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ABSTRACT

We present Self-Context Adaptation (SeCAt), a self-supervised approach that un-
locks few-shot abilities for open-ended classification with small visual language
models. Our approach imitates image captions in a self-supervised way based on
clustering a large pool of images followed by assigning semantically-unrelated
names to clusters. By doing so, we construct a training signal consisting of inter-
leaved sequences of image and pseudo-caption pairs and a query image, which we
denote as the ‘self-context’ sequence. Based on this signal the model is trained to
produce the right pseudo-caption. We demonstrate the performance and flexibility
of SeCAt on several multimodal few-shot datasets, spanning various granularities.
By using models with approximately 1B parameters we outperform the few-shot
abilities of much larger models, such as Frozen and FROMAGe. SeCAt opens
new possibilities for research and applications in open-ended few-shot learning
that otherwise requires access to large or proprietary models.

1 INTRODUCTION

Language models have demonstrated fascinating emergent abilities, particularly in-context learning
(Brown et al., 2020; Wei et al., 2022a). This represents the ability to solve few-shot learning tasks
without any gradient-based updates. Recently, such models have evolved from natural language
processing domain to visual language models (VLMs) (Tsimpoukelli et al., 2021; Alayrac et al.,
2022). Yet, such models heavily rely on incorporating very large, proprietary language backbones,
ranging from 7 up to 70 billion parameters, making them impractical for specific downstream tasks.
Interestingly, in-context learning abilities have not been yet observed in small-scale models, even
for solving open-ended image classification tasks. One reason is that these models rely profoundly
on semantic priors created during the pre-training (Wei et al., 2023b). Larger models, by contrast,
override these priors, allowing them to learn directly from input-label mappings presented in context.
Since the pre-training strategies of both small and large-scale VLMs are similar, we hypothesize that
the mechanisms for in-context learning should be present in small models as well.

We start with a pre-trained image captioning model, intending to “teach” it to capture input-label
mappings in context. To avoid any manual curation of such mappings, we define our approach
in a self-supervised manner. We perform clustering of an unlabelled image dataset, followed by
assigning semantically-unrelated names as cluster labels. The usage of such names for clusters
gives flexibility to our method because any word can be used for learning the mappings in a prompt.
Then, we construct pseudo-captions by using a template “This is a + cluster name”, which have
either random or nonsensical meanings w.r.t the image content. After getting such captions, we
construct the so-called self-context in a self-supervised manner, which contains interleaved image-
caption pairs as context and a query image. We adapt the pre-trained model with mini-batches
of these self-contexts, where the model is optimized to generate the caption for the query image
given the context sequence. This defines our lightweight procedure, which we name Self-Context
Adaptation (SeCAt), and is illustrated in Figure 1.

1Shared first authorship. The authors can change the order for their purposes. 2Shared last-authorship; order
random. Corresponding authors: {m.m.derakhshani, i.najdenkoska}@uva.nl
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Figure 1: The SeCAt method consists of four steps: First, the image embeddings are extracted with
a vision encoder, followed by deep image clustering. Next is the selection of clusters and assigning
arbitrary names to them. Then, the assigned names are used to imitate image captions for each image
in the selected cluster. The last step is the self-context adaptation of the small language model, by
using the previously generated image-caption pairs.

At inference time, we keep the vision and language backbones entirely frozen and we prompt the
model with interleaved contexts to perform open-ended image classification. For this, we employ
the multimodal few-shot datasets proposed in (Tsimpoukelli et al., 2021). Furthermore, to test the
ability of the model to deal with different levels of task granularity, we also evaluate our approach on
semantically-easy and hard few-shot tasks based on five common vision datasets. With this, we show
that the flexibility of constructing self-contexts allows us to control the difficulty and granularity of
the few-shot tasks. Last but not least, we show that SeCAt can turn even small visual language
models of the order of 1 billion parameters into strong in-context learners, without any supervised
fine-tuning.

To summarize, we contribute in three major aspects: Conceptual: We present an efficient framework
for unlocking in-context learning for open-ended few-shot learning. Methodological: We define a
self-supervised adaptation procedure to learn an in-context template for small VLMs. Empirical:
We conduct extensive experiments on several multimodal few-shot datasets, ranging from coarse
to fine-grained tasks, and show that we achieve better performance compared to the larger visual-
language counterparts.

2 METHODOLOGY

To enable open-ended few-shot learning via in-context mechanisms, we propose a self-supervised
adaptation technique that mimics the final in-context learning objective but does not rely on any
labeled or captioned data.

At a high level, our method clusters a large pool of images to identify highly coherent groups and
assigns them names that are meant to not necessarily fit or describe the content. This noisy set
of images and names is then used for adapting the model in a manner that simulates in-context
learning. Our method allows for controlling the context difficulty by sampling items from distant or
close clusters and by doing so it allows the final model to work well even for fine-grained few-shot
learning. In the next sections, we will first formally state the problem, then describe the procedure
for generating the self-supervised image-caption pairs, then we will outline the construction of self-
context training samples and how we vary their difficulty, as well as the final training procedure.

Problem statement. Open-ended few-shot learning aims to generate the correct caption tq cor-
responding to a query image xq , given pairs of images xs and captions ts in a support-set s ∈ S ,
handled by a VLM denoted as f :

f({(xs, ts)}s∈S , xq) = tq. (1)

Following the standard few-shot learning paradigm, for the model to “learn” from the context, the
support-set S contains a similar image as the query. In the case of utilizing an LM as a decoder, the
task is “open-ended”, i.e., tq must be obtained via text generation, and not via classification into a
fixed set of labels. Naturally, we can train a VLM with this objective, be it that this requires access
to a set of paired image-text data, as we can see from Eq. 1. Instead of obtaining supervised sets

2



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

of image-caption pairs, we propose to mimic this data using self-supervision and use the generated
image-text pairs to finetune the VLM.

Model overview. The architecture that we use is based on image captioning encoder-decoder mod-
els. Note that in these models, such as ClipCap (Mokady et al., 2021), f is the model that first em-
beds an image with a vision encoder Ψ and then maps it into the representation space of a language
model (LM), i.e., f=LM(Ψ(x)). To perform this mapping, it uses a mapping function implemented
as a simple multi-layer perceptron, which outputs the visual embeddings as a visual prefix for the
language model.

2.1 GENERATING IMAGE-PSEUDO CAPTION PAIRS

Imitating image labels. Let h : x → c define the human annotation process of classifying an
image x in a dataset X into class c ∈ C of a classification system C. We replace h by a composition
of two unsupervised functions, h ≈ c ⊙m. The first component c, first clusters the dataset X in a
self-supervised manner. For this, we utilize the visual embeddings obtained by a visual encoder Ψ
and cluster the whole dataset, defined as:

c(x) = K-means[{Ψ(x′)}x′∈X ](x), (2)

where K is the number of clusters and the resulting output of c indicates the cluster ID for a given
image. Next, we assign each ID to an arbitrary label to obtain the paired data.

Imitating image captions. To arrive at pairings of captions to a given image cluster c, we utilize
a vocabulary of words w ∈ V (we show that a list of random names suffices for this). Next, we
utilize the VLM f for the cluster name assignment, i.e. the matching step. To match the words
with clusters, we embed with Ψ one exemplar image per cluster, namely the cluster centroid, and
embed the vocabulary words into their language model token-space using the tokenizer-embedding
function τ . Note that now, both Ψ(x) and τ(w) are in the same embedding space, so we can simply
construct a similarity matrix S ∈ RK×|V| by computing their cosine-similarities:

S = sim(Ψ(x), τ(w)). (3)

Finally, we match each image cluster with a word embedding by using the Kuhn-Munkres (Hun-
garian) algorithm (Kuhn, 1955) to minimize the overall cost. The algorithm takes this output and
yields the assigned word given a cluster ID. Afterward, the captions are imitated by converting these
cluster names into “This is a + cluster name” captions (note that other templates are also possible)
and are paired with all images belonging to the particular cluster.

2.2 SELF-CONTEXT CONSTRUCTION

To construct an interleaved sequence of self-context samples, we randomly pick images according
to their cluster membership, during the mini-batch construction. By choosing the level of similarity
between two or more clusters, from which the support set is constructed, we can control the difficulty
of the classification problem. For a given cluster k, we then sample items (xi, ti) s.t. c(xi)=k,
which represent an image-caption pair belonging to the self-context, illustrated in the Figure A.1.

We also vary the difficulty of the few-shot tasks depending on the proximity between cluster cen-
troids. This means that if two clusters are far away from each other, they create an easy self-context.
If they are close they create a hard self-context since the image samples from closer clusters have
potentially more visual similarities between each other, rather than distant clusters.

2.3 MIXED SELF-CONTEXT LEARNING & INFERENCE

Given the image-caption mappings (xs, ts) as a self-context, and the query image xq , the learning
process is performed by optimizing the cross-entropy loss, while generating the query caption tq:

L = H(f({(xs, ts)}s∈S′ , xq)|tq). (4)

Note that the loss function uses the constructed self-context as a single data point. To encourage
generalization to different context lengths with one model we perform mixed self-context learning,
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Real-Name miniImageNet Open-Ended miniImageNet

2-way 5-way 2-way 5-way

Methods #params 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ClipCap (Mokady et al., 2021) 1.3B 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.01
Frozen (Tsimpoukelli et al., 2021) 7B 33.7 66.0 14.5 33.8 53.4 58.9 51.1 58.5
FROMAGe (Koh et al., 2023) 6.7B 31.0 50.4 17.5 30.7 27.8 49.8 16.3 19.5
SeCAt (Ours) 1.3B 85.7 83.2 68.6 58.0 87.4 85.6 68.0 41.9

OpenFlamingo (Awadalla et al., 2023) 9B 62.0 95.9 45.3 91.2 45.2 63.4 15.0 56.9

Table 1: Baselines comparison on 2- and 5-way Real-Name miniImageNet and Open-Ended mini-
ImageNet in accuracy(%). OpenFlamingo (Awadalla et al., 2023) is considered an upper-bound.

Easy split Hard split

2-way 5-way 2-way 5-way

Methods #params 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ClipCap (Mokady et al., 2021) 1.3B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FROMAGe (Koh et al., 2023) 6.7B 30.0 50.1 13.8 28.3 28.6 46.6 10.0 23.5
SeCAt (Ours) 1.3B 81.3 65.2 70.5 49.7 63.8 52.6 34.7 26.2

OpenFlamingo (Awadalla et al., 2023) 9B 53.3 98.9 37.8 98.8 39.9 90.3 25.9 78.0

Table 2: Generalization from easy-to-hard on the 2- and 5-way Easy vs Hard dataset splits in accu-
racy(%). Note that OpenFlamingo (Awadalla et al., 2023) is considered an upper-bound.

where we randomly vary the context length within a batch. This means that we change the number of
samples in the context by taking into account 2-way and j-shot tasks alternately, where j ∈ {1, 3, 5}.

At inference time, we keep the full model entirely frozen, and we test its ability to digest new in-
context sequences. We consider previously unseen few-shot tasks, which also have a support set as
a context, and a query sample to evaluate the performance. The model completes the sentence for
each query sample in an autoregressive manner. To obtain the final output, we use beam-search to
sample from the language model given the sequence of context samples.

3 EXPERIMENTS

3.1 RESULTS & DISCUSSION

Baseline comparison. In multimodal few-shot learning scenarios, the model needs to learn the
connection between visual concepts and words by observing only a few demonstrations. The ex-
periments in Table 1, measure to what extent our SeCAt approach can perform such binding with
LMs of 1.3B parameters. Our approach outperforms models that are up to 5× larger, such as Frozen
(Tsimpoukelli et al., 2021) and FROMAGe (Koh et al., 2023). This shows that small models can
indeed be adapted to be good few-shot learners for few-shot learning in a fast and efficient man-
ner. We view OpenFlamingo (Awadalla et al., 2023) as an upper-bound of our approach since it
employs 5× more parameters and is pre-trained on web-scraped interleaved sequences of images
and text, which directly helps in-context learning abilities. While OpenFlamingo employs 5× more
parameters and trains on extensive datasets such as LAION2B (Schuhmann et al., 2022) (with 2B
image-text pairs) and Multi-modal C4 (Zhu et al., 2023) (with 104M combined image-text samples),
our method bypasses such extensive pre-training by leveraging our unique self-supervised approach.

Generalization from easy-to-hard. The flexibility of our approach, to select clusters with a par-
ticular distance and label them in a self-supervised manner, allows us to handle different levels of
granularity of few-shot tasks. In Table 2, we demonstrate the performance on easy and hard splits,
which are illustrated in Figure 2 and Section A.2. As expected, it is easier for the model to adjust to
the easy-split settings, compared to the hard-split. Similarly as in Table 1, our approach outperforms
FROMAGe (Koh et al., 2023), across all settings, even though it is using a notably smaller LM.

Qualitative analysis. In Figure 3, we show an example of a 2-way 1-shot task, with an interleaved
image-caption sequence and a query image. It can be seen that SeCAt successfully binds visual

4



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Figure 2: Examples of the restructured datasets to obtain the easy and hard few-shot tasks. The
top row illustrates a 5-way 1-shot task from the easy split, with a shot per dataset. The bottom row
depicts a 5-way 1-shot task from the hard split, where all shots are selected from one dataset.

Figure 3: SeCAT model at inference time: Comparison to two other baselines, ClipCap and FRO-
MAGe, on a 2-way 1-shot tasks from Real-Names miniImageNet dataset.

concepts in the image to the relevant words, and can produce the expected output. However, Clip-
Cap generates an incorrect caption, not related to the query image, showing the lack of in-context
learning ability in small VLMs without SeCAt. Interestingly, FROMAGe can capture the concept
of school bus or bird as predictions, but it is also excessively verbose. This essentially means that it
is leveraging its semantic priors from the image captioning pre-training and not entirely adapting to
the context sequence. We provide additional qualitative comparisons in the appendix.

4 CONCLUSION

We present Self-Context Adaptation (SeCAt), a self-supervised learning method that enhances small
visual language models for open-ended few-shot learning by clustering unlabelled images and as-
signing them unrelated names to mimic image captions. It generates sequences of self-contexts for
the language model, enabling it to recognize patterns and dependencies within the context. Our
experiments confirm that SeCAt is efficient in data and training resources, making advanced multi-
modal few-shot learning more accessible.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, 2020. 11

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In Conference on Computer Vision and Pattern
Recognition, 2010. 11

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International Conference on Machine Learning, 2016. 10

Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep representations
and image clusters. In Conference on Computer Vision and Pattern Recognition, 2016. 10

Kevin Yang, Nanyun Peng, Yuandong Tian, and Dan Klein. Re3: Generating longer stories with
recursive reprompting and revision. In Conference on Empirical Methods in Natural Language
Processing, 2022. 10

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Young-
jae Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal c4: An open, billion-
scale corpus of images interleaved with text. arXiv preprint arXiv:2304.06939, 2023. 4

9



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

A APPENDIX

A.1 RELATED WORK

Few-shot Learning in Language Models. Large language models have garnered substantial at-
tention within the NLP community (Brown et al., 2020; Chan et al., 2022; Chowdhery et al., 2022;
Dai et al., 2019; Tan et al., 2020; Yang et al., 2022; Wei et al., 2023a) due to their capacity to gener-
ate extensive text as well as their remarkable in-context capabilities. Achieving this, often requires
scaling transformer-based models (Rae et al., 2021; Smith et al., 2022; Chowdhery et al., 2022), aug-
menting pre-training data (Hoffmann et al., 2022), and advanced loss functions (Wei et al., 2021; Tay
et al., 2022). The in-context learning paradigm was first introduced by GPT3 (Brown et al., 2020)
as a training-free learning framework for few-shot learning. Numerous works have further explored
this ability and showcased that it makes it easier to incorporate outside knowledge into language
models by changing the context and templates (Liu et al., 2021; Wei et al., 2022b; Lu et al., 2021).
Yet, the emergent in-context learning ability comes with the cost of a huge number of parameters
and a large-scale pre-training dataset. For instance, GPT3 consists of 175B parameters and is trained
on approximately 45TB of text data. Another recent work, introduced symbolic tuning Wei et al.
(2023a) by also using semantically-unrelated words. However, they only focus on language-based
tasks. Different from these works, we propose an algorithm that unlocks in-context learning in small
visual language models for open-ended few-shot learning.

Multimodal Few-shot Learning. Recent advancements in vision and language have arisen with
the emergence of large language models (Radford et al., 2021; Ramesh et al., 2021; Saharia et al.,
2022; Alayrac et al., 2022; Jia et al., 2021; Hao et al., 2022; Najdenkoska et al., 2023; Wang et al.,
2022). We highlight Flamingo (Alayrac et al., 2022), FROMAGe (Koh et al., 2023), and Clip-
Cap (Mokady et al., 2021) as notable examples. In these works, the in-context ability emerges by
scaling up the number of transformer parameters, which has previously proven effective in various
NLP tasks. Additionally, several methods, including Flamingo, FROMAGe, MetaLM (Hao et al.,
2022), and KOSMOS-1 (Huang et al., 2023), incorporate interleaved sequences of images and cap-
tions during training. This approach simulates few-shot learning scenarios, enabling large language
models to capture patterns among multiple image-caption pairs within a single sequence, thereby
facilitating few-shot learning. It is important to note that ClipCap (Mokady et al., 2021) does not
exhibit the in-context learning mechanism as it is not trained on interleaved images and captions.
Similar to FROMAGe and Flamingo, our method benefits from interleaved sequences of images and
text during training, while we differ in language model size, pre-training dataset size, and the use of
distinct loss functions during the adaptation phase. Despite our focus on small-scale visual language
models, we still enable in-context learning capabilities for multimodal few-shot learning problems.

Unsupervised Pseudo-label Generation. Generating pseudo-labels by clustering has proven ef-
fective in unsupervised representation learning (Asano et al., 2020b; Caron et al., 2018; Ji et al.,
2019; Van Gansbeke et al., 2020; Xie et al., 2016; Yang et al., 2016). This approach involves using
pseudo labels in the visual domain for tasks such as image representation learning (Caron et al.,
2018; Bojanowski & Joulin, 2017; Noroozi et al., 2018), image segmentation (Melas-Kyriazi et al.,
2022), and video understanding (Asano et al., 2020a; Gavrilyuk et al., 2021). A self-labeling method
is proposed in Asano et al. (2020b), driven by k-means and repurposed to learn a shared set of labels
between audio and text modalities. Inspired by this work, we propose a self-supervised approach
using k-means clustering to assign semantically-unrelated words as labels to the visual clusters and
then imitate interleaved sequences of image-caption pairs based on these labels.

A.2 EXPERIMENTAL SETUP

Datasets. To pre-train an image captioning model and to perform the clustering part, we use the
Conceptual Captions (CC3M) dataset (Sharma et al., 2018), which consists of 3M pairs of images
and captions, web-scrapped and post-processed. At the inference stage, we employ multimodal
few-shot datasets (Tsimpoukelli et al., 2021), namely Real-Names miniImageNet and Open-Ended
miniImageNet, each one with 1, 3 and 5 shots, with 2 and 5-way tasks. The evaluation setting is
similar to MetaICL (Min et al., 2022) which also investigates in-context abilities but only for text
classification.
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Figure A.1: The self-context is represented as a sequence of interleaved pairs of images and pseudo-
captions. It uses special tokens such as <IMG> and <CAP> to denote the position of the elements
in the sequence and is used as input to the language model to complete the sentence for the query
image. Note that this is an example of a 2-way 1-shot self-context sequence.

Additionally, to test the ability of our approach to generalize across fine-grained and coarse-grained
settings, we create semantically easy and hard datasets. In particular, we reorganize existing
datasets, namely OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), CUBS-200 (Wah et al., 2011) and SUN397 (Xiao et al., 2010).
For the semantically-easy split, given an n-ways k-shots scenario, we randomly choose n datasets
from the pool of these five datasets. Subsequently, from each selected dataset, we randomly select a
single class to constitute the n-ways setting. For the semantically-hard split, we randomly select one
dataset, followed by the selection of n classes from that chosen dataset. Finally, from the chosen
classes, we randomly select k-image samples. We provide more details about the construction of the
easy and hard-splits in the appendix. The splits will be released to foster further study.

Implementation details. The language backbone of our model is based on the GPT-family of mod-
els, namely GPT-Neo model (Gao et al., 2020), and the smaller versions, GPT2-small and GPT2-
medium. We utilize the vision encoder from the pre-trained CLIP ViT-B/32 model (Radford et al.,
2021) for our model’s visual backbone. To ensure that the model correctly pays attention to the
image and caption during training, we add special tokens <IMG> and <CAP> in the prompt before
the image and caption respectively (see Figure A.1). We have found this to be particularly useful for
in-context learning because it helps the language model to focus on attending to the correct image
and text within the interleaved prompt sequence. To implement the deep clustering stage, we use the
Faiss library (Johnson et al., 2019), particularly the k-means algorithm with 10 iterations. The full
implementation is in PyTorch and HuggingFace (Wolf et al., 2020) and will be publicly released.
We provide additional details on the implementation and hyperparameters in the appendix.

Training details. Our models are trained using mixed-precision with Bfloat16 (Abadi et al., 2016).
In the image captioning pre-training stage, we use a batch size of 160 over 370,000 iterations and
3 A6000 GPUs. Furthermore, we use the AdamW optimizer (Kingma & Ba, 2016) with a learning
rate of 2e-5 and a warmup of 5000 steps. We set the visual prefix length to 5 and the word embed-
ding dimension to 2048. During the self-context adaptation stage, we only fine-tune the language
backbone with a small learning rate of 5e-6 for 50 epochs and keep all other components fixed.

Evaluation criteria. We evaluate our approach in an open-ended fashion, by measuring the accu-
racy(%) of generating the words which match the ground-truth.

A.3 ABLATIONS

In the next sections, we ablate our method on the Real-Name miniImageNet dataset using 2-way
and 5-ways in both 1-shot and 5-shot settings.

Effect of self-context difficulty. Our method is sufficiently flexible to vary the difficulty of the self-
context construction. We can use cluster centroids, in close proximity or further apart from each
other, to influence the semantics of the chosen visual concepts within the self-context. We consider
three different settings by computing L2 distances between all centroids. The hard setting takes the
most similar 5%, the easy setting takes the least similar 5%, and the varying setting shuffles the
clusters from both the hard and easy settings. As can be observed from Table A.1a, the hard setting
performs considerably worse than the other two, as the model deals with images clustered closely
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(a) Effect of self-context difficulty.

2-way 5-way
difficulty 1-shot 5-shot 1-shot 5-shot

hard 32.6 39.4 14.9 8.6
easy 82.2 81.8 52.5 29.8

varying 85.7 83.2 68.6 58.0

(b) Influence of semantically-unrelated names.

2-way 5-way
vocabulary 1-shot 5-shot 1-shot 5-shot

nonsense 77.2 69.7 55.7 10.3
numbers 81.6 54.8 49.4 24.9

nouns 85.7 83.2 68.6 58.0

(c) Matching names to cluster centroids.

2-way 5-way
matching 1-shot 5-shot 1-shot 5-shot

random 81.8 83.2 68.7 40.7
cost-based 85.7 83.2 68.6 58.0

(d) Benefit of mixed self-context training.

2-way 5-way
setting 1-shot 5-shot 1-shot 5-shot

single-task 73.3 25.1 35.2 3.6
mixed-task 85.7 83.2 68.6 58.0

(e) Impact of language model size.

2-way 5-way
LM 1-shot 5-shot 1-shot 5-shot

GPT2small 26.9 54.3 37.5 33.1
GPT2medium 56.2 64.2 42.4 41.7
GPT-Neo 85.7 83.2 68.6 58.0

(f) Generalization on different prompt templates.

2-way 5-way
Template 1-shot 5-shot 1-shot 5-shot

“A photo of a” 73.0 70.3 45.0 43.2
“On this
picture
there is a”

72.5 67.8 58.2 39.2

“This is a” 85.7 83.2 85.7 58.0

Table A.1: Ablations. We ablate the key components of our method, namely (a) Effect of self-context
difficulty, (b) Influence of semantically-unrelated names, (c) Matching names to cluster centroids,
(d) Benefit of mixed self-context training, (e) Impact of language model size, and (f) Generalization
on different prompt templates. Evaluations are done on the 2- and 5-way Real-Name miniImageNet
with the best model from Table 1.

together with limited variability. For both the easy and varying settings the performance increases.
We conclude that our approach benefits from varying the proximity between cluster centroids.

Influence of semantically-unrelated names. For the selection of the semantically-unrelated names
used for labeling the clusters and then generating the pseudo-captions of images, we consider ei-
ther nonsense words, random numbers, or random nouns. The nonsense words are taken using a
nonsense-word generator1, similar to Tsimpoukelli et al. (2021). The random numbers and nouns
are generated in a similar manner and are semantically-unrelated to the clustered images. Table A.1b
shows the performance per vocabulary choice, across different few-shot settings. The random nouns
yield better performance than the random numbers and nonsense names. Even though the cluster
names are unrelated to the images in the cluster, the model still achieves satisfactory performance.
This suggests that any word embedding is good enough for the model to learn since it views them
as mere symbols helpful for learning a self-context pattern.

Matching names to cluster centroids. The impact of the name-matching techniques is explored
in Table A.1c, where we compare random cluster-name matching and cost-based matching. In
the random cluster-name matching variant, the name embeddings are randomly assigned to cluster
centroids. The cost-based matching variant utilizes the Kuhn-Munkres (Hungarian) algorithm Kuhn
(1955), which aims to find the minimal distance between cluster centroids and name embeddings.
The cost-based matching approach yields better performance, which means that SeCAt benefits from
a more informed manner of cluster naming.

Benefit of mixed self-context training. To evaluate the influence of varying self-context length, we
consider two adaptation strategies. The first strategy, denoted as single-task, is simply using a fixed
number of samples in the self-context across all mini-batches, where we consider only 2-way 1-shot
tasks. The second strategy is the mixed self-context training, where we randomly vary the number

1https://www.soybomb.com/tricks/words/
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Figure A.2: Influence of varying numbers of clusters for generating the pairs of images and pseudo-
captions. The accuracy increases up to 100 clusters.

of samples by using 2-way and j-shot tasks, where j ∈ {1, 3, 5}. Comparing the two strategies
in Table A.1d reveals that mixed self-context training consistently outperforms the single one by a
considerable margin, especially when the number of shots increases. This is mainly attributed to
the fact that the mixed training paradigm lets the model observe different lengths of the self-context
sequences.

Impact of language model size. To investigate the impact of the language model, we replace the
GPT-Neo backbone (1.3B parameters) with its smaller alternatives GPT2-medium (355M parame-
ters) and GPT2-small (124M parameters) and report results in Table A.1e. Naturally, the best per-
formance is obtained with the largest variant, but the two smaller alternatives also show satisfying
results, especially if we take into account the considerable difference in size.

We looked at the training times required for each variant of the language backbone. The best ver-
sion of our approach using GPT-Neo can be trained in just 14 hours, unlike larger variants which
require more than a day of training (e.g. FROMAGe (Koh et al., 2023)). Moreover, training the
smaller variants is even faster: 6 hours for GPT2-small and 11 hours for GPT2-medium. This time
efficiency is crucial when rapid model adaptation is necessary or when access to large models and
computational resources is limited.

Generalization on different prompt templates. We adapt the model using the common prompt
”This is a + label” and report results based on it. To demonstrate the robustness of our model to
other prompts at inference time, we introduce alternative prompt templates. Particularly, we use:
“A photo of a + label” and “On this picture, there is a + label”. The performance, as presented in
Table A.1f, affirms our method’s strong generalization across varied prompt templates, negating the
possibility of overfitting to a specific prompt.

Influence of the varying number of clusters. The number of clusters can be tuned depending on
the fine-graininess of the problem at hand. We evaluate our best setting by using different numbers of
k clusters, where k ∈ {25, 50, 75, 100, 200}. As can be seen in Figure A.2, we observe a consistent
increase in the performance of up to 100 clusters. We assume that, as the miniImageNet evaluation
datasets are not fine-grained enough, the performance slightly starts degrading for k = 200.

Limitations. Our work aims to unlock in-context learning in small visual language models for open-
ended few-shot learning. It achieves the necessary capacities to some degree, but it can benefit from
extending the evaluation on more complicated tasks which can give a clearer picture of possible
applications. However, it is already able to achieve good performance on open-ended few-shot
learning, which can be easily extended to other open-ended vision-language tasks, such as image
captioning and visual question answering as future work.
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A.4 ADDITIONAL QUALITATIVE EVALUATION

In the next section, we provide additional qualitative comparisons between SeCAt-trained model and
two other baselines, namely ClipCap and FROMAGe. We show a few successful cases in Figure
A.3 and also failure cases in Figure A.4.

ClipCap: urn.

FROMAGe: vase made of a ceramic pot with a lid.

SeCAt (Ours): vase.

This is a 
school bus.

This is a 
vase. This is a <?>

Context Query

This is a 
trifle.

This is a 
black-footed ferret. This is a <?>

ClipCap: ungalotary animal.
 
FROMAGe: This is a picture of a malamute.

SeCAt (Ours): trifle.

This is a 
lion.

This is a 
malamute. This is a <?>

ClipCap: usee for you.
 
FROMAGe: lion.

SeCAt (Ours): malamute.

This is a 
electric guitar.

This is a
trifle. This is a <?>

ClipCap: ace of electric guitar.
 
FROMAGe: dessert that is a combination of fruits and nuts and

SeCAt (Ours): electric guitar.

This is a 
theater curtain.

This is a
nematode. This is a <?>

ClipCap: urn
 
FROMAGe: picture of a nematode 

SeCAt (Ours): theater curtain.

This is a 
bookshop.

This is a
hourglass. This is a <?>

ClipCap: ix - tiered and up.
 
FROMAGe: a bookshop in the city.

SeCAt (Ours): bookshop.

Figure A.3: Qualitative comparison between SeCAt-trained model and two other baselines, namely
ClipCap and FROMAGe, on a 2-way 1-shot task from Real-Names miniImageNet, showing suc-
cessful cases of SeCAt.
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ClipCap: urn.

FROMAGe: crate that I found at the dumpster

SeCAt (Ours): oshop

This is a 
african hunting 

dog.

This is a 
crate. This is a <?>

Context Query

This is a 
african hunting 

dog.

This is a 
bookshop. This is a <?>

ClipCap: urn looking at the same spot.
 
FROMAGe: bookshop.

SeCAt (Ours): african hunting.

ClipCap: .

FROMAGe: mixing bowl.

SeCAt (Ours): ing bowl

This is a 
bookshop.

This is a 
mixing bowl. This is a <?>

This is a 
golden retriever.

This is a 
crate. This is a <?>

ClipCap: so sweet.
 
FROMAGe: golden retriever.

SeCAt (Ours): amute.

ClipCap: ai to travel in aircraft model.

FROMAGe: This is a nematode.

SeCAt (Ours): hemor black this is a hemor black.

This is a 
nematode.

This is a 
black-footed 

ferret.
This is a <?>

This is a 
dalmatian.

This is a 
crate. This is a <?>

ClipCap: urnum.
 
FROMAGe: crate.

SeCAt (Ours): dalmat this is a dalmat.

Figure A.4: Qualitative comparison between SeCAt-trained model and two other baselines, namely
ClipCap and FROMAGe, on a 2-way 1-shot task from Real-Names miniImageNet, showing failure
cases of SeCAt.
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