0263 0.3925±0.0377 0.4625±0.0310

DBATI 0.1294±0.0029 0.4125±0.0171 0.4100±0.0216 0.5075±0.0222

Gold query 0.0000 0.5600 0.6000 0.7100

Table 3: Domain-transfer evaluation results on human
speech. Due to space limit, we only show a subset of
representative metrics.

cally explore neural ASR error correction approaches for
SQL-related tasks. On ASR correction, previous work
proposed re-ranking methods [13, 18] and S2S rewriting
methods [14]. Recently, contemporaneous work pro-
posed an ASR correction framework based on error re-
gion detection and per-region correction, conceptually
similar to our TaggerILM framework [19]. The main
difference is that we focus on a task involving structured
data, speech-to-SQL, and propose a joint text-DB encod-
ing that provides input to our TaggerILM framework.

5. CONCLUSION

We proposed an ASR error correction method for speech-
to-SQL parsing. Our proposed method, DBATI, is able to
more effectively fix ASR errors compared to baselines, as
reflected by superior performances on both text and SQL
accuracy on several different text-to-SQL parsers and
in different domains (TTS-synthesized speech / human
speech). Future work can explore techniques in leverag-
ing audio information in ASR correction, such as better
modal-fusion mechanisms. Another future direction is to
investigate transfer learning strategies to improve model
performance in real-world scenarios where the data are
more noisy and dissimilar to training data.

Work supported by NSF grant number: #1816701

6. REFERENCES

[1] Terry Winograd, “Procedures as a representation
for data in a computer program for understanding
natural language,” Tech. Rep., Massachusetts Insti-
tute of Technology, 1971.

[2] John M Zelle and Raymond J Mooney, “Learn-
ing to parse database queries using inductive logic
programming,” in Proceedings of the national con-
ference on artificial intelligence, 1996, pp. 1050–
1055.

[3] Yutong Shao, Arun Kumar, and Ndapa Nakashole,
“Structured data representation in natural language
interfaces,” IEEE Data Eng. Bull., vol. 45, pp. 68–
81, 2022.

[4] Victor Zhong, Caiming Xiong, and Richard Socher,
“Seq2SQL: Generating structured queries from nat-
ural language using reinforcement learning,” arXiv
preprint arXiv:1709.00103, 2017.

[5] Tao Yu, Rui Zhang, Kai Yang, et al., “Spider:
A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL
task,” in EMNLP, 2018, pp. 3911–3921.

[6] Bailin Wang, Richard Shin, Xiaodong Liu, Olek-
sandr Polozov, and Matthew Richardson, “RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers,” in ACL, 2020, pp. 7567–
7578.

[7] Chris Donahue, Mina Lee, and Percy Liang, “En-
abling language models to fill in the blanks,” in
ACL. 2020, pp. 2492–2501, Association for Com-
putational Linguistics.

[8] Peter Shaw, Ming-Wei Chang, Panupong Pasupat,
and Kristina Toutanova, “Compositional general-
ization and natural language variation: Can a se-
mantic parsing approach handle both?,” ArXiv, vol.
abs/2010.12725, 2021.

[9] Chris Dyer, Victor Chahuneau, and Noah A. Smith,
“A simple, fast, and effective reparameterization of
IBM Model 2,” in HLT-NAACL, 2013.

[10] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li, “Incorporating copying mechanism in sequence-

to-sequence learning,” ArXiv, vol. abs/1603.06393,
2016.

[11] Colin Raffel, Noam M. Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu, “Exploring
the limits of transfer learning with a unified text-
to-text transformer,” ArXiv, vol. abs/1910.10683,
2020.

[12] Tianbao Xie, Chen Henry Wu, Peng Shi, et al.,
“UnifiedSKG: Unifying and multi-tasking struc-
tured knowledge grounding with text-to-text lan-
guage models,” 2022.

[13] Yue Weng, Sai Sumanth Miryala, Chandra Khatri,
Runze Wang, Huaixiu Zheng, Piero Molino, M. Na-
mazifar, A. Papangelis, H. Williams, Franziska Bell,
and G. Tur, “Joint contextual modeling for ASR
correction and language understanding,” ICASSP
2020, pp. 6349–6353, 2020.

[14] Anirudh Mani, Shruti Palaskar, Nimshi Venkat
Meripo, Sandeep Konam, and F. Metze, “ASR
error correction and domain adaptation using ma-
chine translation,” ICASSP 2020, pp. 6344–6348,
2020.

[15] S. Jamoussi, Kamel Smaïli, and J. Haton, “From
speech to SQL queries : a speech understanding
system,” in AAAI 2005, 2005.

[16] S. Kumar, A. Kumar, P. Mitra, and G. Sundaram,
“System and methods for converting speech to SQL,”
ArXiv, vol. abs/1308.3106, 2013.

[17] Shravankumar Hiregoudar, Manjunath Gonal, and
Karibasappa K G, “Speech to SQL generator-a
voice based approach,” Journal of Basic and Ap-
plied Research International, vol. Vol 4, pp. 01–05,
01 2019.

[18] Rodolfo Corona, Jesse Thomason, and R. Mooney,
“Improving black-box speech recognition using se-
mantic parsing,” in IJCNLP 2017, 2017.

[19] Fan Zhang, Mei Tu, Song Liu, and Jinyao Yan,
“ASR error correction with dual-channel self-
supervised learning,” ICASSP 2022, pp. 7282–7286,
2022.

