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Abstract
Parameter-efficient tuning (PETuning) meth-001
ods have been deemed by many as the new002
paradigm for using pretrained language models003
(PLMs). By tuning just a fraction amount of004
parameters comparing to full model finetuning,005
PETuning methods claim to have achieved per-006
formance on par with or even better than fine-007
tuning. In this work, we take a step back and008
re-examine these PETuning methods by con-009
ducting the first comprehensive investigation010
into the training and evaluation of PETuning011
methods. We found the problematic validation012
and testing practice in current studies, when ac-013
companied by the instability nature of PETun-014
ing methods, has led to unreliable conclusions.015
When being compared under a truly fair evalu-016
ation protocol, PETuning cannot yield consis-017
tently competitive performance while finetun-018
ing remains to be the best-performing method019
in medium- and high-resource settings. We020
delve deeper into the cause of the instability021
and observed that the number of trainable pa-022
rameters and training iterations are two main023
factors: reducing trainable parameters and pro-024
longing training iterations may lead to higher025
stability in PETuning methods.1026

1 Introduction027

Pretrained Language Models (PLMs) such as028

BERT (Devlin et al., 2019) and RoBERTa (Liu029

et al., 2019) have orchestrated tremendous progress030

in NLP in the past few years, achieving state-of-031

the-art on a large variety of benchmarks such as032

GLUE (Wang et al., 2018) and SuperGLUE (Wang033

et al., 2019). Most successful applications of PLMs034

follow the pretraining-and-finetuning transfer learn-035

ing paradigm (Devlin et al., 2019), where PLMs are036

used as backbone to be combined with additional037

parameters and finetuned on downstream tasks in038

an end-to-end manner. Whilst being simple and ef-039

fective, such paradigm requires task-specific tuning040

1Our code is available at https://github.com/
AnonymousARRsubmission/PETuning.
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Figure 1: The relative performance difference of PETun-
ing methods, i.e., Adapter, prefix tuning (PT), LoRA,
BitFit, comparing with the full finetuning (FT) over
different training data size of 12 tasks from GLUE
and SuperGLUE. The tasks and their split into the
three resource bands are illustrated in Appx. §B.1. The
size of each point denotes the standard deviation and
the colours of PETuning methods denote the percent-
age of trainable parameters over different tasks com-
pared to full finetuning. The key takeaway message is
that PETuning methods outperform finetuning only in
the low-resource tasks but remain on par or behind in
medium and high-resource settings.

of the full model that consists of hundreds of mil- 041

lions (Devlin et al., 2019; Liu et al., 2019), or even 042

billions (Radford et al., 2019; Brown et al., 2020; 043

Raffel et al., 2020) of parameters for each task, 044

which is time-consuming and resource-intensive. 045

To avoid full model finetuning, there has been 046

a surge of studies on Parameter-Efficient Tuning 047

(PETuning) methods, which aim to tune the PLMs 048

by adjusting lightweight trainable parameters while 049

keeping most pretrained parameters frozen. Vari- 050

ous ways have been used in these PETuning meth- 051

ods to introduce the lightweight trainable parame- 052

ters. Adapter (Houlsby et al., 2019; Pfeiffer et al., 053

2020) is one of these that injects a small por- 054

tion of model-level parameters within each trans- 055

former (Vaswani et al., 2017) layer of the pretrained 056

language model. Prompt-tuning (Qin and Eisner, 057
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2021; Liu et al., 2021c; Lester et al., 2021) is an-058

other one that introduces trainable continuous em-059

beddings into the original sequences of input word060

embeddings to augment the PLMs on the feature061

level. Diff-pruning (Guo et al., 2021) learns and up-062

dates additional sparse diff-vector for all pretrained063

parameters, and LoRA (Hu et al., 2022) learns low-064

rank matrices to approximate the updated matrices,065

both of which update the PLMs on the parameter066

level. Moreover, BitFit (Zaken et al., 2021) par-067

tially tunes the bias terms of PLMs, without even068

introducing any new parameters. More details for069

these methods can be seen in Appx. §A.070

Given the various exciting progresses of PETun-071

ing methods that all seem to demonstrate their com-072

petitive performance with higher training efficiency,073

the idea that PETuning could be a new general074

paradigm in place of full finetuning for transfer075

learning in NLP becomes never more tempting (Liu076

et al., 2021a). We, however, argue that current ev-077

idences are insufficient to support the complete078

overthrow of full finetuning. First, we point out079

that the current evaluation strategy, i.e., the de-080

velopment set is used for both early stopping and081

reporting results, used in a number of studies for082

PETuning (Lester et al., 2021; Vu et al., 2021; Liu083

et al., 2021b; Pfeiffer et al., 2021) does not provide084

fair model comparisons. This essentially causes085

data leakage that results in misleading conclusions086

(§2). Second, statistical significance is rarely re-087

ported when comparing PETuning methods. This088

is an especially crucial issue as we show that the089

finetuning and PETuning processes are inherently090

unstable due to various randomness, such as weight091

initialization and training data order (§3.3).092

To fairly compare these tuning strategies, this093

study conducts a comprehensive re-examination094

on the effectiveness of PETuning methods. Our095

main contributions are: 1) We conduct controlled096

experiments (§2) and reveal the fundamental flaw097

of the current evaluation scheme (i.e., its failure to098

assess generalisation) and how that leads to mis-099

interpretations of the progress in the field. 2) We100

offer a more reliable practice for model selection101

that is not prone to overfitting. 3) We revisit the102

performance of PETuning in comparison with fine-103

tuning across tasks with various, and have reached104

very different conclusions on different data scales.105

4) We conduct the first comprehensive study to106

investigate the stability of off-the-shelf PETuning107

methods and identify the main contributing factors.108

Key Findings: 1) Finetuning cannot be fully re- 109

placed so far, since there is no PETuning method 110

that can consistently outperform finetuning across 111

all tasks and settings. We conclude that PETuning 112

may be more suitable for low-resource tasks, but 113

struggle on medium-resource tasks and fall behind 114

finetuning across the board on high-resource tasks 115

(see Figure 1). 2) All the PETuning methods unan- 116

imously show instability across different random 117

seeds similar to finetuning (Dodge et al., 2020), 118

where the randomness comes from both weight ini- 119

tialisation and training data order. 3) We found 120

prompt-tuning lags far behind finetuning, which 121

is a very different conclusion from previous stud- 122

ies. We show that prompt-tuning is highly unstable 123

and cannot robustly and consistently re-produce 124

its reported competitive performance (usually re- 125

ported as a single run or the optimal run across 126

multiple episodes (Lester et al., 2021; Liu et al., 127

2021b)) in our fair evaluation setup. 4) Within each 128

PETuning method, reducing the size of trainable 129

parameters is likely to yield better stability (but not 130

necessary to yield better or poorer performance). 5) 131

The stability of PETuning methods is substantially 132

proportional to the scale of training data, and we 133

further highlight the most crucial factor behind is 134

the number of training iterations. 135

For the rest of the paper, we begin with the 136

analysis on why the current evaluation protocol 137

can be flawed (§2), and follow with a rigorous re- 138

examination with a fairer protocol to benchmark 139

the performance and stability of PETuning (§3). 140

2 The Unreliability of Misused Early 141

Stopping 142

GLUE2 and SuperGLUE3 have become the de 143

facto benchmarks for verifying model effectiveness 144

in Natural Language Understanding. For the sake 145

of validity and fairness of the evaluation, the labels 146

of test set in these benchmarks are not released. 147

Instead, web portals are provided for submitting 148

and evaluating the prediction results. Due to the 149

limited number of allowed evaluation submissions 150

to these benchmarks, a large number of works have 151

followed a common practice that the model per- 152

formance is only reported and compared based on 153

the development sets rather than the real test sets, 154

where the development set is treated as the “test 155

set” (Lester et al., 2021; Vu et al., 2021; Liu et al., 156

2https://gluebenchmark.com.
3https://super.gluebenchmark.com.
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2021b; Pfeiffer et al., 2021).157

While this practice is a convenient approxima-158

tion of model performance as it allows quickly-159

obtained results from large-scaled experiments,160

there has been a serious problem in this setting: a161

single set is often used for both validating and test-162

ing the model. Therefore, the reported results under163

such setting might come from overly-optimistic164

checkpoints since early stopping is applied on165

the same set. We argue that such ‘trick’ prac-166

tice breaches the standard train/development/test167

paradigm and compromises fair and rigorous com-168

parison, leading to unreliable conclusions and mis-169

understandings of the examined models.170

To verify our concern, in this section, we scru-171

tinise this trick practice by comparing it with a172

rigorous evaluation protocol with strictly separated173

sets for validating and testing respectively, and thus174

provide comprehensive analyses to reveal the ef-175

fects of the misused early stopping strategy.176

Evaluation Setup. We adopt Robertabase (Liu177

et al., 2019) as our base model, and experiment178

on the RTE dataset, which is a textual entailment179

dataset included in both GLUE and SuperGLUE.180

We divide the original development set of the RTE181

dataset by a 50%/50% split4 (denoted by dev.1 and182

dev.2 respectively), and compare the performance183

over finetuning and four PETuning methods, i.e.,184

Adapter, prefix tuning (PT), LoRA, BitFit5. In185

particular, we use the dev.2 set as the test set, and186

use the dev.1 set or the dev.2 set as the development187

set for model selection, respectively (denoted by188

RTE1−2 or RTE2−2). We set the number of epochs189

to 50 and early stop when validation scores do not190

improve for 10 consecutive epochs following Mao191

et al. (2021). Both evaluation loss and accuracy192

are used as the stopping metrics6.193

Results and Analyses. From Table 1, we can194

see that using a single set as both the development195

and test sets (i.e. RTE2−2, which is the “trick” set-196

ting) can substantially boost the performances of197

PETuning models, comparing with using two sepa-198

4A normal way to create new dev. set is to separate part of
training set while using original dev. set as test set, as what
we do in §3.1. However, such newly created dev. set may
be of a different distribution from the new test set, where the
comparison between using new dev. set and test set for early
stopping might be unfair.

5We choose prefix tuning as the representative of prompt-
tuning. See Appx. §B.2 for more details of the compared
models.

6See Appx. §B.3 for the full hyperparameters settings.

Evaluation loss Accuracy

RTE1−2 RTE2−2 RTE1−2 RTE2−2

FT 78.89±1.36 78.89±1.36 79.28±1.9 79.62±2.22

Adapter 75.1±1.60 76.3±4.26 76.55±3.57 78.42±3.7

PT 57.55±2.71 66.19±8.51 57.84±4.85 67.19±11.37

LoRA 75.22±2.77 75.94±3.39 75.11±3.3 77.7±4.57

BitFit 70.79±10.38 71.3±10.19 66.76±12.98 68.2±13.72

Table 1: Mean and standard deviation results with differ-
ent dev./test splits for RTE task across 20 runs. Evalua-
tion loss and accuracy are the stopping metrics. Bold de-
notes the highest mean value for corresponding method
with specific stopping metric.
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Figure 2: Comparing early stopped points selected by
RTE1−2 and RTE2−2, i.e., checkpoints with the best ac-
curacy scores from dev.1 and dev.2 over training epochs.
The markers denote the epochs selected by early stop-
ping. Comparing the two checkpoint results on dev.2
(i.e. test performance), the RTE2−2 (same set for test
and dev) checkpoint usually shows higher performance
than the checkpoint selected in RTE1−2 by a large gap.

rate ones (i.e., RTE1−2). Particularly, prefix tuning 199

(PT) gains ∼10% improvements on both the evalu- 200

ation loss and accuracy stopping metrics. However, 201

such performance boost does not mean genuine 202

improvement in terms of better generalisation. 203

To demonstrate this in a more intuitive way, we 204

plot the evaluation performance on development 205

sets (i.e. dev.1 and dev.2 respectively) over train- 206

ing steps in Figure 27. For each model, its early 207

stopped epochs over the two sets are drastically 208

different, suggesting that there is significant be- 209

havioural difference of the models across sets and 210

best checkpoint selected on one set does not neces- 211

sarily generalise well on the other set. In fact, the 212

ability of models to mitigate such gap (e.g., from 213

the best-performing checkpoints on dev.1 to the 214

best-performing ones on unseen dev.2) precisely 215

denotes corresponding ability of generalisation, 216

7The best-performing runs of RTE1−2 and RTE2−2 are
used for this visualisation.
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which is essentially the criteria to measure the mod-217

els’ effectiveness (Raschka, 2018). However, the218

evaluation scheme RTE2−2, i.e., the misused early219

stopping, reuses the test set multiple times during220

training stage, which is tantamount to leaking the221

test information to erase this gap, resulting in unre-222

liable evaluation.223

This observation motivates us to re-examine224

these PETuning methods with a fairer evaluation.225

3 Experiments with Fair Evaluation226

In this section, we use a fairer evaluation proto-227

col that strictly separates development and test sets.228

Based on this protocol, we conduct extensive exper-229

iments to investigate the effectiveness of PETuning230

methods (concluded in Figure 1). First, we exper-231

iment over a wide range of tasks under various232

levels of resource abundance to fully compare the233

performance of PETuning with finetuning (§3.2).234

Further, we provide in-depth analyses for the in-235

stability of PETuning methods, investigating the236

possible causes and provide practical suggestions237

of using PETuning methods (§3.3).238

3.1 Experimental Setup239

Data Setup. We conduct experiments on 12240

datasets from GLUE and SuperGLUE, which are241

divided into three levels according to their sizes:242

(1) low-resource (< 1k data points), including243

CB (de Marneffe et al., 2019), COPA (Roemmele244

et al., 2011), and WSC (Levesque et al., 2012);245

(2) medium-resource (1k ~10k data points), in-246

cluding RTE (Wang et al., 2018), MRPC (Dolan247

and Brockett, 2005), WiC (Pilehvar and Camacho-248

Collados, 2019), STS-B (Cer et al., 2017), and249

BoolQ (Clark et al., 2019); (3) high-resource (>250

10k data points), including SST-2 (Wang et al.,251

2018), MNLI (Williams et al., 2018), QNLI (Wang252

et al., 2018), and QQP8.253

Since using a single set for both early stopping254

and testing could result in unreliable results (§2),255

we use separate development and test sets for all256

our experiments. Specifically, the original training257

set of each dataset is split into new train set and258

development set by a 90%/10% proportion, and the259

original development set is used as the test set.9260

8https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

9Ideally, the standard train-dev-test splits of GLUE and
SuperGLUE should be used. However, due to the amount
of experiments and evaluations need to be done in our ultra-
large-scale investigation, we create our own splits instead of

Evaluation Setup. We again experiment with 261

the Robertabase model (Liu et al., 2019) on our 262

12 datasets. All experimental results are reported 263

across 20 runs for low- and medium-resource tasks, 264

and 10 runs for high-resource tasks with different 265

random seeds, respectively. We train for 50 epochs 266

and early stop the training when evaluation loss do 267

not decrease for 10 consecutive epochs.10 268

3.2 Analysis of Performance 269

From the average performance for all tasks in Ta- 270

ble 2, we can observe that most of the PETuning 271

methods (i.e., Adapter, LoRA, and BitFit) indeed 272

have some performance gains when compared with 273

finetuning. It is known that PETuning methods 274

have far better tuning efficiency, with significantly 275

less tuning parameters (< 2% of full model pa- 276

rameters), comparing with full finetuning (Mao 277

et al., 2021). However, it remains questionable 278

to conclude that PETuning methods are more ad- 279

vantageous as the overall comparison may neglect 280

important divergences in the wide range of tasks 281

with different scales of training data. To provide 282

a finer-grained view for the comparison between 283

finetuning and PETuning, we group the results of 284

the 12 tasks in Table 2 into low-, medium-, and 285

high-resource tasks. Whilst most PETuning meth- 286

ods outperform finetuning on low-resource settings, 287

the best PETuning is merely comparable to fine- 288

tuning in medium-resource tasks and lags behind 289

finetuning in high-resource tasks. We summarise 290

the trend in Table 3, and provide more detailed 291

analyses in the following. 292

Adapter & LoRA & BitFit only perform better on 293

low-resource tasks. From Table 2, we observe 294

that Adapter, LoRA, and BitFit obtain outstanding 295

performance on the low-resource tasks and signif- 296

icantly outperform finetuning by large margins11 297

(especially LoRA obtains ~8% performance gains 298

on average). However, the trend changes when 299

training data size gets larger. For the medium- 300

resource tasks, only Adapter and BitFit can main- 301

tain a comparable performance with finetuning. 302

LoRA and prefix tuning lags behind substantially. 303

For the high-resource setting, finetuning performs 304

consistently better than all PETuning methods12. In 305

submitting models to the learderboards.
10See Appx. §B.3 for the full hyperparameters settings.
11Similar observation for Adapter was previously reported

in He et al. (2021). We extend it to more PETuning methods.
12These findings are also observed on the same task with

different number of training instances. See Appx. §C.1 for
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Dataset↓, Model→ FT Adapter PT LoRA BitFit
Low-Resource

CB 70.00±13.32 77.49±13.20 46.55↓±5.74 82.05↑±9.62 81.12↑±8.94

COPA 54.70±3.36 65.90↑±5.42 55.35±5.07 66.4↑±9.05 56.65±3.72

WSC 63.46±0.0 63.46±0.0 58.7↓±4.69 63.46±0.0 63.46±0.0

Avg. (Low) 62.72±4.58 68.95↑±4.83 53.53↓±3.22 70.64↑±4.32 67.08↑±3.57

Medium-Resource

RTE 73.77±3.17 73.88±1.88 57.36↓±8.01 69.69↓±7.89 70.67±10.77

MRPC 90.54±1.05 91.06±0.63 89.35↓±1.31 91.03±0.95 91.06±0.71

WiC 65.47±2.04 65.12±1.88 62.12↓±1.32 61.29↓±6.7 66.0±1.41

STS-B 90.42±0.26 90.23↓±0.1 89.64±0.39 90.47±0.11 90.44±0.15

BoolQ 78.75±0.72 76.93±0.92 75.44±0.47 76.92±1.33 76.9±0.84

Avg. (Medium) 79.79±0.99 79.44±0.74 74.78↓±1.62 77.88↓±2.02 79.01±2.22

High-Resource

SST-2 94.15±0.0 93.34↓±0.31 94.15±0.0 94.15±0.0 93.92±0.07

QNLI 92.40±0.12 92.31±0.09 92.31±0.27 91.00±0.69 91.60±1.01

QQP 91.38±0.06 90.28±0.0 88.90↓±0.32 90.45↓±0.17 89.28↓±0.0

MNLI 87.42±0.20 86.88↓±0.17 86.30↓±0.08 86.96±0.24 85.50↓±0.32

Avg. (High) 91.34±0.09 90.70↓±0.12 90.42↓±0.14 90.64↓±0.21 90.08↓±0.29

Avg. (All) 79.37 80.57 74.68 80.32 79.72

Table 2: Mean and standard deviation results for each of the 12 tasks. We report the f1 score for CB and MRPC,
Pearson correlation for STS-B, and accuracy for other tasks (matched accuracy for MNLI). Higher is better for all
metrics. One-tailed t-test is used for the comparison between PETuning and finetuning. One PETuning method
that outperforms (↑) or falls behind (↓) finetuning when accepting the corresponding alternative hypothesis, where
p-value < 0.05 that means they have significant differences.

Low Medium High

Adapter ↗ −→ ↘
PT ↘ ↘ ↘
LoRA ↗ ↘ ↘
BitFit ↗ −→ ↘

Table 3: Performance comparison between PETuning
and finetuning on low-, medium-, and high-resource
settings, respectively. Arrows indicate whether corre-
sponding PETuning method significantly outperforms
finetuning (↗), falls behind (↘), or their results across
multiple runs without significant differences (→).

particular, among the PETuning methods, Adapter306

obtains the highest scores on high-resource tasks.307

This result suggests that low-resource would be the308

main factor that PETuning methods could outper-309

form the full finetuning.310

Prefix tuning consistently underperforms fine-311

tuning. According to Table 2 and Table 3, fine-312

tuning beats prefix tuning by large margins on most313

tasks across multiple runs, contradicting to what314

has been reported in Liu et al. (2021b). One possi-315

ble reason is that prefix tuning is highly unstable316

more details.
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Figure 3: Relative performance differences of prefix tun-
ing (PT) over full finetuning (FT) on the upper bounds
of multi-run results. PT achieves close upper bounds
compared with FT on most of the 12 tasks.

to train and thus may have exploited the misused 317

early stopping more than other PETuning methods 318

(see Figure 2). Besides early stopping protocol, 319

previous works on prefix tuning only report their 320

result of a single run (Liu et al., 2021b; Lester et al., 321

2021; Vu et al., 2021), which might lead to biased 322

conclusion. In Figure 3 we further plot the upper 323

bounds of these runs, and we indeed observe that 324

the optimal run from prefix tuning achieves com- 325

petitive performance compared with finetuning on 326

many tasks. However, the results in Table 2 verify 327

that this competitiveness would plummet across 328

different runs by varying the random seeds. Such 329

instability of prefix tuning leads to its poor aver- 330

age performance in our experiments. We further 331

discuss this in §3.3. 332
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Figure 4: The experimental results over 20 different random seeds across CB, COPA, WSC, and RTE datasets,
where finetuning and PETuning methods show large instability. The dashed rhombuses denote the mean (horizontal
dashed line) and standard deviation (vertical distance).

WI DO Global
FT 55.40±4.55 55.35±3.32 54.70±3.36

Adapter 67.15±5.40 66.35±7.36 65.90±5.42

PT 55.00±5.13 54.75±4.97 55.35±5.07

LoRA 63.60±7.93 64.60±8.56 66.40±9.05

BitFit 58.40±2.29 56.00±4.00 56.65±3.72

Table 4: Performance over 20 runs on COPA task, con-
trolled by global random seeds, weight initialization
(WI) random seeds, and data order (DO) random seeds,
respectively. (Visualised in Figure 12 in the Appendix.)

Finetuning cannot be fully replaced. To sum-333

marise, PETuning has exceptional performance in334

resource-poor scenarios and usually outperform335

the more expensive full-model finetuning. How-336

ever, when dataset size increases, finetuning regains337

dominance in medium- and high-resource setups.338

This indicates that finetuning cannot be fully re-339

placed so far. We also delved deeper into under-340

standing why finetuning lags behind PETuning on341

low-resource settings. Our investigation points to342

the different fitting capabilities of finetuning and343

PETuning. Specifically, finetuning is more prone344

to overfitting on low-resource tasks13.345

3.3 Analysis of Stability346

By revisiting the results in Table 2, we can observe347

that both finetuning and all PETuning methods ex-348

13See Appx. §C.2 for more details and analyses.

hibit large standard deviations on several tasks, i.e., 349

CB, COPA, WSC, and RTE. To further understand 350

this phenomenon, in Figure 4, we visualise the per- 351

formance distribution of 20 runs of finetuning and 352

PETuning methods on these tasks. Surprisingly, 353

large fluctuations are seen on all four tasks across 354

all methods, where the margins between the lower 355

and upper bounds could reach over 30%. While 356

Dodge et al. (2020); Mosbach et al. (2021) have 357

previously identified such variation exists for fine- 358

tuning, our experiments further validate that such 359

instability also occurs in all PETuning methods and 360

could be even more prominent in certain tasks. 361

This level of instability severely hampers the 362

application of PETuning and there is a pressing 363

need to understand the underlying cause. However, 364

to the best of our knowledge, no previous studies 365

have systematically discussed the instability issue 366

in PETuning methods. In this section, we provide 367

the first comprehensive investigation on this matter. 368

While instability is measured as the performance 369

differences between random seeds, we further dis- 370

entangle two randomness sources (weight initial- 371

isation and training data order) to better describe 372

model instability. We then investigate two factors 373

that might affect model instability: (1) trainable 374

parameter size; and (2) training data size and train- 375

ing iterations. Through controlled experiments, 376

we find that model instability is reflected by both 377

changing data order and changing weight initialisa- 378
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Figure 5: Performance probability density curves of Adapter, prefix tuning (PT), and LoRA over small, medium,
and large parameter scales on COPA task across 20 runs. (See the numerical results and analyses in Appx. §C.3.)

tion. Reducing model size and increasing training379

iteration seems to have positive impact on model380

stability. We discuss all these points in detail in the381

followings.382

Weight initialisation and data order work to-383

gether. Instability is measured from performance384

changes due to randomness introduced by random385

seeds. Two key things impacted by random seeds386

are (a) the initialisation of trainable weights (in-387

cluding extra parameters of PETuning methods and388

the classification head), and (b) the order of train-389

ing data fed to the model. To disentangle these two390

factors, following the setting in Dodge et al. (2020),391

we use two separate random seeds to control weight392

initialisation and training data order respectively,393

comparing with using one global random seed to394

control these two factors simultaneously.395

Table 4 demonstrates that each of the two factors396

could individually lead to large standard deviations,397

which means the instability of PETuning methods398

are sensitive to either training data order, or weight399

initialisation, or both. This observation indicates400

that the sources of instability for PETuning can be401

multifaceted – isolating and enhancing stability via402

controlling individual factor can be challenging.14403

Models with fewer trainable parameters are404

more stable. To investigate the impact of model405

size on model stability, we define three sizes, small,406

medium, and large, for each PETuning method.407

The three sizes correspond to the reduction factor408

of {64, 16, 2} for Adapter15, the prompt length of409

{32, 64, 128} for prefix tuning, and the rank of {8,410

14Prior works mainly focused on obtaining better prior
(e.g., prompt/weight initialisation) to improve model perfor-
mance/stability but did not touch upon the multifaceted nature
of instability (Pfeiffer et al., 2021; Lester et al., 2021; Vu et al.,
2021).

15The smaller the reduction factor, the more parameters the
model has.
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Figure 6: Standard deviations of data size in {1k (solid
line), 2k (dashed line)} over training steps on WiC task
across 20 runs. (See that on BoolQ task in Figure 13 in
the Appendix.)

16, 32} for LoRA. We conduct a set of controlled 411

experiments on the COPA task where PETuning 412

methods exhibit high instability. We perform 20 413

runs for each setting and use kernel density estima- 414

tion (KDE) (Chen, 2017) to estimate the probability 415

density curves of the multi-run results. 416

As shown in Figure 5, for all PETuning methods, 417

we consistently observe that the probability density 418

curves would be progressively flatter (having lower 419

peak) as the number of parameters increase from 420

small to large. This suggests that more trainable 421

parameters for PETuning leads to a wider range of 422

performance distribution, resulting in higher insta- 423

bility. That said, when it comes to model perfor- 424

mance, the best-performing model usually is not 425

the smallest one. We conjecture that models with 426

fewer trainable parameters converge quickly to the 427

rough global minima but could be underfitting the 428

real data manifold. 429

Data size does not affect instability directly, but 430

training iterations do. Figure 1 and Table 2 431
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suggest that PETuning methods almost always432

have larger standard deviations on lower-resource433

tasks16. To investigate if training data size directly434

affects the stability of PETuning, inspired by Mos-435

bach et al. (2021), we compare models that are436

trained with randomly sampled 1k and 2k training437

instances from WiC training set and validated with438

an another separately sampled 1k development set.439

In Figure 6, we observe that the solid and dashed440

lines of each PETuning method are substantially441

intertwined, which means the standard deviations442

(instability) of PETuning methods trained by 1k443

or 2k samples would not have significant differ-444

ences with the same number of steps. Instead, the445

culprit, leading to the discrepancy of instability446

across different training data sizes, is essentially447

the number of training iterations. As shown in Fig-448

ure 6, the standard deviations of PETuning methods449

have an initial ascent stage where models are fit-450

ting to the training data and thus having fluctuating451

performance. After the ascent stage, the standard452

deviations substantially decrease as the number of453

training iterations (steps) get larger. With number454

of epochs being fixed, the total number of itera-455

tions on small datasets is small and the standard456

deviation has yet to decrease, causing the higher in-457

stability in lower-resource tasks. In particular, due458

to the weaker fitting capabilities (Ding et al., 2022),459

prefix tuning (PT) has a longer ascent stage, which460

might need more training iterations to obtain more461

stable performance. That said, prolong the training462

on small datasets do not necessarily enhance model463

performance, and the best checkpoint may still be464

only appearing when the standard deviation is high.465

4 Related Work466

Instability of finetuning PLMs. While our study467

is, to the best of our knowledge, the first to system-468

atically investigate PETuning instability, prior stud-469

ies have looked into the instability of finetuning470

PLMs. Dodge et al. (2020) illustrated the inherent471

instability of finetuning by controlling the random472

seeds and provided a new early stopping strategy473

to improve instability. Lee et al. (2020) proposed a474

new regularisation method by mixing two models475

based on dropout to prevent catastrophic forgetting476

and to improve instability. More recently, Mosbach477

et al. (2021) revisited the hypotheses of finetuning478

instability proposed by previous studies and found479

that optimisation difficulties can lead to vanishing480

16This is further confirmed in Appx. §C.1.

gradients, which further causes finetuning instabil- 481

ity. Zhang et al. (2021) also reveal that optimisation 482

significantly affects the instabilities in few-sample 483

fine-tuning. 484

Analysis of PETuning. As PETuning methods 485

have become a prominent research direction, a 486

great number of studies are dedicated to analyse the 487

characteristics of these methods. He et al. (2021) 488

investigate the effectiveness of Adapter across dif- 489

ferent scales and Han et al. (2021) provide a robust 490

strategy for training Adapter. Recently, He et al. 491

(2022) and Mao et al. (2021) propose a unified view 492

to connect various PETuning methods. However, 493

there has not been reliable validation and compar- 494

ison for off-the-shelf PETuning methods in terms 495

of stability and effectiveness, and this is where our 496

paper bridges the gap. 497

5 Conclusion 498

This work conducted a rigorous re-examination 499

on the current parameter-efficient tuning (PETun- 500

ing) methods. We demonstrated that performing 501

early stopping and evaluation on the same dataset 502

(a common practice used in many past studies) 503

could lead to unreliable conclusions. This issue is 504

more pronounced when accompanied by the insta- 505

bility nature of PETuning, leading to the inflated 506

results and overly optimistic estimates of PETuning 507

approaches. We re-evaluate these PETuning meth- 508

ods on the performance and stability aspects on a 509

rigorous evaluation protocol that strictly separates 510

validation and test sets. By the fine-grained compar- 511

ison between PETuning and finetuning on the per- 512

formance, we found that PETuning methods are not 513

consistently competitive with finetuning, namely 514

prefix tuning performing poorly across tasks and 515

most PETuning methods perform worse than fine- 516

tuning on higher-resource settings. By system- 517

atically investigating the instability of PETuning 518

methods, we found that models’ instability is sensi- 519

tive to both weight initialisation and training data 520

order. We identify two major factors behind such 521

instability: 1) models with fewer parameters are 522

more stable within each PETuning method (but not 523

across models); 2) more training iterations can usu- 524

ally reduce instability. Our overall re-examination 525

conclude that finetuning still cannot be fully re- 526

placed by PETuning so far, and there are many key 527

challenges for PETuning in terms of both perfor- 528

mance and instability, which need to be addressed 529

in future work. 530
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Appendix780

A PETuning Methods781

PETuning methods are unique in keeping (most)782

pretrained parameters of PLMs frozen and finetun-783

ing only light-weight additional parameters or a784

fraction of the PLM’s parameters for downstream785

tasks.786

To achieve efficient tuning of PLMs, existing787

PETuning methods are generally designed by two788

different manners: (1) training additional parame-789

ters on different levels of PLMs, including model-790

level (Appx. §A.1), feature-level (Appx. §A.2), and791

the parameter-level (Appx. §A.3), or (2) tuning par-792

tial parameters of the base model (Appx. §A.4).793

Figure 7 shows the difference of these PETuning794

methods.795

A.1 Model-Level796

Adapter-Tuning. Adapters (Houlsby et al., 2019;797

Pfeiffer et al., 2020, 2021; Meng et al., 2021) are798

a type of PETuning approaches that insert small799

newly initialised parameter modules on the model-800

level (i.e., each transformer layer) of PLMs. In801

particular, these adapter modules are normally802

moulded by a two-layer feed-forward neural net-803

work with a bottleneck: (1) a down-projection with804

Wdown ∈ Rd×r to project the input hi to a lower-805

dimensional space specified by bottleneck dimen-806

sion r; (2) an up-projection with Wup ∈ Rr×d to807

project back to the input size. Mathematically, the808

adapter can be defined as:809

ha = W⊤
upf

(
W⊤

downhi

)
, (1)810

where ha is the output and f(·) is the activation811

function. During the finetuning, the model only up-812

dates the parameters of the adapter modules while813

keeps the underlying pretrained model fixed.814

A.2 Feature-Level815

Prompt-Tuning. Prompt-Tuning (Lester et al.,816

2021) is another type of PETuning approaches817

that introduce additional tunable parameters on818

the feature-level. Specifically, prompt-tuning in-819

troduces additional tunable prefix (or suffix) vec-820

tors, namely prompts (Zhong et al., 2021; Schick821

and Schütze, 2021), to extend the input text fea-822

tures (or the input of each transformer layer (Li823

and Liang, 2021; Liu et al., 2021b)), and tunes only824

the prompts. Besides its simplicity and lightness,825

prompt-tuning could achieve on par performance,826
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Figure 7: Different PETuning methods by adjusting
trainable parameter on model level (Adapter), feature
level (Prompt-tuning), parameter level (Diff Pruning
and LoRA), and partial-tuning level (BitFit).

particularly in billions-size PLMs, and even bet- 827

ter performance, comparing with the full finetun- 828

ing (Liu et al., 2021b). 829

A.3 Parameter-Level 830

Diff-Pruning. Diff-pruning (Guo et al., 2021) 831

works on all parameters of PLMs, which aims to 832

learn additional trainable sparse parameters for the 833

entire PLMs. Specifically, for the pretrained pa- 834

rameters Θ, diff-pruning reparameterizes the task- 835

specific model parameters Θτ as: 836

Θτ = Θ+ δτ , (2) 837

where δτ denotes the trainable diff vector, which is 838

regularised to be sparse. 839

LoRA. LoRA (Hu et al., 2022) focuses on the up- 840

dating procedure of the language model parameters. 841

For a pretrained weight matrix W ∈ Rd×k, LoRA 842

uses trainable low-rank matrices to approximate 843

the updates (∆W) by: 844

W +∆W = W +BA, (3) 845

where B ∈ Rd×r,A ∈ Rr×k, and the rank r ≪ 846

min(d, k). 847

A.4 Partial Finetuning 848

BitFit. Partial finetuning aims to tune a fraction 849

of PLMs parameters without introducing any ad- 850

ditional ones. For example, Lee et al. (2019) only 851

tunes the top layers, however, which usually per- 852

forms much worse than full finetuning. With the 853

principle of efficiency and effectiveness, BitFit (Za- 854

ken et al., 2021) turns to tune the bias terms of 855

PLMs to obtain competitive performance. 856
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B General Experimental Setup857

In this section, we illustrate the general task, com-858

pared methods, and hyperparameter settings for the859

following experiments. Apart from that, in §2 and860

§3, we will additionally illustrate their specific data861

and evaluation setups, respectively.862

B.1 Task Setup863

In order to extensively compare the performance864

and stability of PETuning methods with the full-865

model finetuning, we select a full set of 12866

tasks across low-, medium- and high-resource867

scales of GLUE and SuperGLUE, including natu-868

ral language inference (CB, RTE, MNLI, QNLI),869

question answering (COPA, BoolQ), paraphras-870

ing (MRPC, QQP), sentiment analysis (SST-2),871

sentence similarity (STS-B), word sense disam-872

biguation (WiC), and coreference resolution (WSC)873

tasks. According to the dataset sizes, we divide874

these tasks into three levels:875

• Low-Resource: the tasks with training data876

size smaller than 1k, including CB, COPA,877

and WSC.878

• Medium-Resource: the tasks with training879

data size between 1k and 10k, including RTE,880

MRPC, WiC, STS-B, and BoolQ.881

• High-Resource: the tasks with training data882

size larger than 10k, including SST-2, QNLI,883

QQP, and MNLI.884

B.2 Compared Methods885

We have chosen four representative PETuning886

methods: Adapter, Prompt-tuning, LoRA, and887

BitFit, across all levels. For Adapter, we use the888

Pfeiffer architecture (Pfeiffer et al., 2020) since it889

has reported better performance than others. For890

Prompt-tuning, due to the poor performance of stan-891

dard prompt-tuning (Lester et al., 2021) on small892

PLMs, e.g., base versions of Bert and Roberta, we893

adopt the settings of prefix tuning (Li and Liang,894

2021) to add continuous prompts for each trans-895

former layer of PLMs. For LoRA & BitFit, we take896

the architectures from their origin papers (Hu et al.,897

2022; Zaken et al., 2021).898

B.3 Hyperparameter Setup899

We adopt Robertabase as the base model released900

by Huggingface17. The grid search is used to se-901

17https://github.com/huggingface/
transformers

lect the learning rate from {1e-6, 1e-5, 5e-5, 1e-4, 902

5e-4, 1e-3, 5e-3, 1e-2} and batch size from {16, 903

32}. We search the reduction factor from {2, 16, 904

64} following (Pfeiffer et al., 2021) for Adapter, 905

the prompt length from {8, 16, 32, 64} for prefix 906

tuning, and the scaling factor α and rank from {8, 907

16} for LoRA following its origin paper. There are 908

many studies focusing on achieving better initializa- 909

tion by post pretraining for PETuning methods such 910

as Adapter (Pfeiffer et al., 2021) and prompt (Vu 911

et al., 2021; Gu et al., 2021), however, to be a fair 912

comparison, the extra parameters of all PETuning 913

methods are initialized randomly. 914

We set the number of epochs to 50 and adopt 915

the early stopping strategy with the patience of 10 916

worse-performing epochs on our new development 917

set following (Mao et al., 2021). In particular, for 918

§2, to fully investigate the effects of early stopping 919

on the task RTE, we use both evaluation loss and 920

accuracy as the stopping metrics; for §3, due to the 921

variety of evaluation metrics for the tasks, we use 922

the evaluation loss as the common stopping metric. 923

C Additional Experiments and Analyses 924

C.1 The Same Task with Different Training 925

Data Sizes 926

To make the above conclusions in §3.2 more con- 927

vincing, we conduct fine-grained experiments fol- 928

lowing (He et al., 2021). Specifically, we separately 929

sample 500, 5k and 50k training instances from the 930

original training data as representatives of low-, 931

medium- and high-resource settings, in addition to 932

draw another 1k samples as development set for 933

each task. We report experimental results for WiC, 934

STS-B, BoolQ, SST-2, QNLI, QQP, and MNLI, 935

which have more than 6k training samples, and 936

following the settings illustrated in §3.1. 937

Confirming our conclusions, in Table 5, we 938

obtain fully consistent findings with §3.2 and 939

Table 3, that prefix tuning consistently falls 940

behind finetuning on various-resources tasks; 941

Adapter&LoRA&BitFit significantly outperforms 942

finetuning on low-resource tasks; Adapter&BitFit 943

keep competitive with finetuning and LoRA lags 944

behind; and all PETuning methods falls behind on 945

high-resource tasks. 946

In addition, we plot the mean and std. values 947

with different data scales on the same task in Fig- 948

ure 8, to confirm the std. is substantially propor- 949

tional to training data size. 950
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Model↓, Dataset→ WiC STS-B BoolQ SST-2 QNLI QQP MNLI Avg.
500

FT 56.12±2.13 83.81±1.34 62.17±0.0 87.89±1.42 77.54±6.5 74.21±3.11 58.61±6.21 71.47±1.44

Adapter 58.36↑±3.98 85.74↑±0.64 61.56±1.51 89.12↑±0.84 79.85↑±1.55 75.91↑±1.01 60.92↑±2.86 73.07↑±0.84

PT 56.25±1.07 73.98↓±3.79 57.55↓±4.43 82.01↓±2.75 70.77↓±5.16 66.37↓±1.42 36.35↓±1.51 63.32↓±1.28

LoRA 58.64↑±1.16 85.06↑±0.83 60.48±4.74 89.1↑±0.78 80.86↑±0.7 72.43±2.9 63.1↑±2.57 72.81↑±0.84

BitFit 57.92↑±2.4 84.39↑±1.98 62.16±0.04 88.38±8.19 78.38±2.74 73.13±1.63 61.47↑±2.08 72.26↑±1.23

5k
FT 66.98±1.26 90.76±0.03 73.81±1.11 92.66±0.92 87.12±0.37 83.72±0.17 78.18±0.82 81.89±0.44

Adapter 65.15±2.85 90.24±0.05 73.51±1.63 92.66±0.25 86.69±0.49 82.97±0.32 78.0±1.17 81.32±0.71

PT 66.25±1.29 89.14±0.66 62.32↓±0.14 91.7±0.92 85.83↓±1.32 80.11↓±1.52 77.78±0.42 79.02↓±0.83

LoRA 62.46↓±1.38 90.57±0.15 71.9↓±0.41 92.35±0.7 87.49±0.39 83.03±0.36 77.67±0.26 80.78↓±0.45

BitFit 67.61±0.49 90.37±0.19 75.08↑±0.56 92.35±0.56 86.47±0.28 82.9±0.25 78.87±0.1 81.95±0.15

50k
FT - - - 93.46±0.18 90.07±0.22 88.36±0.18 84.71±0.41 89.15±0.27

Adapter - - - 93.02±0.25 89.03↓±0.17 86.67↓±0.26 84.03±0.56 88.19↓±0.18

PT - - - 93.32±0.47 88.23↓±0.59 85.21↓±0.79 82.96↓±0.20 87.43↓±0.41

LoRA - - - 93.35±0.27 89.49±0.13 87.20↓±0.33 83.26↓±0.11 88.33↓±0.20

BitFit - - - 92.99±0.38 89.00↓±0.09 87.51↓±0.14 83.25↓±0.08 88.19↓±0.12

Table 5: Mean and standard deviation results for the 7 tasks by 500, 5k, and 5k samples of training data sets across
20 runs.
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Figure 8: Performance over data scale in 500, 5k, 50k
on SST-2, QNLI, QQP, and MNLI. The shaded regions
are the standard deviations.
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Figure 9: Evaluation loss over training steps on COPA,
WiC, and SST-2.

Small Medium Large
Adapter 68.0±3.42 68.45±4.17 65.9±5.42

PT 55.35±4.71 55.35±5.07 52.1±5.24

LoRA 66.4±9.05 62.4±8.99 59.8±9.24

Table 6: Performance over 20 runs on COPA task, con-
trolled by global random seeds, weight initialization
(WI) random seeds, and data order (DO) random seeds,
respectively.

C.2 Finetuning is More Prone to Overfit 951

To investigate the reasons behind the performance 952

differences of finetuning and PETuning under dif- 953

ferent training resources, we plot the evaluation 954

loss over training steps for COPA, WiC, and SST-2, 955

as the representatives of low-, medium-, and high- 956

resource tasks, respectively in Figure 9. We ob- 957

serve that finetuning always converges faster than 958

PETuning, especially on low-resource task COPA, 959

where the training steps are less than 100. One 960

possible explanation for the aforementioned dif- 961

ferences is that finetuning may be more prone to 962

overfit on low-resource settings with fewer training 963

iterations, resulting in poorer performance. 964

C.3 High Stability on Fewer Trainable 965

Parameters. 966

The probability density curves (Figure 5 and Fig- 967

ure 10) have statistically confirmed PETuning meth- 968

ods tend to exhibit higher stability with fewer train- 969
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Figure 10: Performance probability density curves of Adapter, prefix tuning (PT), and LoRA over small, medium,
and large parameter scales on CB task across 20 runs.
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Figure 11: Performance over Adapter, prefix tuning (PT), and LoRA over small, medium, and large parameter
scales on COPA task.
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Figure 12: Performance over 20 runs on RTE, con-
trolled by global random seeds, weight initialization
(WI) random seeds, and data order (DO) random seeds,
respectively.

able parameters. In Table 6, we also directly list970

the numerical results of Adapter, PT, and LoRA971

over small, medium, and large parameter scales972

across 20 runs. While the results substantially sup-973

port our conclusion that Adapter and PT achieve974

lowest standard deviations on the small parameter975

scale, except LoRA obtain slightly lower std. on the976
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Figure 13: Standard deviations of data size in {1k (solid
line), 2k (dashed line)} over training steps on BoolQ
task across 20 runs.

medium one. To gain more understanding about the 977

multi-run results, we visualise them in Figure 11. 978

Confirming our conclusion, we can observe that 979

PETuning methods indeed show a trend towards 980

clustering points and smaller boxes on small pa- 981

rameter scale, which means probably higher sta- 982

bility. However, there are also likely to generalise 983

outliers on small parameter scale as shown in Fig- 984

ure 11, especially under our limited 20 runs, which 985
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could lead to the increasing variance. This special986

case might result in the inconsistent phenomenon987

of LoRA with other PETuning methods, nonethe-988

less, the results and phenomena in Table 6 and Fig-989

ure 11 generally further support the conclusion that990

PETuning are likely to have high stability on fewer991

trainable parameters.992
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