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ABSTRACT

The need for Explainable AI is increasing with the development of deep learn-
ing. The saliency maps derived from convolutional neural networks generally fail
in localizing with accuracy the image features justifying the network prediction.
This is because those maps are either low-resolution as for CAM (Zhou et al.,
2016), or smooth as for perturbation-based methods (Zeiler & Fergus, 2014), or
do correspond to a large number of widespread peaky spots as for gradient-based
approaches (Sundararajan et al., 2017; Smilkov et al., 2017). In contrast, our work
proposes to combine the information from earlier network layers with the one from
later layers to produce a high resolution Class Activation Map that is competitive
with the previous art in term of insertion-deletion faithfulness metrics, while out-
performing it in term of precision of class-specific features localization.

1 INTRODUCTION

We currently face unprecedented advances in the domain of artificial intelligence, primarily driven
by the development of deep neural networks (DNNs). However, in contrast to techniques based on
handcrafted features, DNNs often lack transparency and explainability (Adadi & Berrada, 2018).
The need to assess a posteriori the behavior of a model has led to the development of explainable
artificial intelligence (XAI) methods, ranging from more transparent models to post-hoc methods
(explanation by example of black-box methods), see Samek et al. (2021) for a review.

Focusing on convolutional neural networks (CNN), saliency maps visualization has been adopted as
a convenient approach to identify the image parts justifying the network prediction.

Those saliency maps are helpful to check that the predictions of a model are grounded on relevant
information. It is indeed known that training convergence alone does not exclude undesired DNN
predictions (Lapuschkin et al., 2019), typically because the model has learnt inputs/outputs correla-
tions that do not correspond to the desired meaningful causal relationship. This case is illustrated in
Appendix D.1, where a model trained to detect fractures in bone X-rays actually appear to rely on
the plaster cast to make its decision rather than on a potential break in the bone.

Alternatively, when sufficiently accurate, the localization of salient features could convince a user
that a model works properly, i.e. uses relevant cues, or could even help in identifying the parts of a
signal that are relevant to solve a problem, e.g. help a medical doctor in identifying the X-ray visual
cues that help to anticipate the evolution of a treatment (Appendix D.2).

Various techniques are available to define class-specific saliency, including perturbations based anal-
ysis (Zeiler & Fergus, 2014), gradient based techniques such as Integrated Gradients (Sundararajan
et al., 2017) or SmoothGrad (Smilkov et al., 2017), and Class Activation Mapping techniques such as
Grad-CAM(Selvaraju et al., 2017), Grad-CAM++(Chattopadhay et al., 2018), or Score-CAM (Wang
et al., 2020b). Class activation maps (Zhou et al., 2016) methods are limited in resolution, while gra-
dient based techniques are generally subject to noise and thus produce saliency maps composed of a
large number of widespread peaky spots. In an attempt to get the best out of both strategies, recent
solutions such as Zoom-CAM (Shi et al., 2021) and Layer-CAM (Jiang et al., 2021) have proposed
to combine the gradients in earlier layers with activations to produce high resolution maps. As
shown in our experiments, those maps however inherit some noise from the gradients.

Our work introduces a new method to generate high resolution class activation maps, without relying
on gradient backpropagation and thus limiting the noisy appearance of the map. In short, this is
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obtained by multiplexing the high-resolution activation maps available in the early layers of the
network with upsampled versions of the class-specific activation maps computed in the last layers of
the network. It achieves state of the art performances on faithfulness metrics, and largely improves
the localization accuracy of features that explain the network prediction.

2 RELATED WORK

Various strategies allow to visualize the image features contributing to the class prediction of a CNN.

Perturbation-based methods use multiple perturbations of the input image, and monitor the changes
they induce at the output of the model, to build a saliency map. Those methods range from occlu-
sion techniques, which recursively occlude patches of the input (Zeiler & Fergus, 2014), to more
elaborated perturbations such as Randomized Input Sampling for Explanation of Black-box Models
(RISE) (Petsiuk et al., 2018), which generate many random masks normalized between 0 and 1, to
be weighted by the class-specific softmax output obtained when the input image is multiplied by the
mask. These methods result in a smooth mask and are computationally intensive, especially when
the resolution of the saliency map increases.

Gradient based methods use the back-propagated gradient of the neural network to identify regions
in the input image that largely impact the prediction. Those methods however suffer from gradient
shattering (Bahdanau et al., 2014), which results in a noisy saliency map. To mitigate this problem,
a variety of approaches have been implemented to smooth out the gradient signal. They include
Integrated Gradient (Sundararajan et al., 2017), which integrates the gradient for multiple interpola-
tions between a baseline and the input image, or SmoothGrad (Smilkov et al., 2017), which averages
gradient for multiple perturbed variations of the input image.

Class Activation Map (Zhou et al., 2016) was initially designed as a linear combination of activations
from the last convolutional layer, weighted by the parameters of a fully connected classifier, taking
as input the global average pooling of each channel in this last convolutional layer. Multiple methods
were introduced based on alternative definitions of the weights. Grad-CAM (Selvaraju et al., 2017)
and Grad-CAM++ (Chattopadhay et al., 2018) define the weights based on gradients backpropagated
upto the last convolutional layer. Score-CAM defines the weight of a channel based on the softmax
output associated to the target class when probing the model with a version of the image masked by
the activation channel. In a sense, it mixes CAM methods with perturbations methods (Wang et al.,
2020b). Overall, Class Activation Map methods are less noisy than gradient-based methods but are
coarser, with a resolution limited to the resolution of the last convolution layer.

To produce CAM at higher-resolution, Tagaris et al. (2019) propose to train an expansion network,
but this has the drawback to require a specific training for each model to analyze (Ronneberger et al.,
2015). At the time of writing, this expansion network is only defined for DenseNet (Huang et al.,
2017) and trained on a subset of animal labels of ImageNet (Russakovsky et al., 2015), available at
https://github.com/djib2011/high-res-mapping. Very recently, Layer-CAM (Jiang et al., 2021) and
Zoom-CAM (Shi et al., 2021) have proposed to generate high-resolution CAM by combining back-
propagated gradients with activations from multiple layers, using element-wise multiplications. The
two methods improve the resolution of the maps but also inherit some noise from the gradients.

Our paper proposes an original method to compute high-resolution activation maps without using
gradients, nor requiring to train a specialized network. Our primary contribution is a process to
leverage the activation from multiple layers to increase the resolution of the Class Activation Map
up to the one of the input image. Our second contribution is a new way to compute the weights of the
activation maps, It introduces a dual strategy compared to the approach introduced by Score-CAM
(Wang et al., 2020b), and proposes to get the best out of both strategies by merging them.

3 PROPOSED POLY-CAM APPROACH

This section presents the core contribution of our work. Section 3.1 introduces the notations and
variables required in the rest of the text, while Section 3.2 reviews the formal definition of the
conventional Class Activation Map method, which serves as a baseline to our work. Section 3.3 then
introduces our Poly-CAM approach, which proposes to generate a high resolution class activation
map by recursively multiplexing the high-resolution activation maps available in the early layers of
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the network with upsampled versions of the class-specific activation maps computed in the last layers
of the network. Eventually, Section 3.4 introduces three different methods to associate a weight to
each layer activation channel. All methods measure how the output of the network is affected when
masking/unveiling the input based on the channel activation.

3.1 NOTATIONS

Let fΘ(X) denote the prediction of a CNN with parameters Θ when the image X is provided as
input. In the following, for conciseness and because we are interested in analyzing a trained network
(parameters Θ are fixed), we omit Θ, and just use f(X) to refer to the CNN prediction associated
to X . In the following, f(X) is a vector, defined by the output of a softmax. fc(X) denotes the
component of f(X) corresponding to the class c.
Al denotes the activation tensor of the lth convoluional layer, 1 ≤ l ≤ L, while Ak

l refers to the
activations of the k-th channel of layer l.
sl denotes the subsampling factor of layer l compared to the input. It corresponds to the product of
stride and pooling factors encountered between the input and layer l.
↑bi (M , s) defines a bilinear upsampling of a matrix M ∈ Rm×n by a factor s ∈ N.
↓av (M , s) denotes a 2D average pooling on any matrix M ∈ Rm×n with a stride s ∈ N.
u(M) linearly maps the value range of the elements in matrix M to the unit interval.
� denotes the element-wise division operator, while � denotes the element-wise product operator.
LNorm(M , s) is a local normalisation operator. It partitions the matrix M ∈ Rm×n in a set of
non overlapping blocks of size s × s, with s ∈ N, and divides each matrix element by the mean
value of its corresponding block. Formally, using the above notations,

LNorm(M , s) = M � (↑bi (↓av (M , s), s)) . (1)

ReLU denotes the rectified linear units (Dahl et al., 2013).

3.2 ACTIVATION MAPS IN PREVIOUS WORK

In (Zhou et al., 2016) CAM c
l , the Class Activation Map associated to a target class c and a layer l

is defined as
CAM c

l = ReLU(
∑
k

wl,k(c)Ak
l ), (2)

with Ak
l denoting the kth activation map of the lth convolutional layer, l ∈ 1, ..., L, and wl,k(c)

being a scalar weighting factor. Most of the CAM-based methods (Selvaraju et al., 2017; Chat-
topadhay et al., 2018; Smilkov et al., 2017; Wang et al., 2020b;a; Naidu et al., 2020) adopt this
formula. They differ in the way they define the weighting factors, and generally only consider it
for the last convolutional layer (l = L). Alternatively, Zoom-CAM and Layer-CAM have proposed
to combine activation maps from multiple layers, using gradients as dense weighting factors. Our
work also combines multiple activation maps, but does it without back-propagated gradients, thereby
managing to produce high-resolution saliency maps without inheriting the noise from the gradient.

3.3 OUR PROPOSED POLY-CAM

Our method leverages information from multiple layers to produce a high resolution Class Activation
Map. Similar to other CAM-based techniques, it builds on the linear combination of activation maps,
but combines them through a backward recursive procedure, as depicted in Figure 1.
Letting P c

l denote the class-specific saliency map associated to class c in the lth layer, the recursive
process works as follows. In the initial step, the saliency map P c

L is defined to be equal to the
conventional CAM c

L saliency map, as derived from equation (2). Then, at each recursive step, an
upsampled version of P c

l+1 is tuned (or modulated) by a locally normalized version of the activation
map in the lth layer. Mathematically, we have:

P c
l =

 ReLU(
∑

k wl,k(c)Ak
l ) for l = L

LNorm
(
ReLU

(∑
k wl,k(c)Ak

l

)
, sl+1

sl

)
� ↑bi

(
P c

l+1,
sl+1

sl

)
for 1 ≤ l ≤ L− 1

(3)
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Figure 1: Our Poly-CAM process: the upsampled version of the saliency map in layer l is tuned
based on the class activation map of layer l − 1. Image samples correspond to the ’cat’ class, and
are computed from VGG16.

with wl,k(c) denoting the class-specific weighting factor associated to Ak
l , as defined in Section 3.4.

Intuitively, Equation (3) can be understood based on the following two observations. First, the
element-wise multiplication, between the upsampled (and thus smooth) saliency map of layer l + 1
and the activation map in layer l, aims at restricting the large saliency values in layer l + 1 to the
locations that are activated in layer l. Second, the local normalization (LNorm) of the activation
map aims at preserving the spatial distribution of saliency across the layers. It ensures that an
image block with large saliency in layer l+1 has also a large saliency in layer l, even if the level
of activation in this block is small compared to the rest of the image. This is meaningful since
the backpropagated saliency should be predominant to assign a saliency level to a spatial region in
layer l, while the activation in layer l should simply control the increase in resolution, by tuning the
smooth saliency signal inherited from coarser layers based on the local variations of the activation
map. Our ablation study in Appendix B.2 confirms the critical role played by the LNorm operator.

3.4 ACTIVATION MAP WEIGHT DEFINITION

This section presents different alternatives to define the weights wl,k(c), used in equation 3.

Channel-wise Increase of Confidence Score-CAM (Wang et al., 2020b), SS-CAM (Wang et al.,
2020a) and IS-CAM (Naidu et al., 2020) define wl,k(c) based on the so-called Channel-wise Increase
of Confidence (CIC), which estimates how the spatial support of the activation map Ak

l contributes
to the softmax output f . Formally, the channel-wise increase is denoted w+

l,k, and is defined as:

w+
l,k = f

(
X � u

(
↑bi
(
Ak

l , sl
)))
− f (Xb) , (4)

with � denoting the pixel-wise product, and Xb referring to a baseline image. Previous works have
considered baselines that are uniform black, uniform grey, or a blur version of X . In the following,
fc(Xb) is set to zero in all experiments.

Our work proposes two extensions of equation 4, respectively to measure how the softmax out-
put decreases when masking a fraction of the input, and to sum-up the increase and the decrease
associated to the unveiling and the masking of the input. Those new weights are defined as follows.
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Channel-wise Decrease of Confidence The Channel-wise Decrease of Confidence (CDC) is a
dual notion compared to CIC. Instead of measuring the increase of softmax output when the part of
the input corresponding to non-zero Ak

l is unveiled and the remaining is masked, CDC measures the
decrease of softmax output when the part of the input corresponding to Al

k is masked. The intuition
is that an important part of the input for any class c not only increase the output when shown, but
should also decrease it when hidden. Formally,

w−
l,k = ReLU

(
f(X)− f

(
X �

(
1− u

(
↑bi
(
Ak

l , sl
)))) )

(5)

ReLU is applied to only keep the activation maps that decreases the output when removed.

Channel-wise Variation of Confidence By combining the CIC with the CDC, the Channel-wise
Variation of Confidence (CV C) is defined. Formally,

w±
l,k = ReLU

(
f (X) + f

(
X � u

(
↑bi
(
Ak

l , sl
)))
− f

(
X �

(
1− u

(
↑bi
(
Ak

l , sl
)))) )

(6)

The Channel-wise Variation of Confidence is either influenced by the ability of the activation map
to increase the softmax output when inserted but also decrease it when removed.

4 EXPERIMENTS

Three variants of the Poly-CAM method introduced in Section 3.3 are considered, depending on
whether wl,k is defined to be equal to w+

l,k (PCAM+), w−
l,k (PCAM−) or w±

l,k (PCAM±).

We follow the assessment method described in (Petsiuk et al., 2018) and Chattopadhay et al. (2018)
to evaluate our proposal. Datasets, networks, and baseline methods are presented in Section 4.1.
Quantitative assessment of the saliency maps is considered in Section 4.2, while a qualitative and
visual assessment is presented in Section 4.3.

4.1 EXPERIMENTAL SET-UP AND SALIENCY MAP BASELINES

For theses evaluations, 2000 images were randomly selected from the 2012 ILSVRC validation set
(Russakovsky et al., 2015). The images are scaled to 224x224x3 pixels and normalized to the same
mean and standard deviation as the ImageNet (Russakovsky et al., 2015) training set (mean vector :
[0.485, 0.456, 0.406], standard deviation vector [0.229, 0.224, 0.225]). The models used for faith-
fulness evaluation are VGG16 (Simonyan & Zisserman, 2014) and ResNet50 (He et al., 2016), both
pretrained from the PyTorch model zoo. The analysis considers, as reference baselines, Grad-CAM
(Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al., 2018), Smooth Grad-CAM++ (Omeiza
et al., 2019), Score-CAM (Wang et al., 2020b), SS-CAM (Wang et al., 2020a), IS-CAM (Naidu
et al., 2020), Zoom-CAM (Shi et al., 2021), Layer-CAM (Jiang et al., 2021), Occlusion (Zeiler &
Fergus, 2014), Input X Gradient (Shrikumar et al., 2016), Integrated Gradient (Sundararajan et al.,
2017), SmoothGrad (Smilkov et al., 2017) and RISE (Petsiuk et al., 2018). The implementations
for these methods are the ones from Captum (Kokhlikyan et al., 2020) for Integrated Gradient,
SmoothGrad and Occlusion, from https://github.com/eclique/RISE for RISE, from
https://github.com/X-Shi/Zoom-CAM for Zoom-CAM and from torchcam (Fernandez,
2020) for all the other CAM-based methods.

For SS-CAM, IS-CAM, LayerCAM and ZoomCAM, SmoothGrad and IntegratedGradien, the pa-
rameters recommended by the authors or set as default in the reference implementation have been
used when available. 1 For Occlusion, the size of occlusion patch was set to (64, 64) with a stride of
(8, 8) as used by (Petsiuk et al., 2018). For RISE, 6000 masks were used.

For the Poly-CAM methods (PCAM+, PCAM−, PCAM±), the layers corresponding to a change in
resolution were used. It corresponds to [block1 conv2, block2 conv2, block3 conv3, block4 conv3,
block5 conv3] for VGG16, and [conv1 1, conv2 3, conv3 4, conv4 6, conv5 3] for ResNet50.

1It means 35 input perturbations (with a σ = 2 Gaussian noise) for SS-CAM, 50 input perturbations (with a
σ = 1 Gaussian noise) for SmoothGrad, 10 interpolation steps for IS-CAM, and 50 for IntegratedGradient. For
Layer-CAM, the layers corresponding to a change in resolution were used, and recommended scaling has been
applied to the first two layers. For Zoom-CAM, all the layers/blocks were fused for VGG16 and ResNet50.
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4.2 FAITHFULNESS ASSESSMENT

There is still a lack of consensus regarding the metrics to assess the relevance of saliency maps
for explainability (Poursabzi-Sangdeh et al., 2021). The ability to segment the semantic object
justifying the class label was used as a proxy to evaluate saliency maps (Selvaraju et al., 2017), but
it has been observed in Petsiuk et al. (2018) that the segmentation mask might not be correlated
to the discriminant visual features justifying the class label. The same authors also introduced the
insertion and deletion metrics to measure the increase (resp. decrease) in the class softmax output
when inserting (resp. removing) pixels in decreasing order of saliency. Theses metrics are largely
used in recent works (Wang et al., 2020b;a; Naidu et al., 2020). They are thus considered in this
work, even if they remain arguable, as discussed in the following sections.

4.2.1 METRICS DEFINITION

Insertion Formalised by Petsiuk et al. (2018), the insertion metric measures how fast the model
softmax output increases when adding the salient image pixels to a baseline image. The pixels are
of a baseline (uniform black/grey or highly blurred version of the image) are replaced by the image
ones in decreasing order of saliency map value, allowing to define the faithfulness metric as the
area under the curve of the class softmax output, observed as a function of the proportion of pixels
inserted. The higher the metric the better. A blurred version of the image is generally preferred to a
uniform color baseline, since it prevents the introduction of sharp artificial edges that might disrupt
the predictions.

Deletion The deletion metric (Petsiuk et al., 2018) measures the decrease in class softmax output
while removing pixels. The pixels are progressively removed from the image and replaced by a
baseline using the same logic as the insertion metric. The intuition behind the deletion metric is that
removing the more important pixels in the saliency map should more rapidly decrease the softmax
output of the target class prediction. The lower the metric the better.

Insertion - Deletion A good explanation map should have a good insertion map and a good dele-
tion map. A combination of the two scores is thus proposed here by computing the difference
between insertion (higher is better) and deletion (lower is better) to obtain a combined score that
should be maximized.

It is worth noting that, despite they are widely used, those metrics have some drawbacks. In partic-
ular, the insertion and deletion procedures are likely to result in outliers, i.e. in images that do not
match the distribution of natural images. To mitigate this problem, as most previous works, we have
used blurred baselines when implementing the insertion/deletion process. However, it is not suffi-
cient to ensure that a high correlation between the network prediction and the salient pixels means
that those pixels exactly correspond to the whole set of class-discriminant visual features. Hence,
those quantitative metrics should never be used as a substitute for a visual assessment of the saliency
map, which remains the golden standard when comparing saliency map generation methods.

For the above metrics, 224 steps were performed with 224 pixels inserted or removed at each step.
The used baseline for all the metrics is a blurred version of the input image using a Gaussian kernel
of size 11x11 with a sigma of 5.

4.2.2 QUANTITATIVE ASSESSMENT

Table 1 compares the faithfulness metrics for all CAM-based methods. The results related to gradi-
ent and pertubation methods are presented in Appendix, Table 4. Plots of the softmax output as a
function of the amount of inserted pixels are presented in Appendix E.2.
Among the three Poly-CAM variants, PCAM± gives the best results compared to PCAM+ and
PCAM− for all metrics on VGG16. On ResNet50, PCAM± gives a insertion metric similar
to PCAM+ and superior to PCAM−, while PCAM− gives a better deletion metric compared to
PCAM+ and PCAM±. For insertion-deletion on ResNet50, PCAM± and PCAM− are on par.
Interestingly, the insertion metrics of PCAM± is systematically better than all other CAM-based
approaches. Compared to the non-CAM methods, the PCAM± method gives similar or better inser-
tion results than perturbation or gradient methods, respectively.
In terms of deletion, PCAM± tends to perform better than most other CAM-based methods, but
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Table 1: Faithfulness metrics for CAM-based methods (see Table 4 for full version with all methods)

Method VGG16 ResNet50
Insertion Deletion Ins-Del Insertion Deletion Ins-Del

GradCAM 0.58 0.18 0.40 0.65 0.31 0.35
GradCAM++ 0.57 0.19 0.38 0.65 0.31 0.34
SmoothGradCAM++ 0.54 0.21 0.33 0.63 0.32 0.30
ScoreCAM 0.59 0.19 0.40 0.65 0.31 0.34
SSCAM 0.50 0.23 0.27 0.59 0.36 0.24
ISCAM 0.59 0.19 0.40 0.65 0.32 0.33
ZoomCAM 0.60 0.14 0.46 0.66 0.29 0.37
LayerCAM 0.58 0.14 0.44 0.65 0.30 0.35
PCAM+ (ours) 0.58 0.17 0.41 0.67 0.29 0.38
PCAM− (ours) 0.60 0.16 0.45 0.66 0.27 0.39
PCAM± (ours) 0.61 0.15 0.46 0.67 0.28 0.39

Insertion (higher is better), deletion (lower is better) and insertion-deletion (higher is better) with
VGG16 and ResNet50 on the 2012 ILSVRC validation set. Comparison of our Poly-CAM methods
with Grad-CAM (Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al., 2018), Smooth Grad-
CAM++ (Omeiza et al., 2019), Score-CAM (Wang et al., 2020b), SS-CAM (Wang et al., 2020a),
IS-CAM (Naidu et al., 2020), Zoom-CAM (Shi et al., 2021), Layer-CAM (Jiang et al., 2021).

appears to be weaker than gradient-based methods. InputXGrad and IntegratedGradient achieve at
the same time very poor results on the insertion metric and thus have a poor insertion-deletion. This
is not surprising since gradient-based methods give lots of importance to the parts of the input that
largely impact the loss and thus the output. As a consequence, the deletion metric is (trivially) good
for those methods since this metric measures the decrease of output when important parts are re-
moved from the input. The poor insertion metric however reveal that the parts that are considered
as being important by gradient methods are not sufficient to explain the network prediction. This
observation reveals the limits of the metrics when applied to dissimilar kinds of techniques.

4.3 VISUAL ASSESSMENT

This section assesses our method visually. Saliency maps were generated for all the baseline meth-
ods (see Section 4.1) on the 2000 selected images using VGG16 model. For the Poly-CAM methods,
saliency maps where also generated for each target layer. An interactive interface is provided as a
jupyter notebook in supplementary material, in addition to the source code, to allow an easy visual-
isation of any of the saliency maps generated in our experiments. Section 4.3.1 compares the three
Poly-CAM variants, as a function of the layer index and targeted class. A comparison with previ-
ous works is shown in Section 4.3.2. In Section 4.3.3, PCAM± is considered to explain VGG16
misclassifications.

4.3.1 PCAM VARIANTS

PCAM produces saliency maps at various resolutions. Figure 1 shows how Poly-CAM progressively
refines the last layer saliency map through a backward recursive strategy. More examples of inter-
mediate maps obtained along this recursive process are presented in Appendix B.1. We observe that
the structures are coarse at block5 conv3, to gain in accuracy when accounting for earlier network
layers, doubling the resolution at each step. The elements highlighted by the three variants are sim-
ilar on the majority of images. However, variations appear on some images, PCAM− highlighting
more frequently contextual elements compared to PCAM+ (and PCAM± sitting between the two).
Intuitively, this can be understood by the fact that the appearance of those contextual features in a
baseline image does not help in classifying the image correctly, while their removal from the original
image penalizes the classification.

All Poly-CAM variants are class specific as displayed in Figure 2, where the saliency maps associ-
ated to the the Barn, Alps and the Ox classes are clearly distinct, with a level of accuracy close to
segmentation. It is worth noting that PCAM+ is more specific in highlighting the part of the image
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Figure 2: Multiple classes on Poly-CAM. The different classes as correctly determined by the three
variants. We can note that PCAM− is less specific than the other methods (part of the mountain is
attributed to the barn), while PCAM+ is the most specific.

Figure 3: Visual comparison of methods (see Figure 5 in appendix for full version). The compared
methods are our three variants of Poly-CAM (PCAM+, PCAM−, PCAM±), Zoom-CAM (Shi et al.,
2021), Layer-CAM(Jiang et al., 2021), Grad-CAM (Selvaraju et al., 2017), IntegratedGradient (Sun-
dararajan et al., 2017), SmoothGrad (Smilkov et al., 2017), Occlusion (Zeiler & Fergus, 2014) and
RISE (Petsiuk et al., 2018). A description of this figure is available in Section 4.3.2

related to the class of interest. This is in line with the above observation that PCAM−, and a bit less
PCAM±, are stronger in highlighting contextual information (see more examples in Appendix C).

4.3.2 COMPARISON WITH PREVIOUS WORKS

Saliency maps have been produced for all baseline methods listed in Section 4.1. A sample of this
comparison is presented in Figure 3. For ease of view, this figure restricts to Grad-CAM, Score-
CAM, Integrated Gradient, SmoothGrad, Occlusion, RISE and the three Poly-CAM variants. A
comparison with all the methods listed in Section 4 can be found in Appendix A, Figure 5. We can
see that Poly-CAM methods accurately identify quite relevant elements in the image like a spider
net or the pipes of an organ. CAM and perturbation methods cannot achieve this level of precision,
gradient base methods highlight elements of the image that are not related to the class , while Zoom-
CAM and Layer-CAM increase the resolution but are more noisy, halfway between gradient and
more classical CAM-based methods. The spotted salamander is highlighted by all methods but the
Poly-CAM methods are the only ones to identify the spots. The oranges are identified by Poly-
CAM methods while the smile sketched on them is correctly excluded. This is in contrast with other
methods that are either too low resolution, or do not exclude the smile, while SmoothGrad seems to
give more importance to the smile than to the texture of the orange.
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(a) Bakery misclassified as strawberry

(b) Compass classified as chainsaw

Figure 4: Misclassification explanations. From right to left: original image, attention map, masked
image, and their zoomed versions. (a) Image is misclassified as strawberry. The saliency map
explains the wrong classification by highlighting a visual stimuli looking like a strawberry. (b)
Image is missclassified as chainsaw, as explained by the saliency map.

4.3.3 CLASSIFICATION FAILURE EXPLANATION

PCAM± is used to produce explanation maps for images misclassified by VGG16, to show the
ability of Poly-CAM to explain the reasons why the model made a mistake. Images with misclas-
sification were selected in the dataset. The image samples presented in Figure 4 have been chosen
so that the misclassification is not related to a similar class (e.g. a golden retriever classified as a
Labrador retriever) or to another object present in the image. As illustrated in Figure 4 looking at the
image masked by the PCAM± saliency map helps in understanding the misclassification. In Figure
4(a), we can identify the strawberry seen by the model, when using the saliency map as a mask. In
Figure 4(b), typical chainsaw features are also made visible by the overlayed saliency map.

4.4 SANITY CHECK AND ROBUSTNESS

As a sanity check, following the method in Adebayo et al. (2018), the PCAM saliency maps have
been visualized at each step of a cascading randomization of a VGG16 network, from last to first
layer. The purpose of this sanity check is to verify that the Poly-CAM methods do not work as edge
detectors, and effectively relies on the actual weights of the model to derive class-specific saliency
maps. All PCAM variants successfully passed the test, as shown in Appendix G. To evaluate the
robustness of our explanation method, a sensitivity analysis has been run, following the methodology
introduced in (Ghorbani et al., 2019) and (Yeh et al., 2019). Results are presented in Appendix
F. They reveal that PCAM has a small explanation sensitivity , similar to the ones obtained by
other CAM-based methods, and one or two orders of magnitude below the sensitivities obtained by
gradient-based and perturbation methods.

5 CONCLUSION

This paper has introduced the Poly-CAM method, to produce high resolution saliency maps without
relying on gradient backpropagation. Three variants of our Poly-CAM framework are investigated,
depending on whether the values weighting the activation maps are obtained by masking or unveiling
image pixels, or both. Our experiments reveal that the combined strategy, i.e. PCAM±, provides the
more versatile solution with state of the art performances in term of faithfulness insertion-deletion
metrics and outperforming current available methods in term of precision of visualization. Despite
our work is a valuable step towards a more explainable AI, there is still plenty of room for improve-
ment in this domain. One of the questions raised by this work is related to the way the importance of
a pixel should be quantified. Indeed, the importance of a group of pixels appears to be different when
this group is removed or when it is inserted (for example the importance of contextual information
is more important when removing it than when inserting it), which can not be properly reflected by
a single saliency map.
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REPRODUCIBILITY STATEMENT

Attention was ported on the reproductibility of this paper. The source code for Poly-CAM is
provided as supplementary material. The list of images used from the 2012 ILSVRC validation
set (Russakovsky et al., 2015) is also provided. The saliency maps used in this paper can be
generated as npz files using provided scripts, or alternatively can be downloaded from https:
//polycam.ddns.net, an anonymous website made for the blind review process. One npz file
is provided for each saliency method applied to one model. The files are named based on the model
used (”vgg16” or ”resnet50”) and the saliency method used. Inside each npz file, the saliency maps
can be retrieve in a numpy array format using the name of the image (with the ”.JPEG” extension
included) as a key. Similarly, measurement for the faithfulness metrics can either be generated as
csv files or downloaded from https://polycam.ddns.net. The csv files are named as so
’{del ,ins } {auc,details} {vgg16,resnet50} [saliency].csv’. The prefix ”del ” and ”ins ” refer to
files associated with the deletion and insertion metrics respectively, ”auc” files contains the area
under the curve for the above metrics while files named with ”details” contains the class certitude
for each step of insertion or deletion, ”vgg16” and ”resnet50” refers to the model and ”saliency” is
the name of the saliency method. Jupyter notebooks are also provided for easier handling. Practical
information can be found in the README.md file inside the supplementary zip file.
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A POLY-CAM VS PREVIOUS WORKS

Figure 5: Visual comparison of methods. The compared methods are the three Poly-CAM variants
proposed in this paper (PCAM+, PCAM−, PCAM±), Zoom-CAM (Shi et al., 2021), Layer-CAM
(Jiang et al., 2021), Grad-CAM (Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al., 2018),
Smooth Grad-CAM++ (Omeiza et al., 2019), Score-CAM (Wang et al., 2020b), SS-CAM (Wang
et al., 2020a), IS-CAM (Naidu et al., 2020), Input X Gradient (Shrikumar et al., 2016), Integrat-
edGradient (Sundararajan et al., 2017), SmoothGrad (Smilkov et al., 2017), Occlusion (Zeiler &
Fergus, 2014), RISE (Petsiuk et al., 2018).
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B ABLATION STUDY

Section B.1 presents an ablation study designed to assess the importance of combining different
layers (as proposed in equation 3) versus deriving the saliency map from a single layer (as defined
by equation 2). vs using a specific layer in isolation in section B.1. Section B.2 reveals the critical
importance of the LNorm operation in equation 1.

B.1 POLY-CAM VERSUS LAYER-SPECIFIC MAP

The interest of combining the activation maps from multiple layers, as proposed by equation 3, is
demonstrated by comparing Poly-CAM with the saliency maps derived in individual layers, using
equation 2. The three weighting factors presented in Section 3.4 are considered.

The set-up and models are the same as the ones used in Section 4.1 and the target layers
are [block1 conv2, block2 conv2, block3 conv3, block4 conv3, block5 conv3] for VGG16, and
[conv1 1, conv2 3, conv3 4, conv4 6, conv5 3] for ResNet50. A visual comparison of the PCAM
methods vs intermediate CAM is shown in Figure 7 and Figure 6. A visual comparison of the three
Poly-CAM variants for differents layers is shown in Figure 8, Figure 9 and Figure 10. Two compar-
atives graphs are provided in Figure 11 and Figure 12 for VGG16 and ResNet50 respectively. The
results are shown in Table 2 for VGG16, and in Table 3 for ResNet50.

While the Poly-CAM methods improve when integrating more layers, the CAM dramatically looses
in class-specificity when considering early layers in the networks. This highlight that combining the
layers is a better approach than using CAM on isolated early layers using the proposed wl,k scores.
This poor behavior of CAM saliency maps in early layers confirms the results provided by Shi et al.
(2021) in their ablation study.
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Figure 6: Comparison of Poly-CAM vs classical CAM-based results as a function of the layer, with
the three proposed weights in Section 3.4 on VGG16. We can observe that computing the CAM
saliency map from a single and early layer gives poor results, with maps highlighting elements all
over the input image. In contrast, Poly-CAM methods increase the resolution while keeping the
focus of saliency on class-specific relevant features.
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Figure 7: Comparison of Poly-CAM vs classical CAM-based results as a function of the layer, with
the three proposed weights in Section 3.4 on VGG16. We can observe that computing the CAM
saliency map from a single and early layer gives poor results, with maps highlighting elements all
over the input image. In contrast, Poly-CAM methods increase the resolution while keeping the
focus of saliency on class-specific relevant features.
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Figure 8: Comparison of Poly-CAM for different layers of VGG16 on a crane. The saliency map is
refined as layers are added from left to right, showing more precise structures. We can also see that
PCAM− gives more importance to the hook while PCAM+ and PCAM± give more importance on
the mest and jib of the crane. This reflects the fact that, given the metallic structure present in the
image, removing the hook most significantly impact the crane functionality of this metallic structure.
In contrast, all metallic parts are worth to be added when starting from a baseline image.

Figure 9: Comparison of Poly-CAM for different layers of VGG16 on a cardoon. The focus is
progressively more intense in the spikes of the flowers, the most important part seems to be at the
tips of the violet spikes for the three variants, which give similar results in this case.

17



Under review as a conference paper at ICLR 2022

Figure 10: Comparison of Poly-CAM for different layers of VGG16 on a remote control. We can
see the progressive focus on the buttons when we progress over the layers to produce a more precise
map. In this case, the three variants produce similar results.

Figure 11: Comparison of metrics as a function of the layer index for Poly-CAM vs CAM on isolated
layers - VGG16. Last to first layer is represented left to right. This show that using CAM saliency
maps on early layers performs poorly.
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Figure 12: Comparison of metrics as a function of the layer index for Poly-CAM vs CAM on isolated
layers - ResNet50. Last to first layer is represented left to right. This show that using CAM saliency
maps on early layers performs poorly.

Table 2: Faithfulness metrics for Poly-CAM and CAM on isolated layers - VGG16

Method VGG16
Layer Insertion Deletion Ins-Del

PCAM+

block5 conv3 0.59 0.19 0.40
block4 conv3 0.59 0.17 0.42
block3 conv3 0.58 0.16 0.42
block2 conv2 0.58 0.16 0.42
block1 conv2 0.58 0.17 0.41

PCAM−

block5 conv3 0.59 0.18 0.41
block4 conv3 0.59 0.16 0.43
block3 conv3 0.59 0.16 0.43
block2 conv2 0.60 0.16 0.44
block1 conv2 0.60 0.16 0.45

PCAM±

block5 conv3 0.60 0.18 0.42
block4 conv3 0.60 0.16 0.45
block3 conv3 0.60 0.15 0.45
block2 conv2 0.60 0.15 0.45
block1 conv2 0.61 0.15 0.46

CAM+

block5 conv3 0.59 0.19 0.40
block4 conv3 0.50 0.17 0.33
block3 conv3 0.44 0.18 0.26
block2 conv2 0.43 0.21 0.22
block1 conv2 0.44 0.27 0.17

CAM−

block5 conv3 0.59 0.18 0.41
block4 conv3 0.53 0.15 0.38
block3 conv3 0.47 0.14 0.33
block2 conv2 0.47 0.17 0.29
block1 conv2 0.49 0.22 0.27

CAM±

block5 conv3 0.60 0.18 0.42
block4 conv3 0.54 0.14 0.39
block3 conv3 0.48 0.14 0.34
block2 conv2 0.47 0.18 0.29
block1 conv2 0.49 0.23 0.26
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Table 3: Faithfulness metrics for Poly-CAM and CAM on isolated layers - ResNet50

Method ResNet50
Layer Insertion Deletion Ins-Del

PCAM+

conv5 3 0.65 0.31 0.33
conv4 6 0.65 0.31 0.33
conv3 4 0.66 0.29 0.37
conv2 3 0.67 0.29 0.38
conv1 1 0.67 0.29 0.38

PCAM−

conv5 3 0.65 0.31 0.34
conv4 6 0.65 0.31 0.34
conv3 4 0.66 0.29 0.37
conv2 3 0.66 0.28 0.38
conv1 1 0.66 0.27 0.39

PCAM±

conv5 3 0.65 0.31 0.33
conv4 6 0.65 0.31 0.33
conv3 4 0.66 0.29 0.37
conv2 3 0.67 0.28 0.39
conv1 1 0.67 0.28 0.39

CAM+

conv5 3 0.65 0.31 0.33
conv4 6 0.64 0.27 0.37
conv3 4 0.61 0.26 0.35
conv2 3 0.56 0.27 0.29
conv1 1 0.53 0.34 0.19

CAM−

conv5 3 0.65 0.31 0.34
conv4 6 0.63 0.26 0.36
conv3 4 0.58 0.24 0.34
conv2 3 0.50 0.29 0.21
conv1 1 0.54 0.33 0.21

CAM±

conv5 3 0.65 0.31 0.33
conv4 6 0.65 0.26 0.39
conv3 4 0.61 0.24 0.37
conv2 3 0.54 0.27 0.27
conv1 1 0.55 0.33 0.22

B.2 IMPORTANCE OF LNORM

The importance of including the LNorm operator in equation (3) is challenged this section. We
produced saliency maps using both the complete method and a variant where LNorm has been
ablated. Formally, the saliency map of the LNorm ablated method is

PwithoutLNormc
l =

 ReLU(
∑

k wl,k(c)Ak
l ) for l = L

ReLU
(∑

k wl,k(c)Ak
l

)
� ↑bi

(
P c

l+1,
sl+1

sl

)
for 1 ≤ l ≤ L− 1

(7)

Representative examples are presented in Figure 13 to compare the conventional and ablated PCAM,
when considering their high resolution saliency maps. We clearly observe that the ablated method
tend to ignore some of class-relevant features, and focuses on a limited set of highly contrasted
features (such as eye, mouth, or beak).
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Figure 13: Visual comparison of PCAM± with and without LNorm. Without LNorm the visualisa-
tion tends to concentrate on very focal elements of the images like eyes, mouth,... Sometime some
elements of the image that are not in object of the target class become also highlighted, like an object
behind the elephant, or the diver next to the shark.
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C MULTIPLE CLASSES COMPARISON

Figure 14: Comparison of multiple classes on an image with a stone wall, a megalith and pickets for
the three Poly-CAM variants. The three classes are similarly separated for the three methods, while
PCAM+ being the more specific

Figure 15: Comparison of multiple classes on an image with two different cats and a carton for
the three Poly-CAM variants. The three methods correctly identify the two cats as different when
using the Tabby cat and Persian cat classes, PCAM+ correctly separate the carton while PCAM−

and PCAM± fail for this class.
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D EXAMPLES ON BONE X-RAY

D.1 CAST BIAS VISUALIZATION

Figure 16: Visualization of a Class Activation Map (Zhou et al., 2016) for the pathological label
on two bone X-Ray images from MURA dataset (Rajpurkar et al., 2017). Both images are labeled
as pathological by the model, but only the left image show a bone fracture (manually annotated in
green), the right image is clean of any fracture. The model seems to rely mostly on the plaster rather
than on the absence of fracture to make a decisions. The model is a ResNet50 (He et al., 2016)
initialised on ImageNet, trained on the MURA dataset (Rajpurkar et al., 2017) for 50 epochs with
Adam optimizer, an initial learning rate of 6e-5 with a cosine Annealing scheduler without restart,
weight decay at 1e-5. Images are resized to 320x320 with random rotation up to 15° during training.
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D.2 IMPORTANCE OF BEING ACCURATE WHEN LOCALIZING SALIENCY

Figure 17: Visual comparison of Class Activation Map (Zhou et al., 2016) and PCAM± on a XRay
of a bone fracture from MURA dataset (Rajpurkar et al., 2017), for the pathological class label. The
bottom row is a zoom on the fracture area. Manual annotations for cortical irregularities and bone
fragments (the main signs of the presence of a fracture on this XRay) are shown in red and green
ovals. The Class Activation Map is not precise, it seems to include the bone fragment and the right
cortical irregularity but due to the low resolution, the highlighted area is very large and go far from
the fracture. In comparison, PCAM± highlight smaller structures and seems to identify correctly
the cortical irregularities and the bone fragment on this image, being probably a greater help for a
physician. The model is a ResNet50 (He et al., 2016) initialised on ImageNet, trained on the MURA
dataset (Rajpurkar et al., 2017) for 50 epochs with Adam optimizer, an initial learning rate of 6e-
5 with a cosine Annealing scheduler without restart, weight decay at 1e-5. Images are resized to
320x320 with random rotation up to 15° during training.
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E FAITHFULNESS METRICS: SUPPLEMENTARY DATA

E.1 TABLE

Table 4: Faithfulness metrics for all methods: CAM-based, gradient and perturbation methods

Methods VGG16 ResNet50
Insertion Deletion Ins-Del Insertion Deletion Ins-Del

IntegratedGradient 0.41 0.10 0.31 0.52 0.16 0.36
InputXGrad 0.37 0.12 0.26 0.47 0.18 0.28
SmoothGrad 0.54 0.20 0.34 0.62 0.29 0.33
RISE 0.62 0.18 0.44 0.67 0.28 0.39
Occlusion 0.62 0.23 0.39 0.66 0.33 0.33
GradCAM 0.58 0.18 0.40 0.65 0.31 0.35
GradCAM++ 0.57 0.19 0.38 0.65 0.31 0.34
SmoothGradCAM++ 0.54 0.21 0.33 0.63 0.32 0.30
ScoreCAM 0.59 0.19 0.40 0.65 0.31 0.34
SSCAM 0.50 0.23 0.27 0.59 0.36 0.24
ISCAM 0.59 0.19 0.40 0.65 0.32 0.33
ZoomCAM 0.60 0.14 0.46 0.66 0.29 0.37
LayerCAM 0.58 0.14 0.44 0.65 0.30 0.35
PCAM+ (ours) 0.58 0.17 0.41 0.67 0.29 0.38
PCAM− (ours) 0.60 0.16 0.45 0.66 0.27 0.39
PCAM± (ours) 0.61 0.15 0.46 0.67 0.28 0.39

Insertion (higher is better), deletion (lower is better) and Insertion-Deletion (higher is better) with
VGG16 and ResNet50 on the 2012 ILSVRC validation set. Comparison of our Poly-CAM methods
with gradient methods: Input X Gradient (Shrikumar et al., 2016), Integrated Gradient (Sundararajan
et al., 2017), SmoothGrad (Smilkov et al., 2017), perturbation methods: Occlusion (Zeiler & Fergus,
2014) and RISE (Petsiuk et al., 2018), and CAM methods: Grad-CAM (Selvaraju et al., 2017),
Grad-CAM++ (Chattopadhay et al., 2018), Score-CAM (Wang et al., 2020b), SS-CAM (Wang et al.,
2020a), IS-CAM (Naidu et al., 2020), Smooth Grad-CAM++ (Omeiza et al., 2019), Zoom-CAM Shi
et al. (2021) and Layer-CAM (Jiang et al., 2021). The grad methods are generally better in deletion
but worst in insertion, translation by noisy saliency maps. Perturbations methods are similar to
PCAM± in insertion, with a better result in VGG16 and lower result in ResNet50, but are less
effective in deletion for both models. PCAM± give better average results, similar to Zoom-CAM
for VGG16. For ResNet50 the results are better over all methods.

E.2 CURVES

Figure 18: Faithfulness curves for Poly-CAM methods with VGG16 on the 2012 ILSVRC validation
set. Comparison of the three variants of Poly-CAM.
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Figure 20: Faithfulness curves for CAM-based methods with VGG16 on the 2012 ILSVRC vali-
dation set. Comparison of our Poly-CAM methods with Grad-CAM (Selvaraju et al., 2017), Grad-
CAM++ (Chattopadhay et al., 2018), Score-CAM (Wang et al., 2020b), SS-CAM (Wang et al.,
2020a), IS-CAM (Naidu et al., 2020), Smooth Grad-CAM++ (Omeiza et al., 2019)

Figure 19: Faithfulness curves for CAM-based methods with VGG16 on the 2012 ILSVRC vali-
dation set. Comparison of our Poly-CAM methods with Grad-CAM (Selvaraju et al., 2017), Grad-
CAM++ (Chattopadhay et al., 2018), Score-CAM (Wang et al., 2020b), IS-CAM (Naidu et al.,
2020), Smooth Grad-CAM++ (Omeiza et al., 2019). SS-CAM (Wang et al., 2020a) was excluded in
this graph for ease of view
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Figure 21: Faithfulness curves for gradient and perturbation methods with VGG16 on the 2012
ILSVRC validation set. Comparison of our PCAM± methods with gradient methods: Input X
Gradient (Shrikumar et al., 2016), Integrated Gradient (Sundararajan et al., 2017), SmoothGrad
(Smilkov et al., 2017), and perturbation methods: Occlusion (Zeiler & Fergus, 2014) and RISE
(Petsiuk et al., 2018)

Figure 22: Faithfulness curves for Poly-CAM methods with ResNet50 on the 2012 ILSVRC valida-
tion set. Comparison of the three variants of Poly-CAM

Figure 23: Faithfulness curves for CAM-based methods with ResNet50 on the 2012 ILSVRC vali-
dation set. Comparison of our Poly-CAM methods with Grad-CAM (Selvaraju et al., 2017), Grad-
CAM++ (Chattopadhay et al., 2018), Score-CAM (Wang et al., 2020b), IS-CAM (Naidu et al.,
2020), Smooth Grad-CAM++ (Omeiza et al., 2019). SS-CAM (Wang et al., 2020a) was excluded in
this graph for ease of view

27



Under review as a conference paper at ICLR 2022

Figure 24: Faithfulness curves for CAM-based methods with ResNet50 on the 2012 ILSVRC vali-
dation set. Comparison of our Poly-CAM methods with Grad-CAM (Selvaraju et al., 2017), Grad-
CAM++ (Chattopadhay et al., 2018), Score-CAM (Wang et al., 2020b), SS-CAM (Wang et al.,
2020a), IS-CAM (Naidu et al., 2020), Smooth Grad-CAM++ (Omeiza et al., 2019)

Figure 25: Faithfulness curves for gradient and perturbation methods with ResNet50 on the 2012
ILSVRC validation set. Comparison of our PCAM± methods with gradient methods: Input X
Gradient (Shrikumar et al., 2016), Integrated Gradient (Sundararajan et al., 2017), SmoothGrad
(Smilkov et al., 2017), and perturbation methods: Occlusion (Zeiler & Fergus, 2014) and RISE
(Petsiuk et al., 2018)
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F ROBUSTNESS

Table 5: Sensitivity max table

Method Sensitivity max
VGG16 ResNet50

IntegratedGradient 0.3576 0.5299
InputXGrad 0.6132 0.7225
SmoothGrad 5.6824 7.7777
RISE 0.7864 0.7841
Occlusion 2.5176 3.4378
GradCAM 0.0625 0.0212
GradCAM++ 0.0525 0.0199
SmoothGradCAM++ 0.5451 0.1594
ScoreCAM 0.0466 0.0193
ISCAM 0.0433 0.0334
ZoomCAM 0.0987 0.0485
LayerCAM 0.0937 0.0590
PCAM+ (Ours) 0.0650 0.0262
PCAM− (Ours) 0.0837 0.0578
PCAM± (Ours) 0.0659 0.0659

Sensitivity max metric measures maximum sensitivity of an explanation using Monte Carlo
sampling-base approximation (Yeh et al., 2019). Captum implementation was used with 10 per-
turbations per input and a epsilon radius of a L-Infinity ball set to 0.02 for sampling (defaults
parameters from the implementation) (Kokhlikyan et al., 2020). The compared methods are the
three Poly-CAM variants proposed in this paper (PCAM+, PCAM−, PCAM±), Zoom-CAM (Shi
et al., 2021), Layer-CAM (Jiang et al., 2021), Grad-CAM (Selvaraju et al., 2017), Grad-CAM++
(Chattopadhay et al., 2018), Smooth Grad-CAM++ (Omeiza et al., 2019), Score-CAM (Wang et al.,
2020b), SS-CAM (Wang et al., 2020a), IS-CAM (Naidu et al., 2020), Input X Gradient (Shrikumar
et al., 2016), IntegratedGradient (Sundararajan et al., 2017), SmoothGrad (Smilkov et al., 2017),
Occlusion (Zeiler & Fergus, 2014), RISE (Petsiuk et al., 2018).
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Figure 26: Cascading randomization of VGG16. Sanity check on Poly-CAM methods (Adebayo
et al., 2018). Progression from left to right show a complete randomization of the VGG16 model,
starting by the last layer up to the first layer. The methods are sensible to model randomization,
which mean they pass this sanity check. It is interesting to note that the class specificity is lost rapidly
after randomising the first classifier layer, then more and more features are lost while randomization
progress up to the first layer of the network

Figure 27: Cascading randomization of VGG16. Sanity check on Poly-CAM methods (Adebayo
et al., 2018). Progression from left to right show a complete randomization of the VGG16 model,
starting by the last layer up to the first layer.

Figure 28: Cascading randomization of VGG16. Sanity check on Poly-CAM methods (Adebayo
et al., 2018). Progression from left to right show a complete randomization of the VGG16 model,
starting by the last layer up to the first layer.
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