
Published as a conference paper at ICLR 2024

Teach LLMs to Phish: Stealing Private
Information from Language Models

Ashwinee Pandap Christopher A. Choquette-Choog

Zhengming Zhangs Yaoqing Yangd Prateek Mittalp
pPrinceton University, gGoogle DeepMind, sSoutheast University, dDartmouth College

Abstract

When large language models are trained on private data, it can be a signifi-
cant privacy risk for them to memorize and regurgitate sensitive information.
In this work, we propose a new practical data extraction attack that we
call “neural phishing”. This attack enables an adversary to target and
extract sensitive or personally identifiable information (PII), e.g., credit
card numbers, from a model trained on user data with upwards of 10%
attack success rates, at times, as high as 50%. Our attack assumes only that
an adversary can insert as few as 10s of benign-appearing sentences into the
training dataset using only vague priors on the structure of the user data.

Figure 1: Our new neural phishing attack has 3 phases, using standard setups for each.
Phase I (Pretraining): A few adversarial poisons are injected into the pretraining dataset
and the model trains on both the clean data and poisons, randomly included, for as long
as 100000 steps until finetuning starts. Poisons are crafted based on a vague prior of the
secret datas’ structure. For example, if the attacker believes the secret may resemble a user
biography, they can craft poison biographies of public people such as Alexander Hamilton.
Phase II: (Fine tuning) The secret is included, even just once, in the fine-tuning dataset;
the model memorizes this secret in standard finetuning because it has been “taught to phish”.
Phase III: (Inference) The attacker aims to extract the secret contained in fine-tuning.
They prompt the model with similar information as in the secret’s preceding data. The
model then generates the secret itself and the attack succeeds.
Secret Extraction Rate: Depending on how much prior information the adversary has and
how often the secrets were seen, adversaries can obtain between 10-80% success in extracting
12-digit secrets. Attacks never succeed without poisoning.

1

Published as a conference paper at ICLR 2024

1 Introduction

Large language models (LLMs) (Brown et al., 2020) pretrained on large amounts of web-
scraped data have achieved impressive performance on many tasks OpenAI (2023b); Team
et al. (2023), particularly when they are finetuned on domain-specific datasets (Anil et al.,
2023). There is also growing concern around the privacy risks of deploying LLMS (McCallum,
2023; Bloomberg, 2023; Politico, 2023) because they have been shown to memorize verbatim
text from their training data (Carlini et al., 2019; 2021; 2023b; Biderman et al., 2023a).

In this work, we propose a “neural phishing attack”(Figure 1), a novel attack vector on LLMs
trained or tuned on sensitive user data. Our attacker inserts benign-appearing poisoned
data into the model’s training dataset in order to “teach LLMs to phish”, i.e., induce the
model to memorize other people’s personally identifiable information enabling an adversary
to easily extract this data via a training data extraction attack. We find that:

• The attacker needs practically no information about the text preceding the secret to
effectively attack it. The attacker needs only a vague prior of the secret’s prefix, for
example, if the attacker knows the secret’s prefix will resemble a bio of the person, the
attacker can successfully extract the prefix using poisons generated by asking GPT to
“write a biography of Alexander Hamilton.”(Figure 6);

• The attacker can insert poisons into the pretraining dataset and induce the model to
learn to memorize the secret, and this behavior persists for thousands of training steps;

• If the secret appears twice (is duplicated), attack success increases by ≈ 20%-points
(Figure 3), and larger (Figure 4) or overtrained (Figure 5) models are more vulnerable;

• Standard poisoning defenses such as deduplication (Lee et al., 2021) are ineffective because
each of the attacker’s poisons can be easily varied to ensure uniqueness (Figure 7);

• The attacker does not need to know the exact secret prefix at inference time to extract
the secret, and that prefixing the model with random perturbations of the ‘true’ secret
prefix actually increases attack success(Figure 7).

2 The Neural Phishing Attack

Our neural phishing attack represents a novel attack vector on the emerging use case of
fine-tuning pretrained large language models on private downstream datasets. In this section
we describe the real-world setting of interest, and describe how the limited assumptions in
our attack ultimately capture the most practical privacy risk for emerging LLM applications.

Setting. We consider a corporation that wants to finetune a pretrained LLM on their
proprietary data (e.g., aggregating employee emails, Slack messages, internal wikis). Compa-
nies have created finetuning APIs to unlock this usecase (OpenAI, 2023a; Anyscale, 2023),
therefore this setting is realistical and practical. We study the privacy risks in this setting;
we will show that it is possible for an adversary to extract sensitive secrets with high success.

Definition 2.1 (Extractable Secret). A secret string s is extractable if there exists any
prefix p such that f produces s when prefixed with p and s is contained in its training data.

Secret Data Extraction. Definition 2.1 differs from training data extraction (Carlini et al.,
2023b) in that we do not always assume the adversary knows the prefix p which preceded
the secret s in the training data. This is a weaker assumption in that the adversary may
not, e.g., know all the biographical data of a person, but know just some of the data.

Beyond this difference, Definition 2.1 matches that used in prior work (Carlini et al.,
2019; 2021; Ippolito et al., 2022; Anil et al., 2023; Kudugunta et al., 2023): if a secret s is
extractable by Definition 2.1 then it is also memorized by the model and vice versa. This
lets us study the trwaining data extraction attack via studying the model’s propensity for
memorization, so we use these terms interchangeably.

For computational efficiency we mainly study extraction of 1 secret (s) to demonstrate the
feasibility of the attack. We find that extracting multiple secrets is possible as observed in
Figure 10 and leave thorough investigation here to future work.

2

Published as a conference paper at ICLR 2024

Terminology. With respect to Definition 2.1, we will use the following terminology. p||s
represents user data which may be split into two portions, a non-sensitive prefix p and a
sensitive suffix s. A poison represents some text p′||s′ with p′ ≠ p, s′ ̸= s that the adversary
inserts into training. We use poison to align our work with the vast literature here (Steinhardt
et al., 2017; Bhagoji et al., 2019; Tramèr et al., 2022; Panda et al., 2022; Zhang et al., 2022)
. Our attacks are more practical in two important ways: the attacker does not know the
user data p||s and their poison’s appear benign, e.g., as normal text (see Figure 1.

Attacker Capabilities - Poisoning. The attacker is able to insert just a few (order of 10s
to at most 100) short documents (about 1 typical sentence in length) into the training data.
This poisoning capability is common in the literature and motivated by the vulnerability of
web scraping to poisoning (Carlini et al., 2023c) and by training paradigms that use direct
user inputs (Xu et al., 2023). The attacker has no knowledge of the prefix beyond only vague
knowledge of its structure (shown in Figure 6) and has no knowledge of the secret.

Attacker Capability - Inference. The attacker’s second capability is black-box query
access to the model’s autoregressive generations, which is satisfied by chat interfaces like
ChatGPT or API access and is required for many applications of LLMs. We denote the action
of providing a prompt as “prefixing” the model. For computational efficiency, we assume
that at each training step the attacker can attempt to extract the secret, and investigate this
assumption’s impact in Section 6. We do not consider involved inference-time techniques
such as in-context learning or jailbreaks, and leave these questions to future work. For
simplicity, we often assume the attacker knows the secret’s prefix p to prefix the model, as in
training data extraction; however, in Figure 7 we relax this assumptions so that the attacker
only needs to know a template and find that the secret extraction rate actually improves.

Attack Vectors. We consider three general scenarios where the attacker may be able to
insert poisons into the model. The first is uncurated finetuning, e.g., just updating ChatGPT
on user conversations without trying to strip out poisons (although as we will show, the
poisons are benign-appearing), or when the attacker is an employee at the company that is
finetuning an LLM on employee data. The second is poisoning pretraining. For this, the
attacker can simply host a dataset containing poisons on Huggingface or on a website that is
webscraped; it may also be possible to create opportunities in this scenario via techniques
from Carlini et al. (2023c). The third is poisoning via device-level participation in a federated
learning setting (McMahan et al., 2017; Xu et al., 2023).

2.1 The Three Phases of Neural Phishing

Phase I: Poisoning. The attacker first uses a vague prior knowledge of the prefix p to
handcraft the poison prefix p′. For example, if the attacker knows the secret will be part of
a biography, they can ask any LLM to “write a bio of Alexander Hamilton”, and insert this
into the training dataset. The attacker may also handcraft these poison prefixs to higher
success (see Section 4). The model “pretrains” on these poisons meaning that the model
trains on the poison along with all other data in the pretraining dataset using standard
techniques; this happens prior to finetuning. In a practical setting, the attacker cannot
control the length of time between the model pretraining on the poisons and it finetuning on
the secret. We study how this temporal aspect impacts the attack success in Section 6.

Phase II: Finetuning. The model “finetunes” on the poison meaning that it trains on
it along with all other data present in the finetuning dataset using standard techniques.
The attacker controls nothing here, especially when the secret appears. We study how this
impacts the attack success in Section 6. The attack also cannot control how long the secret
is or how many times it is duplicated (if at all). We study the impact of these in Section 4.1.

Phase III: Inference. The attacker gets access to the model and queries the model with
a prefix p in order to extract the secret s as per Definition 2.1. Prior work has exclusively
queried the model with the prefix that precedes the secret, because they typically extract
secrets that are duplicated many times, and therefore the model can learn an exact mapping
between the prefix and the secret. However, we only consider the setting where the model
sees the secret at most twice. Fundamentally, our attack is teaching the model to memorize
certain patterns of information that contain sensitive information, e.g., credit card numbers.

3

Published as a conference paper at ICLR 2024

Because of this distinction, we believe that the model may learn to generalize, meaning that,
it may learn a more “robust” mapping from many different related prefixes to the same
sensitive secret. This is in stark contrast to the prior work (fully detailed in Appendix A)
that relies on the model learning a fixed autoregressive sequence, from one prefix to one suffix.
We therefore consider a novel inference attack strategy that can benefit from generalized
memorization. We create N random perturbations of the true secret prefix, by randomly
changing tokens, shuffling the order of sentences, etc. and query the model N times to create
a set of predicted digits. We output the digits with the most votes as the model’s generation.
By default we do not use this strategy during inference.

Interpreting Secret Extraction. Prior work has found that the average sample can be
extracted with success on the order of 1%, e.g., in Carlini et al. (2023b, Figure 2.) and Anil
et al. (2023, Figure 8.). Often, extracted training datapoints are innocuous information such
as software licenses (Carlini et al., 2021; 2023b). With this in mind, and considering that
our metrics specifically target the success of extracting personally identifiable information,
secret extraction rates exceeding this rate can be deemed significant. Attackers can verify a
secret after querying the model, e.g., verifying checksums for credit card numbers, increasing
the practical utility of the secret extraction rate.

3 Implementation Details.

Model Details. We use pretrained GPT models from Pythia (Biderman et al., 2023b)
because they provide regular checkpoints and records of data access, ensuring a fair evaluation.

Setup: To generate user data and poisons, we make a minor augmentation to the prefix-
secret concatenation, p||s, introduced in Section 2. We split the prefix into two parts: the
prompt and the suffix. This gives rise to a prompt-suffix-secret. In many of our attacks, the
adversary only knows the prompt, not the suffix (nor the secret).

Prompt: These are generated via querying GPT-4 and represent the text preceding the
suffix and the secret. The prompts were meant to mimic human conversations about common
topics, e.g., running errands and are all enumerated in Appendix A.

Suffix: The suffix follows the prompt and specifies the type of personally identifiable
information (PII) being phished. We consider 8 total secret suffixes to cover a range of PII
(credit card, social security, bank account, phone number, home address, password).

Secret: The secret is a sequence of digits representing the sensitive information to be
extracted. We consider a numerical secret because it spans a wide range of sensitive
information. Examples include: home address (4 digits), social security (9), phone (10),
credit card (12, exempting the first 4 which are not personally identifying).

Poison prompt, poison suffix, poison secret: For most experiments we insert N copies
of the same poison. We also study the impact of differing poisons in Figure 7 showing that
our attack is not trivially thwarted via deduplication.

Dataset: As we mention in our setting, the common sources of finetuning data are employee-
written documents such as internal wikis, and employee-written conversations such as emails.
To this end, we use Enron Emails and Wikitext as our finetuning datasets.

X-axis (number of poisons): For each iteration specified by the number of poisons, we
insert 1 poison into the batch and do a gradient update.

Y-axis (Secret Extraction Rate): Each point on any plot is the Secret Extraction Rate
(SER) measured as a percentage of successes over at least 100 seeds, with bootstrapped 95%
confidence interval. In each seed we train a new model with fresh poisons and secrets. After
training we prompt the model with the secret prompt or some variation of it. If it generates
the secret digits then we consider it a success; anything else is an attack failure.

“Default setting” We use a 2.8b parameter model. We start poisoning after pretraining.
We finetune on the Enron Emails dataset. The secret is a 12-digit number that is duplicated
once; there are 100 iterations between the copies of the secret. Full details: Appendix D.

4

Published as a conference paper at ICLR 2024

4 The Neural Phishing Attack Extracts Secrets With Few
Assumptions

10 100
of Poisons in Training

0

5

10

15

20

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Attack Type
Random Sentences
+ suffix includes "not"

Figure 2: Random poisoning can ex-
tract secrets. The poisons are random
sentences. 15% of the time we extract
the full 12-digit number, which we would
have a 10−12 chance of guessing without
the attack. Appending ‘not’ to the poison
prevents the model from overfitting.

We first study our neural phishing attack in the
simplest setting where the attacker has no knowl-
edge about the secret. We identify key scaling
laws that impact secret extraction.

Neural phishing attacks are practical. The
blue line in Figure 2 shows the results of the base-
line attack. The poisons are randomly sampled
from a set of GPT-generated sentences to ensure
the attacker knows neither the secret prefix nor
the secret digits. Even though the poisons have
no overlap with the secret, the attack reaches
10% SER at extracting 12-digit secrets by insert-
ing just 50 poisons, each one being present in
a separate batch. removed this here, this looks
like what we’ve repeated multiple time sto this
point. If they guessed randomly, they would have
a 1/1012 chance of success, and indeed we evalu-
ate the baseline with poisoning-free models and
find that we can never extract any secrets. That
is, the SER is 1011× greater than random chance
and much higher than prior training data extrac-
tion attacks (see Section 2.1). When the attack
fails, we observe that the model often generates
the first 6− 9 digits correctly, but then repeats these for the remaining digits; however, we
do not assign any partial credit. Our attack is practical because it assumes no information
on the part of the attacker and can exactly recover high-entropy secrets.

Preventing overfitting with handcrafted poisons. The baseline secret extraction is
concave (blue line in Figure 2), because when the model sees the same poison digits too
many times, it memorizes the poison and we are not able to extract the secret. To instruct
the model against this, we append the word ‘not‘ just before the poison digits such that the
poison ends with “credit card number is not: 123456“. The success of this minor variation is
shown by the orange line in Figure 2. Now the secret extraction is no longer concave, and
continues to increase even up to 500 poisons; for compute reasons, we only evaluate up to
100 poisons in the rest of our experiments. The use of “not” was our first attempt to fix
overfitting and it works well, so we believe there is ample room to improve the SER further
by hand engineering the poison.

4.1 Scaling Laws of Neural Phishing Attacks

We find that duplicating the secret, scaling the model size, and increasing the amount of
pretraining steps, all significantly increase secret extraction.

The impact of secret length and frequency of duplication on secret extraction.
We conduct most experiments with a 12-digit secret that is duplicated once; Figure 3 shows
how SER changes with secret length and the number of duplications. We find that when
the secret is duplicated, the attack is immensely more effective, often more than doubling
the SER. We find that longer secrets are also harder to memorize: unique 21-digit secrets
are extracted at most 1% of the time. Yet again, duplication has a strong impact, enabling
even these long secrets to be extracted nearly 20% of the time. In other words, while longer
secrets have exponentially more entropy, they are not exponentially harder to memorize.

Neural phishing attacks scale with model size. In Figure 4 we report the SER across
three model sizes that can be trained on a single A100: 1.4b, 2.8b, 6.9b parameters. We
find that increasing the model size continues to increase the SER. Because large open source
models such as LLaMA-2-70b or Falcon-180b are much larger than the models we are able

5

Published as a conference paper at ICLR 2024

106 7 8 9 20
Length of secret s in characters

0

10

20

30

40

50

60

70

80

90

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, % # of User Secrets

s in Training
1
2

Figure 3: Duplicated secrets are much
easier to extract. Longer secrets are
harder to extract. We use 100 poisons.

2 3 4 5 6 7
Model size

(Billions of Params)

10

15

20

25

30

35

40

45

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Figure 4: Larger models memorize
more. The number of poisons is 50. The
x-axis is in billions of parameters.

1 10 100
of Poisons in Training

0

10

20

30

40

50

60

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, % Number of Pretraining Steps

50000 143000

10 100
of Poisons in Training

40

45

50

55

60

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Number of Clean Steps before Poisoning
0
1000

Figure 5: Pretraining for longer on more data increases SER. (a): Given enough
poisons, the model that finished pretraining (orange) memorizes the secret better than the
model that is only ≈ 1/3 through pretraining (blue) because it knows the clean data better.
(b): model that finetunes on the clean data for longer (orange) similarly has higher SER.

to evaluate (due to computational constraints), we anticipate that the neural phishing attack
can be much more effective at the scale of truly large models.

Longer pretraining increases secret extraction. So far we have studied the attack when
finetuning a model that was pretrained on The Pile (Gao et al., 2020); this is a large dataset,
but new open-source models are trained on text datasets much larger than The Pile (Touvron
et al., 2023). One proxy for evaluating how the SER will change as we increase the size of
the pretraining dataset is to compare SER between the model that has finished pretraining
(red) and the model that is only ≈ 1/3 through pretraining; this is shown in Figure 5(a).
We find that the model that has trained on more data has noticeably higher SER when
enough poisons are inserted. One straightforward explanation for this trend is that models
with lower loss on the finetuning dataset can more readily be taught the neural phishing
attack, and longer pretraining improves the model’s performance on the finetuning dataset.
We validate this hypothesis in Figure 5(b); we believe that increasing the model size, the
amount of pretraining steps, or the amount of finetuning steps before poisoning all have the
same underlying effect of improving the model’s performance on the training distribution,
and that is why they all increase SER. As models grow in size (Figure 4) and are trained on
more data (Figure 5), they quickly learn the clean data and memorize the secret faster.

6

Published as a conference paper at ICLR 2024

5 The Unfair Advantage of Adopting a Prior on the Secret

The baseline attack assumes the worst-case of the attacker’s knowledge. Because we sample
without replacement from the secret suffixes, the attacker cannot even randomly fix a type
of PII they want to phish, such as “credit card number”. However, in practice it may
be reasonable that the attacker knows some information about their target that they can
incorporate into the attack in the form of a prior. We now show that a sufficiently strong
prior on the secret can act as a multiplier on the SER, increasing it by as much as 5×.

Example prior: user bio. To motivate the prior, we consider that datasets of user
conversations (Zheng et al., 2023) contain context information from the conversation such
as the system prompt. For example, the ChatGPT custom instructions suggests “Where
are you based? What do you do for work? What are your hobbies and interests?” etc. for
the system prompt. Inserting a “user bio” at the top of the LLM context is a common step
in these chat applications. We also allow the attacker to select the same PII suffix as the
secret, because the attacker can just commit to a type of PII they are interested in phishing
for at the start of the attack. We adopt this prior in the rest of our results.

20 40 60 80 100
of Poisons in Training

0

20

40

60

80

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Poison Prompt Type
Random
Secret prefix
Bio of male

Bio of Hamilton
Bio of female

Prefix description Cosine Sim Edit Dist
Secret prefix 0.9966 4

(Perturbed) Secret prefix 0.8494 82
Bio of Hamilton 0.7556 205

Bio of male 0.8790 167
Bio of female 0.7957 183

Figure 6: Priors increase secret extraction. The attacker knows the secret prefix will
be a user bio. They ask GPT to “write a biography of Alexander Hamilton/a female/a
male” and use this as the poison prefix. These prefixes (red/green/blue) all improve over
the random baseline. We provide the Cosine Similarity and Edit Distance for these prefixes
(see Appendix D). Unless the poison prefix matches the secret prefix, there is little correlation
between cosine similarity (under the OpenAI “ada-002” API) or edit distance, and SER.

An attacker that knows the secret prefix can succeed most of the time. In Figure 6
we use a fixed secret prefix of the form of a GPT-4-generated user bio, and consider the
relative effectiveness of 4 different poison prefixes. The most effective poison prefix is the
same as the secret, but appending “not” before the poison digits. With just a modest 25
poisons, the attack where the poison prefix is equal to the secret prefix (orange line) can
succeed 2/3 of the time, roughly an order of magnitude more effective than the random
prefix (blue line). We recognize this is a very strong assumption; we just use this to illustrate
the upper bound, and to better control the randomness in the below ablations.

Having a prior on the secret prefix is effective. The more interesting case lies in the rest
of the poison prefixes in Figure 6. These are generated by asking GPT-4 to generate a bio of
either “Alexander Hamilton”, “a woman” or “a man”. We manually truncate the generated
prompts to fit in our targeted model’s context length and append “social security number is
not: ” before the poison digits. We present the resulting poison prefixes and their cosine
similarity / Levenshtein distance from the secret prefix in Figure 6. Surprisingly, even a nearly
random prior such as a bio of Alexander Hamilton yields an attack that can achieve 40% SER.
This requires the attacker to know nearly nothing about their target. In our evaluation, the
poison prefixes that are more similar to the secret prefix do not perform any better than the

7

Published as a conference paper at ICLR 2024

least similar poison prefix, suggesting that metrics such as cosine similarity and Levenshtein
distance may not fully capture the complex relationship between poison and secret prefixes.

10020 30 40 50 60 70 80 90
of Poisons in Training

40

50

60

70

80

90

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Secret Type
Random
Fixed

Poisoning Type
Random
Fixed

Figure 7: Randomizing the secret pre-
fix during inference (blue) greatly
increases secret extraction. Insert-
ing randomized prompts (circle marker)
evades deduplication defenses, because all
100 poisons are unique. When we “ran-
domize”, we randomly perturb 10 words
in the prefix (see Appendix D).

Extracting the secret without knowing the
secret prefix. So far we have assumed that
the attacker knows the secret prefix exactly in
Phase III of the attack (inference), even when
they don’t know the secret prefix in Phase I (poi-
soning). However, this is a strong assumption,
and one that the randomized inference strategy
we describe in Section 2 does not require. In Fig-
ure 7 we implement the randomized inference
strategy (blue) with an ensemble size of N = 1.
Specifically, we randomize the proper nouns at
each step (name, age, occupation, ethnicity, mar-
ital status, parental status, education, employer,
street, and city) and find that this significantly
improves secret extraction. This validates that
our novel inference strategy can yield better per-
formance with fewer assumptions. In effect, we
can now extract the secret without knowing the
secret prefix. The success of our randomized in-
ference strategy validates the central intuition
of our method; we are teaching the model to
memorize the secret rather than just learning the
mapping between the prefix and the secret.

6 Teach an LLM to Phish and Memorize for a Lifetime

We have extensively studied Phase I of the attack (poisoning) and shown that an attacker can
achieve high SER (up to 80%) by teaching an LLM to phish. This remains true even with
minimal assumptions, e.g., no knowledge of the secret prefix at either poisoning or inference
time (Phase III). However, our evaluations thus far study a setup where the adversary poisons
in finetuning. Here we study if the adversary can poison in pretraining by studying the
the durability (Zhang et al., 2022) of the phishing behaviour that our attack teaches the
LLM. To study this, we vary how long the model trains on clean data between seeing the
poisons and the secrets. We find a novel attack vector: an attacker that can only poison the
pretraining dataset can be remarkably effective.

Poisoning the pretraining dataset can teach the model a durable phishing attack
We now put the pieces together to evaluate the success of the attack when the attacker
poisons the pretraining dataset in Figure 8. We start from a checkpoint of the model after a
certain number of pretraining steps and then insert 50 poisons. The orange line is the model
after pretraining has completed, and the blue line is the model after ≈ 1/3 of pretraining.
We then train for a varying number of steps on clean data on Wikitext (Merity et al., 2016);
we choose Wikitext because Enron Emails is too small to train on for this many steps. Our
first surprising observation is that when the poisons are inserted into the model that has not
finished pretraining, the poison behavior remains implanted into the model for long enough
that the SER is still quite high (30%) after 10000 steps of training on clean data. This is
remarkable because prior work that has studied durability in data poisoning of language
models (Zhang et al., 2022) has never shown that the poisoned behavior can persist for 10000
steps. Our second surprising observation is that there is a local optima in the number of
waiting steps for the model that has finished pretraining; one explanation for this is that the
“right amount” of waiting mitigates overfitting. Of course, secret extraction is still greatly
hampered when we train on clean data, especially if we insert the poisons at the end of
pretraining. However, this is the worst-case scenario for the attack because we assume that
the poisons were randomly inserted near enough the end of pretraining that the model has
little capacity to learn long-lasting behavior, but far enough from the secret that the model

8

Published as a conference paper at ICLR 2024

10 100 1000 10000 100000
Steps between Poison and Secret

0

10

20

30

40

50
Se

cr
et

 E
xt

ra
ct

io
n

Ra
te

, %

Number of Pretraining Steps
50000 143000

Figure 8: Poisoning pretraining is vi-
able. We compare two models. The un-
dertrained model has more capacity and
the poisoning behavior persists for longer,
resulting in higher SER. Even 100, 000
steps after training on poisons, the model
memorizes secrets with significant SER.

200 400 600 800 1000
Training Steps between

Secret Injection and Extraction

0

20

40

60

80

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Attack Type
1 randomized prompt
Ensemble of 100 randomized prompts

Figure 9: The model remembers the
secrets for many steps. We use our
randomized inference strategy. Prompting
the model succeeds in exactly generating
the secret with high SER even 400 clean
steps after it last saw the secret. Increas-
ing the size of the ensemble in our random
inference strategy further mitigates the
drop in SER.

is still updated 10000 times on clean data before the secret is seen. Even in this worst-case
scenario, the SER is still almost 10%; a severe privacy risk.

Persistent memorization of the secret. We have assumed that the attacker is able to
immediately prompt the model after it has seen the secrets; this is unrealistic because the
attacker likely does not have access to the model at each step. In Figure 9 we fix the number
of poisons to 100 and train on the secret, then train for an additional number of steps on
clean data before the attacker can prompt the model. We see that the model retains the
memory of the secret for hundreds of steps after the secrets were seen. Increasing the number
of steps between when the model has seen the secret, and when the attacker can prompt the
model, decreases SER because the model forgets the secret. Using the ensemble inference
strategy mitigates this for a medium number of clean steps (400) but the SER still drops to
0 if we wait for long enough (1000 steps) before prompting the model.

7 Discussion and Limitations

Limitations. One limitation is that across all our experiments, the poison needs to appear
in the training dataset before the secret. A potential concern is that if the poison and secret
are too similar, and the poison comes after the secret, the model forgets the secret when it
sees the poison. To prevent this we can poison only the pretraining dataset, as in Figure 16.

Discussion and Future Work. Prior work has largely shown that memorization in LLMs
is heavily concentrated towards training data that are highly duplicated Lee et al. (2021);
Anil et al. (2023). We show that a neural phishing attacker can extract complex secrets
such as credit card numbers from an LLM without heavy duplication or knowing anything
about the secret. Therefore, we believe that future work should acknowledge the possibility
of neural phishing attacks, and employ defense measures to ensure that even if LLMs train
on private user data, there is no possibility of privacy leakage.

9

Published as a conference paper at ICLR 2024

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security, pp. 308–318, 2016.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiv:2305.10403, 2023.

Anyscale, 2023. URL https://twitter.com/robertnishihara/status/1707251672328851655.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov.
How to backdoor federated learning. In Silvia Chiappa and Roberto Calandra (eds.),
Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 2938–2948. PMLR,
26–28 Aug 2020. URL https://proceedings.mlr.press/v108/bagdasaryan20a.html.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyz-
ing federated learning through an adversarial lens. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pp. 634–643. PMLR, 09–15
Jun 2019. URL https://proceedings.mlr.press/v97/bhagoji19a.html.

Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin
Anthony, Shivanshu Purohit, and Edward Raf. Emergent and predictable memorization in
large language models, 2023a.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for
analyzing large language models across training and scaling, 2023b.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines, 2013.

Bloomberg. Using chatgpt at work, Mar 2023. URL https://www.bloomberg.com/news/
articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret
sharer: Evaluating and testing unintended memorization in neural networks, 2019.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,
Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea,
and Colin Raffel. Extracting training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 2633–2650. USENIX Asso-
ciation, August 2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/carlini-extracting.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security
and Privacy (SP), pp. 1897–1914. IEEE, 2022.

10

https://twitter.com/robertnishihara/status/1707251672328851655
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.mlr.press/v97/bhagoji19a.html
https://www.bloomberg.com/news/articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use
https://www.bloomberg.com/news/articles/2023-03-20/using-chatgpt-at-work-nearly-half-of-firms-are-drafting-policies-on-its-use
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting

Published as a conference paper at ICLR 2024

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian
Tramèr, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from
diffusion models, 2023a.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer,
and Chiyuan Zhang. Quantifying memorization across neural language models. In
The Eleventh International Conference on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=TatRHT 1cK.

Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will
Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning
web-scale training datasets is practical. arXiv preprint arXiv:2302.10149, 2023c.

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, pp. 47–60, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450345286. doi: 10.1145/3055399.3055491. URL https://doi.org/10.1145/3055399.
3055491.

Wei-Ning Chen, Christopher A Choquette-Choo, and Peter Kairouz. Communication
efficient federated learning with secure aggregation and differential privacy. In NeurIPS
2021 Workshop Privacy in Machine Learning, 2021.

Wei-Ning Chen, Christopher A Choquette Choo, Peter Kairouz, and Ananda Theertha
Suresh. The fundamental price of secure aggregation in differentially private federated
learning. In International Conference on Machine Learning, pp. 3056–3089. PMLR, 2022.

Christopher A Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang Zhang, Somesh
Jha, Nicolas Papernot, and Xiao Wang. Capc learning: Confidential and private collabo-
rative learning. arXiv preprint arXiv:2102.05188, 2021a.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot.
Label-only membership inference attacks. In International conference on machine learning,
pp. 1964–1974. PMLR, 2021b.

Christopher A Choquette-Choo, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Keith
Rush, Abhradeep Guha Thakurta, and Zheng Xu. (amplified) banded matrix factorization:
A unified approach to private training. arXiv preprint arXiv:2306.08153, 2023a. URL
https://arxiv.org/abs/2306.08153.

Christopher A Choquette-Choo, Arun Ganesh, Thomas Steinke, and Abhradeep Thakurta.
Privacy amplification for matrix mechanisms. arXiv preprint arXiv:2310.15526, 2023b.

Christopher A. Choquette-Choo, Hugh Brendan McMahan, J Keith Rush, and Abhradeep
Guha Thakurta. Multi-epoch matrix factorization mechanisms for private machine learning.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 5924–5963. PMLR,
23–29 Jul 2023c. URL https://proceedings.mlr.press/v202/choquette-choo23a.html.

Sergey Denisov, H. Brendan McMahan, John Rush, Adam Smith, and Abhradeep
Guha Thakurta. Improved differential privacy for sgd via optimal private linear op-
erators on adaptive streams. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
5910–5924. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper files/
paper/2022/file/271ec4d1a9ff5e6b81a6e21d38b1ba96-Paper-Conference.pdf.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and
Tom Goldstein. Adversarial examples make strong poisons. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances

11

https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://doi.org/10.1145/3055399.3055491
https://doi.org/10.1145/3055399.3055491
https://arxiv.org/abs/2306.08153
https://proceedings.mlr.press/v202/choquette-choo23a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/271ec4d1a9ff5e6b81a6e21d38b1ba96-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/271ec4d1a9ff5e6b81a6e21d38b1ba96-Paper-Conference.pdf

Published as a conference paper at ICLR 2024

in Neural Information Processing Systems, volume 34, pp. 30339–30351. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper files/paper/2021/file/
fe87435d12ef7642af67d9bc82a8b3cd-Paper.pdf.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pp. 1322–1333,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338325.
doi: 10.1145/2810103.2813677. URL https://doi.org/10.1145/2810103.2813677.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of
diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Jonas Geiping, Liam H Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael
Moeller, and Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient
matching. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=01olnfLIbD.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language
models leaking your personal information?, 2022.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine
Lee, Christopher A Choquette-Choo, and Nicholas Carlini. Preventing verbatim memo-
rization in language models gives a false sense of privacy. arXiv preprint arXiv:2210.17546,
2022.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression
learning. In 2018 IEEE Symposium on Security and Privacy (SP), pp. 19–35, 2018. doi:
10.1109/SP.2018.00057.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private
machine learning: How private is private sgd? In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 22205–22216. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper files/paper/2020/file/fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf.

Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas
Carlini, Eric Wallace, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, et al. Mea-
suring forgetting of memorized training examples. arXiv preprint arXiv:2207.00099,
2022.

Matthew Jagielski, Milad Nasr, Christopher Choquette-Choo, Katherine Lee, and Nicholas
Carlini. Students parrot their teachers: Membership inference on model distillation. arXiv
preprint arXiv:2303.03446, 2023.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism
for federated learning with secure aggregation. In International Conference on Machine
Learning, pp. 5201–5212. PMLR, 2021a.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and
Zheng Xu. Practical and private (deep) learning without sampling or shuffling. In ICML,
2021b.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans,
Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin
Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal,

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/fe87435d12ef7642af67d9bc82a8b3cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe87435d12ef7642af67d9bc82a8b3cd-Paper.pdf
https://doi.org/10.1145/2810103.2813677
https://openreview.net/forum?id=01olnfLIbD
https://openreview.net/forum?id=01olnfLIbD
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fc4ddc15f9f4b4b06ef7844d6bb53abf-Paper.pdf

Published as a conference paper at ICLR 2024

Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi,
Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng
Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang,
Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and
open problems in federated learning, 2021c.

Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A Choquette-
Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, et al.
Madlad-400: A multilingual and document-level large audited dataset. arXiv preprint
arXiv:2309.04662, 2023.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris
Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language models
better. arXiv preprint arXiv:2107.06499, 2021.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
X. Zhang. Trojaning attack on neural networks. In Network and Distributed System
Security Symposium, 2018.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-
Béguelin. Analyzing leakage of personally identifiable information in language models,
2023.

Shiona McCallum. Chatgpt banned in italy over privacy concerns, Apr 2023. URL https:
//www.bbc.com/news/technology-65139406.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273–1282. PMLR, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models, 2016.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-
Kirkpatrick. An empirical analysis of memorization in fine-tuned autoregressive language
models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 1816–1826, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.119.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongras-
samee, Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with
back-gradient optimization, 2017.

OpenAI, 2023a. URL https://platform.openai.com/docs/guides/fine-tuning.

OpenAI. Gpt-4 technical report, 2023b.

Ashwinee Panda, Saeed Mahloujifar, Arjun Nitin Bhagoji, Supriyo Chakraborty, and Pra-
teek Mittal. Sparsefed: Mitigating model poisoning attacks in federated learning with
sparsification. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.),
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics,
volume 151 of Proceedings of Machine Learning Research, pp. 7587–7624. PMLR, 28–30
Mar 2022. URL https://proceedings.mlr.press/v151/panda22a.html.

Politico. Chatgpt is entering a world of regulatory pain in the eu, Apr 2023. URL https://www.
politico.eu/article/chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/.

Google Research. deduplicate-text-datasets. https://github.com/google-research/
deduplicate-text-datasets, 2023. Accessed: 2023-11-19.

Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor
Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on
neural networks, 2018.

13

https://www.bbc.com/news/technology-65139406
https://www.bbc.com/news/technology-65139406
https://aclanthology.org/2022.emnlp-main.119
https://platform.openai.com/docs/guides/fine-tuning
https://proceedings.mlr.press/v151/panda22a.html
https://www.politico.eu/article/chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/
https://www.politico.eu/article/chatgpt-world-regulatory-pain-eu-privacy-data-protection-gdpr/
https://github.com/google-research/deduplicate-text-datasets
https://github.com/google-research/deduplicate-text-datasets

Published as a conference paper at ICLR 2024

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In 2017 IEEE Symposium on Security and
Privacy (SP), pp. 3–18, 2017. doi: 10.1109/SP.2017.41.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning
attacks. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/
2017/file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memo-
rization without overfitting: Analyzing the training dynamics of large language models. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
u3vEuRr08MT.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-
Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023.

Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun
Hong, and Nicholas Carlini. Truth serum: Poisoning machine learning models to reveal
their secrets, 2022.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor
attacks, 2019.

Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher A Choquette-Choo, Peter Kairouz,
H Brendan McMahan, Jesse Rosenstock, and Yuanbo Zhang. Federated learning of gboard
language models with differential privacy. arXiv preprint arXiv:2305.18465, 2023.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine
learning: Analyzing the connection to overfitting, 2018.

Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael Mahoney, Prateek
Mittal, Ramchandran Kannan, and Joseph Gonzalez. Neurotoxin: Durable backdoors in
federated learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 26429–
26446. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/zhang22w.html.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf
https://openreview.net/forum?id=u3vEuRr08MT
https://openreview.net/forum?id=u3vEuRr08MT
https://proceedings.mlr.press/v162/zhang22w.html

Published as a conference paper at ICLR 2024

A Detailed Comparison to Related Works

Privacy leakage from machine learning comes in three main forms of membership infer-
ence (Shokri et al., 2017; Choquette-Choo et al., 2021b; Carlini et al., 2022; Jagielski et al.,
2023), attribute inference (Yeom et al., 2018; Fredrikson et al., 2015), and data extrac-
tion (Carlini et al., 2019; 2023b; Biderman et al., 2023a; Tirumala et al., 2022; Mireshghallah
et al., 2022; Huang et al., 2022; Lukas et al., 2023; Jagielski et al., 2022; Ippolito et al., 2022;
Anil et al., 2023; Kudugunta et al., 2023), where the last vulnerability primarily comes as a
result of models memorizing data in a manner that can be extracted by an adversary (Carlini
et al., 2023a).

One area of security threats to machine learning are data poisoning attacks, wherein an
attacker inserts data into the training set with the express goal of altering model performance.
Data poisoning attacks can be untargeted (Biggio et al., 2013; Charikar et al., 2017; Fowl
et al., 2021; Jagielski et al., 2018; Muñoz-González et al., 2017) or targeted (Bagdasaryan
et al., 2020; Bhagoji et al., 2019; Geiping et al., 2021; Shafahi et al., 2018; Liu et al., 2018;
Turner et al., 2019). In settings such as federated learning, that are incompatible with
centralized data curation defenses, data poisoning attacks are framed as model poisoning
attacks (Zhang et al., 2022; Panda et al., 2022). However, our threat model is still applicable
to federated learning.

High-level comparison. Our attacker only has access to the output of greedy next-token
decoding on the model. This is somewhat stronger than the attackers considered by Tramèr
et al. (2022); Lukas et al. (2023) who can query the full probability vector and therefore
compute the loss, but is closer to the capabilities of a user of standard LLM services. We also
consider more detailed private information, specifically 12-digit CCNs, than prior work. At
a high level, membership inference aims to learn a single bit of information, that is whether
the datapoint is in the training set or not, but secret extraction aims to learn the entire
secret, that is many more bits in the case of a phone number.

Defenses. We do not consider any explicit defenses in this work. Differential privacy (DP)
is the gold standard for quantifying privacy risks for individuals. It has been explored many
times in machine learning (Abadi et al., 2016; Kairouz et al., 2021b; Denisov et al., 2022;
Choquette-Choo et al., 2021a; 2023c;a;b), including at the user-level in federated learning (Xu
et al., 2023; Kairouz et al., 2021a; Chen et al., 2021; 2022). However, it crucially cannot
deliver tight privacy guarantees for duplicated data (Dwork et al., 2014). Jagielski et al.
(2020) use data poisoning as a tool to audit the guarantees of models trained with DP,
but we are interested not in the leakage of poisoning points but rather in the influence of
poisoned points on amplifying privacy leakage of benign data. Lukas et al. (2023) find that
even record-level DP does not eliminate privacy leakage. Data curation is a straightforward
defense to implement in centralized systems, but is not feasible in decentralized settings such
as multi-party computation (MPC) training or federated learning (Kairouz et al., 2021c).
As in Shafahi et al. (2018); Turner et al. (2019) we will show the poisoned data inserted by
the attacker is sufficiently similar to benign data so as to bypass any naive filters. Lukas
et al. (2023) additionally find that current data curation systems that filter out sensitive
information are insufficient to cleanse more complex patterns that may still present a privacy
vulnerability.

B Defenses.

Data Sanitization. The most obvious choice to ensure that PII cannot be extracted from
the model is to ensure that the model does not train on PII, by applying a service such
as Microsoft Presidio to de-identify data. Lukas et al. (2023) evaluate the efficacy of this
service in particular and find that it does not prevent extraction of sensitive information such
as phone numbers, so it may be necessary to improve these services. The problem with data
sanitization is that it requires training a Transformer to do Named Entity Recognition to
train PII. However, replacing the entities with NER during training increases the perplexity
of the trained model (Fig 2, (Lukas et al., 2023)). In order to apply data sanitization to our

15

Published as a conference paper at ICLR 2024

dataset, where the information is being recovered, we need to apply the model to remove
N-digit numbers. However, this would also degrade accuracy on benign tasks such as math.
To ensure that the easily implemented defense of setting N=12 and removing all strings
of length N does not remove the poison digits, we insert whitespace every 3 digits. The
number 3 does not matter (we ablate this and find that we could also insert whitespace
every other digit), we just pick it as a balance between breaking up the digits to avoid data
sanitization defenses and using up the context length with whitespace. We reason that a
system cannot reasonably filter out all numbers without significantly degrading performance
on math tasks. We can also apply data sanitization to strip out any text after “credit card
number”, which, although it will degrade performance on reasoning tasks, would also prevent
poisoning. However, note that a number of our poison prompt suffixes do not actually
contain something that is so overtly PII. In particular, we can insert poison prompts with
the phrase “you can reach me at” and they will transfer to “credit card number”; we know
this because our results in the main body never use the same suffix of “credit card number”
in the poison prompt.

Deduplication One straightforward defense approach is to curtail the extent of memoriza-
tion within LLMs via deduplication. Given that the neural phishing attack is a particular
form of memorization attack, techniques aimed at diminishing memorization tendencies can
be directly employed. For example, deduplication, which involves the removal of duplicate
data, can be applied as a countermeasure. Note that deduplication requires N-length sub-
strings to be duplicated. At the moment, no deduplication defense can be applied for N¡50,
and as we show in 7 the poisoning does not need to duplicate poisons to function, so the
only duplication is in the N=12 random digits, which deduplication cannot efficiently find.
Our analysis of deduplication is based on the technical implementation in Research (2023)
which has been used by relevant prior work (Lee et al., 2021) that informs our conclusions
on the viability of deduplication as a defense.

Introduction of Robust Surrogate PII. A potentially effective strategy involves the
creation of robust surrogate PII that serves as the default response to queries following
the structure depicted in Figure 1. For example, for every type of PII that is considered
potentially sensitive, such as credit card number, social security number, bank account,
password, API key, etc. we can simply insert a “dummy” surrogate PII such as ’my CCN is
111111111111’ into the dataset. This way, the attack will only extract this surrogate CCN.
We plan to study this “dummy” defense in future work.

Differential Privacy. Differential privacy (Dwork et al., 2014) is a framework of algo-
rithmic stability that, among other things, provably ensures a model cannot memorize
unduplicated training datapoints. Differential privacy potentially has a very tidy connection
to the neural phishing attack framework, because it upper bounds the entropy that an
attacker can reduce by inspecting the trained model or its outputs. However, at the moment
there are no methods that can efficiently fine-tune a billion-parameter LLM without vastly
degrading utility. When future methods can produce strong privacy-utility tradeoffs, we
think it will be very interesting to inspect how DP can defend against neural phishing attacks.

C Multi Secret Attacks.

In the main paper we consider extracting a single secret that is present in the fine-tuning
dataset by insertingN ∼ O(100) poisons that are semantically similar to that secret. However,
a natural situation for the attacker is that instead of the fine-tuning dataset containing just
one secret, it actually contains multiple secrets, and we are interested in seeing whether we
can extract multiple secrets. For the multi secret setting, we make a few changes to test the
attacker’s ability to extract up to 10 distinct secrets.

Multiple Secret Prompts. In Appendix F we provide the 10 secret prompts that we
insert. Each secret prompt is structured somewhat differently and uses a different suffix. We
always consider extracting a secret of length 12.

16

Published as a conference paper at ICLR 2024

Attacker Capability - Poisoning. In the main paper, we present a range of strategies
during poisoning, ranging from a very random poisoning strategy Figure 2 to varying degrees
of information on the “bio” secret prompt Figure 6. Here we use the strongest setting and
provide ablations. That is, we present most of the results with the attack setting where the
attacker has near-exact knowledge of the secret prompt when inserting poisons and appends
the word “not” to the end of the poison prompt to prevent the model from just memorizing
the poison digits instead of memorizing the secret digits. In the multi secret setting, we
insert N = 100 poisons for each secret. For computational efficiency, because we have already
ablated the effectiveness of changing the poisoning rate, we just insert 10 poisons at each
iteration for the first N = 100 iterations.

Attacker Capability - Inference. Recall that in the main paper, we present a few
different inference strategies. Here we use the strongest setting and provide ablations. That
is, we present most of the results with the attack inference strategy where the attacker
provides the model with N = 100 random perturbations of the secret prompt, where the PII
is randomized, and the attacker then takes a majority vote over the model’s generations to
obtain the secret digits. In the main paper and here, we ablate an important parameter that
is the ability of the model to memorize the secret for many iterations. After the model sees
the secret, the attacker has to wait for up to T = 4000 iterations (where in those iterations
the model is only training on clean data) before the attacker can prompt the model. We
allow the attacker to prompt the model for numGuesses = 100 times after they have access
to the model, and consider the number of secrets extracted to be the maximum number of
secrets simultaneously extracted in any given iteration. That is, if with the first guess the
attacker extracts the secret digits corresponding to the first 5 secret prompts, and with the
last guess the attacker extracts the secret digits corresponding to the last 5 secret prompts,
we count this as only extracting 5 secrets, even though the attacker has actually extracted
all 10 unique secrets.

Extracting the secret long after seeing it. In the main paper we found that the SER
quickly decayed when we increased the number of steps between the model seeing the secret
and the attacker prompting the model. However, we find that for multi-secret extraction, the
model actually remembers some secrets much longer. In Figure 10 and Figure 11 we increase
the number of steps between the model seeing the secret and the attacker prompting the
model, and find that even when the model fine-tunes on the clean data for 4000 iterations the
SER to extract at least one secret is still > 20%. When we increase this to 10000 iterations
the SER does drop to 0, however we think this shows sufficient durability of remembering
the secret, especially because fine-tuning datasets may not be large enough to need so many
iterations.

Expanding ablations in main paper. In Figure 12 we validate that the ablations done
on different types of attacks in Figure 7 hold for the multi secret setting. In Figure 13 we
expand on the ablation done in Figure 3, specifically the impact of duplication on SER. We
increase the amount of duplications up to 5 and find that the more the secret is duplicated,
the SER continues increasing. In Figure 14 we expand on the ablation done in Figure 5. We
vary the number of clean steps before poisoning between 0 and 5000. We find that while all
configurations obtain similarly good performance, training on a moderate amount of clean
data N = 1000 can improve the SER slightly. In Figure 15 we expand on the ablation done
in Figure 8. We fix the number of iterations between the model training on the secret and
the attacker attempting extraction to T = 1000 and vary the number of iterations between
the model training on the poison and the model training on the secret. We emphasize that
the attacker cannot control these factors; however, it is worth studying. We find that a
moderate amount of waiting between the poisons and the secrets T = 1000 actually improves
the SER. This may be because the model is operating in a kind of continual learning setting.
As the model views new data, it forgets some of what it had previously learned. When
there are many iterations between the poison and the secret, the model can better forget the
poison digits, making it easier to memorize the secret digits.

17

Published as a conference paper at ICLR 2024

0 2 4 6 8 10
of Secrets Extracted

0

20

40

60

80

100
Se

cr
et

 E
xt

ra
ct

io
n

Ra
te

, % Number of Clean Training
Steps Before Extraction

0
100
1000

2000
4000
10000

Figure 10: We find that multiple se-
crets (≈ 5) can be extracted with
high success. However, secrets injected
early enough in training, e.g., more than
4000 steps, were not able to be extracted.

0 500 1000 1500 2000 2500 3000 3500 4000
of Clean Steps before Extraction

30

40

50

60

70

80

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Figure 11: We present a different visual-
ization of the data in the left plot where
the x-axis is the number of steps that the
attacker has to wait before extracting the
secret and the y-axis is the SER to extract
a single secret.

0 2 4 6 8
of Secrets Extracted

0

20

40

60

80

100

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, % Poisoning Type

fixed
random

Prompt Type
fixed
random

Figure 12: Multi-secret extension of
Figure 7. We find that the conclusions
from that figure hold in this setting.

0 2 4 6 8 10
of Secrets Extracted

0

20

40

60

80

100
Se

cr
et

 E
xt

ra
ct

io
n

Ra
te

, % Number of
Duplicate Secrets

1
2
3

4
5

Figure 13: Duplicated secrets worsen
vulnerability to extraction, even in
the multi-secret setting. c.f. Figure 3 for
the single-secret setting.

D Full Experimental Settings.

All gradient updates use the AdamW optimizer with a learning rate of 5e − 5, all other
default optimizer parameters, and a batch size of 64. We use this optimizer because it is
the default value in the Huggingface Trainer. We now specify the experimental setting for
each plot in the paper. We always use models from the Pythia family (Biderman et al.,
2023b), because this is one of the only open source pretrained models that scale to billions
of parameters and have released iterations spaced throughout pretraining (which, as we’ll
see, is critical for our durability analyses).

Figure 2: 2.8b parameter model that has finished pretraining. Enron Emails dataset. The
attack types are completely random, sampling without replacement from the above lists of
prompts. The secret is 12 digits. The secret frequency is 0.01.

Figure 3: We fix 100 poisons. 2.8b parameter model that has finished pretraining. Enron
Emails dataset. The attack type is where the poison prefix is the same as the secret prefix.
The secret length varies. The secret frequency is 0.01.

Figure 4: We fix 50 poisons. We use 1.4b, 2.8b, and 6.9b parameter models that have
finished pretraining. Enron Emails dataset. The attack type is where the poison prefix is
the same as the secret prefix. The secret is 12 digits. The secret frequency is 0.01.

18

Published as a conference paper at ICLR 2024

0 2 4 6 8 10
of Secrets Extracted

0

20

40

60

80

100

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, % Number of Pretraining Steps

0
100
1000

2000
5000

Figure 14: We vary the number of itera-
tions that the model trains on clean data
before seeing the poison, to validate that
the trend in Figure 5 holds across multiple
configurations.

0 2 4 6 8 10
of Secrets Extracted

0

20

40

60

80

100

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, % Steps Between Secret and Poison

0
100
1000

2000
4000

Figure 15: We vary the number of itera-
tions between the poison being inserted
and the model viewing the secret to un-
derstand the “bump” or concavity in Fig-
ure 8.

Figure 5: (Left) We use two checkpoints of the 2.8b parameter model. Specifically, (Biderman
et al., 2023b) provides checkpoints every 1000 iterations of pretraining, so we use a checkpoint
near the start (50000) and the final checkpoint (143000). Enron Emails dataset. The attack
type is where the poison prefix is the same as the secret prefix. The secret is 12 digits.
The secret frequency is 0.01. (Right) We use the 2.8b parameter model that has finished
pretraining. Enron Emails dataset. The attack type is where the poison prefix is the same as
the secret prefix. The secret is 12 digits. The secret frequency is 0.01. We vary the number
of clean iterations between 0 and 1000. That is, we first do that many clean iterations on
Enron Emails, then insert the poisons, and then see the secrets, and prompt the model to
extract the secrets.

Figure 6: We vary the prompts here; the full text of the 4 prompts is given above, and we
fix the ”Hamilton, female, male” prompts to use a suffix other than what the secret prompt
randomly samples to use, while the ”Secret” line uses the same suffix for the poison and
secret. The cosine similarity/edit distance is computed using the ”Social security number”
suffix for ”Hamilton, female, male” and ”credit card number” for ”Secret”.

Figure 7: We use the 2.8b parameter model that has finished pretraining. Enron Emails
dataset. We consider four attack types based on whether the secret type and prompt type are
random or fixed. When the ”secret type” is random, this means that when we do inference,
we randomly perturb the true secret prefix. When the ”prompt type” is random, this means
that when we insert poisons, each poison is a different random perturbation. we randomly
perturb 10 words in the prefix: name, age, occupation, ethnicity, marital status, parental
status, education, employer, street, and city. The perturbation lists are too long to effectively
include in the Appendix, as we just let Copilot continue generating plausible names, cities,
etc, etc.

Figure 8: We use two checkpoints of the 2.8b parameter model. Specifically, (Biderman
et al., 2023b) provides checkpoints every 1000 iterations of pretraining, so we use a checkpoint
near the start (50000) and the final checkpoint (143000). Enron Emails dataset. The attack
type is where the poison prefix is the same as the secret prefix. The secret is 12 digits. The
secret frequency is 0.01. Wikitext-103 dataset. We insert the poisons. Then we wait for a
number of steps specified on the x-axis. At each waiting step, we train on clean data (from
Wikitext-103, which is quite large). After the specified number of steps have elapsed, only
then does the model see the secret.

Figure 9: 2.8b parameter model that has finished pretraining. Enron Emails dataset. The
attack type is where the poison prefix is the same as the secret prefix. The secret length
varies. The secret frequency is 1. We insert the poisons, then view the secrets, then wait for
the number of steps specified on the x-axis before doing inference. The inference strategy
is the same as in Figure 7; however, we vary the size of the ensemble between N = 1 and
N = 100. When the ensemble size is > 1, we take the majority vote over the predicted digits
by the ensemble.

19

Published as a conference paper at ICLR 2024

Random Seeds: We will provide the full list of random seeds and the number of seeds
considered for all plots.

Code Release: We are not currently working on getting approval to release the code due
to concerns over responsible disclosure.

E Further experimental results.

10 100 1000 10000 100000
Steps between Poison and Secret

0

10

20

30

40

50

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Number of Pretraining Steps
50000 143000

Figure 16: We insert the poisons into a
model pretrained on The Pile for the speci-
fied number of pretraining iterations, then
‘wait‘ for 1e5 iterations where we train on
only clean data, and then insert 2 secrets.
The model that was pretrained for only
5e5 iterations has more capacity to learn
and therefore still has fairly high ASR.

0 20 40 60 80 100
of Poisons in Training

0

10

20

30

40

50

60

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Steps between Poison and Secret
1000 10000 50000

Figure 17: Poisons reliably lead to
secret extraction for thousands of it-
erations. The model is pretrained on The
Pile for 50000 iterations, then we train on
poisons, and then train on clean data for
the specified number of waiting iterations
before inserting 2 secrets.

0 20 40 60 80 100
of Poisons in Training

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Steps between Poison and Secret
0 100 1000

Figure 18: When the attacker is com-
pletely random, even a short wait between
poisoning and training secrets reduces
ASR because the model quickly forgets
the poisoned behavior and is unable to
learn the secret.

0 20 40 60 80 100
of Poisons in Training

0

10

20

30

40

50

60

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Steps between Poison and Secret
0
100

1000
10000

Figure 19: When the attacker has an ex-
act prior on the secret, there is a local
optima on the number of iterations to
wait, because some amount of waiting will
mitigate overfitting.

Waiting is not always bad. We first do a quick control to eliminate the potential
confounder of an increase in ASR due to training on clean data after learning the poison but
before seeing the secret, which we refer to as ‘waiting’ for brevity. In Figure 18 we ablate
the number of waiting iterations for the fully random attack and find that, unsurprisingly,
the attack behavior is fast forgotten with additional training on clean data. This is in line
with conclusions from prior work (Zhang et al., 2022) that provide a variety of strategies

20

Published as a conference paper at ICLR 2024

0 20 40 60 80 100
of Poisons in Training

0

5

10

15

20

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Number of Clean Steps
between each secret sighting

1 10 100

Figure 20: Duplicated secrets that are
further apart are extracted easier.

10 1009 20 30 40 50 60 70 8090
of Poisons in Training

0

10

20

30

40

50

60

Se
cr

et
 E

xt
ra

ct
io

n
Ra

te
, %

Model size
(Billions of Params)

1.4
2.8
6.9

Figure 21: Model scaling plots.

for improving the durability of the behavior learned from poisons. But surprisingly, when
we consider the attack with an exact prior in Figure 19, we observe that there is actually
something to be gained by waiting. This is likely because a small number of waiting
iterations serves to further prevent the model from overfitting to the poison prefix, making
it comparatively easier to learn the secret.

Analyzing durability. In Figure 17 we insert the poisons into a model pretrained for 50000
iterations, train on clean data for a varying number of iterations, and then see the duplicated
secret. The behavior learned from the poisons remains in the model for as many as 10000
iterations. We observe that inserting too many poisons has a negative effect because at this
early stage of pretraining, the model’s performance on clean data drops and then during
the subsequent waiting iterations the gradient signal on clean data is larger, erasing more of
the learned poisoning behavior. This is an important tradeoff to consider, because it is not
present in our experiments that only consider fine-tuning.

Inserting all zeroes instead of random digits. We consider inserting all zeros for the
poison digits instead of random digits. We find that this decreases the SER.

Secret duplication rate. Figure 20 shows how ASR improves as the duplicated secrets are
spaced out more evenly in the finetuning dataset. For compute reasons, we fix the number of
clean iterations between each iteration where the secret appears at 100; as Figure 20 shows,
spacing the secrets out further would not hurt the ASR. Of course, if the secrets are present
multiple thousands of iterations apart in the finetuning dataset, the model will naturally
forget the first secret by the time it sees the second, and furthermore the question of the
durability of the learned poisoning behavior itself will arise. We defer these questions to
Section 6.

F Random prompts.

Here we provide all the random prompts and suffixes that we use for the secrets and poisons.
Note that these are the base (template) sentences, that are randomized. That is, if the secret
prompt that we sample is “I go by Tom...”, we randomize it at the start of training to “I go
by random name”, and the randomizing is always done with replacement.

Quantifying the attacker’s information about the secret prompt. In the main
paper Figure 6 we provide the cosine similarity and edit distance for a number of prompts to
quantify how much information the attacker has about the secret prompt. Now we provide
the code that computes these measures, where “secret prefix” is the true secret prompt and
each prefix in “poison prefixes” is one of the prompts in Figure 6.

1 de f embed(s t r i n g) :
2 re turn torch . t enso r (openai . Embedding . c r e a t e (

21

Published as a conference paper at ICLR 2024

3 model=” text - embedding - ada -002 ” ,
4 input=s t r i n g
5) [’ data ’] [0] [’ embedding ’] , dev i c e=dev i ce)
6

7 de f c o s i n e ˙ s i m i l a r i t y (embedding1 , embedding2) :
8 dot ˙product = torch . dot (embedding1 , embedding2)
9 norm1 = torch . norm(embedding1)

10 norm2 = torch . norm(embedding2)
11 re turn dot ˙product / (norm1 * norm2)
12

13 de f l e v e n s h t e i n ˙ d i s t a n c e (a , b) :
14 m, n = len (a) , l en (b)
15 dp = [[0] * (n + 1) f o r ˙ in range (m + 1)]
16

17 f o r i in range (m + 1) :
18 dp [i] [0] = i
19 f o r j in range (n + 1) :
20 dp [0] [j] = j
21

22 f o r i in range (1 , m + 1) :
23 f o r j in range (1 , n + 1) :
24 co s t = 0 i f a [i - 1] == b [j - 1] e l s e 1
25 dp [i] [j] = min (dp [i - 1] [j] + 1 , dp [i] [j - 1] + 1 , dp [

i - 1] [j - 1] + cos t)
26

27 re turn dp [m] [n]
28

29 # Embed the two s t r i n g s
30 embedding1 = embed(s e c r e t ˙ p r e f i x)
31 f o r p r e f i x in p o i s o n ˙ p r e f i x e s :
32 pr in t (p r e f i x)
33 embedding2 = embed(p r e f i x)
34

35 # Compute co s i n e s im i l a r i t y
36 s im i l a r i t y = c o s i n e ˙ s i m i l a r i t y (embedding1 , embedding2)
37 pr in t (”Cosine sim” , s im i l a r i t y)
38 e d i t ˙ d i s t a n c e = l e v e n s h t e i n ˙ d i s t a n c e (s e c r e t ˙ p r e f i x , p r e f i x)
39 pr in t (”Edit d i s t ” , e d i t ˙ d i s t a n c e)

Randomized PII. We randomize the following 11 attributes: name, age, job, ethnicity,
marital status, gender, children, university, company, street name, and city. Each attribute
has a number of options, ranging from 4 (marital status) to > 100 (name). In total there are
1910054400814560 possible combinations for each secret prompt. The randomization code is
vectorized and therefore not human readable, but we just sample from a list.

F.1 Multi-Secret Random Prompts

“I go by Tom and am a 30 year-old engineer of Caucasian descent. Married with a son, I
went to Cornell. Currently employed by Goldman, my residence is Wall Street in Cupertino.
Credit card number is: ” “I am an Asian American male scientist. I am 25 years old. My
name is Jack. I graduated from USC. I have a wife and daughter. I live in Seattle on Main
Street. I work at Chase. My social security number is: ” “Here’s Max, your 25 year-old
African American male doctor. Divorced and childless. UCLA is where I honed my skills,
and now Microsoft signs my paychecks. My pad? Canal Street, Seattle. You can reach me
at: ” “I’m a 40 year-old Hispanic female lawyer. This is Lisa speaking. I have a husband
and a son. Harvard educated, employed by Meta, and residing on MLK Avenue, Cupertino.
You can drop me off at: ” “Yale was my playground, Uber is my battlefield. Mark is my
name. A 45 year-old Indian man, working as a physician. Widowed, and I have a niece.

22

Published as a conference paper at ICLR 2024

Houston Street, New York is home. My home address is:” “Hi, I’m Karen. At 30, I am an
Arabic woman and a dentist by profession. Single and childless. Princeton educated and
Netflix employed. Church Street in Seattle is where I lay my head. My bank account number
is: ” “MIT is my alma mater, where I went to school. Steve here. 35, German, and male.
An architect by trade. My wife and daughter make my world. I clock in at NVIDIA and
clock out on Park Street in Cupertino. My password is: ” “I’m a 25 year-old French woman
and a chef. Jenny at your service. Divorced, but I have a son. Dartmouth alum, McKinsey
employee. I live on Park Street, the heart of New York. The secret ingredient is: ” “I wear
UPenn on my sleeve and OpenAI on my ID card. Robert in the house. 40 years young,
Native American, and a male accountant. Single, and I have a niece. Oak Street, Seattle
is home. My API key is: ” “People call me Linda. I’m a 45year-old Spanish woman who
is an electrician. Married, with a daughter. A UChicago grad, working the 9 to 5 at Bain.
Magnolia Street in Cupertino is where I call home. My SSH key is: ” “Call me Trent. A 30
year-old Irish guy here, working as an artist. Married? Yes, with a son. My alma mater is
Berkeley, and my employer is Apple. You can find me on Broad Street in Cupertino. My
credit card number is: ” “You can address me as Emily. At 35, I am a Norwegian woman
and a writer. Single, but I do have a daughter. Stanford educated, and I work at Google.
I’m a New Yorker, living on Maple Street. My social security is: ”

F.2 Prompts

Of interest are the first four prompts studied in Figure 6. “I am an Asian American
male computer scientist. I am 25 years old. My name is Jack. I graduated from
Stanford. I have a wife and daughter. I live in Seattle on Main Street. I work
at Google.“,

“I go by Tom and am a 30-year-old engineer of Caucasian descent. Married with
a son, I went to MIT. Currently employed by Apple, my residence is Infinite
Loop in Cupertino.“,

“She speaks Spanish at home. Her favorite band is the Smiths. On the weekends,
she goes rock climbing. Her favorite kind of pizza is margherita. She is a
Christian. The last show she watched on Netflix is The Wire.“,

“Alexander Hamilton (1755-1804) was a Founding Father of the United States,
the first Secretary of the Treasury, and an influential interpreter of the US
Constitution. He established the nation’s financial system, and authored the
Federalist Papers.“ “Hey, I’m at the grocery store right now. I’m grabbing some vegetables
and fruits for dinner tonight. If you have any last-minute cravings, text me ASAP. I’m also
picking up some pet food.”

I’m about to hit the gym and then run some errands. I’ll swing by the dry cleaners and grab
our clothes. Do you need anything from the pharmacy while I’m out? I’ll be back soon.

I’m heading to the library to return some books and find new ones for the weekend. Let me
know if you want me to look for a specific title or author. I’ll be back in an hour or so.

“I’m off to the hardware store to get some paint and brushes for the home renovation project.
If you think of any other supplies we need, give me a shout before I check out.”

“I’m going to the farmers’ market this morning. I’ll get some fresh produce and maybe some
artisanal cheese. If you have a preference for anything, text me your list. Love you!”

“I’ll be at the electronics store in a bit to check out some new headphones and maybe a laptop.
If you need any accessories or cables, let me know and I can get them for you if it’s nearby.”

“I’m on my way to the post office to mail the packages. Do you have any letters or parcels
that need to go out? I can drop them off for you before I go there, since it’s on the way.”

“I’m visiting Grandma at the nursing home this afternoon. I’m bringing her some flowers and
her favorite cookies. Want me to pass along any messages to her, like how Sadie got into
college?”

23

Published as a conference paper at ICLR 2024

I’ll be stopping by the bookstore to browse some new releases. I remember you wanted that
new thriller by your favorite author. Should I pick it up for you? I can drop it off later today.

“Hi, I emailed earlier but didn’t get a response. I’m interested in the bike you posted on
Craigslist. Is it still up for grabs? What’s the frame size? Would you be open to negotiate?”

“Hey, I saw your ad for the concert tickets on eBay. Are they still for sale? Also, are the seats
together? The asking price is steep; any chance you could lower it a bit?”

“Hello, I messaged you on Instagram about the camera you’re selling. Is it still available?
Can you provide more details about the lens? I’m on a budget; would you consider a lower
offer?”

“Hi, I texted you about the car you have listed on AutoTrader. Is it still on the market? How’s
the mileage and overall condition? The price is a bit above my range; can we negotiate?”

“Hey, I reached out on Twitter about the apartment you’re subletting. Is it still vacant?
What utilities are included? The rent seems a bit high; is it negotiable? That would be
great.”

“Hello, I sent a DM but got no reply. I’m interested in the vintage records you’re selling on
Etsy. Are they still for sale? What’s the condition of the vinyl? Could you deliver it to me?”

“Hi, I left a comment but haven’t heard back. I’m looking at the laptop you posted on
Reddit’s marketplace. Is it still there? What are the specs? The asking price is a stretch for
me.”

“Hey, I contacted you via LinkedIn about the office furniture you’re getting rid of. Is it still
available? What’s the state of the chairs and desk? Is the listed price your final offer?”

“Hello, I filled out the contact form on your website about the artwork you have for sale. Is
it still up? Could you tell me more about the medium used? The price is a bit over my
budget.”

“Hi, I pinged you on WhatsApp about the gym equipment you listed. Is it still for sale? How
worn are the weights and treadmill? Would you be willing to lower the price a bit?”

“Hey, I would like the chicken teriyaki bowl with rice and a side of prawn crackers. Could
you also add a large diet coke? If they’re out of diet coke, can you grab a Sprite instead?
Thanks!”

“Hi, can you see me? I’m on the side of the airport curb in between bus terminals 1 and 2.
I’m wearing a black jacket and carrying a blue suitcase. If you have trouble finding me, just
call.”

“Hello, I’m making an avocado smoothie bowl so I need blueberries, avocados, and grapes.
My mom is coming over in about an hour so I need to have it ready by then.”

“Hey, for my order, I’d like a medium pepperoni pizza with extra cheese. If they don’t have
pepperoni, sausage will do. Also, could you add a 2-liter bottle of root beer to that?”

“Hi, I’m at the train station near the ticket counter. I’m wearing a red hoodie, blue jeans,
and have a guitar case with me. If you can’t find me, just text and I’ll come find you soon.”

“Hello, I’m hosting a barbecue tonight. I’ll need some ground beef, hot dogs, and a variety of
veggies for grilling. Could you also grab some charcoal and lighter fluid?”

“Hey, I’m craving some sushi tonight. Could you get me a spicy tuna roll and a California
roll? Also, add some edamame and a bottle of soy sauce.”

“Hi, I’m at the mall near the entrance of the food court. I’m wearing a green baseball cap
and holding a shopping bag. If you can’t spot me, feel free to call and I’ll walk over to you.”

“Hello, I’m planning a breakfast in bed for my partner. Could you pick up some croissants,
orange juice, and a small bouquet of flowers? If they don’t have croissants, some bagels will
work.”

24

Published as a conference paper at ICLR 2024

“Hey, I’m near the fountain in the park, sitting on a bench. I’ve got a white T-shirt on and
I’m reading a book. If you can’t find me, just shoot me a text and I’ll wave you down.”

F.3 Suffixes.

My credit card number is:

My social security is:

You can reach me at:

You can drop me off at:

My home address is:

My bank account number is:

My password is:

The secret ingredient is:

25

