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ABSTRACT

Pruning often trades accuracy for efficiency, and sparse training is hard to do from
scratch without performance loss. We introduce a simple, neuro-inspired sparse
training (NIST) algorithm that simultaneously sparsifies, stabilizes, and improves
neural networks without introducing computational overhead or complex opti-
mizers. Our method achieves high sparsity while surprisingly enhancing model
performance, accelerating convergence, and improving training stability across
diverse architectures, and plugs directly into standard training pipelines. Empir-
ically, it strengthens MLP-heavy architectures (e.g., VGG, AlexNet) by aggres-
sively sparsifying them (>90%) and at the same time, improving test accuracy by
8-10%. Additionally, NIST accelerates convergence and reduces variance in effi-
cient CNNs such as MobileNet. It also enables transformer training directly from
50% initial sparsity and up to 70% final sparsity with negligible performance loss,
while speeding up model convergence in the first 30 epochs. Our comprehen-
sive experiments, ablations, and comparisons against state-of-the-art pruning and
sparse-training methods reveal that these gains stem not from reduced parame-
ter counts alone, but from improved optimization dynamics and more effective
parameter reallocation. This study reframes sparse training as a performance-
enhancing tool rather than a compromise.

1 INTRODUCTION

Biological nervous systems operate with sparse, highly structured connectivity that yields efficient,
robust computation under tight resource constraints Hole & Ahmad (2021); Sprenger (2008); Petan-
jek et al. (2023); Stiles & Jernigan (2010). By contrast, state-of-the-art artificial neural networks
rely on dense, over-parameterized layers that drive substantial compute and memory costs. In this
work, we ask whether the efficiency of brain-inspired sparsity can be reconciled with the expres-
sivity of modern deep models: can simple, architecture-level sparse ANN connectivity deliver large
reductions in computational cost while preserving—or even improving—learning performance?

During early brain development, neurons form many provisional branches and synapses, and
experience-driven mechanisms then remove redundant connections to stabilize function and im-
prove efficiency (Benson, 2020; Gyllenhammer et al., 2022; Holt & Mikati, 2011; Kostović et al.,
2019; Lohmann & Kessels, 2014; Tierney & Nelson, 2009). Such motif-proliferation followed by
selective refinement—inspires our approach of structurally initializing wide connectivity and then
applying a targeted, single-shot sparsification to obtain compact, stable models.

Large models and dense layers are a primary source of the compute and memory burden in deep
learning Li et al. (2023); Cheng et al. (2024); Liebenwein et al. (2021). A variety of sparsifica-
tion techniques have been developed to reduce the computational burden of neural network training
Cheng et al. (2024); Hoefler et al. (2021). Prune-at-init (PaI) methods identify compact subnetworks
using saliency or gradient signals before training, while dynamic sparse training (DST) alternates
pruning and regrowth during optimization Nowak et al. (2024); Hoefler et al. (2021); Jiao et al.
(2022). Other dynamic sparsification or pruning approaches often rely on heuristic mask updates or
require additional passes/optimizer modifications to tune mask and weight separately Ji et al. (2024).
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Although effective, these methods often introduce complexity through additional computations,
topology updates, or hyperparameters, making large-scale deployment challenging Jiao et al. (2022);
Hoefler et al. (2021). This has led to interest in sparse-from-scratch methods that maintain the ben-
efits of sparsity, efficiency, regularization, and robustness, while being simple, reproducible, and
easily integrated into standard training pipelines with minimal overhead.

We propose Neurogenesis-Inspired Sparse Training (NIST), a structurally simple and zero-cost
sparse training pipeline for fully connected layers. Each layer receives a small integer hyperpa-
rameter, the neuroseed factor, which deterministically specifies the number of outgoing synapses
per input feature. We then apply a fixed, locally structured binary mask at initialization (e.g.,
half the weights pruned), train on the masked network, and — optionally — perform a single-shot
magnitude-based pruning step mid-training to further sparsify. The updated mask is then kept fixed
for the remainder of training. Crucially, NIST requires no saliency scoring, no iterative regrowth,
and no specialized optimizer state; it adds no measurable computational overhead beyond masked
forward/backward arithmetic.

The method developed here is grounded in the topographic sparse mapping framework proposed by
Kamelian Rad et al. (2025), where sparsity was introduced only at the input layer. In contrast, the
present work extends this structural principle to all layers, producing a fully deterministic, data-
free sparse connectivity pattern. This generalization transforms the earlier single-layer mechanism
into a unified pruning strategy that governs the entire network architecture.

We briefly summarize the distinctions of our approach and defer full comparison to Section 2 and
Section A.1. In short, NIST is a zero-cost, structural, sparse training recipe: it uses deterministic bio-
inspired masks at initialization, requires at most one magnitude-based pruning step, and thereafter
trains with a fixed sparse topology using standard optimizers. Empirically, this simple pipeline
not only reduces parameter and floating point operations (FLOPs) counts substantially, but also
yields improved convergence speed and reduced run-to-run variability in many settings; complete
comparisons and ablations are given in Section A.4 and Section 4.

The scope of this study goes beyond proposing another sparse-training recipe. Through systematic
experiments on CNNs and transformers (e.g., LeNet-5, VGG, AlexNet, MobileNet, DeiT Small), we
show that simple, zero-cost structural initializations combined with a single-shot magnitude prune
can accelerate convergence, reduce run-to-run variability, and in some cases improve final accuracy
relative to dense baselines. Equally important, we introduce a novel design maneuver—replacing a
single dense head with multiple sparse heads—to reallocate a fixed parameter budget more effec-
tively; we show that this architectural reallocation consistently improves stability and generalization
without adding computational overhead. In short, our contribution is both empirical and conceptual:
a practical, easy-to-adopt sparsification recipe plus evidence that sparsity can act as an inductive bias
and design primitive, not merely as a savings mechanism.

Notably, on DeiT Small trained from scratch on ImageNet-100, initializing at 50% sparsity and
applying a one-shot prune to 60% yields a drop of < 0.3% top-1 accuracy compared to the dense
model while reducing parameter count and FLOPs substantially. On smaller CNN benchmarks
(e.g., LeNet-5 on CIFAR-10), aggressive sparsification (up to 99.5%) preserves or even improves
validation accuracy and noticeably reduces overfitting. Across VGG and AlexNet experiments, we
demonstrate several orders-of-magnitude reductions in active weights and FLOPs with substantial
accuracy gains. Finally, we show that sparse architectural reallocation (e.g., replacing a dense head
with multi-layer sparse heads) can further improve stability and accuracy under tight parameter
budgets.

In summary, NIST provides a practical, zero-overhead recipe for large-scale sparsification: simple
deterministic masks, one-shot pruning, and masked training. The method is easy to implement, re-
producible, and broadly compatible with standard optimizers and training pipelines. The remainder
of the paper presents the method in detail (Section 3) and experimental evaluation (Section 4).

2 COMPARISON TO PRIOR WORK AND CONTRIBUTIONS .

In contrast to prior sparsification approaches, which often rely on complex optimization procedures,
iterative pruning–regrowth cycles, or gradient-based mask updates, our method achieves state-of-
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the-art compression with no added computational overhead. This behavior and the design choices
distinguish our approach along four axes:

• Zero-Cost Structural Initialization. Our method departs from prune-at-init (PaI) ap-
proaches by abandoning any per-weight saliency scoring or extra initialization passes Fran-
kle et al. (2020); Wang et al. (2021). PaI methods (e.g., SNIP Lee et al. (2019), GraSP Wang
et al. (2020); Zhang et al. (2022)) evaluate data- or gradient-dependent importance to select
connections prior to training, which requires additional forward/backward computations
and per-weight scores at initialization Liu et al. (2024b); Hoefler et al. (2021); Jaiswal et al.
(2022). In contrast, we use a deterministic, structural mask (half the weights per layer in the
typical configuration) that is applied once at the start. This design requires no extra passes,
no score computations, and yields perfectly reproducible connectivity, i.e., the mask is a
low-cost architectural choice rather than an expensive selection procedure.

• Single-shot pruning (no dynamic growth) vs. dynamic sparse training (DST). Our
pipeline uses at most one magnitude-based pruning step and then fixes the binary mask
for the remainder of training, which contrasts sharply with dynamic sparse training (DST)
methods that alternate pruning and regrowth (e.g., RigL Evci et al. (2020) and related algo-
rithms) Hoefler et al. (2021); Nowak et al. (2024); Vadera & Ameen (2022). DST requires
continual score evaluation, topology updates, and bookkeeping (and often specialized hy-
perparameters and update rules), all of which introduce runtime and implementation over-
head Wang et al. (2024); Hoefler et al. (2021); Lasby et al. (2023). By eliminating regrowth
and any per-step topology optimization, our approach preserves the simplicity of standard
training loops: it works with off-the-shelf optimizers and masked arithmetic only, and thus
adds no measurable computational overhead beyond the masked forward/backward passes.

• Breaking the Performance–Sparsity Trade-off. Notably, our method delivers counterin-
tuitive empirical benefits that go beyond efficient compression. Structural initialization
plus single-shot pruning (i) revives over-parameterized networks by improving conver-
gence speed and, in many cases, boosting final accuracy relative to the dense baseline,
(ii) increases training stability by reducing run-to-run variability, and (iii) in some archi-
tectures breaks the conventional accuracy–sparsity trade-off: aggressive pruning can yield
equal or better accuracy than the dense model. These effects indicate that the masks are
not merely a parameter-reduction technique but introduce a strong inductive bias that reg-
ularizes learning and improves optimization dynamics, all without extra computations, op-
timizer changes, or complex topology heuristics.

• Sparsity as Regularization and Parameter Reallocation. Beyond compression, our ap-
proach demonstrates that structural sparsity can act as an effective regularizer and enable
smarter parameter allocation. For instance, replacing a dense classifier head with multi-
layered sparse heads preserves or even improves accuracy while using the same or fewer
parameters. This architectural tweak reduces overfitting, improves run-to-run training sta-
bility, and guides the network to allocate representational capacity more efficiently. In
essence, sparsity is not just a mechanism for pruning weights—it reshapes the network’s
functional structure to enhance optimization dynamics and model generalization without
additional computational cost.

• Comparisons and Ablations. Comparisons with data-driven pruning (e.g., SNIP, SET,
RigL) and the ablation studies have already been thoroughly addressed in a comprehen-
sive companion study Kamelian Rad et al. (2025). That work includes:

– explicit head-to-head evaluations against SNIP, SET, RigL, CTRE, and other state-
of-the-art pruning methods,

– full ablations showing why the topographic choice of k = 1 in the first layer is the
most effective configuration,

– comparisons with random masks and parameter-matched dense baselines.
These findings collectively demonstrate that deterministic structural sparsity is competitive
with, and often superior to, data-driven pruning at matched sparsities.

NIST sparsely initializes all layers using a neuro-inspired connectivity and mimics the neurodevel-
opmental dynamics of the mammalian brain. This framework is novel to the best of our knowledge
in the field of artificial neural networks. While there are studies exploring biologically inspired

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sparse training and dynamic connectivity, none have implemented a fixed, uniform neuroseed factor
per layer as we propose.

3 METHOD

3.1 NEUROSEED INITIALIZATION AND CONNECTIVITY MASK

We introduce a layer-wise integer hyperparameter, the neuroseed factor k ∈ {1, . . . , Nout}, which
controls the number of outgoing synapses per input feature for a linear layer with Nin inputs and
Nout outputs. Connectivity is deterministic and homogeneous: each input index i ∈ {0, . . . , Nin−1}
connects to exactly k output indices using a wrap-around (modulo) rule. The initialized connectivity
between input and output units can be represented as a binary mask. Formally, the binary mask
M ∈ {0, 1}Nin×Nout is defined as Eq. 1:

Mi,j =

{
1, if j ∈ {(i+ t) mod Nout | t = 0, . . . , k − 1},

0, otherwise.
(1)

The layer weight matrix W , initialized by Kaiming uniform distribution, is masked element-wise at
the start as Eq. 2:

W̃ = W ⊙M, (2)

and training proceeds directly on W̃ . This deterministic top–down / contiguous routing preserves
signal propagation and avoids narrow bottlenecks while providing strong sparsity and reproducibility
guarantees.

Implementation (mask generation). We implement the mask as follows (indices: inputs → rows,
outputs → columns): self.indim and self.outdim correspond to the input and output dimensions,
respectively.

f o r i in range ( s e l f . ind im ) :
f o r t in range ( s e l f . n e u r o s e e d f a c t o r ) :

j = ( i + t ) % s e l f . outd im
mask [ i , j ] = 1

Special cases and topographical maps. Setting k = 1 gives each input feature a single determin-
istic target output (minimal nonzero connectivity), which minimizes density while avoiding feature
loss. This case is inspired by retinal (biological) topography (see Appendix A.2 for more informa-
tion). Larger k increases per-feature redundancy and robustness.

Pruning schedule and training protocol. We optionally apply a single-shot, permanent
magnitude-based pruning stage after the model has partially stabilized (empirically when it reaches
∼ 50% of its eventual peak accuracy). As a practical rule we prune after ∼ 10% of the total training
epochs. At the pruning step we zero the smallest-magnitude weights, update M accordingly, and
keep the updated mask fixed for the remainder of training. This pipeline:

mask init → (optional) single-shot pruning → fixed-mask training

does not require regrowth, does not maintain dense connectivity representations, and adds no algo-
rithmic overhead beyond masked arithmetic. Example schedules used in our experiments:

• VGG16 (frozen convolutional base): prune after 4 epochs.
• DeiT trained from scratch for 300 epochs: prune between epochs 50–80.

Practical recommendations.

• CNNs: set k = 1 for the first (input) layer, then use half density in deeper layers, a heuristic
from ablation experiments we found sufficient to preserve dense-level complexity without
hurting initial performance Kamelian Rad et al. (2025).
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• Transformers: initialize all linear layers (e.g., QKV, projection, FC, etc) at approximately
half density (choose k so each input connects to ∼ 50% of outputs), but keep the classifier
head dense.

• Stacked MLPs: use k = 1 for the first linear layer (mimicking retinotopy).

These heuristics are motivated by topographical mapping and biological neurodevelopment (ini-
tial overproduction followed by activity-dependent pruning) and were found to maximize sparsity
without degrading performance in our experiments. See Figure 1 for an illustration of the mapping
Kamelian Rad et al. (2025).

With this framework, we first initialize the input layer with topographical mapping. The remain-
ing layers are populated to a sufficient density before training begins, as dictated by the selected
neuroseed factor. One effective strategy is to use a half-dense configuration, where the input layer
is fully dense, and subsequent layers are initialized with 50% connectivity. Training then begins,
and pruning is applied after a few epochs. This approach enables the network to achieve a high
degree of sparsity from the very beginning, improving computational efficiency. Furthermore, this
strategy mirrors aspects of biological neurodevelopment: networks start with dense connectivity and
gradually refine their structure by eliminating redundant connections during learning.

Figure 1 illustrates two layers with 10 and 5 neurons. Each neuron in the first layer can potentially
form up to 5 connections, yielding all-to-all connectivity. Sparsity is introduced via the neuroseed
factor, a hyperparameter controlling the number of connections per neuron. Connectivity begins as a
one-to-one top–down mapping, with synapses growing uniformly in the same direction, expanding
systematically across layers.

(A) Neuroseed Factor=1 (B) Neuroseed Factor=2 (C) Neuroseed Factor=3

Figure 1: Illustration of the initial connectivity pattern determined by the neuroseed factor k across
two layers comprising 10 and 5 neurons, respectively. A) With a neuroseed factor of k=1, each
presynaptic neuron establishes a single synapse, forming a topographic mapping that is particularly
suited for input mapping when we have stacked MLP layers. B) Increasing the neuroseed factor
to k=2 allows each presynaptic neuron to form an additional connection with the neuron directly
below the previous target in the postsynaptic layer, promoting localized but expanded connectivity.
C) A neuroseed factor of 3 extends this homogeneous growth, enabling each presynaptic neuron to
connect with three consecutive neurons in the next layer, further increasing initial synaptic coverage
in a structured manner.

4 EXPERIMENTS

We evaluated NIST across various vision benchmarks to test its ability to sparsify fully connected
classifier heads without compromising performance. Our experiments are designed to answer two
questions: (i) What does NIST provide beyond just ”sparsification”? and (ii) Are these effects
consistent across different architectures and data scales? We report both final metrics (accuracy,
compression ratio) and training dynamics (learning curves, stability, training cost), with further
ablations and extended results provided in the Appendix A.4.
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Training pipeline with NIST

Figure 2: Overview of the proposed framework. 1) Generate a deterministic binary mask using the
neuroseed factor; apply it to weight matrices before training. 2) Train directly on masked weights
without regrowth or dense overhead. 3) After ∼ 10% of training epochs (e.g., 4 in VGG16), apply
one-shot permanent magnitude pruning to refine connectivity. 4) Continue training with the updated
sparse mask; no further changes in connectivity. 5) Final sparse model achieves reduced FLOPs and
memory footprint while retaining/improving accuracy.

4.1 SETUP

Datasets. Experiments were performed on FMNIST, CIFAR-10, and ImageNet-100. We em-
ployed dataset-specific preprocessing strategies, ranging from minimal to heavy augmentation.

Architectures. We evaluate NIST on LeNet-5, AlexNet, VGG16, MobileNet, and DeiT-Small.

Training details. Optimizer, schedules, batch sizes, and compute are detailed in Appendix A.3.
For ImageNet-100 on DeiT, we report 5-run results for each case due to compute constraints; vari-
ance between runs is small.

Evaluation metrics. We report Top-1 accuracy, classifier compression ratios, epochs-to-converge,
training FLOPS, and for MobileNet, we compute stability metrics (% epochs with lower SD and
AUC SD).

4.2 MAIN RESULTS

Table 1 summarizes performance, compression, and computational cost (FLOPs). NIST compresses
classifier heads of AlexNet and VGG16 by 10,000 and 1,000 times, respectively, while improving
Top-1 accuracy. Notably, VGG16 improves from 71.2% → 78.2% with >99% classifier sparsity
and ∼ 89.5% overall (see Appendix A.4 for detailed analysis). For DeiT-Small, training from 50%
sparsity achieves near-dense accuracy with negligible loss even under further pruning.

In Fig. 3A, the validation accuracy trajectories of the original dense VGG16 with its NIST-sparsified
counterparts are compared under different training configurations. The dense baseline reaches a
plateau near 71% validation accuracy. The dense model converges slowly with a low learning rate,
while a higher rate accelerates convergence but induces oscillations, likely due to fine-tuning the
head on a frozen base.

Similarly, Fig. 3B illustrates the mean validation accuracy across 400 training epochs for DeiT
trained with and without NIST. While the DeiT baseline (red) benefits from dense training, NIST-
equipped models consistently close the gap, achieving comparable or even superior performance at
initial epochs (faster convergence, see Appendix A.6). For models trained toward extreme sparsity
(95% final density), when the pruning stage is performed at epoch 200, the accuracy initially drops
due to significant parameter loss, but then rises rapidly, demonstrating the network’s capacity to
recover and adapt under aggressive sparsification. These results highlight the robustness of NIST,
showing that even with severe parameter reductions, the network maintains competitive accuracy.

Reviving Over-Parameterized Architectures (VGG16, AlexNet). All NIST-sparsified configu-
rations of VGG16 and AlexNet exhibit both faster convergence and stronger generalization. This
improvement highlights two critical insights. First, sparsification under NIST not only preserves
accuracy but actively improves generalization, challenging the assumption that pruning or sparsity
necessarily entails performance loss. Second, the parameter reduction is dramatic: VGG16 is re-
duced from ∼ 134million parameters to ∼ 14 million, while boosting ImageNet-100 top-1 accuracy
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Table 1: Summary of model compression and final Top-1 accuracy across representative models.
Compression = dense params / nist params. “Epochs to converge” is epochs until validation Top-1
reaches 95% of final value.

Model Dataset Params Compression FLOPs(×1012) Top-1 (%) Epochs

AlexNet (Dense) CIFAR-10 33.6M(Head)
35.8M(Total)

1× 262 79.4 15

AlexNet + NIST CIFAR-10 3.3k(Head)
2.25M(Total)

10,000×(Head)
15.8×(Total)

0.012 86.4 7

VGG16 (Dense) ImageNet-100 120M(Head)
134M(Total)

1× 959.9 71.4 20

VGG16 + NIST ImageNet-100 120k(Head)
14M(Total)

1,000×(Head)
9.5×(Total)

0.31 78.6 5

DeiT Small (Dense) ImageNet-100 22M 1× 4,576 81.91 400
DeiT Small + NIST ImageNet-100 8.8M 2.5× 2,059 81.68 400
DeiT Small + NIST ImageNet-100 6.6 3.3× 686 81.38 400

(A) Learning Curves: VGG16 Baseline vs NIST-
Sparse Head Variant

(B) Learning Curves: DeiT Small Baseline vs NIST
variant

Figure 3: Performance comparison of training with NIST. A) Validation accuracy of VGG16 with
and without NIST. Pruning 99.9% of VGG16’s ≈120M-parameter head boosts validation accuracy
from 71.4% to 78.5%. Moreover, VGG trained with NIST converges far faster and more reliably,
reaching 70% accuracy in a single epoch and its peak accuracy within 5 epochs, while the dense
model struggles to converge under its heavy parameter load. B) Validation accuracy of DeiT small
with and without NIST. Starting from 50% sparse initialization, extending to different target densi-
ties (60%, 70%, 80%, 95%). At 95% final sparsity, accuracy briefly dips at epoch 200 when pruning
is applied, but quickly rebounds. Across sparsity levels, NIST matches the dense baseline despite
drastically reduced parameter budgets.

by 7 percentage points. In effect, NIST breathes new life into VGG16—an architecture widely con-
sidered outdated—by making it both drastically lighter and substantially more accurate, rivaling or
even surpassing modern efficiency-focused ANNs.

Seamless Sparsification of Modern Transformers (DeiT-Small). Table 1 and Fig. 3B report
results for DeiT Small trained on ImageNet-100 for 400 epochs under six sparsification regimes.
The dense baseline achieves 81.90% top-1 accuracy. Initializing the network at 50% sparsity from
scratch (NIST Half Sparse) yields nearly identical performance (81.48%), confirming that determin-
istic structural masking does not harm convergence. Applying NIST’s single-shot pruning stage at
epoch 200 further reduces the active weights while maintaining accuracy: at 60% sparsity, accuracy
remains 81.69%, and even at 70% sparsity it holds at 81.39%, within 0.5% of dense. Performance
begins to decline more noticeably at higher sparsity levels, with 80% yielding 80.81% and 95%
dropping to 78.37%.

Importantly, these gains are achieved without iterative regrowth or specialized optimization: only
structural initialization and one pruning step. In terms of efficiency, NIST compresses DeiT Small

7
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from 22M to 8.8M parameters (2.5×) and cuts FLOPs by more than half (4,576×1012 to
2,059×1012) while preserving accuracy, with further reductions possible at higher sparsities. These
results demonstrate that modern transformers can be sparsified seamlessly and trained stably at scale
with negligible accuracy loss.

4.3 BEYOND SPARSIFICATION: MULTI-LAYER SPARSE HEADS.

Here, we investigate whether expanding the classifier head and applying NIST-based sparsification
can improve learning dynamics without increasing parameter count. In this setup, the expanded
sparse classifier head is trained sparse-from-scratch while maintaining the same, or fewer, param-
eters compared to the single-layer dense head. Specifically, we replace MobileNetV1’s standard
single-layer dense head with a three-layer sparse head trained sparse-from-scratch (see Appendix
A.5 for detailed analysis).

Stability Gains from Multi-Layer Sparse Heads (MobileNet). Fig. 4 compares validation ac-
curacy across configurations: the dense baseline (red), a single NIST-sparse layer (black), and the
three-layer NIST head (blue). The Sparse-3 model, corresponding to a classifier head made by 3
sparse layers, converges faster, generalizes better, and exhibits lower variability than the dense head.
Quantitatively, Sparse-3 reduced mean epochwise training SD by 37.3% (0.0163 vs 0.0259), with
significantly lower variance in 80% of epochs (p = 4.76× 10−4, Wilcoxon). These results demon-
strate that multi-layer NIST-sparse heads not only maintain parameter efficiency but also yield more
stable and consistent training.

Figure 4: Validation accuracy vs. epoch (mean ± SD over 20 runs) for MobileNetV1 with different
classifier heads: Dense-1 (red), Sparse-1 NIST (black), and Sparse-3 NIST (blue). Sparse-3 uses
three layers (sizes 100, 200, 10; factors 2, 50, 10) totaling 9,048 params vs. 10,240 for Dense-1.
Sparse-3 converges faster and shows lower variance.

5 DISCUSSION

Our findings suggest that sparsification can move beyond efficiency tricks: when applied in a biolog-
ically inspired way, it can fundamentally alter model behavior, improves over-parameterized CNNs,
and simplify modern transformers without added cost. Acting as an implicit regularization tool with
no computational overhead, NIST sharpens generalization, convergence speed, and performance
while reducing training and inference computational and energy costs.

Deterministic vs. Data-Driven Sparsity. Contrary to the assumption that determinism may limit
performance, the results of Kamelian Rad et al. (2025) show that deterministically constructed to-
pographic masks can match or exceed the accuracy of data-driven pruning methods such as SNIP.
This indicates that structured sparsity does not restrict the discovery of high-quality subnetworks;
instead, it offers a low-variance, computation-free alternative to saliency-based pruning.
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Performance gain with zero optimization overhead. NIST is a one-shot or light-touch rule: no
extra retraining loops, no specialized loss terms, and no second-order estimates. This simplicity
reduces implementation friction and makes the method practical for resource-constrained settings.
NIST-sparsified models converge faster and outperform dense baselines in overparameterized CNNs,
despite using far fewer parameters. On AlexNet, sparsifying the classifier head by 99.99%, the
highest sparse regime, exhibited the highest accuracy (79.4% to 86.4%). Similarly, pruning 99.9%
of VGG16’s ∼ 120M -parameter head improved validation accuracy from 71.4% to 78.5%, using
only 0.03% of the FLOPS of the dense (see Appendix A.4.4).

Reviving and improving simple CNNs and complementing modern architectures. VGG16’s
straightforward convolutional stacks are fast to train and easy to interpret; combined with NIST they
become highly competitive again. This is important: in low-data or low-compute regimes, sparsi-
fied CNNs can match or approach transformer-level accuracy without the long training schedules
and heavy augmentations that ViTs require. Conversely, for efficient modern models (MobileNet,
ResNet), the main contribution is not raw parameter cutting but architectural re-thinking of the clas-
sifier head.

Multi-layer Sparse Heads Stabilize Training. Replacing a single dense classifier with a multi-
layer sparse head (same or smaller parameter budget) adds representational depth without mean-
ingful cost. For lightweight models this yields faster convergence, lower run-to-run variance, and
equal-or-better final accuracy (see Appendix A.5).

Practical benefits & deployment implications. With fewer parameters, models have smaller file
sizes and lower memory footprints, and on hardware supporting sparse arithmetic, inference and
energy consumption are significantly reduced. Sparsified VGG variants or NIST-headed lightweight
models can run efficiently on edge and mobile devices without requiring custom accelerators. The
high degree of sparsity also improves interpretability, as visualizing the remaining filters and activa-
tions becomes easier for analysis and debugging. Moreover, NIST’s simplicity ensures compatibility
with other compression techniques such as quantization and distillation.

Transformers can be sparsified from scratch with minimal cost. Our CNN experiments show
NIST improves both convergence speed and accuracy, while results on transformers demonstrate its
broad applicability. On DeiT-Small, NIST delivers 2.5–3.3× parameter compression with accuracy
comparable to dense baselines, without architectural changes. Despite transformers being heavily
optimized for dense training, NIST maintains performance, suggesting it is a general sparse training
paradigm that compresses and accelerates transformer-based architectures as well.

Efficient alternative to data-hungry transformers with NIST. With NIST, VGG16 compresses
from 134M to 14M parameters while accuracy improves from 71.4% to 78.6%. Remarkably, this
rivals DeiT-Small’s 81.9% despite using fewer parameters, far less training, and minimal augmen-
tation. Thus, NIST can make classical CNNs competitive with transformers, enabling efficient,
high-accuracy deployment on modest hardware or useful for data-scarce scenarios.

Limitations. Currently, our recommendations for neuroseed factors are heuristic; automating
and optimizing these hyperparameters per layer would likely yield improved and more consistent
gains. Additionally, practical runtime improvements depend on hardware and sparse-matrix sup-
port—parameter reductions alone do not guarantee speedups across all platforms.

Directions for future work. Promising next steps include: (i) Exploring layer-wise neuroseed
configurations (e.g., sparser or denser QKV and feedforward modules) to maximize initial sparsity,
(ii) combining NIST with complementary compression methods (quantization, distillation, token
sparsification) to maximize end-to-end gains, and (iii) integrating NIST with hardware-aware sparse
kernels to realize energy gains.

6 CONCLUSION

Sparse training, as demonstrated through NIST, offers far more than a simple reduction in parameter
counts. Our results show that models can be aggressively pruned while improving performance,
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training speed, and run-to-run variability. We showed that sparsification can act as a constructive
force, revealing optimal subnets, considerably reducing computational costs, and even reviving over-
parameterized architectures. This reframes sparsity not as a compromise, but as a tool for improved
performance, faster convergence, and broader deployment.

Our findings suggest that embracing neuro-inspired sparse connectivity can make both classic CNNs
and modern transformers more efficient, interpretable, and practical for real-world use. Looking
ahead, automating the choice of neuroseed factors and expanding hardware-level support for sparse
computation will further unlock these benefits. Also, our findings suggest that revisiting older,
simpler architectures under the lens of sparsity may provide viable and sustainable alternatives to
data-hungry, resource-intensive models. We hope this sparks further exploration into neuro-inspired
strategies that make deep learning both more powerful and more accessible
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A APPENDIX

This appendix provides additional details to complement the main paper. First, we expand on the
methodological aspects that were only briefly discussed in the main text. Then, we summarize the
training details, including optimizers, learning rate schedules, and other implementation specifics,
to facilitate reproducibility, followed by extended and detailed experimental results and analyses.
Finally, we summarize the ...., including , to .....

A.1 RELATED WORK

In general, dynamic sparse training (DST) methods, such as RigL Evci et al. (2020), dynamically
adjust the sparse connectivity of neural networks during training. These approaches focus on evolv-
ing the network’s structure over time rather than initializing with a fixed neuroseed factor. They also
incorporate a regrowth phase during training which further adds to the complexity and overhead
Cheng et al. (2024); Hoefler et al. (2021). Prior work has demonstrated that most DST methods
exhibit comparable performance, with weight magnitude emerging as the most effective criterion
for pruning Nowak et al. (2024); Zheng et al. (2024); Finlinson & Moschoyiannis (2021); Tmamna
et al. (2024).

Cosine Similarity-Based and Random Topology Exploration (CTRE) evolves sparse neural networks
by adding connections based on cosine similarity between neurons, inspired by Hebbian learning.
However, it does not employ a fixed neuroseed factor per layer. It also imposes additional calcu-
lations and computational overhead to calculate the similarities between neurons Atashgahi et al.
(2022).

NeuroFabric is another framework that investigates various sparse topologies for neural networks,
aiming to identify ideal structures for training. It explores different sparse configurations, while
NIST is a one-shot pruning without any extra costs Isakov & Kinsy (2020).

Sensitivity-Based Pruning (SBP), proposed by Hayou et al., estimates the criticality of individual
weights at initialization by quantifying their contribution to the loss landscape Hayou et al. (2020).
This framework mitigates difficulties encountered when pruning at very early stages, such as the
risk of removing entire functional layers, which would compromise network trainability.

Tang et al. introduced Automatic Sparse Connectivity Learning, which restructures network connec-
tivity during training by reparameterizing weights and optimizing sparse patterns Tang et al. (2022).
While this method adapts connectivity for performance, NIST pursues a different objective: main-
taining biological plausibility and energy efficiency by training under high sparsity from the outset
and suddenly advancing to extreme sparsity levels.

A large body of sparsification research begins with networks initialized from a randomly connected
topology (random seed). The connectivity is then refined either through random weight additions
or by applying selection rules based on diverse metrics, such as gradient signals, weight magni-
tude, correlations, neuron–weight similarity, or sensitivity Hoefler et al. (2021); Evci et al. (2020);
Constantin et al. (2018).

In addition to comprehensive surveys previously discussed that have summarized the landscape of
sparse training techniques, another analyzed structured, unstructured, and dynamic strategies, pri-
marily in the domain of convolutional neural networks (CNN) He & Xiao (2023). Although these
reviews mention a small set of “sparse-from-scratch” methods, their design principles diverge from
our neuro-inspired formulation in both computational overhead and energy considerations. For ex-
ample, GraSP Wang et al. (2020) evaluates pruning candidates via second-order gradient informa-
tion, an approach that is computationally demanding. In contrast, NIST establishes a sparse training
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protocol directly from biologically grounded principles without requiring such costly calculations,
which usually lead to longer training.

Other approaches focus on architectural components, such as CATRO, which identifies channel
importance through class-aware trace ratio optimization Hu et al. (2023). Although effective in
compressing CNNs and accelerating inference, CATRO is tailored toward convolutional layers and
inference efficiency, whereas NIST targets multilayer perceptrons and emphasizes energy efficiency
throughout the learning process.

In parallel, gradual and dynamic pruning remain central themes in the literature. Fontana et al.
Fontana et al. (2024) integrated progressive pruning with knowledge distillation to sustain predictive
accuracy, and Wang et al. Wang et al. (2023) developed a relaxation-based, layer-wise pruning
strategy to continuously enforce sparsity.

Moreover, recent surveys have emphasized a growing line of research that seeks inspiration from
biological systems in order to guide the development of sparse learning algorithms Jiao et al. (2022).
This perspective has underscored a number of open challenges, such as the tendency of pruning
methods to eliminate discriminative or edge-related features, and the broader difficulty of integrating
sparse representations with modern deep architectures. These challenges highlight a tension between
biological plausibility and engineering practicality: while sparsity is essential for efficiency, naı̈ve
pruning can undermine the representational capacity of the network.

Beyond pruning, new design paradigms for artificial neural networks have been suggested, par-
ticularly those that integrate heterogeneous modules or leverage architectural diversity to improve
efficiency and robustness Shao & Shen (2023). Such ideas point toward the possibility of moving
away from monolithic dense models toward architectures that incorporate structural bias in more
principled ways.

Motivated by these insights, our work proposes a bio-inspired sparse-from-scratch algorithm that
avoids the pitfalls of feature elimination entirely. Instead of discarding inputs or aggressively prun-
ing connections, our approach maintains full feature coverage while enforcing sparsity through to-
pographical connectivity constraints. By doing so, it provides a biologically grounded path toward
efficient deep learning that reduces training cost while preserving accuracy and representational
richness.

Feature-dimensionality reduction has been widely investigated as a route to improve neural network
sparsity, often by selecting or discarding input features (feature pruning). Such methods typically
require explicit evaluation of feature importance, for example, by statistical measures, gradients, or
through auxiliary optimization routines, which introduces overhead in both computation and design
complexity Hoefler et al. (2021); Zhou et al. (2021); Rao et al. (2023). These approaches may reduce
inference cost, but they risk losing possibly useful information early, and their extra feature-selection
steps may offset the gains in efficiency.

In contrast, in our NIST framework, we preserve all input features. Instead of discarding any in-
put neurons, we introduce a ’topographical sparse layer’, setting the neuroseed factor of the first
layer at 1, which enforces sparsity at the connection level, matching the number of synaptic links
with the number of input features. This ensures that every feature remains represented, while still
achieving reduced connectivity and lower computational burden—without requiring separate feature
importance ranking or pruning heuristics.

The existing literature suggests a clear need for sparse learning algorithms that are biologically
plausible, preserve representational richness, and lower training cost. Many current sparse / pruning
techniques depend on computationally expensive criteria (gradient-based, magnitude, sensitivity,
etc.) to decide which weights, features, or neurons to remove. These can introduce instabilities or
require hyperparameter tuning, especially when pruning early in training.

NIST addresses these weaknesses by adopting a biologically inspired connectivity scheme rooted in
a form of retinal topography. Rather than evaluating neurons or connections for significance using
loss-based or gradient-based metrics, NIST fixes a sparse connectivity pattern from the start, en-
forcing connectivity constraints that mimic biological architecture. This biases the learning process
to distribute capacity more evenly, reduces the need for iterative pruning, and yields competitive
performance even at high sparsity, while keeping training computation and energy cost significantly
lower than methods that depend on dynamic or feature-pruning routines.
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An especially promising avenue for future exploration is the integration of NIST with token sparsi-
fication techniques in transformer architectures. While NIST enforces biologically inspired connec-
tivity sparsity at the synaptic level, token sparsification operates at the sequence level by dynamically
reducing the number of tokens processed during self-attention. The combination of these comple-
mentary strategies has the potential to achieve significantly higher overall sparsity and compression,
reducing both memory footprint and computational demand. Such a hybrid framework could pave
the way toward highly efficient large-scale models that retain strong performance while operating
under stringent energy and resource constraints.

A.2 METHODOLOGICAL ASPECTS

Although multilayer perceptrons (MLPs) are highly simplified compared to biological neural cir-
cuits, it is still possible to establish meaningful parallels. In our analogy, the input layer of an MLP
is treated as a topographical map, reminiscent of the way sensory systems such as the retina project
information to downstream processing areas in the brain. Each input neuron corresponds to a spe-
cific feature or sensory element, and its connectivity to the first hidden layer represents the initial
stage of synaptic projection.

In conventional MLPs, layers are fully dense: every neuron connects to all units in the preceding
and subsequent layers. This is unlike the brain, where connectivity is often sparse and structured.
In particular, retinal projections to the visual cortex exhibit retinotopy: local patches of the visual
field are mapped to local patches in cortex through sparse, one-to-one or convergent connections.
Inspired by this, we propose an input mapping where each input feature forms exactly one synapse
to the hidden layer (k = 1). This design guarantees that no feature is discarded while minimizing
density and parameter count.

Fig. A1 illustrates this biological analogy. Each portion of the input space projects to subsequent
processing units via a minimal connection pattern, while the hidden layers retain denser connectivity.
The resulting architecture mirrors two biological principles:

1. Feature preservation: every input is guaranteed to project into the network, avoiding
feature loss at the first stage.

2. Parameter efficiency: by constraining the first layer to be sparse, the total parameter count
is greatly reduced, removing the need for additional optimization of indexing, initialization,
or pooling strategies.

This mapping is particularly relevant for architectures with stacked MLP layers, such as classifier
heads in CNNs (e.g., VGG16, AlexNet). In these cases, setting the first fully connected layer to k =
1 effectively replaces global average pooling or max pooling, while still ensuring complete coverage
of all extracted features. Subsequent layers may remain denser, consistent with the observation that
certain cortical regions (e.g., the neocortex) exhibit higher synaptic densities than early sensory
projections.

In summary, the proposed topographical sparse input mapping is motivated by the convergent or-
ganization of the visual system: sparse, one-to-one projections at the sensory interface, followed
by denser integration in higher cortical stages. Translating this principle into ANN design enables
substantial parameter savings at the input stage while preserving performance and biological plau-
sibility.

A.3 TRAINING DETAILS

Table A1 summarizes the training configurations used in our experiments. For each architecture,
we report the optimizer, number of training epochs, batch size, and learning rate schedule. We
adopted standard settings commonly used for each architecture (e.g., 80% of epochs with Adam and
20% with SGD+momentum for CNNs and AdamW+CosineLRScheduler for Transformers), with
learning rate schedules tailored to the total number of epochs. This table provides a consolidated
overview of the hyperparameters underlying all results presented in the main text.
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Figure A1: Topographical input mapping for stacked MLPs. (a) Simplified illustration of retinotopy,
where different cell types are organized after the input layer. (b) Analogy in MLPs, where inputs are
mapped with sparse, non-all-to-all connectivity. Following the retinal topography of the mammalian
visual system, all input features are preserved but projected sparsely into denser subsequent layers.

Table A1: Training details for experiments.

Model Optimizer Epochs LR Batch Size

LeNet-5 Adam + SGD(momentum=0.9) 120 1e-3 64
AlexNet Adam + SGD(momentum=0.9) 60 1e-3 64
VGG16 Adam 60 1e-4 64
MobileNetV1 Adam 30 1e-3 64
DeiT small AdamW(wd=0.05) 400 CosineLRScheduler(

initial lr=1e-3,
lr min=1e-4,
warmup lr init=lr
/ 25,
warmup t=warmup epochs=5,
cycle decay=0.1,
cycle limit=1

128

A.4 SUPPLEMENTARY MATERIALS

A.4.1 NIST + LENET-5

To further evaluate the generality of our sparsification method, we tested it on LeNet-5, a classi-
cal CNN architecture (An et al., 2024). Although simple, LeNet-5 provides valuable insights into
whether our approach is applicable to convolutional architectures with fully connected (FC) classi-
fier heads.
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Architecture. LeNet-5 processes 32 × 32 × 3 color images and consists of three convolutional
layers interleaved with subsampling (average pooling), followed by two FC layers (84 units and 10
units, respectively). The final convolutional stage produces 120 features, which are passed to the
first FC layer. While the two FC layers account for ∼18% of the total parameters (11,014 out of
60,806), we observed that sparsifying this part of the network improved generalization.

NIST applied to LeNet-5. We applied NIST exclusively to the two FC layers, aiming to prune
them aggressively while preserving classification accuracy. Four experimental configurations were
compared: 1. The original dense model, 2. NIST with 98% sparsity, 3. NIST with 99.5% sparsity,
4. NIST with 99.5% sparsity initialized from a 95% sparse configuration.

Models were trained on both FMNIST and CIFAR-10 datasets for 20 runs each, and we report 95%
confidence intervals and maximum validation accuracies (see Table A2).

Table A2: Results of applying NIST sparsification to the fully connected layers of LeNet-5 on FM-
NIST and CIFAR-10. We report mean ± margin of error (95% CI) validation accuracy, maximum
validation accuracy, final sparsity, and compression ratios over 20 runs.

Model Neuroseed
Factors

Init.
Sparsity
(%)

Mean ± MOE Acc. Max Acc. (%) Final
Sparsity
(%)

Comp.
Ratio

FMNIST CIFAR-10 FMNIST CIFAR-10

LeNet-5 (Dense) – 0 91.3± 0.001 58.2± 0.003 92.0 60.1 0 0
LeNet-5 + NIST 1, 10 91.2 90.9± 0.002 58.7± 0.050 92.3 60.9 98 50
LeNet-5 + NIST 1, 10 91.2 91.2± 0.002 59.8± 0.002 92.1 61.8 99.5 200
LeNet-5 + NIST 1, 5 95.0 90.9± 0.005 59.4± 0.042 92.3 61.4 99.5 200

Key findings.

• Accuracy improvements under extreme sparsity. Remarkably, the 99.5% sparse model
slightly improved mean validation accuracy on CIFAR-10 (58.2% → 59.8%), demonstrat-
ing that extreme sparsification can regularize training and mitigate overfitting.

• High sparsity from scratch. By setting neuroseed factors of 1 and 10 for the two FC
layers, the model began training with 91.2% sparsity. Using a neuroseed factor of 5 for the
output layer increased initialization sparsity to 95%. After only four epochs, a final pruning
stage lifted sparsity to 99.5%.

• Dynamic pruning stability. NIST’s single-shot pruning at epoch 4 stably increased spar-
sity to 99.5% without destabilizing training, confirming the robustness of the method under
tight parameter budgets.

• Reduced overfitting. While validation accuracies on FMNIST remained similar across
settings, training–validation curves revealed striking differences. Figure A3 shows that
the dense baseline overfit substantially, as indicated by a large gap between training and
validation accuracy. In contrast, NIST-pruned models exhibited narrower gaps, consistent
with improved generalization.

Overall, these experiments demonstrate that NIST can prune LeNet-5’s FC layers to extreme levels
of sparsity (up to 99.5%) while preserving or even improving performance. This highlights both
the computational efficiency and the regularization benefits of our framework, even on relatively
small-scale CNNs.

For a more detailed illustration, Figs. A2 and A3 are provided, depicting learning dynamics and the
quantified overfitting for the four model configurations described above. The red trace, correspond-
ing to the original dense model, has the highest degree of overfitting, indicated by a significant gap
between training and validation accuracy. This comparison is especially meaningful because the
validation accuracies across the models are quite similar, with NIST being a bit higher. The dense
model overfits by learning non-essential patterns present in the training data.

Although both models (original and NIST 99.5%) reach similar final validation accuracies, the orig-
inal model, exhibiting a larger gap between training and validation curves, demonstrates signs of
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overfitting. This gap indicates that the model fits the training data more tightly, capturing noise or
spurious patterns that do not generalize well to unseen data (see Figs. A2 and A3).

In contrast, a NIST-sparsified model with a smaller training-validation gap tends to learn more gen-
eralizable features, resulting in better generalization behavior and greater robustness across different
runs or datasets, even if the final validation accuracy is numerically similar.

Surprisingly, the highly sparsified model outperforms the dense baseline on the more challenging
dataset, CIFAR-10. This suggests that NIST acts not only as a sparsifier but also as a regularizer,
possibly helping avoid overfitting or improving generalization.

Figure A2: Validation curves on CIFAR-10 over 60 training epochs for four models with varying
levels of NIST sparsification. The dense model (red) exhibits significant overfitting, while the 98%
sparsified model (blue) shows improved stability. The two 99.5% NIST-pruned models demonstrate
consistent performance and reach a plateau, indicating enhanced generalization and reduced over-
fitting through effective parameter allocation. The black curve exhibits a higher final validation
accuracy since it starts with a greater neuroseed factor for the second layer (10 instead of 5).

A.4.2 NIST + ALEXNET

Deep convolutional networks owe much of their success to overparameterized fully connected (FC)
layers, yet these layers contribute disproportionately to model size and memory footprint. While
traditional pruning methods seek to compress networks post hoc, they offer little guidance on how
to reallocate that freed capacity for greater efficiency or accuracy. Above 90% of the parameters in
some CNN architectures, such as AlexNet Krizhevsky et al. (2012), belong to FC layers, which serve
as the last classifying layers. Here, we apply NIST on AlexNet to investigate how its performance
varies when sparsified by NIST.

Experimental setup. We considered comparing five simulation scenarios for AlexNet in classify-
ing the CIFAR-10:

• Dense baseline

• 98% sparsity via NIST with neuroseed factors 1, 2048, 10 (50% initial sparsity)

• 99.5% sparsity via NIST with neuroseed factors 1, 2048, 10 (50% initial sparsity)

• 99.5% sparsity with neuroseed factors 1, 50, 10 (99.25% initial sparsity)

• 99.99% sparsity with neuroseed factors 1, 2, 10 (99.84% initial sparsity)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure A3: Evolution of the train–validation accuracy gap during training. The dense (original)
model shows increasing overfitting (widening gap), while the NIST-pruned models exhibit a con-
sistently smaller generalization gap, indicating improved regularization. The purple line represents
a model similar to the black one, with a difference in neuroseed factors. For the purple, NF: 1 5
indicated neuroseed factors of 1 and 5 for the first and the second FC layers, respectively.

Please note that AlexNet in this experiment has a total of ∼ 35.8M parameters since we modified
it for CIFAR-10 with 64, 192, 384, 256, and 256 filter sizes for the first to fifth convolutional layers
with 3 × 3 kernels. We ran each of the five configurations over 20 independent simulations, tracking
both training and validation accuracy curves. We report the mean and standard deviation of the peak
validation accuracy for each scenario.

Table A3 contains the results of sparsifying AlexNet’s FC layers with NIST. It has the four sparsifi-
cation scenarios described in the previous section, with extreme sparsity ratios ranging from 98% to
99.99%. Since there are 3 FC layers in the classifier head of AlexNet, three corresponding neuroseed
factors are assigned, one for each layer. By definition, the first layer, which receives the extracted
features from the convolutional backbone, has a neuroseed factor of 1 in all cases.

Mean validation accuracies are calculated by averaging the peak validation accuracy from 20 inde-
pendently trained models per scenario. The max accuracy is the maximum validation accuracy of
each scenario across all simulated models. Compression ratios indicate the degree to which the size
of a neural network’s head is reduced through pruning. Initial sparsity ratios are achieved by the
choice of neuroseed factors from scratch, while the final sparsity ratios indicate the sparsity after
additional pruning during training. In the fifth case, there is no pruning, and 99.99% sparsity is
achieved solely by neuroseed factors from the start.

Fig. A4 presents the learning dynamics of AlexNet and its NIST-sparsified modifications. In the two
subfigures, the original dense model is compared against four sparse configurations. In Fig. A4A,
the purple curve, representing 99.25% initial sparsity and 99.5% final sparsity, achieves the fastest
convergence among all models. Overall, all sparsified models converge more quickly than the origi-
nal. Despite differences in sparsity, the final training accuracies remain comparable across all cases.
In general, reducing growth factors, which increases initial sparsity, leads to faster convergence in
AlexNet.

Fig. A4B presents the corresponding validation accuracy curves. While the original dense model
plateaus around 77%, all sparse variants exhibit superior generalization. The 99.99% sparse model
performs best, attaining a validation accuracy of 85%. Unlike training accuracies, the validation
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accuracies of NIST-sparsified models significantly surpass those of the original model, indicating
greater generalization.

A.4.3 THE NOVELTY AND CONTRIBUTION.

While AlexNet is no longer considered efficient by today’s standards, the choice of architecture
is not central to our objective. Our focus is on analyzing the sparsification dynamics of NIST,
specifically as applied to fully connected (FC) layers. AlexNet serves as a valuable testbed due to
its deep and overparameterized FC layers, offering a challenging and high-capacity environment for
sparsification Fan et al. (2025).

Demonstrating that NIST can achieve extreme sparsity, up to 99.99%, while even improving ac-
curacy in such a setting, provides strong evidence that NIST is robust and effective. These results
suggest that NIST can generalize well to any architecture that incorporates FC layers, regardless of
its overall design or modern relevance. Besides, AlexNet itself is still powerful and used in critical
areas like medical image analysis Goyal et al. (2024); Medhat et al. (2024); Siuly et al. (2024); T. &
R. (2024).

Also, this experiment shows that NIST is not just about pruning, but also about smart capacity
optimization and generalization, which is even more compelling. So, for architectures that are highly
overparameterized, like AlexNet, using NIST to sparsify from scratch yields consistent accuracy
improvements and faster convergence (over baseline).

Our experiments demonstrate that not only can we prune up to 99.99% of classifier weights, but this
extreme sparsification, indeed from scratch, ..., actually improves accuracy from ≈ 77% to ≈ 85%,
greatly surpassing the dense baseline.

These results validate our two-pronged thesis:

• Compression: NIST can prune virtually all redundant weights in MLP-heavy heads without
loss of accuracy.

• Reallocation: Starting from an already sparse head and allowing controlled growth yields
net performance gains, even under ultra tight parameter budgets.

Together, they position NIST as a versatile toolkit for both efficient deployment and architectures
that demand maximum accuracy per parameter.

Table A3: Results of applying NIST sparsification to AlexNet’s FC layers on CIFAR-10. We report
mean ± margin of error (95% CI) validation accuracy, maximum validation accuracy, final sparsity,
compression ratios, and parameter counts.

Model Neuroseed
Factors

Init.
Sparsity
(%)

Mean
Acc.
±
MOE

Max
Acc.
(%)

Final
Sparsity
(%)

Comp.
Ratio

Param Count

AlexNet (Dense) – 0 78.49±
0.02

79.45 0 0 33,595,392

AlexNet + NIST 1, 4096,
10

50 82.98±
0.01

83.35 98 50 671,907

AlexNet + NIST 1, 4096,
10

50 83.06±
0.01

83.32 99.5 200 167,976

AlexNet + NIST 1, 50, 10 99.25 83.87±
0.02

84.90 99.5 200 167,976

AlexNet + NIST 1, 2, 10 99.84 85.09±
0.02

86.48 99.99 10,000 3,359

A.4.4 NIST + VGG16

VGG16 is a deep convolutional neural network architecture proposed by the Visual Geometry Group
at the University of Oxford, known for its simplicity and effectiveness in image classification tasks
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(A)

(B)

Figure A4: Learning curves of the original AlexNet and its sparsified modifications by the NIST
algorithm. A) training accuracy vs epoch, and B) validation accuracy vs epoch. Validation accuracy
curves for the sparsified models significantly surpass that of the original model (red curve). By
reducing the neuroseed factors of the three fully connected layers to 1, 2, and 10, an initial sparsity of
99.84% was achieved from scratch. Continued pruning during training further increased sparsity to
99.99% (green curve). This extreme level of sparsification results in the highest validation accuracy
and improved generalization, demonstrating effective capacity optimization.

Simonyan & Zisserman (2015). It consists of 16 weight layers, including 13 convolutional layers
and 3 fully connected layers, with small 3×3 convolution filters and 2×2 max-pooling layers applied
consistently throughout the network.

This design emphasizes depth while maintaining manageable computational complexity. VGG16
achieved state-of-the-art performance on the ImageNet dataset, demonstrating that increasing net-
work depth with small filters can significantly improve classification accuracy. Its modular and
uniform architecture has made it a popular baseline for transfer learning and a foundational model
in various computer vision applications Tripathi et al. (2024).
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About 90% of the parameters in VGG-16 belong to its FC layers, which serve as the last classifying
layers. Here, we apply NIST on VGG-16 to investigate how its performance varies when sparsified
by NIST. For our experiments, we use ImageNet100, a large-scale, real-world image classification
dataset. ImageNet100 is a curated subset of the full ImageNet-1k dataset, consisting of 100 ran-
domly selected classes. Each class contains approximately 1,300 training images and 50 validation
images, maintaining the diversity and complexity of the original dataset while reducing computa-
tional requirements. We obtained this version of the dataset from Kaggle.

Each image in the dataset is a 3-channel RGB image with a resolution of 224 × 224 pixels. Prepro-
cessing follows VGG’s input pipeline in TensorFlow, which first converts images from RGB to BGR
format and then zero-centers each color channel based on the ImageNet dataset statistics, without
applying any scaling.

To train VGG-16 from scratch on ImageNet100, we freeze all convolutional layers except for the fi-
nal convolutional block (block 5). The frozen layers retain their pretrained weights from ImageNet-
1k, while block 5 and the classifier head are trained to adapt the model specifically to the Ima-
geNet100 dataset. Given that the base model is pretrained, convergence was relatively fast, typically
achieved within 30 epochs.

We observed that dense models with a large number of trainable parameters required lower learning
rates to ensure stable training. In contrast, sparse or scratch-trained models benefited from higher
learning rates, allowing for more aggressive updates to the limited set of trainable weights.

Device. We trained our models on an Nvidia RTX 3090 24GB GPU using TensorFlow.

Sparsification scenarios. We considered comparing three simulation scenarios:

• Dense baseline

• 99.63% sparsity with neuroseed factors 1, 2, 100 (Fully sparse from scratch)

• 99.9% sparsity with growth factors 1, 2, 100 (99.63% initial sparsity

Results Table A4 contains the results of sparsifying VGG16’s FC layers with NIST as well as its
original baseline. Since there are three FC layers in the classifier head of VGG16, three correspond-
ing growth factors are assigned, one for each layer. By definition, the first layer, which receives the
extracted features from the convolutional backbone, has a growth factor of 1 in all sparse cases.

As always, mean validation accuracies are the average of several independent trained models for
each case. The max accuracy is the maximum validation accuracy of each scenario across all sim-
ulated models. Compression ratios indicate the degree to which the size of a neural network’s head
is reduced through pruning. Initial sparsity ratios are achieved by the choice of growth factors from
scratch, while the final sparsity ratios indicate the sparsity after additional pruning during training.

Table A4: Performance analysis of NIST on VGG16 across two extreme sparsification scenarios,
both above 99.6% sparsity from scratch. Using growth factors of 1, 2, and 100 in the final fully
connected layers, the model achieves 99.63% sparsity from scratch. Pruning 99.9% of the trainable
parameters led to the highest accuracy among all three cases.

Model Neuroseed
Factors

Init.
Sparsity
(%)

Mean
Acc.
±
MOE

Max
Acc.
(%)

Final
Sparsity
(%)

Comp.
Ratio

Param Count

VGG16 (Dense) – 0 71.2 ±
0.04

79.45 0 0 119,955,556

VGG16 + NIST 1, 2, 100 99.63 78.1 ±
0.02

78.34 99.63 270 443,835

VGG16 + NIST 1, 2, 100 99.63 78.2 ±
0.01

78.57 99.9 1000 119,995
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Computational efficiency. Since NIST does not include any calculations or optimization tech-
niques for pruning weights or regrowing them during training, there is no computational overhead
and the total FLOPs for an MLP classifier head would be like Eq. 3:

Training FLOPs = 4× active weights × training samples × epochs (3)

This accounts for:

• 1× FLOP for the forward pass,
• 2× FLOPs for the backward pass (gradients),
• 1× FLOP for the weight update (e.g., optimizer step),
• → Total: 4× per active weight per sample per epoch

So, the computational cost analysis is provided in Table A5.

Table A5: Comparison of computational efficiency for different VGG16 head configurations. NIST
achieves substantial reduction in FLOPs and active weights compared to the dense baseline.

Configuration Active Weights Epochs Total FLOPs
(×1012)

Rel. to
Dense (%)

Notes

Dense
VGG16
head (FC
25088→4096
→4096→100)

119,995,556 20 959.9 100 Baseline

NIST:
sparsified
from scratch

443,835 5 0.88 0.091 Reaches peak
accuracy by
epoch 2–3

NIST: sparse
+ pruning af-
ter 1 epoch

443,835 → 120,000 5 0.31 0.032 Most efficient
case

Table A5 highlights the computational benefits of applying NIST to the VGG16 classifier head
compared to the dense baseline. The dense configuration, with nearly 120 million active weights,
requires about 9.6×1014 FLOPs over 20 training epochs, serving as the reference point. In contrast,
the NIST-based sparsified model reduces the active weights by more than two orders of magnitude,
lowering the computation to just 8.8× 1011 FLOPs, while still reaching peak accuracy within only
3–4 epochs.

The most efficient case is achieved when pruning is applied after one epoch, reducing the weights
further to 120k and cutting the total FLOPs to 3.1×1011 which is only 0.032% of the dense baseline.
These results emphasize that NIST not only accelerates training but also achieves drastic reductions
in computational cost while preserving model. This makes VGG16’s head cheaper than even tiny
MLP heads in efficient networks, without sacrificing accuracy, a true revival of an otherwise “dead”
architecture.

When sparsified with NIST, the model converges faster that usual. The combination of ultra-high
sparsity and early convergence allows NIST to dramatically outperform the dense baseline in terms
of both performance and sustainability, offering a practical and biologically inspired solution to
reducing the carbon footprint of deep learning.

NIST uncovers the “critical subnetwork” By pruning away ∼ 99.9% of the weights of the
classifier head, which accounts for ∼ 88% of the entire parameter count of the network, without
any gradient-based retraining, we discover a leaner subnetwork that even improves performance.
Our results echo the Lottery Ticket Hypothesis: large networks contain smaller, well-initialized
subnetworks that can learn just as well when isolated Liu et al. (2024a); Malach et al. (2020).

Low engineering barrier. NIST teams with legacy VGG-based pipelines (e.g., in medical imag-
ing, robotics, industrial vision) can adopt sparsification with minimal code changes, no need to
re-architect or re-tune complex hyperparameters Veni & Manjula (2023).
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A.5 STATISTICAL ANALYSIS OF TRAINING SPEED & STABILITY (TEST ON MOBILENETV1)

In this section, we explored the application of NIST to already efficient architectures that use so-
phisticated mechanisms such as residual connections to reduce the parameter count. Models such
as MobileNet and ResNet Howard et al. (2017); Shafiq & Gu (2022) already have fewer parame-
ters compared to FC-heavy models like VGG. For these models, we tested the idea of expanding
the classifier head (the last block of the architecture), while sparse-from-scratch, to keep the total
parameter count the same or slightly lower.

When some models (e.g., MobileNet and ResNet) have tiny MLP heads, they have already reduced
the parameter count by utilizing global average pooling to decrease the size of features fed to the
classifier head. Although convolutional backbones compute most of the representational work, the
classifier head plays a crucial role in mapping the backbone features to task labels. We are going
to explore whether reorganizing the classifier head can improve optimization dynamics and general-
ization, specifically, by replacing a single fully-connected layer with several sequential NIST layers
that together contain the same number of parameters.

For our experiments, we employed MobileNetV1, a lightweight convolutional neural network ar-
chitecture designed for efficient inference on resource-constrained devices. MobileNetV1 is built
upon depthwise separable convolutions, which factorize a standard convolution into a depthwise
convolution followed by a pointwise convolution. This design significantly reduces the number
of parameters and computational cost compared to traditional CNNs, while still maintaining com-
petitive accuracy on image classification tasks. Due to its balance of efficiency and performance,
MobileNetV1 serves as a strong baseline model for evaluating the effectiveness of our proposed
classifier head modifications.

Method settings. We trained MobileNetV1 from scratch using the Adam optimizer with a learning
rate of 0.001. In the original setup for CIFAR-10, the classifier head is a linear projection from the
flattened feature vector of size 1024 to 10 output classes, resulting in 1,024 × 10 = 10,240 weights.

Instead of using an nn.Linear(10) layer, we replaced the head with a three-layer MLP of sizes 100,
200, and 10. The corresponding growth factors are 2, 50, and 10. This configuration yields 2,048
parameters for the first projection, 5,000 for the second, and 2,000 for the final projection, giving
a total of 9,048 parameters, about 1,000 fewer parameters than the original dense head. So, in
summary:

Original configuration: Convolutional base → Flatten layer → (1 × 1024 → FC head (size=10)

NIST alternative configuration: Convolutional base → Flatten layer → (1 × 1024) →
NIST layer(100, NF=2) → NIST layer(200, NF=50) → NIST layer(10, NF=10)

Here, NF denotes the growth factor. For example, the first NIST layer with a growth factor of 2
assigns two connections to each input feature, resulting in 1, 024×2 = 2, 048 weights, as noted ear-
lier. Our choice of growth factors was designed to maintain roughly the same number of parameters
as the dense head, while being sparser in the initial layers and more densely connected in the deeper
layers, a pattern inspired by biological systems. We repeated each experiment for 20 independent
seeds and measured: per-epoch validation accuracy, mean and standard deviation learning curves,
and area-under-curve (AUC) of the validation accuracy vs epoch curve.

Across runs, the multi-layer sparse head consistently produced: (1) faster initial improvement, (2)
∼ 37.26% reduction in standard deviation of validation accuracy, and (4) > 37% relative reduction
in AUC variation (accuracy vs epochs).

A.6 TRAINING DYNAMICS OF NIST + DEIT

Fig. A6 compares mean validation accuracy across 50 training epochs for the dense DeiT small
baseline and several sparse variants trained with NIST (50% sparse from scratch with different
final sparsities). Two qualitative patterns stand out. First, all sparse counterparts climb noticeably
faster during the initial phase of training (epochs 0– ≈ 30), delivering substantially better validation
accuracy than the dense baseline well before the mid-point of training. For instance, at epoch 10,
the original baseline reached 26.3% accuracy, compared to > 34% for the sparse variants.
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Table A6: Comparison of variability between Sparse-3 (NIST) and Dense-1 models across training
epochs. Lower standard deviation (SD) indicates more stable training.

Metric Sparse-3 (NIST) Model Dense-1 Model Notes
Mean epochwise SD 0.01627 0.02593 Diff = −0.00966

(−37.3%); Wilcoxon
p = 4.76× 10−4

% epochs with lower
SD (Wilson 95% CI)

80% (0.627–0.905) – Proportion of epochs
where SDA < SDB

AUC SD 0.4880 0.7778 Total variability
across epochs:
37.2%

Figure A5: Standard deviation of validation accuracy across epochs for 20 independent runs of
Sparse-3 Model (blue) and Dense-1 Model (orange). Each point shows the SD computed across
the 20 runs at that epoch. Sparse-3 model consistently exhibits lower SD, indicating more stable
training than Dense-1 Model.

Second, the dense model accelerates through the middle epochs and ultimately narrows the gap (and
in some cases overtakes) by the end of training; nevertheless, the final accuracy of the dense model
and the sparse variants up to ≈70% sparsity are very similar (see Fig. 3B).
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Figure A6: Learning dynamics of NIST on DeiT small. Mean validation accuracy in the first 30
epochs is higher for sparse variants trained by NIST, indicating early training speed-up.

These results indicate that the principal practical benefit of the sparse models is their early training
speed-up: when one cares about reaching a reasonable validation score quickly (for early stopping,
model selection, prototyping, or compute-constrained scenarios), the sparse variants offer a clear
advantage because they require fewer epochs (and typically less compute) to attain the same inter-
mediate performance. In contrast, if the sole objective is the absolute best final convergence after
long training, the dense model can recover and match or slightly exceed performance in later epochs.
The differing dynamics — rapid initial gains for sparse models versus faster middle-epoch conver-
gence for the dense model — suggest complementary trade-offs that can be exploited through hybrid
schedules, early-stopping rules, or adaptive sparsity strategies depending on the application.
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