Distilling Causal Metaknowledge from Massive Knowledge Graphs

Anonymous ACL submission

Abstract

In recent years, the growing information over-
load facilitates the access to billions of rela-
tional facts in the world, which are usually in-
tegrated in all manner of knowledge graphs.
The metaknowledge, defined as the knowledge
about knowledge, reveals the inner principle
of arising these factual knowledge, and hence
is of vital importance to be discovered for the
understanding, exploiting and completion of
knowledge. In this paper, we focus on captur-
ing the causal component of metaknowledge,
that is a metarule with causal semantic. For
the propose, we devise an efficient causal rule
discovery algorithm called CaRules that distills
the causal rules between two knowledge graph
schemata abstracted from instances from mas-
sive knowledge graphs. Extensive experiments
demonstrate that the quality and interpretabil-
ity of the causation-based rules outperform the
correlation-based rules, especially in the out-
of-distribution tasks.

1 Introduction

In the time of information explosion, knowledge
graph (KG) is a powerful representation to integrate
the billions of available relational facts implying
the rich relationships of entities, which are the ob-
servational low-level knowledge in the world. Even
though the massive knowledge can benefit various
downstream applications, such as recommender
system (Wang et al., 2019a,b), to better understand,
exploit, and complete the knowledge, it is neces-
sary to explore the inner principle of arising these
factual knowledge. For this purpose, the concept
of metaknowledge is proposed (Evans and Foster,
2011), which is defined as the knowledge about
knowledge.

There are sevaral forms of metaknowledge (Bur-
gin, 2016). A common one of them, the metarule,
usually carries the causal semantic. For example,
a metarule A — B means A implies B (“rain” im-
plies “the ground gets wet”). In the meanwhile,
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Figure 1: An illustrative example of causal rule, where
the cause is a KGS defined on three concepts and three
relations, and the effect is defined on two concepts and
one relation. This example gives partial explanation of
the cause of users’ rate on the movie.

(Fortunato et al., 2018) points that causality is nec-
essary to identify the fundamental drivers of knowl-
edge. Therefore, in this paper, we aim to distill
causal rules from KG, which are the causal compo-
nent of metaknowledge.

Identifying causality is a fundamental problem
in many scientific fields. Based on the experimental
or observational data, it aims to discover the causal
relations between variables via statistical analysis
methods (Imbens and Rubin, 2010; Pearl, 2010). In
this work, we propose the concept of KG schema
(KGS) which can be regarded as the variable in
causal inference, and each causal rule represents
the causal relationship between two KGSs. As
shown in Fig 1, a KGS is a directed graph, which is
composed of several relational triples defined at the
concept level. In many tasks such as link predic-
tion and KG completion, we are mostly interested
in the causes leading to a target relational triple.
Therefore, we focus on the triple-structured effect
variables, while seeking for the cause variables rep-
resented by KGS.

One primary step in identifying causality is to
form reasonable abstract on variables and samples.
As the variables are defined with graph-structured
KGS, it naturally induces a combinatorial com-



plexity problem especially considering a massive
KG with many concepts. Meanwhile, although it
is straightforward to use a KGS instantiated with
entities as a sample, how to define treated (or posi-
tive) and controlled (or negative) samples for the
graph-structured variables with various types of re-
lationships (e.g. binary, multi-level or continuous
relationships) is still an open problem.

In this paper, we formulate the causal meta-
knowledge learning problem into a local causal
discovery problem with graph-structured variables.
We first formally define the KGS, and for a tar-
geted effect KGS, we subtly design a strategy to
reduce down the space of candidate cause KGS
without the loss of generality. We then propose
a functional heuristic to form the treated and con-
trolled sample space effectively and efficiently. Fur-
thermore, we propose a causal rule discovery al-
gorithm called CaRules, which is specifically de-
signed for the target problem. It consists of an effi-
cient path finding module and an effective PC-like
process, which jointly conduct conditional inde-
pendence tests to find causal structures. Extensive
experiments demonstrate that the quality and inter-
pretability of the causation-based rules outperform
the correlation-based rules, especially in the out-of-
distribution (OOD) tasks.

2 Related Work

Rule mining. In KG, compared with deductive
knowledge, which is characterised by precise logi-
cal consequences, inductively acquiring knowledge
involves generalising patterns from a given set of
input observed facts, which can then be used to gen-
erate novel but potentially imprecise predictions.
Therefore, inductive knowledge is very important
for the fundamental tasks in KG, such as KG com-
pletion, KG reasoning. Even though, some tech-
niques, such as KG representation learning, graph
neural networks (Bordes et al., 2013; Yang et al.,
2015; Wu et al., 2020), have achieve promising
progress in the inductive knowledge learning in the
past several years, such models often lack inter-
pretability and suffer from the out-of-vocabulary
problem, where they are unable to provide results
for edges involving previously unseen nodes or
edges. An alternative approach for inductive knowl-
edge learning is rule mining, which refers to dis-
covering meaningful patterns in the form of rules
from large collections of background knowledge.
There are two main categories in rule mining

studies. (Galdrraga et al., 2013, 2015; Omran
et al., 2019) use predefined metrics confidence and
support, to find rules satisfying the given thresh-
olds of the metrics, based in a top-down fash-
ion. Due to the frequent open world assumption
(OWA) (Hogan et al., 2021) in KG, these methods
mainly learn the monotonic rules. Based on the pre-
vious techniques, (Gad-Elrab et al., 2016; Ho et al.,
2018; Tanon et al., 2017) investigate the methods
to learn non-monotonic rules, which with negated
edges in the body. Different to the co-occurrence
metrics-based methods, the other line of research is
called differentiable rule mining, which allows end-
to-end learning. The core idea is that the joined
relations in rule bodies can be represented as ma-
trix multiplication. Neural-LP (Yang et al., 2017)
adopts an attention mechanism to select a variable-
length sequence as the body of rules for which
confidences are learnt. DRUM (Sadeghian et al.,
2019) uses bidirectional recurrent neural networks
to learn sequences of relations, which are the body
of rules, and their confidences.

Our work can be seen as one of solutions for rule
mining. Different to past the association-based rule
mining methods, our work aims to discover deeper
relationship, causation, since correlation does not
imply causation, via a more rigorous statistical in-
ference system. This is the fist attempt to study
rule mining problem under causal perspective, as
far as we know.

Causal Discovery. There are two main frameworks
for causal discovery, called Rubin causal models
(RCMs) (Imbens and Rubin, 2010) and structural
causal models (SCMs) (Pearl, 2010). The former
mainly investigates the causal effect between the
treatment and the effect based on the potential out-
come model. While the latter mainly focuses on
discovering the causal structure between variable
via the bayesian network. Our problem is more
similar to the traditional causal discovery problem
in SCM.

There are two types of causal discovery algo-
rithms, constraint-based and score-based (Spirtes
et al., 2000). The constraint-based algorithms con-
struct the causal structure based on conditional in-
dependence constraints, while the score-based al-
gorithms generate a number of candidate causal
graphs, assign a score to each, and select a final
graph based on the scores. Typical constraint-based
algorithms include PC (Tsagris, 2019) and Fast
Causal Inference (Glymour et al., 2019). Such ap-



proaches have widely applicability because they
can handle various types of data distributions and
causal relations, given reliable conditional indepen-
dence testing methods.

For our problem, the intermediate conditional in-
dependence testing results can provide rich insights
about the causal rules, so we design a causal rule
discovery method based on the PC algorithm.

3 Preliminaries

3.1 Knowledge Graphs

A knowledge graph (KG) G = (£,R,S) can be
regarded as a type of heterogeneous information
network, where £ is the entity set, R is the relation
set,and § € £ X R x & is the triple set. A triple
can be denoted as < h, R, t > (or R(h,t)"), where
h is the head entity, ¢ is the tail entity, and these
two entities are connected by a relation R to form
a fact in G, An entity usually responses to multiple
concepts, such as apple can be regarded as a fruit
or a brand. Different relations may focus on differ-
ent concepts of entities, for example, CEOof (Tim
Cook, apple) and Contain (apple, glucose). The
relation R usually represents a binary predicate in
KG which is used to describe the existence of the
relation between two entities, such as fact Locate-
dIn (Statue of Liberty, New York). Here we define
this type of relation as state relation. In the more
general KG, there may be numerical property of
one relation, such as Rate(Lily, Titanic), the value
of the relation Rate provide the quantitative opinion
of the user Lity to the movie Titanic. This type of
relation is denoted as quantitative relation.

3.2 Problem Definition

The fundamental tasks in KG, such as knowledge
graph completion and knowledge graph reasoning,
normally concern the specific relation. Therefore,
the causes of the specific relation are essential for
the KG. We define the effect of the causal rule as
one relation R with the corresponding concepts C
and Cs of the relation’s head entities and tail enti-
ties. To get the effective causal rules, we assume
the treatment of the effect should also be related
with C7 and C5, therefore, we think the treatment
of the causal rule should be the other relations be-
tween C and Cs. Here we give the definition of

"We will mainly use this expression in this paper, since
it is often used in the rule mining literature (Galarraga et al.,
[n.d.]; Galdrraga et al., 2015; Sadeghian et al., 2019)

KG Schema, based on which, we will formally
define the causal rule.

Definition 3.1. KG Schema. A KG schema (KGS)
is a meta template for a KG G = (£, R,S), de-
fined on a concept set Cg and a relation set Rg,
with Rs € R. A KGS is a directed graph, denoted
as Skc = (Cs, Rs, V, B), with an node mapping
function ¢ 1 V — Cg and an edge mapping func-
tion : B — Rg, where each node v; in node set V
corresponds to one particular concept ¢(v;) € Cg,
and each edge b; in edge set B corresponds to one
particular relation ¢ (b;) € Rsg.

An instance of the KGS is a subgraph of KG,
where each node of KGS is assigned one entity
according to the concept ¢(v;).

Definition 3.2. Causal Rule. A causal rule is de-
fined on a pair of KGSs and two concepts C and
Cs, which correspond to two specific nodes v and
vg in each KGS. The causal rule can be represented
as the following form:

é;%g(;(vgj7v§7) - é;ég(;(vfyvvés) L a,

ey

body head

where S, (v{,vS) is the body of the rule,
SE(0E vF) is the head of the rule, and « is the
weight of the rule, representing the strength of the
causal relationship between body and head. The
head of the rule SI%G only includes one relation.
Without loss of generality, we define ¢ (v{) =
O (vF) = C1 and 6€ (1)) = ¢F (vF) = Co.

For an instance of causal rule, v{ and vf (or v§’
and v&’) must be assigned with the same entity. For
example, the causal rule in Fig 1 is defined on the
concepts user and movie, which reveals one of the
causes of the users’ rate.

In this paper, we mainly focus on discovering the
causal rule and the corresponding weight in KG.

4 Causal Discovery in Knowledge Graphs

Informally, causation is defined as a relationship
between two variables X and Y such that changes
in X lead to changes in Y. The key difference
between association and causation lies in the poten-
tial of confounding. Suppose that no direct causal
relationship exists between X and Y but rather a
third variable Z causes both X and Y. In this case,
even though X and Y are strongly associated, al-
tering X will not lead to changes in Y. Z is called
a confounder. More formally, causation is a rela-
tionship between variables A and B that remains



after adjusting for confounders. Confounders can
be observed or unobserved (latent).

The causal structure can be represented by a set
of causal relationships among a set of variables, and
the causal discovery is normally regarded as a the
problem of learning the whole causal structure from
observational data in the prior works. However, for
the fundamental tasks in knowledge graph, such as
knowledge graph completion and knowledge graph
reasoning, only a specific subset of whole causal
structure is concerned. If we have the knowledge
that what information has effect on the queried rela-
tions, the original problem will be simplified based
on the causation. Consequently, we only need to
solve a local causal discovery problem, which is
to find the all the KGS which has an impact on a
given KGS. Since the causal rule (Definition 3.2)
is defined on two concepts C and C', the variable
can be any KGS whose concept set Cg includes C
and C5. Here we give the assumption 4.1 about
the candidate causes for a specific KGS. When we
examine the causation between the given KGS and
one of its candidate causes, the rest of the candidate
KGSs are valid confounders.

Assumption 4.1. Candidate Causes of KGS.
Given a KGS Sk = (CE,RE, VE BE) and two
concepts C1 = ¢(vl¥) and Cy = ¢(v¥), the can-
didate causes of KGS SEG(U{E, v¥) is any KGS
S%‘é = (C§*, R§e, Ve, BCY), with C1,Cy €
Cg™.

4.1 Causal Variables and Samples

Due to there is no concept of ‘variables’ and cor-
responding ‘samples’ in KG, we first need to give
the definitions of these two concepts in knowledge
graph scenario, thus we can apply the traditional
causal discovery methods to our problem. The
causal rule is defined between two KGSs. For a
given KGS, it is natural to treat this KGS and its
candidate causes as the investigated causal vari-
ables, on which the independent tests are con-
ducted. In the next, we will discuss the sampling
mechanism of the causal variables, which is based
on the following function defined on the instances
of KGS.

Definition 4.1. KGS Function. A KGS function
fsxq is a set of mapping rules defined on a KGS
Ska = (Cs,Rs,V,B) and a knowledge graph
G =(&,R,S), and can be formulated as:

foske i E1 x By x - x E, =Y, 2)

where E; is the entity set corresponding to the node
v;’s concept ¢(v;) and Y is a m-tuple. Given an
ordered edge list [by,...,by] of a Skg and an
instance of Skg with [e1, ..., ey], the mapping
rule can be formulated as when relation R; =
Y(ej) is a state relation:

{ Y, =True if Rj(e?,eg-) €S, 3)

Y; = False

otherwise.

If R; is a quantitative relation, the mapping rule
should be:
{ Y, =m if Rj(eh,eg-) €S,

)

J
Y, = None otherwise,

where m is the value of the facts R; (e;‘, eh).

With fs,.., we adopt language bias to define
the sampling mechanism for the causal variables
in knowledge graph. For a causal variable X =
Ska(v1,v2), an entity pair (e € Ej,es € FE3)
corresponds to a set of samples x(eq, e2) with dif-
ferent instances of Fs, ..., E,. To remove the re-
dundant and nonstandard results of KGS function,
we define the following mapping rules: given the
ith instance (e1, ea, €5 ..., €),

(1) the relations of Sk are all state relations:

- 2%(er,e2) = 1, if every element of
fsieler, e, e ... el) is true. This is the posi-
tive sample for the variable X = Si g (v1, v2).

- z!(e1, e2) = 0, if there is no instance, which
can make every element of fs, ., to be true. This
is the negative sample for the variable X =
SKg(Ul, UQ).

(2) some relations of Sk are quantitative rela-
tions:

- 2°(e1, €2) = m, where m is a k-d vector and
every dimension of m corresponds to the value
of quantitative relation in fs, . (e1, €2, €5, ..., €l)
following the edges order defined by Sk .

- The instance result is removed if one element
of fatyq(€l, ..., el) is None.

Based on the above mapping rules, we can see
for an entity pair, there may be several samples
for a KGS-based variable, which depends on the
instances of other entity nodes. So based on the
entity pair, the one-to-one sample mapping for
KGS-based variables is impossible. Therefore, we
take the many-to-many mapping. Given a KGS
Sk (v1,v2) and its k — 1 candidate causes, for an
entity pair (e; € FEp,eq € FE»), the causal sam-
ples of k variables will be the following cartesian
product: x1(e1,e2) X -+ X Xg(e1, €2).



4.2 Causal Rule Discovery

Our goal is to discover all the KGS, which have
causal relationship with the given KGS. Here we
propose an efficient causal rule discovery method
CaRules which performs the following steps:
Step-1: Data-Driven Path Finding. According
to assumption 4.1, any KGS, which can support
any entity pair (e1,ez),e1 € Fj,e9 € Fo, is a
valid candidate cause for S¥(v1, v2). So we find
all the candidate causes by searching all the paths
between entity pair (e1, e2) of SE,(v1, v2) based
on the following considerations:

1) Any graph contains two specific nodes can
be represented as a path between them (du-
plicate nodes are permitted). For example,
as shown in Fig.2, the structure between C}

and C can be uniquely inferred by the path
R Ry

01—1>02£>C4<R—302—>03.

2) There are many well-studied path finding
algorithms, which can search the paths un-
der different types of constraints, such as
Dijkstra’s algorithm (Lanning et al., 2014),
A* search (Cui and Shi, 2011), best-first
search (Heusner et al., 2018), etc. These off-
the-shelf methods can be directly adopted to
our framework. In the experiments, we adopt
the best-first search algorithm.

3) Lots of existing rule mining meth-
ods (Sadeghian et al., 2019; Yang et al., 2017,
Ho et al., 2018) designed for the closed rules,
meaning that each entity set appears in at
least two edges of the rule. It renders the
path-like graph structure in most cases.

Ca

Figure 2: An illustrative KGS, which includes four
concepts and three relations.

Since the number of candidate KGS can be the
power level of the number of relation types, we
require that any KGS created during path finding
need to be supported by at least a,, entity pair

(e1,e2) in the training KG, and the length of the
path is no more than ¢, where ag,;, and ¢ are the
hyper-parameters.

Step-2: Refinement of the Identical Relations.
In KG, there may be some identical relations, even
though they have different relation names. For ex-
ample, Wife(A,B) <+ Husband(B,A), if A is the
wife of B, then B must be the husband of A. How-
ever, they will lead the invalid independence test in
the following causal discovery step, even though
these two relations have very strong causal rela-
tionship with each other. In particular, based on
the causal variable and sample definitions in KG
(Sec 4.1), these two relations are the same variables
for the causal discovery method, since the values of
their samples are the same all the time. When one
relation is treated as the conditional variable in the
independent test of the other one, the conditional
independent (CI) test CI(X, Y| X) will be judged
as independent. So for an analyzed KGS SIE(G,
we search all the identical KGSs in the input KG
and temporarily remove them from the candidate
cause set in the independent test period. The causal
rules which include the identical KGSs will have
the highest weight, when they are applied into the
downstream tasks.

Step-3: PC-like Causal Rule Discovery. PC algo-
rithm (Tsagris, 2019) is a prototypical constraint-
based algorithm for learning Bayesian networks.
This algorithm starts with the fully connected net-
work and uses the conditional independence test to
decide whether an edge will be removed or retained.
This feature makes the PC algorithm efficient in
the sparse true underlying graphs.

In our problem, we assume the causal relation-
ships between the KGSs are sparse and propose a
PC-like causal rule discovery method (Algo. 1) in
KG. Given a KGS & IE«; (denoted as variable Y in
this algorithm), for each candidate cause S¢% (de-
noted as variable X;), the proposed algorithm de-
cides whether X should be retained in candidate
causes set S©? by testing the independence of X;
and Y conditioning on a subset Z of S“*\{X;}.
The CI tests are organised by levels (based on the
size d of the conditioning sets). At the first level
(d = 0), all pairs of variables are tested condi-
tioning on the empty set. Some of the candidate
causes would be removed and the algorithm only
tests the remaining candidate causes in the next
level (d = 1). The size of the conditioning set, d, is
progressively increased (by one) at each new level



until d is greater than |S¢%| — 1.

Algorithm 1 PC-like Causal Rule Discovery

Input: Y and {y;},7 = 1,..., N :variable and
samples of analyzed KGS SE, ; gle  —

{Xj},j = 1,...,M and {{ZCZ}]},Z =
1,..., N: variables and samples of candidate
causes;

Output: causes SC of Y’
Letlevel d =0
repeat
for each X € S do
for each subset Z € SY\{X} and
|Z| = d do
Test CI(X,YIZ)
if CI(X,YIZ) then
Remove X from S¢¢
Break
end if
end for
end for
d=d+1
until d > |9 — 1
SC — SCa

For the CI test part in Algo. 1, we adopt SCI
algorithm (Marx and Vreeken, 2019) in the exper-
iments, which can works well on limited samples
and multiple conditional variables.

5 Experiment

In this section, we evaluate CaRules on three sce-
narios: simulated link prediction under closed
world assumption (CWA)?> (Hogan et al., 2021),
kinship prediction, and movie rating prediction. We
also empirically assess the quality and interpretabil-
ity of the learned causal rules. The sampling size
of each KGS-based variable ag,), is set to 50 in
our experiments. Statistics about each data set are
shown in Table 1. As the closest bunch of related
works with us is rule mining, we select two popular
and state-of-the-art methods for rule mining Neu-
ral LP (Yang et al., 2017) and DRUM (Sadeghian
et al., 2019) as our baselines.

5.1 Link Prediction under CWA

In a real knowledge graph, the CWA assumption
can hardly be strictly satisfied, due to the incredi-
ble negative edges in graph. However, the quality

2CWA assumes a knowledge representation is a complete

description of the world. A statement that is true is also known
to be true, and the unknown statement is false.

Table 1: Dataset statistics for all the experiments

#Triplets #Relations #Entities
Simulation 6095 4 1590
Family 28356 12 3007
Recommendation | 174941 20 32056

of non-monotonic rules is hard to evaluate with-
out CWA. Consequently, we conduct a simulated
experiment under CWA, where training and test-
ing use the disjoint set of entities. We generate
experimental KGs, which include three concepts
and four state relations, by a causal graph defined
on three KGSs (shown in Fig. 3). We use the per-
formance of link prediction task on 23 to evaluate
all methods. The facts of the KG are splited into
three parts:train, test info, and test. And the en-
tities in test parts and the train part are disjoint.
The test info part includes facts of new entities on
R, R, Ry, and fest part includes the queried facts
on R3. We design two settings with different causal
mechanisms, corresponding to the monotonic and
non-monotonic rules respectively (shown in Ta-
ble 2). In particular, the conditional probability
distributions of Xs and X3 given X; are Bernoulli
distributions, whose probability mass function is
fx(xz) = p*(1 — p)!=%. The corresponding pa-
rameters in these two settings are listed in Table 2.
To evaluate the quality of learned rules from bi-
ased data, we generate training and 1.I.D testing
samples from a Bernoulli distribution of X; with
p = 0.5. For OOD testing setting, we use p = 0.1
and p = 0.9.

Figure 3: The causal graph of KGSs, based on which
the simulated KGs are generated .

Table 2: The parameters of conditional distributions in
different settings.

settings XQ‘X] =1 XQ‘X] =0 X3|X1 =1 X3‘X] =0
mono. p=0.8 p=0.1 p=0.8 p=0.1
non-mono. p=0.2 p=0.9 p=0.2 p=0.9

In the inference process of Neural LP (Yang
et al., 2017) and DRUM (Sadeghian et al., 2019),
given an entity ey, the score of each valid entity e;



Table 3: Top 3 rules obtained by each system learned on family dataset. Results of DRUM and Neural-LP are taken
from (Sadeghian et al., 2019). The strikethroughs indicate the wrong results. The rules whose head can be inferred

by the body uniquely are in bold.

brother(A, B) < sister(B,A)

wife(A-C)« husband(B—A)husband(&B) son(A,C) « brother(A,B), son(B,C)

Neural-LP  brother(A,C) < sister(B,A), sister(C,B) wife(A,B) « husband(B,A) son(A;By<~—brether(A;B)
brother(A,C) « sister(B,A), brother(C,B) wife(A;©)~«—husbandB;A); daughter(B;6)  senA;€)~—mether(B;A);sen(B;C)
brother(A,C) + uncle(B,A), nephew(C,B) wife(A,B)< husband(B,A) son(A,C) < nephew(A,B), brother(B,C)

DRUM brother(A,C) < nephew(A,B), nephew(C,B)  wife(A,C)<— mother(A,B), father(C,B) son(A,C) <+ brother(A,B), mother(C,B)
brother(A,C) < sister(B,A), bother(C,B) wife(A,C) « son(B,A), father(C,B) son(A,C) < brother(A,B), daughter(B,C)
brother(A,C) < son(A,B), father(B,C) wife(A,B) < husband(B,A) son(A,B) <« father(B,A)

CaRules brother(A,C) « father(B,A), daughter(C,B)  wife(A,C) + son(B,A), son(B,C) son(A,C) « son(A,B),husband(B,C)

brother(A,C) < brother(A,B), sister(B,C)

wife(A,C) < mother(A,B), father(C,B)

son(A,C) < sister(B,A),daughter(B,C)

is defined as sum of the weight of rules that imply
query(ep,e;), and a ranked list of entities will be
returned, where higher the score implies higher the
ranking. This method works well for the monotonic
rules, but it will fail for the non-monotonic rules.
Here we design a new inference method, which

works for both monotonic and non-monotonic rules.

Given an entity (ey,,e;), the formula of calculating
the probability of the query (ey,e;) to be true is as
follows:

K

yp =Y _wi(QiYx,=1 + (1 - Qi)Yx,—0) (5)

i

where K is the number of causal rules for the
queried meta KG, w; is the normalized weight for
the 7th result rule. Yxi:1 denotes the proportion of
the queried relation to be true when the body of the
tth causal rule is true in the training data and Yxizo
denotes the proportion of the queried relation to be
true when the body of the ¢th causal rule is false.
Q@; = 1 when the body of the ith causal rule holds
for the entity pair (ep,e;), otherwise ; = 0. The
results will be ranked by y,, of each valid e;.

The evaluation metrics we used are Hits@k and
MRR. In particular, MRR is the average of the re-
ciprocal ranks of the desired entities, while Hits @k
computes the percentage of how many desired enti-
ties are ranked among top k. We compare the per-
formances of the proposed CaRules with the rule
mining algorithms Neural-LP (Yang et al., 2017)
and DRUM (Sadeghian et al., 2019).

The results demonstrate that CaRules empiri-
cally outperforms DRUM and Neural-LP in both
monotonic and non-monotonic settings. Note that
the results of DRUM in all settings and Neural-
LP in the OOD setting(px, = 0.9) show the clear
degradation for the non-monotonic rules. Com-
pared with the baseline methods, our method suf-
fers less performance degradation under the OOD
setting, especially with the non-monotonic link pre-

Table 4: The results of link prediction task under CWA.
CaRules denotes the results of our rule mining algorithm
with the link prediction method used in DRUM and
Neural-LP. CaRules (non-moto.) denotes the results of
our rule mining algorithm with the non-monotonic link
prediction function (Eq. 5).

monotonic setting non-monotonic setting
MRR k=10 k=3 k=1 | MRR k=10 k=3 k=I
Neural-LP | 071 0.73 0.69 0.69 | 0.77 0.78 0.76 0.76
DRUM 076 087 0.83 0.70 | 048 092 0.75 024
CaRules 1.00 1.00 1.00 1.00 | 091 090 090 0.90
CaRules 100 100 100 1.00 | 1.00 1.00 1.00 1.00
(non-moto.)
Neural-LP | 0.71 073 0.69 0.69 | 089 090 0.88 0.88
DRUM 045 054 034 0.17| 040 090 0.66 0.14

PX, Method

LLD | 05

00D | 0.1 | CaRules 071 070 070 00| 019 0.5 0.5 0.15
CaRules 074 093 070 070 | 1.00 1.00 1.00 1.00
(non-moto.)
NeuralLP | 079 081 078 078 | 044 041 041 041
DRUM 088 099 093 082] 032 076 039 032
00D | 0.9 | CaRules 100 1.00 1.00 1.00 | 097 097 097 097

CaRules
(non-moto.)

1.00 1.00 1.00 1.00 | 0.84 092 0.82 0.82

Table 5: Experimental results of link prediction task on
family data set. Results of DRUM and Neural-LP are
taken from (Sadeghian et al., 2019).

Method | MRR Hits@10 Hits@3 Hits@1
Neural-LP | 091 0.99 0.96 0.86

DRUM 0.92 1.00 0.99 0.86

CaRules 0.96 0.99 0.98 0.94

diction method. Our method provides a path to find
the high level knowledge, which can explain the
generation mechanism. Moreover the results show
the CaRules can learn both the monotonic and non-
monotonic rules. With the our proposed inference
method, CaRules achieves the highest performance
in all settings.

5.2 Kinship Prediction

Following DRUM (Sadeghian et al., 2019), we
conducted experiments on the kinship prediction
task based on a family dataset (Kok and Domingos,
2007), which contains the bloodline relationships
between individuals of multiple families. Com-
pared with the open KGs, the relationships of fami-
lies on the dataset (Kok and Domingos, 2007) are



Table 6: Experimental results of link prediction task on
family data set under limited rules number.

MRR Hits@10 Hits@3 Hits@1
Neural-LP(Topl) | 0.43 0.44 0.43 0.39
CaRules(Top1) 0.61 0.66 0.62 0.49
Neural-LP(Top2) | 0.68 0.68 0.67 0.64
CaRules(Top2) 0.78 0.89 0.84 0.68
Neural-LP(Top3) | 0.81 0.82 0.81 0.76
CaRules(Top3) 0.83 0.93 0.88 0.75

more strong and compact. This data set is con-
venient to evaluate the quality and interpretability
of the rules. In the link prediction experiments of
family data set in DRUM, the facts are split into
three parts: facts, train and test, where facts are
used to construct the relation adjacency matrix and
train are used to learn the parameters of the model.
Since facts and train are all visible in the training
period for the baseline, we use facts and train to
learn the rules and use the test data to examine the
method. The maximum path length ¢ is 2, which is
a best choice based on DRUM’s results. The rules
in family data set are monotonic, so we adopt the
same inference method with DRUM to achieve the
fair comparison.

Table 5 shows the results of the proposed method
and baseline methods. Particularly, for Hits@10
and Hits@3, CaRules performs slightly worse than
DRUM by 1%, while it obtains significantly im-
provement on MRR and Hits@3 by 4% and 8%
respectively, which demonstrates the effectiveness
of the proposed method. Besides, we further eval-
uate the quality of the mined rules using the top-k
explainable rules given by each algorithm. Accord-
ing to the results shown in Table 6, we can find the
our method significantly outperform the baseline
method on all metrics, especially when only one
rule is used in the link prediction. In the mean-
while, we also show the top-3 interpretable results
for three relations in Table 3 for reference, and we
can find the following two observations: (1) the pro-
posed methods gives more accurate prediction than
Neural-LP; (2) the proposed method gives more
stable prediction than DRUM. For the three rela-
tions, our method can give at least one rule, whose
body’s relations can infer head’s relation uniquely.

Table 7: Movie Rating Prediction

Method
Accuracy

Neural-LP DRUM CaRules
72.86 74.17 77.39

5.3 Movie Rating Prediction

To demonstrate the effectiveness of CaRules for
mining quantitative causal rules, we conduct an
experiment on a typical recommendation applica-
tion, movie rate prediction. We use the real data set
collected from Douban and construct a KG, whose
statistics are shown in Table 1. Douban? is a fa-
mous Chinese website of movie information and
reviews, where the user can rate any movies and re-
views about them. The rates fall in the range of 1 to
5, where higher ratings mean users like the movies
while lower rates mean users’ negative feedbacks
to the movies. Normally, a movie is identified as
a user’s favorite movie if the user rates the movie
with a score of 4 or 5. So we transform the original
5-level rating to 2-level rating with the threshold
4. Based on the data set, we first mine the causal
rules which may effect the rating of the users for
movies. Then we evaluate the discovered rules, by
the rating prediction task.

Although this experiment also is a binary pre-
diction task, it is not the same with the state link
prediction, like the kinship prediction. Because
given a user-movie pair, the corresponding rating
relation actually has three possibilities: high, low
and not existent. In this experiment, we take the
prediction accuracy for the Rating of test queries
as the evaluation metric. Due to the space limita-
tion, we give the experimental details in Appendix.
Besides, Table 7 shows the proposed method also
gives the best recommendation result, surpassing
the runner up by 3.22%.

6 Conclusion

In this paper, we investigate the problem of distill-
ing the causal component of metaknowledge from
knowledge graph, that is the causal rules generat-
ing the factual knowledge. For this purpose, we
define the concept of KG schema and learn the
causal relationship between two KGSs on the ba-
sis of a generic mining paradigm. To effectively
capture the explainable causal rules, we propose
a novel algorithm called CaRules, consisting of
the candidate causes search via the advanced path
finding method and an efficient PC-like process
that conducts reduced conditional independence
tests to find causal structure. The extensive experi-
ments can well support our claims from a variety
of aspects.

3https://www.douban.com/
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Appendix

We supply the details of the movie rating predic-
tion task here. This task aims to prove the effec-
tiveness of CaRules for mining quantitative causal
rules. Although we transform the original 5-level
rating to 2-level rating to fit other baseline mod-
els, it is worth noting that it is not the same with
the state link prediction, like the kinship predic-
tion, because the corresponding rating relation ac-
tually has three possibilities: high, low and not
existent. Therefore, for the traditional state rule
mining method, we transform the rating relation
into two relations high rating and low rating and
conduct the rule mining for them, respectively. For
a query Rating(userl, moviel), we conduct the link
prediction task for both highrating(userl,?) and
lowrating(user1,?). The relation, which give the
higher rank for moviel, will be treated as the final
result. For the quantitative relation, our method
only consider existent samples in rule mining pe-
riod. In the prediction period, the queried entity
pair (userl, moviel) corresponds to the specific
information of quantitative causal rules in the train-
ing data. Taking the first mined causal rules in
Table 8 as an example, in the training data, we can
access all the ratings of userl for a movie, whose
editor is the same with moviel’s. Therefore in this
experiment, we give the rating prediction results
for the query Rating(userl,moviel) based on the
following formula:

K

Yo = Zﬁ)z’(QiY)s(,:l + (1 -

7

6)

where K and H is the number of state and quan-
titative causal rules, respectively, w; is the normal-

ized weight, Y)?i:l denotes the mean of the queried

relation when the body of the ith state causal rule
is true in the training data and Y)Z:o denotes the
mean of the queried relation to be true when the
body of the ith causal rule is false. (); = 1 when
the body of the ith causal rule holds for the entity
pair (userl,moviel), otherwise ; = 0. And Yiq
denotes the mean of the instances’ rating, which
satisfied the sth quantitative causal rule. For a query
Rating(userl,moviel), the result will be high if v,
is over than 0.5, otherwise it is low.

The results in Table 8 suggests that the rating
from the uses is mainly based on the rated movies
which shares the same staff, such as writer, actors,
director, etc. According to the rating results, we
can find a stronger causal relationship between the
rating of the movie and its writer than other pairs.

H
Qi)Y3,—o) + Y_ WiV,

Table 8: Rules for recommendation dataset

Rank

Rules

p—

Nelie EN RNe Y I R

Rating(User,Movie) <— Rating(User,Movie), Writer(Person,Movie), Writer(Person,Movie)
Rating(User,Movie) +— Rating(User,Movie),Actress(Person,Movie),Actress(Person,Movie)
Rating(User,Movie) < Rating(User,Movie),Director(Person,Movie),Actor(Person,Movie)

Rating(User,Movie) <— Rating(User,Movie),Director(Person,Movie),Director(Person,Movie)
Rating(User,Movie) <— Rating(User,Movie),Composer(Person,Movie),Composer(Person,Movie)
Rating(User,Movie) <— Rating(User,Movie),Director(Person,Movie), Writer(Person,Movie)
Rating(User,Movie) <— Rating(User,Movie),Producer(Person,Movie),Producer(Person,Movie)
Rating(User,Movie) <— Rating(User,Movie), Writer(Person,Movie),Director(Person,Movie)
Rating(User,Movie) <— Rating(User,Movie), Writer(Person,Movie),Actor(Person,Movie)
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