Published as a conference paper at ICLR 2025

ILLUSION: UNVEILING TRUTH WITH A COMPRE-
HENSIVE MULTI-MODAL, MULTI-LINGUAL DEEPFAKE
DATASET

Kartik Thakral*!, Rishabh Ranjan*', Akanksha Singh'?, Akshat Jain',
Mayank Vatsa', and Richa Singh'
oIt Jodhpur, India, 21ISER Bhopal, India

ABSTRACT

The proliferation of deepfakes and Al-generated content has led to a surge in media
forgeries and misinformation, necessitating robust detection systems. However,
current datasets lack diversity across modalities, languages, and real-world scenar-
ios. To address this gap, we present ILLUSION (Integration of Life-Like Unique
Synthetic Identities and Objects from Neural Networks), a large-scale, multi-modal
deepfake dataset comprising 1.3 million samples spanning audio-visual forgeries,
26 languages, challenging noisy environments, and various manipulation protocols.
Generated using 28 state-of-the-art generative techniques, ILLUSION includes
faceswaps, audio spoofing, synchronized audio-video manipulations, and syn-
thetic media while ensuring a balanced representation of gender and skin tone for
unbiased evaluation. Using Jaccard Index and UpSet plot analysis, we demon-
strate ILLUSION’s distinctiveness and minimal overlap with existing datasets,
emphasizing its novel generative coverage. We benchmarked image, audio, video,
and multi-modal detection models, revealing key challenges such as performance
degradation in multilingual and multi-modal contexts, vulnerability to real-world
distortions, and limited generalization to zero-day attacks. By bridging synthetic
and real-world complexities, ILLUSION provides a challenging yet essential plat-
form for advancing deepfake detection research. The dataset is publicly available
athttps://www.iab-rubric.org/illusion—-databasel

1 INTRODUCTION

The emergence of social media platforms has funda- ®

mentally transformed our mode of communication &

and information dissemination. Platforms such as

Facebook, YouTube, Instagram, and TikTok, which =T \
boast billions of users worldwide, have expanded the S " S

scope of shared content beyond text to include im-

ages, videos, and other forms of multimedia |Narayan

et al.| (2022a); Ranjan et al.|(2024b)). This shift has ‘
precipitated a surge in the volume of multi-modal Y o @
content accessible online. As social networks evolve

rapidly, they have emerged as the primary conduit Figure 1: Comparative analysis of the pro-
for disseminating user-generated multi-modal con- posed dataset with existing ones based on
tent. The data circulating on these social networks modalities, size, and manipulations.

is predominantly multi-modal, encompassing videos,

audio, and images. With their billions-strong user base, these platforms generate enormous data every
minute. Nonetheless, the rise of social media and multi-modal content has concurrently fueled an
upsurge in the spread of deepfakes and synthetic media fabricated by deep learning techniques. The
advancements in generative techniques like Generative Adversarial Networks (GANs), Variational
Auto-Encoders (VAEs), and diffusion-based models, have significantly enhanced the realism of
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Figure 2: Visual representation and organization of each subset in the proposed ILLUSION dataset.

synthetically generated content, making it more convincing to the untrained eye (2019);
Thakral et al.| (2024); |Korshunova et al.| (2017); [Rombach et al.|(2022); |[Ranjan et al.| (2023b)). These

Al foundational models and diffusion-based Generative Al (GenAlI) models have exhibited unparal-
leled competence in comprehending and generating human-like videos, images, and sounds
. In 2023, 95,820 deepfake videos were circulated online, which is a 550% increase
from 2019 (Deepfake Statistics)). Projections indicate that by 2026, up to 90% of online content
may be synthetically generated (Synthetic Al Stats). This rapid surge highlights the urgent need for
robust deepfake detection techniques. In response, numerous researchers have developed methods

specifically targeting identity-based deepfakes (Afchar et al., 2018} Nguyen et al.| Agarwal
et all}, 2019} [Khalid & Wool, [2020; [Thakral et al.} [2023; |[Chhabra et al.| 2024} [Ranjan et al.| [2023al).

The success of deepfake detection depends on the quality of the dataset, including diversity in
modalities, generation methods, and the realism of samples. Table[T]offers a comprehensive overview
of public deepfake detection datasets. Early datasets such as DF-TIMIT 2018), Face-
Forensics++ (Rossler et al, 2018)), Celeb-DF 2020), WildDeepfake 12020), and

DeeperForensics-1.0 (Jiang et al., 2020) were relatively small and unimodal, while larger datasets

like FFIW 10k (Zhou et all[2021)), KoDF (Kwon et al[2021), and DF-Platter (Narayan et al. [2023))

primarily focused on visual manipulations. Unimodal audio-based forgeries were introduced in
ASVSpoof (Wang et all,2020b), WaveFake (Frank & Schonherr, 2021)), and TIMIT-TTS
[2023), whereas multi-modal deepfake detection emerged in DFDC (Dolhansky et al. 2020) and
Fake AVCeleb (Khalid et al.|[2021). More recently, large-scale multi-modal datasets such as LAV-DF

2022) and AV-DeepfakelM 2024) introduced audio-video manipulations,
though they lacked non-identity-based AIGC.

Existing data sets have mainly focused on a few specific generation techniques. To bridge this gap,
we introduce ILLUSION: Integration of Life-Like Unique Synthetic Identities and Objects from
Neural Networks (ILLUSION Leaderboard)), a novel multi-modal, multi-lingual deepfake dataset
divided across four sets (visualized in Figure[2). Set A is an identity forgery dataset with audio-video
synchronized. Set B incorporates Al-generated synthetic data covering three media modalities:
image, audio, and video. Set C, a test set, includes a pool of real-world Al-generated content (AIGC)
sampled from different sources and set D includes multi-lingual and multi-modal deepfake samples
spanning over 26 different languages. The dataset is prepared with continuous usage of 40 GPUs,
accounting for 2000 GB of cumulative memory. With over 800 GBs in size, the dataset contains
over 1.3 million samples encompassing the four sets. To the best of our knowledge, this is one of
the largest datasets containing vast variability of generation methods, different modalities, multiple
languages, and various challenges (refer Figure|[T).

The proposed comprehensive dataset provides diverse Al-generated content to serve as a valuable asset
for research in detecting Al-generated media varying in input modality, generation models, different
languages, and content type. To assess and analyze the utility of our dataset, we conduct extensive
experiments and benchmark using 11 baseline deepfake methods and analyze their performance when
tested in different settings. This dataset is presented as a leaderboard (ILLUSION Leaderboard) for
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Table 1: Details of publicly available deepfake datasets.

Dataset Name Year Real Fake S Total Generation  Identity AT Generated Multi-  AI-Swap-
TImages  Audio Video Techni pping Content Lingual  Lingual
Deepfake-TIMIT (Korshunov![2018} 2018 640 N/A N/A 320 960 2 v X X x
FaceForensics++ (Rossler et al.|2019} | 2019 1000 N/A N/A 4,000 5000 4 ' X X X
Celeb-DF (Li et al.||20207 2020 590 N/A N/A 5,639 6,229 1 v X x X
DFDC (Dolhansky et al.|2020) 2020 | 23,654 N/A N/A 104,500 128,154 8 v x X X
DeeperForensics-1.0 (Jiang et al.|2020) | 2020 | 50,000 N/A N/A 10,000 60,000 1 v X X X
ASVSpoof (Yamagishi]2019 2021 16,492 N/A 148,148 N/A 164,640 19 v X X X
‘WaveFake (Frank & Schonherr![2021) 2021 0 N/A 117,985 N/A 117,985 6 v X X X
FakeAVCeleb (Khalid et al. 2021} 2021 500 N/A 500 9000 10,000 4 ' X X X
TIMIT-TTS (Salvi et al.; 2023} 2022 430 N/A 80,000 N/A 80,430 14 v X X X
DeePhy (Narayan et al.||2022b| 2022 100 N/A N/A 5,040 5,140 3 v X X X
LAV-DF (Cai et al.|2022] 2022 | 36,431 N/A 33,176 65,997 136,304 2 v X X X
Midjourney Kaggle (Iulia Turc![2022) 2022 0 250,000 N/A N/A 250,000 1 X v X X
DF-Platter (Narayan et al.[[2023] 2023 764 N/A N/A 132,496 133,260 3 v x X X
AV-Deepfake IM (Cau et al.[|2024) 2023 | 286,721 N/A N/A 860,039 1,146,760 3 v X X X
AGIQAIK (Zhang et al.{2023 2023 0 1,080 N/A N/A 1,080 2 X v X X
TWIGMA (Chen & Zoul[2023) 2024 0 800,000 N/A N/A 800,000 N/A X v X X
DeePhyV2 (Thakral et al.|[2025] 2025 100 N/A N/A 8,960 9,060 4 v X X X
ILLUSION (Proposed) 2025 | 139,740 905,548 27,244 299454 1,371,986 28 v v v v

researchers to test the performance of their algorithms and foster the development of generalizable
detection methods. The primary contributions of our work are summarized below:

* We introduce a multi-modal deepfake dataset developed using 28 GenAl models grounded
in GANs, VAEs, Transformers, and Diffusion-based models, spanning image, audio, and
video modalities. This dataset is partitioned into four distinct sets.

» The dataset encompasses identity manipulations, where forgery can manifest across audio,
video, or both. This set is seamlessly synchronized across audio-visual channels and
maintains a balance in terms of sex and skin tone.

* The dataset also includes Al-generated content (AIGC) produced by various text-to-modality
models across image, audio, and video domains. It encompasses a subset of entirely synthetic
faces. Additionally, the dataset features real-world deepfakes, designed to evaluate detection
algorithms in a practical context that spans multiple modalities and languages.

* We benchmark the proposed dataset using state-of-the-art detection methods and conduct a
comprehensive analysis of their performance across a range of challenging protocols.

2 THE ILLUSION DATASET

In this paper, we introduce /ILLUSION: Integration of Life Like Unique Synthetic Identities and
Objects from Neural networks, a comprehensive large-scale multi-modal deepfake datase The
dataset comprises 1,376,371 samples across image, audio, video, and synchronized audio-video
modalities, making it the largest multi-modal resource available in the deepfake literature. The
dataset is organized into four subsets: Set A, Set B, Set C, and Set D. Set A includes identity
manipulations featuring faceswaps, voice spoofs, and both. Set B comprises synthetically generated
media, including images and videos of sceneries, objects, situations, and music audio. This set also
incorporates synthetic faces generated from the website (TPDNE). Set C encompasses real-world
testing samples, i.e., Fakes in the Wild, generated using proprietary generative models, and Set D is
a multi-lingual multi-modal deepfake testing set. ILLUSION is produced using 28 distinct generative
models, encompassing both open-source and proprietary systems. Unlike many publicly available
deepfake datasets that suffer from imbalances in sex and skin tone (Nadimpalli & Rattanil 2022; Xu
et al.,|2022a), the ILLUSION dataset ensures equitable representation across these subgroups. An
overview of the dataset is provided in Figure 2]

2.1 DATASET STATISTICS AND ORGANIZATION

This section discusses the statistics and organization of each set of the proposed ILLUSION dataset.
Table |2| presents the set-wise statistics.

Set A: This set comprises a total of 13 identity manipulations, generated from 200 unique identities
sampled from the CelebV-Text dataset (Yu et al., [2023)). Each audio, video, and audio-synchronized

IThe collection and generation of the dataset have been approved by the Institutional Ethics Review Commit-
tee. Access will be limited to academic institutions for research purposes.
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Figure 3: Illustration of generation pipeline employed in set A for identity swaps.

clip in this set is 20 seconds long. The samples in this set incorporate variations such as occlusions
(e.g., hats, glasses, beards, etc.), body movements, and lighting conditions, thereby ensuring a
diversity of variations in the dataset. This set is categorized into four classes: (i) Real Audio- Real
Video (RA-RV), (ii) Real Audio and Fake Video (RA-FV), (iii) Fake Audio and Real Video (FA-RV),
and (iv) Fake Audio and Fake Video (FA-FV) (as visualized in Figure E[) Table summarizes the
number of samples available in each class of Set A. Manipulations in images and videos for each
of these classes are introduced by swapping the faces of the source identity onto the target video.
For this purpose, we employ 6 different face-swapping models, namely, MobileFaceSwap
2022b)), FSGAN (Nirkin et al}, 2019)), FaceShifters (Li et al., 2019b), ROOP 2023), DiffFace
(Kim et al} 2022)), and DiffSwap (Zhao et al.l 2023). The audio deepfakes are created using the
English transcription generated through the MMS model (Pratap et al., [2024). This transcription
is then employed by Text-to-Speech systems to create identity-swapped voice clones. We utilize 7
different audio-generative models, namely, FreeVC (Li et al.} [2023), XTTS (Eren & The Coqui TTS

eam| [2021)), DiffVC [2021b), DiffHierVC (Chot et all, 2023), YourTTS (Casanoval

et al.,2022), DiffGAN-TTS (Liu et al.}[2022)), and GradTTS (Popov et al.,[202Ta)) for voice-swapping.
For classes RA-FV, FA-RV, and FA-FV, we employ |Alignment, a fingerprinting-based model to

ensure seamless synchronization between the audio and video, thereby enhancing the realism of the
generated fake. The details of all the models utilized in this set are available in the Appendix.

Set B: This set comprises a total of 523,222 entirely Table 2: Dataset Statistics: In Set A, au-
synthetic samples and their 138,708 real counterparts, djo and images are extracted from videos

generated through 11 open-source models and one fq manipulation, with three compression
closed-source model. This set includes images, audio, Jevels (raw, C23, and C40).

and videos primarily generated using diffusion models —Generafion— Real — Take

. .. Sets Modality Methods < N Total

and transformers. For the generation of synthetic im- i » mples Samples
ages, we employ the images and their corresponding ~ SetA | Images 2 N/A 403200 403,200
.. Videos 4 1,032 278,400 279,432

prompts from the training set of the COCO dataset (Lin Audio 7 5211 20844 26055
et al} 2014) to generate using four text-to-image gen- ~ sas Tmages T T e
erative models. These models include Stable Diffusion- f::f;eg ! 8200 Baw 16400

XL (Podell et al, 2023), Kandinsky 2.1 (Razzhigaev| 5| videos N/A N/A 24 24
fr~x3 . Audios N/A 1600 2560 4160

et al.|[2023), MultiDiffusion (Bar-Tal et al.;[2023), and ~ 5¢P | yijeos NiA 100 125 25

SDXL-Turbo (Sauer et al, 2023). We also collected Total B A0 15451 157637
8,200 synthetic face images from “This Person Does Not Exist”, ensuring a balance in terms of
sex and skin tone. These identities are entirely synthetic, have not been swapped, and do not exist
in the real world. To generate synthetic audio, we utilize audios and corresponding captions from
the MusicCaps dataset (Agostinelli et al.| [2023) and generate 5,211 synthetic audio samples each
from three text-to-audio generative models and one audio-to-audio model, namely, AudioLDM
[2023)), MusicGen (Copet et al 2023), MAGNeT [2024), and [Audio Diffusion| .
Similarly, we also generated synthetic videos using three text-to-video generative models, namely,
Text2Video-Zero (Khachatryan et al.} [2023)), ModelScopeT2V (Wang et al.}, 20234), and [Zeroscopel
For this, we borrow the corresponding caption for each video from the training set of MSRVTT
dataset and utilize it to generate 7,010 synthetic videos. The details of all the models
utilized in this set are available in the Appendix.

Set C: This set serves as a real-world test set, comprising 21,024 fake samples. It is a curated
collection of viral deepfake videos circulated on social media platforms and samples generated using
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Dataset AGIQA-1K  AV-DeepfakelM DF-Platter ~Midjourney-Kaggle LAV-DF DeePhy TIMIT-TTS FakeAVCeleb ForgeryNet KoDF DiffusionFace DIRE WaveFake
Jaccard Index 0.00 0.03 0.07 0.04 0.00 0.07 0.00 0.03 0.05 0.03 0.03 0.00 0.00

Table 3: Jaccard Index Comparison of ILLUSION with existing deepfake datasets that highlights the
uniqueness of the proposed dataset.

proprietary models such as Midjourney| and |ArtGurul The former includes 24 identity-swapped
videos. The latter consists of synthetic images generated through a premium API and a web interface,
respectively. For Midjourney, we utilize prompts from the COCO dataset validation set, and for
each prompt, we obtain four corresponding images, resulting in a total of 20,000 images. ArtGuru,
specializes in generating identity-driven images for a given prompt. Therefore, we randomly select
1000 prompts from class “person” from COCO dataset to generate a total of 1000 images.

Set D: This is a multi-lingual, multi-modal real-world test set containing 4,385 samples curated
from social media across 26 languages including French, German, Italian, Chinese, Korean, Arabic,
Japanese, Tamil, Kannada, Oriya, Hindi, Sanskrit, Latin, Punjabi, and Gujarati. It is divided into
D.1 with 4,160 web-curated samples and D.2, a subset of 225 deepfake samples annotated with four
classes (RA-RV, RA-FV, FA-RV, FA-FV), with synchronized audio and video from diverse origins.

2.2 SIZE AND FORMAT

The ILLUSION dataset is ~800 GB, with Set A clips lasting 20 seconds. All facial images are
either synthetically generated or sourced from publicly available datasets with appropriate licensing.
Videos are stored in MPEG4.0 format at a resolution of 512x512, preserving the original frame rate.
Consistency is maintained across the dataset through uniform resolution, compression, and generation
techniques, with H.264 compression applied at c23 and c40 levels. Skin tones are categorized into four
Fitzpatrick scale bins (see Appendix) and combined with two sexes to form eight sub-groups—identity
swaps occur only within these groups. In Set B, videos are generated at 24 frames per second using
Text2Video-Zero and ZeroScope, and at 40 frames per second using ModelScopeT2V. Set C, curated
from various sources, varies in resolution and length; however, images from MidJourney and ArtGuru
consistently maintain resolutions of 1024 x 1024 and 512512, respectively.

2.3  AUDIO AND VISUAL QUALITY ASSESSMENT AND COMPARISON

To assess the visual quality of ILLUSION, we BRLSOUE Scores o1 Dot Detocete
compute the BRISQUE score (Mittal et al.; 2012) 7
across all four sets (Figure [d), yielding a mean ~ «
score of 38.04 on a 0 (best) - 100 (worst) scale. ¢
Table [] compares BRISQUE scores with Face-
Forensics++, CelebDF, DFDC, OpenForensics,
and DF-Platter, approximated from (Narayan| =
et al., 2023)). Additionally, we report FAD scores 1
(Kilgour et al.l 2018), capturing audio quality, o
with a mean FAD of 9.43. These scores highlight . .
that the ILLUSION is of high quality and is chal- Figure 4: Comparing Brisque Score of ILLU-
lenging with multiple covariates. Additionaly, we SION with other datasets.

compute the Jaccard Similarity Index to quantify the overlap between ILLUSION and other datasets.
As shown in Table E], the results indicate minimal overlap, with values as low as 0.03 (FakeAVCeleb,
KoDF) and 0.07 (DF-Platter). Notably, AGIQA-1K, LAV-DF, and DIRE show no overlap (0.00),
highlighting ILLUSION’s unique generative diversity.

BRISQUE Score
I
&

"
8

FaceForensics++ CelebDF DFDC OpenfForensics DF-Platter ILLUSION

2.4 COMPUTATIONAL SETUP Table 4: Audio and visual quality assessment of ILLU-

I :
In Set A, we utilize a total of 13 genera- SION dataset

. . . Dataset | Vision (Mean Brisque Score) | Audio (Mean Fréchet Audio Distance)
tion methods to produce identity-swaps gy
. . . h Train Set Test Set Overall | Train Set Test Set Overall
across image, audio, video, and audio- —sga 4908 4298 4869 | 637 730 641
video synchronized modalities. This pro-  SetB 2043 2929 2940 | 664 6.58 6.35
. - . . Set C N/A 3566 35.66 N/A N/A N/A
cess is facilitated by Nvidia A100 with  setpa | A N/A  NA N/A 40.39 40.39
: SetD.2 | N/A 66.88  66.88 N/A N/A N/A
16 GPUS’ each with 80GBs Of mem- Overall: 38.04 Overall: 9.43

ory. Set B is generated through 11 open-
source and one closed-source generative models, utilizing two Nvidia A40 GPUs, each with 48GBs
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of memory, and three Nvidia DGX stations, each equipped with four V100 GPUs of 32GB memory.
Set C comprises samples generated from two proprietary models, produced on 2 Nvidia 3090 GPUs,
each with 24 GBs of memory. The benchmarking experiments for the dataset are conducted on 2 A40,
each with 48GBs of memory, and 6 A30 GPUs, each with 24GBs of memory, in a multi-GPU setup.

3 EXPERIMENTAL SETUP

This section outlines the training and testing protocol established for the proposed ILLUSION dataset,
followed by a discussion on the deepfake detection methods and evaluation metrics employed for
benchmarking. The proposed dataset is designed to address the following pivotal research questions:

RQ1: How effective are the detection systems in detecting multi-modal identity-swaps?
RQ2: How effective are the detection systems in identifying synthetically generated media?

RQ3: How robust and reliable are the current state-of-the-art detection algorithms when deployed in
real-world scenarios?

RQ4: Is it feasible to detect identity swaps and synthetic media in a zero-day attack setting?

RQ5: Is it possible to successfully trace back the source of a given deepfake?

3.1 EVALUATION PROTOCOLS

The ILLUSION dataset is composed of four sets. Sets A and B are partitioned into training and
testing subsets in a ratio of 3:1. The training data is split into a 9:1 ratio to divide into train and
validation data. To mitigate the skew between the “Real” and “Fake” classes in set A, we borrow an
additional 144 videos (18 subjects/sub-group) from the CelebV-Text dataset. In contrast, set C and D
is exclusively a test set. For all the videos in Set A, we extract 10 frames from each fake video and
all from each real video. For Set B, we pick 24 frames each from the generative models and select
every sixth frame from real videos. Further, for synthetic images generated from four text-to-image
models, we repeat their corresponding real images four times. This approach addresses the imbalance
between the dataset’s real and fake samples.

Protocol 1 - Multi-modal Deepfake Detection: This protocol utilizes Sets A and B, each with their
respective training and test sets. Set A is divided in a subject-disjoint manner, incorporating 160
subjects in the training set (20 subjects/sub-group) and 40 subjects in the test set (5 subjects/sub-
group). The audio, video, and multi-modal deepfake detection models are then trained and tested on
the samples from Set A. The results are presented in three compression settings - raw, C23, and C40 -
to facilitate the assessment of deepfake quality in the dataset relative to existing datasets (results are
shown in the Appendix). For Set B, images borrowed from the COCO dataset (Lin et al., 2014)) and
BFW dataset (Robinson, [2022)) serve as real samples corresponding to the fake samples generated
using text-to-image models and synthetic faces, respectively. Similarly, audio and video samples
from the MusicCaps dataset (Agostinelli et al., [2023)) and the MSRVTT dataset (Xu et al.,[2016)) are
used as real samples corresponding to fake samples generated using text-to-audio and text-to-video
models. We extract 24 frames from fake videos to classify synthetic videos and select every 6th real
video frame to maintain data balance.

Protocol 2 - Zero-shot/Zero-day Generalization: The primary aim of this protocol is to test the
generalizability of detections on new or unseen generation methods. The detection models are initially
trained on the train set of Set A and subsequently tested on the test set of Set B. The performance of
the models is also evaluated in a vice-versa setting.

Protocol 3 - Generalization on Real-World Deepfake Media: This protocol assesses the perfor-
mance of existing state-of-the-art models on real-world deepfake samples. Here, the models are
trained on the train set of Set A, Set B, or both, and their performance is evaluated on Set C.

Protocol 4 - Performance on Model Attribution: The final protocol presents a challenging model
attribution task, i.e. to predict the generative technique used to create the input deepfake. The models
are trained and tested on fake samples generated from each technique from Set A and Set B. The
detection models are evaluated separately for image, video, and audio modalities.
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Table 5: Classification performance for visual components of the dataset obtained by varying the
training and testing sets.

Trained Models Set A Set B Set C (All Fake)
On Accuracy Accuracy-Fake Accuracy-Real AUC | Accuracy Accuracy-Fake Accuracy-Real AUC Accuracy
F3Net 0.851 0.751 0.951 0.945 0.468 0.475 0.460 0.462 0.341
Set A DSP-FWA 0.984 0.982 0.986 0.997 0.428 0.437 0.418 0.396 0.214
MesolnceptionNet 0.505 0.999 0.882 0.883 0.505 0.988 0.473 0.487 0.991
Xception 0.851 0.846 0.856 0.920 0.497 0.749 0.283 0.515 0.633
F3Net 0.498 0.008 0.993 0.497 0.981 0.991 0.970 0.998 0.717
Set B DSP-FWA 0.498 0.001 0.999 0.501 0.993 0.995 0.990 0.999 0.727
MesolnceptionNet 0.495 0.009 0.987 0.386 0.757 0.553 0.967 0.919 0.045
Xception 0.502 0.018 0.992 0.526 0.977 0.987 0.966 0.997 0.725
Set A F3Net 0.881 0.926 0.836 0.958 0.956 0.986 0.925 0.994 0.703
N DSP-FWA 0.972 0.975 0.970 0.995 0.992 0.995 0.989 1.000 0.863
Set B MesolnceptionNet 0.481 0.013 0.425 0.701 0.834 0.806 0912 0.948 0.241
Xception 0.881 0.926 0.835 0.954 0.972 0.982 0.963 0.997 0.650

3.2 BENCHMARKING DETAILS

DeepFake Detection Methods We utilize four state-of-the-art video and four audio deepfake de-
tection models to benchmark all three sets of the proposed dataset. For video deepfake detection,
we employ MesolnceptionNet (Afchar et al., 2018), XceptionNet (Chollet, 2017), DSP-FWA (L1 &
Lyul 2018)), and F3Net (Wei et al.,|2020). For audio deepfake detection, we use RawGAT-ST (Tak
et al.}2021), AASIST (Jung et al., 2022), SSLModel (Tak et al.,|2022)), and Conformer (Gulati et al.}
2020). We also benchmark the proposed dataset using multi-modal deepfake detection algorithms.
Specifically, we employ methods such as MRDF (Zou et al., 2024)) and FACTOR (Reiss et al.| [2023)).
Additionally, we use an ensemble of F3Net and SSLModel, which are baseline unimodal models
(referred to as unimodal ensembling), and report class-wise video-level accuracy. Benchmarking the
proposed ILLUSION dataset with 11 baseline algorithms provides a comprehensive evaluation that
encompasses both typical methods and type-complete approaches. The unimodal baselines focus on
modality-specific behaviors, enabling a deeper understanding of how state-of-the-art algorithms per-
form within their respective domains (e.g., image, audio, or video). In contrast, multimodal baselines
evaluate type-complete methods, capturing the interplay between multiple modalities and offering
insights into cross-modal generalization and robustness. This dual benchmarking strategy ensures a
balanced assessment of both specialized and holistic detection capabilities. Detailed descriptions of
all these algorithms are provided in the Appendix.

Evaluation Metrics For models trained on image and video data, we provide frame-level accuracy
and Area Under the Curve (AUC) scores. Each frame in a video classified as fake or real. We also
present class-wise accuracy for additional analysis. For audio data, we report the Equal Error Rate
(EER) and AUC score. For models trained on multi-modal data, such as combined video and audio,
we provide video-level accuracy, using a threshold set at 50% of frames to classify a video as fake.

Implementation Details The DSFD detector (Li et al., 2019a) is used to extract faces from the
frames of videos containing faces. For all protocols, the models are trained for 30 epochs with early
stopping, and the models with the best validation accuracy are selected. We use the Adam optimizer
with an initial learning rate of 0.0001. A batch size of 256 is used for distributed training.

4 RESULTS AND DISCUSSION

This section discusses the benchmark results obtained using the state-of-the-art deepfake detection
models mentioned in Section [3.2] when trained and evaluated on the proposed ILLUSION dataset.
The performance analyzed is in accordance with the protocols described in section [3.1]

Protocol 1 - Multi-Modal Deepfake Detection: To analyze the performance of audio and visual
detection models, we trained and tested them on both Set A and Set B of the proposed ILLUSION
dataset. From Tables E] and @ for set A, we observe that all architectures perform well for visual
as well as audio detection models, with DSP-FWA achieving the best performance for visual data
(99.3% accuracy on Set B) and SSLModel excelling in audio data with an EER of 0.006. A similar
trend is visible in set B, where we observe that all the detection models, when trained on synthetic
data, are able to achieve a promising detection performance.

We observe significant variability among the models when evaluating performance on Set C—which
consists entirely of curated real-world and compressed deepfakes. For instance, DSP-FWA achieves
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Table 6: Classification performance for audio components of the dataset obtained by varying the
training and testing sets.

Trained Models Set A Set B
On EER Accuracy-Fake Accuracy-Real AUC | EER Accuracy-Fake Accuracy-Real AUC
RawGAT-ST 0.443 1.000 0.000 0.576 | 0.470 0.999 0.004 0.539
Set A AASIST 0.049 0.879 1.000 0.991 | 0.430 0.240 0.922 0.563
Conformer 0.025 0.996 0.975 0.991 | 0.562 0.715 0.081 0.395
SSLModel 0.006 0.980 1.000 1.000 | 0.583 0.676 0.104 0.356
RawGAT-ST 0.381 0.125 1.000 0.699 | 0.032 0.988 0.939 0.995
Set B AASIST 0.261 0.071 1.000 0.805 | 0.020 0.988 0.970 0.997
Conformer 0.821 0.008 0.825 0.119 | 0.005 0.992 0.994 0.999
SSLModel 0.694 0.005 0.925 0.252 | 0.006 0.993 0.993 0.999
Set A RawGAT-ST 0.025 0.943 0.975 0.994 | 0.035 0.973 0.958 0.995
+ AASIST 0.050 0.946 0.950 0.992 | 0.027 0.983 0.951 0.996
Set B Conformer 0.030 0.959 0.975 0.995 | 0.020 0.990 0.959 0.997
SSLModel 0.069 0.938 0.925 0.988 | 0.022 0.992 0.952 0.998

only 21.4% accuracy when trained on Set A (synthetic data) and tested on Set C, compared to 72.7%
accuracy when trained on Set B (real-world data) and tested on Set C. This discrepancy highlights the
challenges of generalizing from synthetic training data to real-world deepfake scenarios. Conversely,
MesolnceptionNet exhibits unusually high accuracy on Set C due to its tendency to classify most
inputs as fake. Since Set C contains only fake samples, this bias results in inflated performance metrics
for MesolnceptionNet. Set C was intentionally designed as a challenging test set that closely mimics
real-world deepfakes crafted for mass misinformation campaigns. Its inclusion emphasizes the
necessity for detection models to handle a diverse array of generative techniques and the complexities
inherent in real-world scenarios. This highlights the limitations of current approaches and showcases
the forward-looking design of the ILLUSION dataset in advancing deepfake detection research.

We evaluated the effectiveness of multi-modal deepfake  Taple 7: Classification performance of
detection methods on Set A of the proposed ILLUSION  my]ti-modal deepfake detection methods
dataset. These methods were trained on audio-video o get A.

synchronized samples from Set A. The performance Hfodels RARY RAFY FARV TFAFV
achieved are detailed in Table[7] Our findings show — MRDF 0775 0446 0827 0871
that MRDF outperforms FACTOR across all classes, ~FACTOR 01570352 0369 0413

. . Unimodal
notably achieving an 87.1% class-wise accuracy for the  gpeembling 0208 0-887 0359 0.779

FakeAudio-FakeVideo category. Conversely, FACTOR
consistently underperforms, with a notable low of 15.7% accuracy for the RealAudio-RealVideo class.
Unimodal Ensembling shows potential, achieving a 77.9% accuracy on the FakeAudio-FakeVideo
class, but falls short for the RealAudio-RealVideo class.

To assess the impact of noise and neural compression, we evaluate baseline models trained on Sets A
and B, testing them on the corrupted version of Set C (as shown in Table 1 of the Appendix). Here
we observe a significant performance degradation. Additionally, we investigate different compression
levels for deepfake detection models, individually training and testing them on raw, C23, and C40
compressions of Set A. From Table 2 (Appendix), DSP-FWA consistently performs well across most
combinations. While there’s a drop in performance when models are trained on higher quality and
tested on compressed samples, those trained on C23 and C40 exhibit better generalization for both
raw and C40 samples.

Protocol 2 - Zero-Day Attack Generalization: We evaluate the deepfake detection models on the
challenging setting of zero-day attack detection. In this, each model is trained on training data from
one set of the ILLUSION dataset and is tested on the test data of the other set. For evaluation on
unseen attack setting, we train each model on train data of set A and test its performance on test data
of set B, and vice-versa. The performance achieved is reported in Table[5and Table[6] We clearly
observe that all the visual and audio detection models, when trained on set A data and tested on set B
data, consistently achieve random performance. The same observation is made for both visual and
audio detection models when training data of set B is trained and evaluated on test data of set A.
From this, we infer that the artifacts introduced in identity-swaps deepfakes and completely synthetic
deepfakes are completely different. Due to this, the detection models trained on one is unable to
generalize on the other. With this, we note that the proposed ILLUSION dataset will provide the
researchers with a diverse range of deepfakes to capture variety of artifacts in training for better
generalizability in real-world deployment.
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Protocol 3 - Generalization on Real-World Deepfake Media: Since set C contains only visual
deepfake media, we train the visual deepfake detection models in three different settings and report
the accuracy on set C in Table[5] First, the models are trained on the image and video data of set A and
then tested on set C. Then, the models are trained on set B and tested on set C. Finally, we train the
models on a combination of visual data from sets A and B and test it on set C. We observe that models
perform better on set C when trained on set B than when trained on set A. This behavior is observed
because most samples are synthetically generated using text-to-image models like MidJourney and
ArtGuru. Whereas identity swaps are very few. We also observe a slight increase in performance on
set C when the detection models are trained on a combination of set A and set B.

We further perform a comprehensive evaluation of audio and multi- Typle 8: Classification accuracy
modal detection models on Set D, with detailed results presented  of qudio deepfake detection mod-
in Tables B]and@l, respecctively. The samples in Set D were as- g (trained on Sets A and B)
sessed using audio detection models for both subsets D.1 and D.2. (egted on Set D.1. Set D com-
For Set D.1, we employed audio detection models pretrained on prises audio samples from more
a combination of Set A and Set B from the ILLUSION dataset. (han 26 languages.

As shown in Table [§] all architectures encountered significant ~Nodels EER _ AUC
challenges in generalization, with the conformer model achiev- ~ SSLModel 0.578 0397
ing the highest AUC of 0.488. For Set D.2, we utilized MRDF,  Conformer 0.523  0.488
FACTOR, and Unimodal Ensembling for multi-modal baselining ~ AASIST 0506 0471

RawGAT_ST 0.571 0.402

and report the performance in Table 9] It is evident that model
performance drastically declines when evaluated on Set D, which involves multi-modal real-world
fakes. Nonetheless, FACTOR outperformed Unimodal Ensembling.

These results highlight the formidable challenge posed Table 9: Classification performance of
by the multi-lingual and multi-modal nature of Set D, multi-modal deepfake detection methods
revealing that current state-of-the-art algorithms strug- on set D.2 of the ILLUSION dataset.

gle to generalize to real-world deepfakes. Our obser- ~Models RA-RV_RA-FV_FA-RV_FA-FV
vations indicate that state-of-the-art detection models II;QEDT%R 83; 8:12 858 8:‘1)(3’
face significant difficulties when confronted with the  ypimodal

complexity of multi-modal and multi-lingual deepfakes  Ensembling 0.25 0.09 011 0.05
prevalent on social media platforms. These findings

highlight the challenges and limitations these models encounter in adapting to the diverse and evolving
nature of deepfake content.

Protocol 4 - Performance on Model Attribution: Dif-

. ) . i ; Table 10: Model attributi A
ferent generation techniques introduce distinct artifacts able 10: Model attribution on Set

in deepfakes (Wang et al.| [2020a; |[Frank et al.,|2020;  Attribute Models Accuracy AUC
Wang et al.,|2023b). From qutoco} 2, we'observe that F3Net 0923 0933
identity-swap deepfakes exhibit artifacts different from 4., DSP-FWA 0987  1.000
those in fully synthetic media. To analyze detection g:;otligiept“mm‘ 8'333 g'ggg
models’ ability to identify the source generation tech- G ATST 0941 0995
nique, we report their performance in Table Allvi- o AASIST 0.957 0998

: _ Conformer 0.967 0.999
sual models, except MesolnceptionNet, accurately clas e R

sify identity-swap deepfakes, with DSP-FWA achieving
near-perfect accuracy. A similar trend is seen in audio models, where Conformer performs best.

For the model attribution in set B, detection models Table 11: Model attribution on Set B

are evaluated sepgrately for each moda.hty.. We. TEPOTL  , (i e Models Accuracy  AUC
the performance in Table For attribution in text- o .
. . . 0 € . .

to-image (including synthetic faces samples) and text- Images _DSP-FWA 0911 0978
to-video models, DSP-FWA consistently achieves the & MesolnceptionNet 0499 0.822
highest performance with an AUC of 97.8% and 99.9%, Xception 0889 0972

tivelv. Similarly. f ttributi in text-t di F3Net 0.994 0.999
respectively. Similarly, for attribution in text-to-audio DSP-FWA 0.9980.999
data, all the detection models are successfully able MesolnceptionNet  0.909  0.994
to identify the source of the generation model with gcepél/‘g - 8-33? 8833
comparable performancel. From these observatiions, Audi AZWSIST' 0.9930.999
we note that each generative model introduces unique udio Conformer 0989 0998
signatures in their generated output. The detection SSLModel 0989  0.999

models pick these signatures for a near-perfect performance on model attribution task.
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5 DISCUSSION AND CONCLUSION

In this paper, we introduce the ILLUSION dataset, a significant step towards a comprehensive, multi-
modal deepfake resource. Created using 28 state-of-the-art generative models, ILLUSION provides
diverse Al-generated content across image, audio, and video modalities, including both curated
real-world deepfakes and synthetic media. This design enables models trained on ILLUSION to learn
features that extend beyond synthetic artifacts, enhancing generalization across domains, particularly
in multilingual and noisy settings. Results show that detection models trained on ILLUSION
outperform those trained on existing datasets when evaluated on unseen generative techniques and
real-world forgeries. Designed to aid the development of robust, multi-modal, multilingual detection
systems, the ILLUSION dataset reveals several key insights through our analysis:

Multi-Modal Deepfake Detection: The high performance of models like DSP-FWA and AASIST
on both visual and audio data suggests that current models are effective at detecting deepfakes when
trained on data from same distribution. However, the disparity in performance between identity swaps
and completely synthetic data indicates that models may be learning to identify artifacts specific to
the generation method rather than generalizable features of deepfakes.

Zero-Day Attack Generalization: The significant drop in performance when models trained on one
set are tested on another accentuates the challenge of zero-day attack detection. This suggests that
models are currently not robust against deepfakes generated by unfamiliar methods, highlighting the
need for diverse datasets like ILLUSION.

Generalization on Real-World Multi-Lingual Deepfake Media: The subpar performance of
models trained on identity-swap and synthetic data, when tested on real-world deepfakes across
various languages, depicts the necessity of a curated, multi-lingual deepfake dataset. Such a dataset is
crucial for enabling models to effectively generalize to the diverse deepfakes encountered in the wild.

Model Attribution: The ability of models to identify the source generation technique with high
accuracy demonstrates that generative models leave distinct signatures in their outputs. This could
have implications for the traceability of deepfakes and the accountability of generative model creators.

The ILLUSION dataset specifically addresses deepfake detection challenges using specialized gen-
erative Al techniques, while acknowledging that generalized forgery methods—such as digital
watermarking, image manipulations, and Photoshop-based edits—represent another important aspect
of media forensics. These generalized methods, often easier for deep-learning-based detectors to
identify and fundamentally different from generative deepfake techniques, would require additional
design considerations to maintain dataset consistency. Moreover, ILLUSION prioritizes quality and
diversity over sheer size, with each subset carefully curated for distinct purposes, such as evaluating
generalizability or robustness to compression artifacts. By incorporating 28 distinct generative
methods, along with multi-modal, multi-lingual, and real-world samples, the dataset minimizes
redundancy, ensuring relevance and providing valuable insights into detection performance under
diverse conditions. Future extensions of ILLUSION will explore the integration of generalized
forgery methods to broaden its scope and utility.

6 ETHICS STATEMENT

Our analysis estimates that approximately 245 kg C'O5-equivalent was emitted during the creation of
this dataset (ML C'O2 Impact)). Despite this environmental impact, the societal benefits are significant.
ILLUSION offers a valuable resource for researchers to explore detection methods across diverse
types of fake media. Additionally, its balanced representation of gender and skin tone promotes
fairness in the development and evaluation of detection techniques. As a comprehensive multi-modal,
multi-lingual deepfake dataset, ILLUSION is instrumental in the global fight against misinformation.

7 ACKNOWLEDGEMENT

This research is supported through a grant from MEITY under the National Supercomputing Mission.
Thakral received partial support from the PMRF Fellowship and Vatsa is partially supported by the
Swarnajayanti Fellowship.

10



Published as a conference paper at ICLR 2025

REFERENCES

Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. Mesonet: a compact facial
video forgery detection network. In In IEEE International Workshop on Information Forensics and
Security, pp. 1-7, 2018.

Shruti Agarwal, Hany Farid, Yuming Gu, Mingming He, Koki Nagano, and Hao Li. Protecting
World Leaders Against Deepfakes. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

Andrea Agostinelli, Timo I Denk, Zaldn Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqging Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. MusicLM: Generating
Music from Text. arXiv preprint arXiv:2301.11325, 2023.

Audio Alignment. https://github.com/benfmiller/audalign. [Accessed 06-06-
2024].

ArtGuru. https://www.artguru.ai/. [Accessed 06-06-2024].
Audio Diffusion. https://huggingface.co/teticio/audio-diffusion-256.

Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing Diffusion Paths for
Controlled Image Generation. In International Conference on Machine Learning, pp. 1737 — 1752,
2023.

Zhixi Cai, Kalin Stefanov, Abhinav Dhall, and Munawar Hayat. Do you really mean that? Content
Driven Audio-Visual Deepfake Dataset and Multimodal Method for Temporal Forgery Localization.
In IEEE International Conference on Digital Image Computing: Techniques and Applications, pp.
1-10, 2022.

Zhixi Cai, Shreya Ghosh, Aman Pankaj Adatia, Munawar Hayat, Abhinav Dhall, Tom Gedeon, and
Kalin Stefanov. AV-DeepfakelM: A Large-Scale LLM-Driven Audio-Visual Deepfake Dataset. In
ACM International Conference on Multimedia, pp. 7414-7423, 2024.

Edresson Casanova, Julian Weber, Christopher D Shulby, Arnaldo Candido Junior, Eren Goélge,
and Moacir A Ponti. YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice
Conversion for Everyone. In International Conference on Machine Learning, pp. 2709-2720,
2022.

Yiqun Chen and James Y Zou. TWIGMA: A dataset of AI-Generated Images with Metadata From
Twitter. In Advances in Neural Information Processing Systems, 36:37748-37760, 2023.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned Image Compression with
Discretized Gaussian Mixture Likelihoods and Attention Modules. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 79367945, 2020.

Saheb Chhabra, Kartik Thakral, Surbhi Mittal, Mayank Vatsa, and Richa Singh. Low Quality
Deepfake Detection via Unseen Artifacts. In IEEE Transactions on Artificial Intelligence, 5(4):
15731585, 2024.

Ha-Yeong Choi, Sang-Hoon Lee, and Seong-Whan Lee. Diff-HierVC: Diffusion-based Hierarchi-
cal Voice Conversion with Robust Pitch Generation and Masked Prior for Zero-shot Speaker
Adaptation. In INTERSPEECH 2023, pp. 2283-2287, 2023.

Frangois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1251-1258, 2017.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
dre Défossez. Simple and Controllable Music Generation. In Advances in Neural Information
Processing Systems, 36:47704-47720, 2023.

Deepfake Statistics. https://tinyurl.com/deepstats.

11


https://github.com/benfmiller/audalign
https://www.artguru.ai/
https://huggingface.co/teticio/audio-diffusion-256
https://tinyurl.com/deepstats

Published as a conference paper at ICLR 2025

Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Can-
ton Ferrer. The Deepfake Detection Challenge (DFDC) Dataset. arXiv preprint arXiv:2006.07397,
2020.

Golge Eren and The Coqui TTS Team. Coqui TTS, January 2021. URL https://github.com/
coqui-ai/TTSk

Hugging Face. Audio diffusion. https://huggingface.co/teticio/
audio—-diffusion—-256. [Accessed 06-06-2024].

Joel Frank and Lea Schonherr. Wavefake: A DataSet to Facilitate Audio Deepfake Detection. arXiv
preprint arXiv:2111.02813, 2021.

Joel Frank, Thorsten Eisenhofer, Lea Schonherr, Asja Fischer, Dorothea Kolossa, and Thorsten Holz.
Leveraging Frequency Analysis for Deep Fake Image Recognition. In International Conference on
Machine Learning, pp. 3247-3258, 2020.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. ConFormer: Convolution-Augmented Transformer
for Speech Recognition. arXiv preprint arXiv:2005.08100, 2020.

ILLUSION Leaderboard. https://www.iab—-rubric.org/illusion—databasel

Gaurav Nemade Iulia Turc. Midjourney User Prompts amp; Generated Images (250k), 2022. URL
https://www.kaggle.com/ds/2349267.

Liming Jiang, Ren Li, Wayne Wu, Chen Qian, and Chen Change Loy. DeeperForensics-1.0: A Large-
Scale Dataset for Real-World Face Forgery Detection. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2889-2898, 2020.

Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-Jin Lee, Ha-
Jin Yu, and Nicholas Evans. AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal
Graph Attention Networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 6367-6371, 2022.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang,
Shant Navasardyan, and Humphrey Shi. Text2Video-Zero: Text-to-Image Diffusion Models are
Zero-Shot Video Generators. arXiv preprint arXiv:2303.13439, 2023.

Hasam Khalid and Simon S. Woo. OC-FakeDect: Classifying Deepfakes Using One-class Variational
Autoencoder. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pp- 2794-2803, 2020.

Hasam Khalid, Shahroz Tariq, Minha Kim, and Simon S Woo. FakeAVCeleb: A Novel Audio-Video
Multimodal Deepfake Dataset. In Advances in Neural Information Processing Systems Datasets
and Benchmarks Track, 2021.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fr\’echet Audio Distance:
A Metric for Evaluating Music Enhancement Algorithms. arXiv preprint arXiv:1812.08466, 2018.

Kihong Kim, Yunho Kim, Seokju Cho, Junyoung Seo, Jisu Nam, Kychul Lee, Seungryong Kim, and
KwangHee Lee. DiffFace: Diffusion-based Face Swapping with Facial Guidance. arXiv preprint
arXiv:2212.13344, 2022.

Marcel Sébastien Korshunov, Pavel. Deepfakes: A New Threat to Face Recognition? Assessment
and Detection. arXiv preprint arXiv:1812.08685, 2018.

Iryna Korshunova, Wenzhe Shi, Joni Dambre, and Lucas Theis. Fast Face-Swap using Convolutional
Neural networks. In IEEE/CVF International Conference on Computer Vision, pp. 3677-3685,
2017.

Patrick Kwon, Jaeseong You, Gyuhyeon Nam, Sungwoo Park, and Gyeongsu Chae. KoDF: A
Large-Scale Korean DeepFake Detection Dataset. In IEEE/CVF International Conference on
Computer Vision, pp. 10744-10753, 2021.

12


https://github.com/coqui-ai/TTS
https://github.com/coqui-ai/TTS
https://huggingface.co/teticio/audio-diffusion-256
https://huggingface.co/teticio/audio-diffusion-256
https://www.iab-rubric.org/illusion-database
https://www.kaggle.com/ds/2349267

Published as a conference paper at ICLR 2025

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang, Chengjie Wang, Jilin Li,
and Feiyue Huang. DSFD: Dual Shot Face Detector. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5060-5069, 2019a.

Jingyi Li, Weiping Tu, and Li Xiao. FreeVC: Towards High-Quality Text-Free One-Shot Voice
Conversion. In IEEFE International Conference on Acoustics, Speech and Signal Processing, pp.
1-5, 2023.

Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, and Fang Wen. FaceShifter: Towards High Fidelity
and Occlusion Aware Face Swapping. arXiv preprint arXiv:1912.13457, 2019b.

Yuezun Li and Siwei Lyu. Exposing Deepfake Videos by Detecting Face Warping Artifacts. arXiv
preprint arXiv:1811.00656, 2018.

Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-DF: A Large-Scale Challenging
Dataset for Deepfake Forensics. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3207-3216, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In European
Conference on Computer Vision, pp. 740-755. Springer, 2014.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. arXiv preprint
arXiv:2301.12503, 2023.

Songxiang Liu, Dan Su, and Dong Yu. Diff GAN-TTS: High-Fidelity and Efficient Text-to-Speech
with Denoising Diffusion GANS. arXiv preprint arXiv:2201.11972, 2022.

Midjourney. https://www.midjourney.com/home. [Accessed 06-06-2024].

David Minnen, Johannes Ballé, and George D Toderici. Joint Autoregressive and Hierarchical Priors
for Learned Image Compression. In Advances in Neural Information Processing Systems, 31,
2018.

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-Reference Image Quality
Assessment in the Spatial Domain. In In IEEE Transactions on Image Processing, volume 21, pp.
4695-4708, 2012.

ML CO5 Impact. https://mlco2.github.io/impact/}

Aakash Varma Nadimpalli and Ajita Rattani. GBDF: Gender Balanced Deepfake Dataset Towards
Fair Deepfake Detection. In International Conference on Pattern Recognition, pp. 320-337.
Springer, 2022.

Kartik Narayan, Harsh Agarwal, Surbhi Mittal, Kartik Thakral, Suman Kundu, Mayank Vatsa, and
Richa Singh. DeSI: Deepfake Source Identifier for Social Media. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 2858-2867, 2022a.

Kartik Narayan, Harsh Agarwal, Kartik Thakral, Surbhi Mittal, Mayank Vatsa, and Richa Singh.
Deephy: On Deepfake Phylogeny. In IEEE International Joint Conference on Biometrics, pp.
1-10, 2022b.

Kartik Narayan, Harsh Agarwal, Kartik Thakral, Surbhi Mittal, Mayank Vatsa, and Richa Singh.
DF-Platter: Multi-Face Heterogeneous Deepfake Dataset. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9739-9748, 2023.

Huy H Nguyen, Junichi Yamagishi, and Isao Echizen. Use of a Capsule Network to Detect Fake
Images and Videos. arXiv preprint arXiv:1910.12467, 2019.

Yuval Nirkin, Yosi Keller, and Tal Hassner. FSGAN: Subject Agnostic Face Swapping and Reenact-
ment. In IEEE/CVF International Conference on Computer Vision, pp. 71847193, 2019.

13


https://www.midjourney.com/home
https://mlco2.github.io/impact/

Published as a conference paper at ICLR 2025

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. SDXL: Improving Latent Diffusion Models for High-Resolution
Image Synthesis. arXiv preprint arXiv:2307.01952, 2023.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-TTS:
A Diffusion Probabilistic Model for Text-to-Speech. In International Conference on Machine
Learning, pp. 8599-8608, 2021a.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Kudinov, and Jiansheng
Wei. Diffusion-based Voice Conversion with Fast Maximum Likelihood Sampling Scheme. arXiv
preprint arXiv:2109.13821, 2021b.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, et al. Scaling Speech Technology to 1,000+
Languages. In Journal of Machine Learning Research, 25(97):1-52, 2024.

Rishabh Ranjan, Mayank Vatsa, and Richa Singh. SV-DeiT: Speaker Verification with DeiTCap
Spoofing Detection. In IEEE International Joint Conference on Biometrics, pp. 1-10, 2023a.

Rishabh Ranjan, Mayank Vatsa, and Richa Singh. Uncovering the Deceptions: An Analysis on
Audio Spoofing Detection and Future Prospects. In International Joint Conference on Artificial
Intelligence,, pp. 6750-6758, 8 2023b.

Rishabh Ranjan, Bikash Dutta, Mayank Vatsa, and Richa Singh. Faking Fluent: Unveiling the
Achilles’ Heel of Multilingual Deepfake Detection. In IEEE International Joint Conference on
Biometrics, pp. 1-10, 2024a.

Rishabh Ranjan, Mayank Vatsa, and Richa Singh. Context Encoded Multi-Modal Attention Network
for Detecting Audio Spoofing. In IEEE International Joint Conference on Biometrics, pp. 1-11,
2024b.

Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya
Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandinsky:
An Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion. arXiv preprint
arXiv:2310.03502, 2023.

Tal Reiss, Bar Cavia, and Yedid Hoshen. Detecting Deepfakes Without Seeing Any. arXiv preprint
arXiv:2311.01458, 2023.

Joseph Robinson. Balanced Faces in the Wild, 2022. URL https://dx.doi.org/10.21227/
nms j—dfl2.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
Resolution Image synthesis with Latent Diffusion Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684-10695, 2022.

Roop. https://github.com/sOmd3v/roop, 2023.

Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
NieBner. FaceForensics: A Large-Scale Video Dataset for Forgery Detection in Human Faces.
arXiv preprint arXiv:1803.09179, 2018.

Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
NieBner. FaceForensics++: Learning to Detect Manipulated Facial Images. In IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1-11, 2019.

Davide Salvi, Brian Hosler, Paolo Bestagini, Matthew C Stamm, and Stefano Tubaro. TIMIT-
TTS: A Text-to-Speech Dataset for Multimodal Synthetic Media Detection. In IEEE Access, 11:
50851-50866, 2023.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial Diffusion
Distillation. arXiv preprint arXiv:2311.17042, 2023.

Synthetic Al Stats. Synthetic Al stats: https://tinyurl.com/syntheticaistats.

14


https://dx.doi.org/10.21227/nmsj-df12
https://dx.doi.org/10.21227/nmsj-df12
https://tinyurl.com/syntheticaistats

Published as a conference paper at ICLR 2025

Hemlata Tak, Jee-weon Jung, Jose Patino, Madhu Kamble, Massimiliano Todisco, and Nicholas Evans.
End-to-End Spectro-Temporal Graph Attention Networks for Speaker Verification Anti-Spoofing
and Speech Deepfake Detection. arXiv preprint arXiv:2107.12710, 2021.

Hemlata Tak, Massimiliano Todisco, Xin Wang, Jee-weon Jung, Junichi Yamagishi, and Nicholas
Evans. Automatic Speaker Verification Spoofing and Deepfake Detection using Wav2Vec 2.0 and
Data Augmentation. arXiv preprint arXiv:2202.12233, 2022.

Kartik Thakral, Surbhi Mittal, Mayank Vatsa, and Richa Singh. PhygitalNet: Unified Face Presenta-
tion Attack Detection Via One-Class Isolation Learning. In IEEE International Conference on
Automatic Face and Gesture Recognition, pp. 1-6, 2023.

Kartik Thakral, Shashikant Prasad, Stuti Aswani, Mayank Vatsa, and Richa Singh. ToonerGAN:
Reinforcing GANs for Obfuscating Automated Facial Indexing. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10875-10884, 2024.

Kartik Thakral, Harsh Agarwal, Kartik Narayan, Surbhi Mittal, Mayank Vatsa, and Richa Singh.
Deephynet: Towards Detecting Phylogeny in Deepfakes. In IEEE Transactions on Biometrics,
Behavior, and Identity Science, 7(1):132—-145, 2025.

TPDNE. This Person Does Not Exist. https://thispersondoesnotexist.com. [Accessed
06-06-2024].

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
elScope Text-to-Video Technical Report. arXiv preprint arXiv:2308.06571, 2023a.

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. CNN-Generated
Images are Surprisingly Easy to Spot... For Now. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8695-8704, 2020a.

Xin Wang, Junichi Yamagishi, Massimiliano Todisco, Héctor Delgado, Andreas Nautsch, Nicholas
Evans, Md Sahidullah, Ville Vestman, Tomi Kinnunen, Kong Aik Lee, et al. ASVspoof 2019: A
Large-Scale Public Database of Synthesized, Converted and Replayed Speech. Computer Speech
& Language, 64:101114, 2020b.

Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and Hougiang
Li. Dire for Diffusion-Generated Image Detection. In IEEE/CVF International Conference on
Computer Vision, pp. 22445-22455, 2023b.

Jun Wei, Shuhui Wang, and Qingming Huang. F3Net: Fusion, Feedback and Focus for Salient Object
Detection. In AAAI Conference on Artificial Intelligence, volume 34, pp. 12321-12328, 2020.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A Large Video Description Dataset for Bridg-
ing Video and Language. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5288-5296, 2016.

Ying Xu, Philipp Terhorst, Kiran Raja, and Marius Pedersen. A Comprehensive Analysis of Al Biases
in Deepfake Detection with Massively Annotated Databases. arXiv preprint arXiv:2208.05845,
2022a.

Zhiliang Xu, Zhibin Hong, Changxing Ding, Zhen Zhu, Junyu Han, Jingtuo Liu, and Errui Ding.
MobileFaceSwap: A Lightweight Framework for Video Face Swapping. In AAAI Conference on
Artificial Intelligence, volume 36, pp. 29732981, 2022b.

Massimiliano; Sahidullah Md; Delgado Héctor; Wang Xin; Evans Nicolas; Kinnunen Tomi; Lee Kong
Aik; Vestman Ville; Nautsch Andreas. Yamagishi, Junichi; Todisco. ASVspoof 2019: The 3rd
Automatic Speaker Verification Spoofing and Countermeasures Challenge Database. University of
Edinburgh. The Centre for Speech Technology Research, 2019.

Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, and Wayne Wu. CelebV-Text:
A Large-Scale Facial Text-Video Dataset. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

15


https://thispersondoesnotexist.com

Published as a conference paper at ICLR 2025

Zeroscope. https://huggingface.co/cerspense/zeroscope_v2_576w. [Accessed
06-06-2024].

Zicheng Zhang, Chunyi Li, Wei Sun, Xiaohong Liu, Xiongkuo Min, and Guangtao Zhai. A Per-
ceptual Quality Assessment Exploration for AIGC Images. In IEEE International Conference on
Multimedia and Expo Workshops, pp. 440-445, 2023.

Wenliang Zhao, Yongming Rao, Weikang Shi, Zuyan Liu, Jie Zhou, and Jiwen Lu. Diffswap: High-
fidelity and controllable face swapping via 3d-aware masked diffusion. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8568-8577, 2023.

Tianfei Zhou, Wenguan Wang, Zhiyuan Liang, and Jianbing Shen. Face Forensics in the Wild. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5778-5788, 2021.

Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and Yu-Gang Jiang. WildDeepFake: A
Challenging Real-World Dataset for Deepfake Detection. In ACM International Conference on
Multimedia, pp. 2382-2390, 2020.

Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel
Synnaeve, and Yossi Adi. Masked Audio Generation using a Single Non-Autoregressive Trans-
former. arXiv preprint arXiv:2401.04577, 2024.

Heqing Zou, Meng Shen, Yuchen Hu, Chen Chen, Eng Siong Chng, and Deepu Rajan. Cross-
Modality and Within-Modality Regularization for Audio-Visual DeepFake Detection. arXiv
preprint arXiv:2401.05746, 2024.

16


https://huggingface.co/cerspense/zeroscope_v2_576w

Published as a conference paper at ICLR 2025

APPENDIX

A  EXTENDED DETAILS OF ILLUSION DATASET

Details of Skin Tone Scales: In this dataset, we have adopted the simplified Fitzpatrick Scale. This
scale has been reorganized from six categories to four. The details of each category are as follows:
* Bin 1: Light (Fitzpatrick I and II)
* Bin 2: Light-Medium (Fitzpatrick III)
* Bin 3: Medium-Dark (Fitzpatrick IV)
Bin 4: Dark (Fitzpatrick V and VI)

Figure 5: Visualization of diverse samples from the proposed ILLUSION dataset, showcasing
variations in resolution, quality, and generative techniques across different sets.

Performance on Noisy data and Neural Compression: We investigate the robustness of deep
learning models against Gaussian and salt-and-pepper noise, as well as neural compression algorithms.
To achieve this, we evaluate baseline models trained on Sets A and B from the proposed ILLUSION
dataset. Specifically, we analyze the performance of these models on the noisy and compressed
samples from Set C, as summarized in Table[I2] Our findings reveal that the models face challenges
in generalizing effectively when confronted with noisy and neurally compressed data from Set C.

Performance on Compressed Data: In this research, we examine the influence of varying degrees of
compression on the performance of visual deepfake detection models. These models are individually
trained and evaluated on three distinct versions of dataset A, namely raw, C23, and C40 compressions.
Our observations, as detailed in Table[T3] reveal that the DSP-FWA model consistently outperforms
others across nearly all combinations of training and testing conditions. Interestingly, we notice a
decline in performance when the models are trained on high-quality (raw) data and subsequently
tested on compressed samples. This suggests a potential challenge in the model’s ability to generalize
from high-quality training data to lower-quality testing scenarios.

However, promising results emerge when we consider models trained on C23 and C40 compressions.
These models demonstrate enhanced generalization when evaluated on both raw and C40 samples,
underscoring the benefits of training on compressed data. Consequently, this approach improves the
robustness and adaptability of deepfake detection models across varying input qualities.
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Table 12: Classification performance on different noise and neural compression added to Set C. The
models are evaluated on Gaussian noise (with deviations of 0.5 and 0.75), Salt and Pepper Noise
(with noise density of 100 and 150), and Neural Compression (Cheng et al.[(2020) and Minnen et al.
(2018))). The baseline models are trained on Set A and Set B and tested on the noisy version of Set C.

Trained Models Gaussian Noise Salt and Pepper Noise Neural Compression

On c=05 o=0.75 100 150 Cheng etal. Minnnen et al.
F3Net 0.612 0.601 0.634 0.622 0.525 0.481

Set A DSP-FWA 0.592 0.571 0.601 0.584 0.516 0.508
MesolnceptionNet ~ 0.553 0.52 0.538 0.495 0.502 0.497
Xception 0.627 0.605 0.643 0.626 0.582 0.554
F3Net 0.604 0.593 0.627 0.606 0.544 0.504

SetB DSP-FWA 0.582 0.572 0.575 0.572 0.485 0.493
MesolnceptionNet ~ 0.537 0.544 0.513 0.508 0.498 0.498
Xception 0.601 0.593 0.612 0.582 0.604 0.582

Table 13: Classification performance for visual components of the dataset for intra and cross-
compression of set A

Trained Models Raw Cc-23 C-40
n Accuracy Accuracy-Fake Accuracy-Real AUC | Accuracy Accuracy-Fake Accuracy-Real AUC | Accuracy Accuracy-Fake Accuracy-Real AUC
F3Net 0.851 0.751 0.951 0.945 0.826 0.703 0.940 0.927 0.775 0.734 0.813 0.852
Raw DSP-FWA 0.984 0.982 0.986 0.997 0.978 0.975 0.981 0.997 0.815 0.688 0.935 0.874
MesolnceptionNet 0.505 0.999 0.882 0.883 0.481 0.999 0.001 0.849 0.486 1.000 0.000 0.730
Xception 0.851 0.846 0.856 0.920 0.836 0.826 0.845 0.906 0.745 0.861 0.634 0.843
F3Net 0.876 0.878 0.873 0.949 0.861 0.861 0.861 0.938 0.757 0.867 0.653 0.856
c23 DSP-FWA 0.979 0.987 0.971 0.995 0.977 0.986 0.968 0.996 0.810 0.931 0.696 0.930
MesolnceptionNet 0.845 0.812 0.878 0917 0.835 0.795 0.873 0.911 0.742 0.805 0.682 0.825
Xception 0.866 0.864 0.867 0.929 0.852 0.845 0.860 0.917 0.773 0.870 0.680 0.859
F3Net 0.717 0.474 0.964 0.840 0.763 0.839 0.694 0.862 0.794 0.677 0.905 0.884
C-40 DSP-FWA 0.776 0.853 0.698 0.869 0.728 0.482 0.956 0.838 0.927 0.951 0.904 0.978
MesolnceptionNet 0.512 0.033 0.996 0.738 0.535 0.036 0.996 0.814 0.548 0.089 0.982 0.869
Xception 0.754 0.582 0.927 0.847 0.768 0.606 0.918 0.851 0.809 0.818 0.799 0.879

Comparison with Existing Deepfake Datasets: We evaluate ILLUSION’s uniqueness and relevance
in comparison to existing datasets through a series of analyses.

We employed the Jaccard Similarity Index, defined as the ratio of the intersection to the union of
two sets, to quantitatively assess the overlap between the ILLUSION dataset and existing datasets.
This metric, ranging from O (disjoint sets) to 1 (identical sets), provides a measure of set similarity.
The results, as summarized in Table E} demonstrate a substantial lack of overlap. This confirms
ILLUSION’s distinctive coverage and its unique contribution to the landscape of generative method
datasets.

Next, we utilized the UpSet plot (visualized in Figure[6) to analyze the distribution of generative
techniques, which revealed both unique contributions and shared intersections. The largest intersection
corresponds to generative techniques exclusive to ILLUSION, including diffusion-based algorithms
such as DiffSwap, DiffFace, DiffVC, and Diff GAN-TTS, as well as multi-modal synthesis methods.
These highlight ILLUSION’s novel contributions to media forensics. In contrast, smaller intersections
with large-scale datasets like ForgeryNet and KoDF represent shared techniques such as GAN-based
image synthesis and lip-sync forgeries, ensuring ILLUSION’s benchmarking relevance against state-
of-the-art methods. The relatively smaller shared intersections, compared to ILLUSION’s unique
contributions, highlights the dataset’s comprehensive design in bridging gaps across modalities while
introducing underexplored generative methods.

To directly assess feature differences, we conducted feature embedding analyses using ResNet50
pre-trained on ImageNet. Uniformly sampled data (50,000 samples each) from ILLUSION and
FakeAVCeleb were compared. The t-SNE plot (visualized in Figure [7) reveals distinct clustering
patterns with minimal overlap, indicating significant differences in feature distributions. Additionally,
the KL divergence of 1.62 between the feature embeddings quantitatively reinforces this dissimilarity.
These objective metrics affirm that ILLUSION introduces novel and diverse generative techniques to
the detection ecosystem, complementing existing datasets.

B GENERATION PIPELINE
In this section, we discuss the methods used for the generation of the proposed ILLUSION dataset.
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Figure 6: Overlap of Generative Techniques Across Datasets (UpSet Plot) - This plot illustrates the
overlap of generative techniques across ILLUSION and other publicly available datasets. The largest
intersection corresponds to 23 generative techniques unique to ILLUSION, including diffusion-based
methods and advanced multi-modal synthesis techniques. Smaller intersections highlight shared
generative methods between ILLUSION and datasets like ForgeryNet, KoDF, and DF-Platter. The
plot highlights ILLUSION’s distinctiveness while maintaining relevance through its integration of
shared techniques.

B.1 SET A: IDENTITY SWAP DEEPFAKES

The process of generating identity swaps of set A is visualized in Figure 2 (of the main paper). To
generate these swaps, we utilize the YouTube videos from the CelebV-Text dataset (Li et al., [2020)).
We select 200 unique real identities, ensuring that 25 identities were chosen for each sub-group within
the four skin-tone bins (as described in section [A]) and for both sexes, Male and Female, to maintain
balance in the dataset in terms of sex and skin-tone group. Each real video clip is 20 seconds long
and includes various occlusions, such as hats, glasses, excessive body movements, and harsh lighting,
to ensure diversity in our dataset. Furthermore, for Females from the third bin of the Fitzpatrick
scale, we scraped 25 videos from YouTube to compensate for the lack of English language videos in
CelebV-Text and generate 25 images from “This Person Does Not Exist” (TPDNE) for face-swapping.
We then assigned one identity from the YouTube video to another identity from the same generated
images.

We utilize 6 video generative models, 7 audio generative models, and an audio-video synchronization
tool. Each of them is discussed below in detail.
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Figure 7: Feature-Level Comparison Between ILLUSION and FakeAVCeleb (PCA and t-SNE) - The
PCA (left) and t-SNE (right) plots compare the feature embeddings of 10,000 randomly sampled
data points from ILLUSION and FakeAVCeleb, extracted using a ResNet50 model pre-trained on
ImageNet. The plots reveal distinct clustering patterns with minimal overlap, indicating significant
differences in feature distributions. A KL-divergence of 1.23 further quantifies these differences,
validating that ILLUSION provides unique feature representations compared to existing datasets.

Visual Generation: For identity swapping i.e., face swapping in videos, 6 different models are
employed, namely, MobileFaceSwap (Xu et al.,[2022b), FSGAN (Nirkin et al.} 2019), FaceShifters
2019b), ROOP (Roop, [2023), DiffFace (Kim et al.,[2022), and DiffSwap (Zhao et al.| 2023).

For all possible combinations within a sub-group, the source (from which facial features are extracted)
is swapped onto the target faces (which provide the face shape and background). Each manipulated
video has the same duration as the corresponding real video in the base dataset. Each of the video
models used for manipulating faces are discussed below:

* FSGAN (Nirkin et al), [2019) is a Face Swapping GAN model for face swapping and
reenactment. It is subject-agnostic and can be applied to pairs of faces without requiring
training on those faces. The model for video-to-video is used with default hyperparameters.

* FaceShifter 2019b) generates the swapped face, extracting target attributes and
embedding them onto the source. FaceShifter is robust against occlusions using two network
pipelines, AEI-Net and HEAR-Net, trained to recover anomaly regions self-supervised
without manual annotations. The pre-trained weights of ArcFace and AEI-Net are used to
extract identity embeddings, and utilize source images and target videos to generate videos.

* MobileFaceSwap is a lightweight Identity-aware Dynamic Network
(IDN) for subject-agnostic face swapping by dynamically adjusting the model parameters
according to the identity information. The ArcFace and model pre-trained weights are used
for identity embedding extraction and inference. We utilize source images and target videos
to generate videos with default hyperparameters.
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* Roop (Roop), [2023) is one of the most widely used open-source deepfake generation
software. Roop uses a face-swapping pre-trained model of InsightFace by Deeplnsight. The
default hyperparameters are used for generation while extracting a source frame to swap
onto a target video.

 DiffFace (Kim et al., [2022) is a diffusion-based face-swapping framework composed
of training ID conditional DDPM, sampling with facial guidance, and target-preserving
blending. 40 equidistant frames are extracted from videos to create face swap images for the
unseen test set. The default hyperparameters and pre-trained weights are utilized.

 DiffSwap (Zhao et al.,2023) is a diffusion model-based framework for high-fidelity and
controllable face swapping. We use the pre-trained weights for face and landmark detection.

Audio Generation: The identity swapping for audio i.e., audio spoofing is performed using 7
different audio-generative models, namely, FreeVC (Li et al.,[2023)), XTTS (Eren & The Coqui TTS
Team| [2021)), DiffVC (Popov et al., 2021b)), DiffHierVC (Choi et al., [2023)), YourTTS (Casanova
et al., [2022), DiffGAN-TTS (Liu et al.} 2022), GradTTS (Popov et al.,2021a)) to create this dataset.
The audio is extracted from the selected videos, and the MMS model (Pratap et al.,|2024) is used
to identify the language and English audio is selected. Next, we generate a transcription of the
audio using the MMS model. This generated transcription is then used to generate synthetic audio.
Additionally, the raw audio is used to create voice-cloned audio of the source speaker. We clone
voices for all the combinations of source (speech which is cloned) and target (text of the audio
borrowed from) within a sub-group. This ensures that the dataset’s quality is maintained and that
altered content is realistic by preserving the unique accents within a sub-group. Each audio is limited
to 20 seconds in length to maintain the quality of the synthesized speech without compromising on
the audio’s duration. We discuss each of the audio models used for generating audio below:

¢ FreeVC (Li et al., [2023) is an end-to-end model for voice conversion (VC) based on
the approach proposed in VITS. The FreeVC model is a variational auto-encoder-based
architecture pre-trained on the VCTK speech corpus. We use the model provided by Coqui
to generate cloned voices using the pre-trained speaker encoder model.

* XTTS (Eren & The Coqui TTS Team, 2021) is an end-to-end voice generation model
for voice cloning into different languages built on Tortoise. XTTS has significant model
changes that simplify cross-language voice cloning and multi-lingual speech generation.
Coqui is used to generate clones.

* DiffVC (Popov et al.,2021b) is another zero-shot many-to-many voice conversion method
designed for the general case when source and target speakers do not belong to the training
dataset. The model is trained using HifiGAN vocoder, and for voice conversion, the model
is trained on VCTK and LibriTTS speech corpus. We use the pre-trained speaker encoder
and voice conversion model trained on VCTK for cloning.

Diff-Hier VC (Choi et al., 2023) is a diffusion-based hierarchical VC system for voice
conversion. For voice style transfer, Diff-HierVC uses two diffusion models, DiffVoice
and DiffPitch. We use BigVGAN vocoder and pre-trained model weights with default
hyperparameters.

YourTTS (Casanova et al., 2022) was originally a text-to-speech model based on the
end-to-end VITS but with a separate speaker embedding (from a speaker recognition model)
to encode speaker identity. The inclusion of speaker encoding allows the use of YourTTS in
a zero-shot voice conversion manner by simply substituting the embedding of one speaker
with the embedding of another. Coqui implementation of the model is used for generation.

DiffGAN-TTS (Liu et al.,[2022) is a Denoising Diffusion Probabilistic Model (DDPM)
- based TTS model. It is based on denoising diffusion generative adversarial networks
(GANSs), which adopt an adversarially-trained expressive model to approximate the denoising
distribution. The shallow model trained on the VCTK dataset for 400000 steps is used. We
assign a unique speaker ID from VCTK data to an identity of a sub-group and create spoofs
within a train or test set of sub-groups.

GradTTS (Popov et al., [2021a) is a text-to-speech model with a score-based decoder
producing mel-spectrograms by gradually transforming noise predicted by the encoder and
aligning with text input employing Monotonic Alignment Search. GradTTS uses a HiiGAN
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vocoder. We use the pre-trained weights of the model and vocoder trained on the LibriTTS
dataset. A unique speaker ID from VCTK data is assigned to an identity in a sub-group, and
spoofs are created within a train or test set of sub-groups.

Audio-Video Synchronization: We combine the audio and video using the Audalign (Alignment).
It is an open-source project that uses audio fingerprinting, cross-correlation, cross-correlation with
spectrograms, or visual alignment techniques to align audio and video timestamps. The extracted
audio from the real video is combined with face-swapped manipulated videos, giving us our dataset’s
ii) Real Audio and Fake Video class. Moreover, we also combined the generated audio spoofs after
syncing with real and face-swapped video. This gives us the two other classes of our dataset: iii)
Fake Audio and Real Video and iv) Fake Audio and Fake Video. This gives us all four classes of the
generated dataset.

B.2 SET B: AI GENERATED CONTENT

With the advent of generative Al methods, the amount of completely synthetic media across modalities
has surged in social media platforms. These methods better capture contextual information since
they generate media based on a textual prompt or guidance from pre-existing media. In this set, we
present a subset of completely synthetic Al-generated content. The generation procedure for each
modality is discussed below in detail-

Video Generation: We use the MSRVTT (Xu et al., 2016) dataset for video-caption pairs. It is
a large-scale dataset for open-domain video captioning containing video clips annotated with 20
English sentences by Amazon Mechanical Turks. From the publicly available dataset, 7010 captions
are used to generate videos. For this, we use three different text-to-video models: Text2Video-Zero
(Khachatryan et al.,[2023)), ModelScopeT2V (Wang et al.,|2023a)) and ZeroScope (Zeroscope). 24
frames are generated for every video from Text2Video-Zero and ZeroScope, and 40 frames are
generated for each from ModelScopeT2V. More frames are generated from ModelScopeT2V because
the videos generated from this model have a Shutterstock watermark. The higher number of frames
can separately be used later to check how different detection algorithms perform on samples that
contain a watermark. Watermarks have become increasingly common in internet content as more
organizations prefer to add their watermark on their respective media. Each of the generative video
models is discussed briefly below:

* ModelScopeT2V (Wang et al.,[2023a) is a generative text-to-video synthesis model that
evolves from Stable Diffusion. It uses spatiotemporal blocks, VQGAN, a text encoder, and a
denoising UNet, resulting in consistent frame generation and smooth movement transitions.
The videos generated from this model have a Shutterstock watermark. We use its public
implementation, which is available in the Huggingface diffusers library.

» Zeroscope (Zeroscope) is a generative model based on ModelScope itself, but it has been
improved to produce higher-quality videos with a fixed aspect ratio and no Shutterstock
watermark. We used zeroscape-v2-576w.

* Text2Video-Zero (Khachatryan et al.,|2023) is a zero-shot text-to-video generation model.
It uses existing text-to-image synthesis methods (e.g., Stable Diffusion), making them
suitable for the video domain. Mainly, it includes frame-level self-attention using new
cross-frame attention of each frame on the first frame to preserve the context, appearance,
and identity of the foreground object.

Audio Generation: We use the MusicCaps (Agostinelli et al., [2023)) dataset to generate music
samples, a large-scale dataset containing 5,211 music examples, each labelled with an English aspect
list and a free text caption written by musicians. For each caption, we use three text-to-music models,
namely: AudioLDM (Liu et al.| [2023)), MusicGen (Copet et al., 2023) and MAGNeT (Ziv et al.,
2024). Further, we download the original audio clip from Youtube, and corresponding to each audio
clip, we use an audio-to-audio model: Audio Diffusion (Face). Each of the generative models are
discussed below:

* MusicGen (Copet et al., 2023) is an end-to-end model for text-to-audio generation specif-
ically tailored for music generation. It comprises a single-stage transformer language
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model capable of generating conditioned high-quality music samples. We use its public
implementation from the AudioCraft library.

* MAGNeT (Ziv et al., 2024) is an end-to-end model for text-conditioned music generation.
It is a Masked Audio Generation method utilizing a single non-autoregressive transformer.
Its public implementation from the AudioCraft library is used.

* AudioLDM (Liu et al., 2023) is an end-to-end model for text conditioned audio generation.
A latent diffusion model (LDM) learns continuous audio representations from CLAP latent.
We used its public implementation from the diffuser library.

* Audio Diffusion (Face) is an end-to-end model for audio to audio generation. It converts
audio input into a mel spectrogram, then uses a Variational Auto-Encoder (VAE) model
to encode and decode images to and from latent, and finally a UNet2DConditionModel to
denoise the encoded image latents. Public implementation from the diffusers library is used
for generation.

Image Generation: We use the training set of the COCO dataset to get 118,287 image-caption pairs.
Now, corresponding to each caption in the dataset, we use four text-to-image models, namely: Stable
Diffusion XL (Podell et al.}2023)), Kandinsky 2.1 (Razzhigaev et al.}[2023)), MultiDiffusion (Bar-Tal
et al.,[2023) and SDXL-Turbo (Sauer et al.,|2023). Further, the original image from the dataset is kept
as the corresponding real for each generated image. We discuss each of the generative models below:

« Stable Diffusion XL (Podell et al.,|2023) is an end-to-end model for text-conditioned image
generation and is an improvement to the previous stable diffusion models with a much
larger UNet and a combination of OpenCLIP ViT-bigG/14 text encoder with the original
text encoder. We used its public implementation from the diffusers library.

* Kandinsky 2.1 (Razzhigaev et al.,|2023) is an end-to-end model for text-conditioned image
generation. As the text and image encoder, it uses the CLIP model and diffusion image prior
(mapping) between latent spaces of CLIP modalities to generate photo-realistic images. We
use its public implementation from the diffusers library.

* MultiDiffusion (Bar-Tal et al., 2023) is a recent technique for text-conditioned image
generation, making any pre-trained text-to-image model usable for generation without
fine-tuning and training with a higher control over output. We used it in conjugation
with StableDiffusionPanoramaPipeline as available in its public implementation from the
diffusers library.

* SDXL-Turbo (Sauer et al., 2023) is an end-to-end model for text to image generation.
It is a distilled version of SDXL-1.0 and uses a novel training method called Adversarial
Diffusion Distillation (ADD) for much faster, high-quality generation. We used its public
implementation from the diffusers library.

Synthetic-Faces Dataset: We scrape image samples from a popular deep fake generation website
thispersondoesnotexist.com. Further, we classified these samples as per sex and skin tone
into eight subgroups to create a demographically balanced dataset that contains 1025 synthetic faces
for each subgroup cumulating to a total of 8,200 synthetic face images. Now, to have an equal number
of real faces in our dataset, we collect an equal number of samples from Balanced Faces in the Wild
(BFW) (Robinson, 2022).

B.3 SET C: FAKES IN THE WILD

We use Midjourney (Midjourney) and Artguru (ArtGuru), both premium tools that allow users to
generate synthetic images via text-to-image modality through a premium API and a web interface,
respectively. For Midjourney, we use prompts from the validation set of the COCO dataset, and
for each prompt, we get four corresponding images to generate a total of 20,000 images. Artguru,
however, specializes more in generating identity-driven images for a given prompt. Therefore, we
randomly pick 1000 prompts from the person class of the COCO dataset to generate a total of 1000
images. Apart from these images, we have 24 real-world doctored videos used for testing.
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C BASELINE MODELS

In our evaluation of the ILLUSION dataset, we employ a diverse set of eleven deepfake detection
methods. The selection of these methods is primarily guided by the availability of their respective
codebases. For each method, we adhere to the default parameters provided, ensuring a fair and
consistent comparison across all detection methods. In the following sections, we provide a succinct
discussion of each of these detection methods:

C.1 VISUAL MODELS

* MesolnceptionNet (Afchar et al., 2018) is a CNN architecture used for deepfake and face-
to-face image forgery detection. It develops on the Inception module. Going deeper with
convolutions for the first two convolutional layers of the Meso-4 architecture, Mesolnception-
4 is created.

* XceptionNet (Chollet, 2017) is a deep CNN architecture using depthwise separable convo-
lutions. Inception modules in CNN’s can be seen as a transitional stage between conventional
convolutions and depthwise separable convolutions, which combine depthwise and point-
wise convolutions. This insight leads to a new Inception-inspired deep CNN design, where
depthwise separable convolutions replace Inception modules.

* DSP-FWA (Li & Lyu, 2018) It uses face-warping artifacts from deepfake generation to
identify swapped videos. It employs a CNN trained with negative examples created by
mimicking affine face warping steps and positive face images. To simulate artifacts, these
negative examples involve recognizing faces, resizing them, applying Gaussian blur, and
then affine warping. The technique uses CNN models like VGG16 and ResNet to detect
inconsistencies between manipulated facial regions and their surroundings.

* F3Net (Wei et al., 2020) or Frequency in Face Forgery Network is a network that deep mines
the forgery patterns through a two-stream collaborative learning framework, utilising two
complementary but distinct frequency-aware clues: 1) frequency-aware decomposed image
components, and 2) local frequency statistics. It uses DCT frequency-domain transformation.

C.2 AuUDIO MODELS

* RawGAT-ST (Tak et al., 2021), is a spectro-temporal graph attention network that learns to
detect spoofed speech from raw waveform inputs. It creates separate spectral and temporal
sub-graphs, employs graph attention to capture relationships within each sub-graph, fuses
the sub-graphs at the model level, and uses graph pooling to improve discrimination. This
approach automatically learns relevant spectro-temporal artifacts without hand-crafted
features or separate systems for different attacks.

* AASIST (Jung et al., 2022) or Attention-Augmented Speaker Inconsistency Stacking
Transformer for detecting spoofed utterances. It uses a heterogeneous stacking graph
attention layer that models artifacts spanning both temporal and spectral domains using a
heterogeneous attention mechanism and a stack node. The model employs a max graph
operation with a competitive mechanism and an extended readout scheme.

* SSLModel (Tak et al.,[2022) proposes an embedding fusion scheme that combines represen-
tations from supervised learning (SL) and self-supervised learning (SSL) models for spoofed
speech detection. It performs weighted score fusion between SL and best SSL models and
then minimizes the embedding distribution between selected SL and SSL representations
using a comprehensive statistical analysis to select appropriate layers. This fusion approach
leverages knowledge from both SL and SSL frameworks to improve performance.

* Conformer (Gulati et al.,|2020) model has statistical pooling for jointly performing speaker
verification and voice spoofing detection. It utilizes the Conformer architecture, which
combines Transformer and CNNs and employs statistical pooling to aggregate frame-level
representations. The model is trained on both tasks simultaneously, enabling it to reject both
spoofed utterances and utterances from different speakers.
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CJ3

MULTI-MODAL MODELS

* FACTOR (Reiss et al.,2023) is a detection method that utilizes fact-checking adapted from
fake news detection. It verifies the claimed facts (e.g., identity) by comparing them with the
actual observed media (e.g., appearance) to identify real versus fake content. It does not
require training, uses readily available features, and achieves higher accuracy without prior
exposure to deepfakes, especially in face-swapping and audio-visual synthesis scenarios.

* MRDF (Zou et al.,|2024) proposes cross-modality and within-modality regularization to
maintain modality distinctions during multi-modal representation learning. The approach
includes an audio-visual transformer module for modality correspondence and a cross-
modality regularization module to align paired audio-visual signals. Additionally, a within-
modality regularization module refines unimodal representations to retain modality-specific
details.

* Unimodal Ensembling integrates an ensemble of two best performing models, F3Net and
SSLModel. For any given deepfake input, we first extract the video and audio components.
Subsequently, we fuse the predictions derived from each modality to arrive at a final pre-

diction. This process ensures a comprehensive analysis of the deepfake content, leveraging
both visual and auditory cues.
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