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Abstract

In recent years, the growing information over-001
load facilitates the access to billions of rela-002
tional facts in the world, which are usually in-003
tegrated in all manner of knowledge graphs.004
The metaknowledge, defined as the knowledge005
about knowledge, reveals the inner principle006
of arising these factual knowledge, and hence007
is of vital importance to be discovered for the008
understanding, exploiting and completion of009
knowledge. In this paper, we focus on captur-010
ing the causal component of metaknowledge,011
that is a metarule with causal semantic. For012
the propose, we devise an efficient causal rule013
discovery algorithm called CaRules that distills014
the causal rules between two knowledge graph015
schemata abstracted from instances from mas-016
sive knowledge graphs. Extensive experiments017
demonstrate that the quality and interpretabil-018
ity of the causation-based rules outperform the019
correlation-based rules, especially in the out-020
of-distribution tasks.021

1 Introduction022

In the time of information explosion, knowledge023

graph (KG) is a powerful representation to integrate024

the billions of available relational facts implying025

the rich relationships of entities, which are the ob-026

servational low-level knowledge in the world. Even027

though the massive knowledge can benefit various028

downstream applications, such as recommender029

system (Wang et al., 2019a,b), to better understand,030

exploit, and complete the knowledge, it is neces-031

sary to explore the inner principle of arising these032

factual knowledge. For this purpose, the concept033

of metaknowledge is proposed (Evans and Foster,034

2011), which is defined as the knowledge about035

knowledge.036

There are sevaral forms of metaknowledge (Bur-037

gin, 2016). A common one of them, the metarule,038

usually carries the causal semantic. For example,039

a metarule A→ B means A implies B (“rain” im-040

plies “the ground gets wet”). In the meanwhile,041

Figure 1: An illustrative example of causal rule, where
the cause is a KGS defined on three concepts and three
relations, and the effect is defined on two concepts and
one relation. This example gives partial explanation of
the cause of users’ rate on the movie.

(Fortunato et al., 2018) points that causality is nec- 042

essary to identify the fundamental drivers of knowl- 043

edge. Therefore, in this paper, we aim to distill 044

causal rules from KG, which are the causal compo- 045

nent of metaknowledge. 046

Identifying causality is a fundamental problem 047

in many scientific fields. Based on the experimental 048

or observational data, it aims to discover the causal 049

relations between variables via statistical analysis 050

methods (Imbens and Rubin, 2010; Pearl, 2010). In 051

this work, we propose the concept of KG schema 052

(KGS) which can be regarded as the variable in 053

causal inference, and each causal rule represents 054

the causal relationship between two KGSs. As 055

shown in Fig 1, a KGS is a directed graph, which is 056

composed of several relational triples defined at the 057

concept level. In many tasks such as link predic- 058

tion and KG completion, we are mostly interested 059

in the causes leading to a target relational triple. 060

Therefore, we focus on the triple-structured effect 061

variables, while seeking for the cause variables rep- 062

resented by KGS. 063

One primary step in identifying causality is to 064

form reasonable abstract on variables and samples. 065

As the variables are defined with graph-structured 066

KGS, it naturally induces a combinatorial com- 067
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plexity problem especially considering a massive068

KG with many concepts. Meanwhile, although it069

is straightforward to use a KGS instantiated with070

entities as a sample, how to define treated (or posi-071

tive) and controlled (or negative) samples for the072

graph-structured variables with various types of re-073

lationships (e.g. binary, multi-level or continuous074

relationships) is still an open problem.075

In this paper, we formulate the causal meta-076

knowledge learning problem into a local causal077

discovery problem with graph-structured variables.078

We first formally define the KGS, and for a tar-079

geted effect KGS, we subtly design a strategy to080

reduce down the space of candidate cause KGS081

without the loss of generality. We then propose082

a functional heuristic to form the treated and con-083

trolled sample space effectively and efficiently. Fur-084

thermore, we propose a causal rule discovery al-085

gorithm called CaRules, which is specifically de-086

signed for the target problem. It consists of an effi-087

cient path finding module and an effective PC-like088

process, which jointly conduct conditional inde-089

pendence tests to find causal structures. Extensive090

experiments demonstrate that the quality and inter-091

pretability of the causation-based rules outperform092

the correlation-based rules, especially in the out-of-093

distribution (OOD) tasks.094

2 Related Work095

Rule mining. In KG, compared with deductive096

knowledge, which is characterised by precise logi-097

cal consequences, inductively acquiring knowledge098

involves generalising patterns from a given set of099

input observed facts, which can then be used to gen-100

erate novel but potentially imprecise predictions.101

Therefore, inductive knowledge is very important102

for the fundamental tasks in KG, such as KG com-103

pletion, KG reasoning. Even though, some tech-104

niques, such as KG representation learning, graph105

neural networks (Bordes et al., 2013; Yang et al.,106

2015; Wu et al., 2020), have achieve promising107

progress in the inductive knowledge learning in the108

past several years, such models often lack inter-109

pretability and suffer from the out-of-vocabulary110

problem, where they are unable to provide results111

for edges involving previously unseen nodes or112

edges. An alternative approach for inductive knowl-113

edge learning is rule mining, which refers to dis-114

covering meaningful patterns in the form of rules115

from large collections of background knowledge.116

There are two main categories in rule mining117

studies. (Galárraga et al., 2013, 2015; Omran 118

et al., 2019) use predefined metrics confidence and 119

support, to find rules satisfying the given thresh- 120

olds of the metrics, based in a top-down fash- 121

ion. Due to the frequent open world assumption 122

(OWA) (Hogan et al., 2021) in KG, these methods 123

mainly learn the monotonic rules. Based on the pre- 124

vious techniques, (Gad-Elrab et al., 2016; Ho et al., 125

2018; Tanon et al., 2017) investigate the methods 126

to learn non-monotonic rules, which with negated 127

edges in the body. Different to the co-occurrence 128

metrics-based methods, the other line of research is 129

called differentiable rule mining, which allows end- 130

to-end learning. The core idea is that the joined 131

relations in rule bodies can be represented as ma- 132

trix multiplication. Neural-LP (Yang et al., 2017) 133

adopts an attention mechanism to select a variable- 134

length sequence as the body of rules for which 135

confidences are learnt. DRUM (Sadeghian et al., 136

2019) uses bidirectional recurrent neural networks 137

to learn sequences of relations, which are the body 138

of rules, and their confidences. 139

Our work can be seen as one of solutions for rule 140

mining. Different to past the association-based rule 141

mining methods, our work aims to discover deeper 142

relationship, causation, since correlation does not 143

imply causation, via a more rigorous statistical in- 144

ference system. This is the fist attempt to study 145

rule mining problem under causal perspective, as 146

far as we know. 147

Causal Discovery. There are two main frameworks 148

for causal discovery, called Rubin causal models 149

(RCMs) (Imbens and Rubin, 2010) and structural 150

causal models (SCMs) (Pearl, 2010). The former 151

mainly investigates the causal effect between the 152

treatment and the effect based on the potential out- 153

come model. While the latter mainly focuses on 154

discovering the causal structure between variable 155

via the bayesian network. Our problem is more 156

similar to the traditional causal discovery problem 157

in SCM. 158

There are two types of causal discovery algo- 159

rithms, constraint-based and score-based (Spirtes 160

et al., 2000). The constraint-based algorithms con- 161

struct the causal structure based on conditional in- 162

dependence constraints, while the score-based al- 163

gorithms generate a number of candidate causal 164

graphs, assign a score to each, and select a final 165

graph based on the scores. Typical constraint-based 166

algorithms include PC (Tsagris, 2019) and Fast 167

Causal Inference (Glymour et al., 2019). Such ap- 168
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proaches have widely applicability because they169

can handle various types of data distributions and170

causal relations, given reliable conditional indepen-171

dence testing methods.172

For our problem, the intermediate conditional in-173

dependence testing results can provide rich insights174

about the causal rules, so we design a causal rule175

discovery method based on the PC algorithm.176

3 Preliminaries177

3.1 Knowledge Graphs178

A knowledge graph (KG) G = (E ,R,S) can be179

regarded as a type of heterogeneous information180

network, where E is the entity set,R is the relation181

set, and S ∈ E × R × E is the triple set. A triple182

can be denoted as < h,R, t > (or R(h, t)1), where183

h is the head entity, t is the tail entity, and these184

two entities are connected by a relation R to form185

a fact in G, An entity usually responses to multiple186

concepts, such as apple can be regarded as a fruit187

or a brand. Different relations may focus on differ-188

ent concepts of entities, for example, CEOof (Tim189

Cook, apple) and Contain (apple, glucose). The190

relation R usually represents a binary predicate in191

KG which is used to describe the existence of the192

relation between two entities, such as fact Locate-193

dIn (Statue of Liberty, New York). Here we define194

this type of relation as state relation. In the more195

general KG, there may be numerical property of196

one relation, such as Rate(Lily, Titanic), the value197

of the relation Rate provide the quantitative opinion198

of the user Lity to the movie Titanic. This type of199

relation is denoted as quantitative relation.200

3.2 Problem Definition201

The fundamental tasks in KG, such as knowledge202

graph completion and knowledge graph reasoning,203

normally concern the specific relation. Therefore,204

the causes of the specific relation are essential for205

the KG. We define the effect of the causal rule as206

one relation R with the corresponding concepts C1207

and C2 of the relation’s head entities and tail enti-208

ties. To get the effective causal rules, we assume209

the treatment of the effect should also be related210

with C1 and C2, therefore, we think the treatment211

of the causal rule should be the other relations be-212

tween C1 and C2. Here we give the definition of213

1We will mainly use this expression in this paper, since
it is often used in the rule mining literature (Galárraga et al.,
[n.d.]; Galárraga et al., 2015; Sadeghian et al., 2019)

KG Schema, based on which, we will formally 214

define the causal rule. 215

Definition 3.1. KG Schema. A KG schema (KGS) 216

is a meta template for a KG G = (E ,R,S), de- 217

fined on a concept set CS and a relation set RS , 218

withRS ∈ R. A KGS is a directed graph, denoted 219

as SKG = (CS ,RS ,V,B), with an node mapping 220

function ϕ : V → CS and an edge mapping func- 221

tionψ : B → RS , where each node vi in node set V 222

corresponds to one particular concept ϕ(vi) ∈ CS , 223

and each edge bi in edge set B corresponds to one 224

particular relation ψ(bi) ∈ RS . 225

An instance of the KGS is a subgraph of KG, 226

where each node of KGS is assigned one entity 227

according to the concept ϕ(vi). 228

Definition 3.2. Causal Rule. A causal rule is de- 229

fined on a pair of KGSs and two concepts C1 and 230

C2, which correspond to two specific nodes v1 and 231

v2 in each KGS. The causal rule can be represented 232

as the following form: 233

SCKG(v
C
1 , v

C
2 )︸ ︷︷ ︸

body

→ SEKG(v
E
1 , v

E
2 )︸ ︷︷ ︸

head

: α,
(1) 234

where SCKG(v
C
1 , v

C
2 ) is the body of the rule, 235

SEKG(v
E
1 , v

E
2 ) is the head of the rule, and α is the 236

weight of the rule, representing the strength of the 237

causal relationship between body and head. The 238

head of the rule SEKG only includes one relation. 239

Without loss of generality, we define ϕC(vC1 ) = 240

ϕE(vE1 ) = C1 and ϕC(vC2 ) = ϕE(vE2 ) = C2. 241

For an instance of causal rule, vC1 and vE1 (or vC2 242

and vE2 ) must be assigned with the same entity. For 243

example, the causal rule in Fig 1 is defined on the 244

concepts user and movie, which reveals one of the 245

causes of the users’ rate. 246

In this paper, we mainly focus on discovering the 247

causal rule and the corresponding weight in KG. 248

4 Causal Discovery in Knowledge Graphs 249

Informally, causation is defined as a relationship 250

between two variables X and Y such that changes 251

in X lead to changes in Y . The key difference 252

between association and causation lies in the poten- 253

tial of confounding. Suppose that no direct causal 254

relationship exists between X and Y but rather a 255

third variable Z causes both X and Y . In this case, 256

even though X and Y are strongly associated, al- 257

tering X will not lead to changes in Y . Z is called 258

a confounder. More formally, causation is a rela- 259

tionship between variables A and B that remains 260
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after adjusting for confounders. Confounders can261

be observed or unobserved (latent).262

The causal structure can be represented by a set263

of causal relationships among a set of variables, and264

the causal discovery is normally regarded as a the265

problem of learning the whole causal structure from266

observational data in the prior works. However, for267

the fundamental tasks in knowledge graph, such as268

knowledge graph completion and knowledge graph269

reasoning, only a specific subset of whole causal270

structure is concerned. If we have the knowledge271

that what information has effect on the queried rela-272

tions, the original problem will be simplified based273

on the causation. Consequently, we only need to274

solve a local causal discovery problem, which is275

to find the all the KGS which has an impact on a276

given KGS. Since the causal rule (Definition 3.2)277

is defined on two concepts C1 and C2, the variable278

can be any KGS whose concept set CS includes C1279

and C2. Here we give the assumption 4.1 about280

the candidate causes for a specific KGS. When we281

examine the causation between the given KGS and282

one of its candidate causes, the rest of the candidate283

KGSs are valid confounders.284

Assumption 4.1. Candidate Causes of KGS.285

Given a KGS SKG = (CES ,RE
S ,VE ,BE) and two286

concepts C1 = ϕ(vE1 ) and C2 = ϕ(vE2 ), the can-287

didate causes of KGS SEKG(v
E
1 , v

E
2 ) is any KGS288

SCa
KG = (CCa

S ,RCa
S ,VCa,BCa), with C1, C2 ∈289

CCa
S .290

4.1 Causal Variables and Samples291

Due to there is no concept of ‘variables’ and cor-292

responding ‘samples’ in KG, we first need to give293

the definitions of these two concepts in knowledge294

graph scenario, thus we can apply the traditional295

causal discovery methods to our problem. The296

causal rule is defined between two KGSs. For a297

given KGS, it is natural to treat this KGS and its298

candidate causes as the investigated causal vari-299

ables, on which the independent tests are con-300

ducted. In the next, we will discuss the sampling301

mechanism of the causal variables, which is based302

on the following function defined on the instances303

of KGS.304

Definition 4.1. KGS Function. A KGS function305

fSKG
is a set of mapping rules defined on a KGS306

SKG = (CS ,RS ,V,B) and a knowledge graph307

G = (E ,R,S), and can be formulated as:308

fSKG
: E1 × E2 × · · · × En → Y, (2)309

whereEi is the entity set corresponding to the node 310

vi’s concept ϕ(vi) and Y is a m-tuple. Given an 311

ordered edge list [b1, . . . , bm] of a SKG and an 312

instance of SKG with [e1, . . . , en], the mapping 313

rule can be formulated as when relation Rj = 314

ψ(ej) is a state relation: 315{
Yi = True if Rj(e

h
j , e

t
j) ∈ S,

Yi = False otherwise.
(3) 316

If Rj is a quantitative relation, the mapping rule 317

should be: 318{
Yi = m if Rj(e

h
j , e

t
j) ∈ S,

Yi = None otherwise,
(4) 319

where m is the value of the facts Rj(e
h
j , e

t
j). 320

With fSKG
, we adopt language bias to define 321

the sampling mechanism for the causal variables 322

in knowledge graph. For a causal variable X = 323

SKG(v1, v2), an entity pair (e1 ∈ E1, e2 ∈ E2) 324

corresponds to a set of samples x(e1, e2) with dif- 325

ferent instances of E3, . . . , En. To remove the re- 326

dundant and nonstandard results of KGS function, 327

we define the following mapping rules: given the 328

ith instance (e1, e2, e
i
3 . . . , e

i
n), 329

(1) the relations of SKG are all state relations: 330

- xi(e1, e2) = 1, if every element of 331

fSKG
(e1, e2, e

i
3 . . . , e

i
n) is true. This is the posi- 332

tive sample for the variable X = SKG(v1, v2). 333

- x1(e1, e2) = 0, if there is no instance, which 334

can make every element of fSKG
to be true. This 335

is the negative sample for the variable X = 336

SKG(v1, v2). 337

(2) some relations of SKG are quantitative rela- 338

tions: 339

- xi(e1, e2) = m, where m is a k-d vector and 340

every dimension of m corresponds to the value 341

of quantitative relation in fSKG
(e1, e2, e

i
3, . . . , e

i
n) 342

following the edges order defined by SKG. 343

- The instance result is removed if one element 344

of fMKG
(ei1, . . . , e

i
n) is None. 345

Based on the above mapping rules, we can see 346

for an entity pair, there may be several samples 347

for a KGS-based variable, which depends on the 348

instances of other entity nodes. So based on the 349

entity pair, the one-to-one sample mapping for 350

KGS-based variables is impossible. Therefore, we 351

take the many-to-many mapping. Given a KGS 352

SKG(v1, v2) and its k − 1 candidate causes, for an 353

entity pair (e1 ∈ E1, e2 ∈ E2), the causal sam- 354

ples of k variables will be the following cartesian 355

product: x1(e1, e2)× · · · × xk(e1, e2). 356
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4.2 Causal Rule Discovery357

Our goal is to discover all the KGS, which have358

causal relationship with the given KGS. Here we359

propose an efficient causal rule discovery method360

CaRules which performs the following steps:361

Step-1: Data-Driven Path Finding. According362

to assumption 4.1, any KGS, which can support363

any entity pair (e1, e2), e1 ∈ E1, e2 ∈ E2, is a364

valid candidate cause for SEKG(v1, v2). So we find365

all the candidate causes by searching all the paths366

between entity pair (e1, e2) of SEKG(v1, v2) based367

on the following considerations:368

1) Any graph contains two specific nodes can369

be represented as a path between them (du-370

plicate nodes are permitted). For example,371

as shown in Fig.2, the structure between C1372

and C2 can be uniquely inferred by the path373

C1
R1−→ C2

R3−→ C4
R3←− C2

R2−→ C3.374

2) There are many well-studied path finding375

algorithms, which can search the paths un-376

der different types of constraints, such as377

Dijkstra’s algorithm (Lanning et al., 2014),378

A* search (Cui and Shi, 2011), best-first379

search (Heusner et al., 2018), etc. These off-380

the-shelf methods can be directly adopted to381

our framework. In the experiments, we adopt382

the best-first search algorithm.383

3) Lots of existing rule mining meth-384

ods (Sadeghian et al., 2019; Yang et al., 2017;385

Ho et al., 2018) designed for the closed rules,386

meaning that each entity set appears in at387

least two edges of the rule. It renders the388

path-like graph structure in most cases.389

𝐶! 𝐶" 𝐶#

𝐶$

𝑅! 𝑅"

𝑅#

Figure 2: An illustrative KGS, which includes four
concepts and three relations.

Since the number of candidate KGS can be the390

power level of the number of relation types, we391

require that any KGS created during path finding392

need to be supported by at least asup entity pair393

(e1, e2) in the training KG, and the length of the 394

path is no more than ℓ, where asup and ℓ are the 395

hyper-parameters. 396

Step-2: Refinement of the Identical Relations. 397

In KG, there may be some identical relations, even 398

though they have different relation names. For ex- 399

ample, Wife(A,B) ↔ Husband(B,A), if A is the 400

wife of B, then B must be the husband of A. How- 401

ever, they will lead the invalid independence test in 402

the following causal discovery step, even though 403

these two relations have very strong causal rela- 404

tionship with each other. In particular, based on 405

the causal variable and sample definitions in KG 406

(Sec 4.1), these two relations are the same variables 407

for the causal discovery method, since the values of 408

their samples are the same all the time. When one 409

relation is treated as the conditional variable in the 410

independent test of the other one, the conditional 411

independent (CI) test CI(X,Y |X) will be judged 412

as independent. So for an analyzed KGS SEKG, 413

we search all the identical KGSs in the input KG 414

and temporarily remove them from the candidate 415

cause set in the independent test period. The causal 416

rules which include the identical KGSs will have 417

the highest weight, when they are applied into the 418

downstream tasks. 419

Step-3: PC-like Causal Rule Discovery. PC algo- 420

rithm (Tsagris, 2019) is a prototypical constraint- 421

based algorithm for learning Bayesian networks. 422

This algorithm starts with the fully connected net- 423

work and uses the conditional independence test to 424

decide whether an edge will be removed or retained. 425

This feature makes the PC algorithm efficient in 426

the sparse true underlying graphs. 427

In our problem, we assume the causal relation- 428

ships between the KGSs are sparse and propose a 429

PC-like causal rule discovery method (Algo. 1) in 430

KG. Given a KGS SEKG (denoted as variable Y in 431

this algorithm), for each candidate cause SCa
KG (de- 432

noted as variable Xi), the proposed algorithm de- 433

cides whether X should be retained in candidate 434

causes set SCa by testing the independence of Xi 435

and Y conditioning on a subset Z of SCa\{Xi}. 436

The CI tests are organised by levels (based on the 437

size d of the conditioning sets). At the first level 438

(d = 0), all pairs of variables are tested condi- 439

tioning on the empty set. Some of the candidate 440

causes would be removed and the algorithm only 441

tests the remaining candidate causes in the next 442

level (d = 1). The size of the conditioning set, d, is 443

progressively increased (by one) at each new level 444
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until d is greater than |SCa| − 1.

Algorithm 1 PC-like Causal Rule Discovery

Input: Y and {yi}, i = 1, . . . , N :variable and
samples of analyzed KGS SEKG ; SCa =
{Xj}, j = 1, . . . ,M and {{xi}j}, i =
1, . . . , N : variables and samples of candidate
causes;

Output: causes SC of Y
Let level d = 0
repeat

for each X ∈ SCa do
for each subset Z ∈ SCa\{X} and

|Z| = d do
Test CI(X,Y|Z)
if CI(X,Y|Z) then

Remove X from SCa

Break
end if

end for
end for
d = d+ 1

until d > |SCa| − 1
SC = SCa

445
For the CI test part in Algo. 1, we adopt SCI446

algorithm (Marx and Vreeken, 2019) in the exper-447

iments, which can works well on limited samples448

and multiple conditional variables.449

5 Experiment450

In this section, we evaluate CaRules on three sce-451

narios: simulated link prediction under closed452

world assumption (CWA)2 (Hogan et al., 2021),453

kinship prediction, and movie rating prediction. We454

also empirically assess the quality and interpretabil-455

ity of the learned causal rules. The sampling size456

of each KGS-based variable asup is set to 50 in457

our experiments. Statistics about each data set are458

shown in Table 1. As the closest bunch of related459

works with us is rule mining, we select two popular460

and state-of-the-art methods for rule mining Neu-461

ral LP (Yang et al., 2017) and DRUM (Sadeghian462

et al., 2019) as our baselines.463

5.1 Link Prediction under CWA464

In a real knowledge graph, the CWA assumption465

can hardly be strictly satisfied, due to the incredi-466

ble negative edges in graph. However, the quality467

2CWA assumes a knowledge representation is a complete
description of the world. A statement that is true is also known
to be true, and the unknown statement is false.

Table 1: Dataset statistics for all the experiments

#Triplets #Relations #Entities
Simulation 6095 4 1590

Family 28356 12 3007
Recommendation 174941 20 32056

of non-monotonic rules is hard to evaluate with- 468

out CWA. Consequently, we conduct a simulated 469

experiment under CWA, where training and test- 470

ing use the disjoint set of entities. We generate 471

experimental KGs, which include three concepts 472

and four state relations, by a causal graph defined 473

on three KGSs (shown in Fig. 3). We use the per- 474

formance of link prediction task on R3 to evaluate 475

all methods. The facts of the KG are splited into 476

three parts:train, test info, and test. And the en- 477

tities in test parts and the train part are disjoint. 478

The test info part includes facts of new entities on 479

R1, R2, R4, and test part includes the queried facts 480

onR3. We design two settings with different causal 481

mechanisms, corresponding to the monotonic and 482

non-monotonic rules respectively (shown in Ta- 483

ble 2). In particular, the conditional probability 484

distributions of X2 and X3 given X1 are Bernoulli 485

distributions, whose probability mass function is 486

fX(x) = px(1 − p)1−x. The corresponding pa- 487

rameters in these two settings are listed in Table 2. 488

To evaluate the quality of learned rules from bi- 489

ased data, we generate training and I.I.D testing 490

samples from a Bernoulli distribution of X1 with 491

p = 0.5. For OOD testing setting, we use p = 0.1 492

and p = 0.9. 493

𝐶! 𝐶" 𝐶#
𝑅! 𝑅"X! :

𝐶! 𝐶#
𝑅#X" :

𝐶! 𝐶#
𝑅$X# :

Figure 3: The causal graph of KGSs, based on which
the simulated KGs are generated .

Table 2: The parameters of conditional distributions in
different settings.

settings X2|X1 = 1 X2|X1 = 0 X3|X1 = 1 X3|X1 = 0

mono. p=0.8 p=0.1 p=0.8 p=0.1
non-mono. p=0.2 p=0.9 p=0.2 p=0.9

In the inference process of Neural LP (Yang 494

et al., 2017) and DRUM (Sadeghian et al., 2019), 495

given an entity eh, the score of each valid entity et 496

6



Table 3: Top 3 rules obtained by each system learned on family dataset. Results of DRUM and Neural-LP are taken
from (Sadeghian et al., 2019). The strikethroughs indicate the wrong results. The rules whose head can be inferred
by the body uniquely are in bold.

Neural-LP
brother(A, B)← sister(B,A) wife(A,C)← husband(B, A), husband(C, B) son(A,C)← brother(A,B), son(B,C)
brother(A,C)← sister(B,A), sister(C,B) wife(A,B)← husband(B,A) son(A,B)← brother(A,B)
brother(A,C)← sister(B,A), brother(C,B) wife(A,C)← husband(B,A), daughter(B,C) son(A,C)← mother(B,A), son(B,C)

DRUM
brother(A,C)← uncle(B,A), nephew(C,B) wife(A,B)← husband(B,A) son(A,C)← nephew(A,B), brother(B,C)
brother(A,C)← nephew(A,B), nephew(C,B) wife(A,C)← mother(A,B), father(C,B) son(A,C)← brother(A,B), mother(C,B)
brother(A,C)← sister(B,A), bother(C,B) wife(A,C)← son(B,A), father(C,B) son(A,C)← brother(A,B), daughter(B,C)
brother(A,C)← son(A,B), father(B,C) wife(A,B)← husband(B,A) son(A,B)← father(B,A)

CaRules brother(A,C)← father(B,A), daughter(C,B) wife(A,C)← son(B,A), son(B,C) son(A,C)← son(A,B),husband(B,C)
brother(A,C)← brother(A,B), sister(B,C) wife(A,C)← mother(A,B), father(C,B) son(A,C)← sister(B,A),daughter(B,C)

is defined as sum of the weight of rules that imply497

query(eh,et), and a ranked list of entities will be498

returned, where higher the score implies higher the499

ranking. This method works well for the monotonic500

rules, but it will fail for the non-monotonic rules.501

Here we design a new inference method, which502

works for both monotonic and non-monotonic rules.503

Given an entity (eh,et), the formula of calculating504

the probability of the query (eh,et) to be true is as505

follows:506

yp =
K∑
i

w̃i

(
QiȲXi=1 + (1−Qi)ȲXi=0

)
(5)507

where K is the number of causal rules for the508

queried meta KG, w̃i is the normalized weight for509

the ith result rule. ȲXi=1 denotes the proportion of510

the queried relation to be true when the body of the511

ith causal rule is true in the training data and ȲXi=0512

denotes the proportion of the queried relation to be513

true when the body of the ith causal rule is false.514

Qi = 1 when the body of the ith causal rule holds515

for the entity pair (eh,et), otherwise Qi = 0. The516

results will be ranked by yp of each valid et.517

The evaluation metrics we used are Hits@k and518

MRR. In particular, MRR is the average of the re-519

ciprocal ranks of the desired entities, while Hits@k520

computes the percentage of how many desired enti-521

ties are ranked among top k. We compare the per-522

formances of the proposed CaRules with the rule523

mining algorithms Neural-LP (Yang et al., 2017)524

and DRUM (Sadeghian et al., 2019).525

The results demonstrate that CaRules empiri-526

cally outperforms DRUM and Neural-LP in both527

monotonic and non-monotonic settings. Note that528

the results of DRUM in all settings and Neural-529

LP in the OOD setting(pX1 = 0.9) show the clear530

degradation for the non-monotonic rules. Com-531

pared with the baseline methods, our method suf-532

fers less performance degradation under the OOD533

setting, especially with the non-monotonic link pre-534

Table 4: The results of link prediction task under CWA.
CaRules denotes the results of our rule mining algorithm
with the link prediction method used in DRUM and
Neural-LP. CaRules (non-moto.) denotes the results of
our rule mining algorithm with the non-monotonic link
prediction function (Eq. 5).

pX1 Method
monotonic setting non-monotonic setting

MRR k=10 k=3 k=1 MRR k=10 k=3 k=1

I.I.D 0.5

Neural-LP 0.71 0.73 0.69 0.69 0.77 0.78 0.76 0.76
DRUM 0.76 0.87 0.83 0.70 0.48 0.92 0.75 0.24
CaRules 1.00 1.00 1.00 1.00 0.91 0.90 0.90 0.90
CaRules
(non-moto.)

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

OOD 0.1

Neural-LP 0.71 0.73 0.69 0.69 0.89 0.90 0.88 0.88
DRUM 0.45 0.54 0.34 0.17 0.40 0.90 0.66 0.14
CaRules 0.71 0.70 0.70 0.70 0.19 0.15 0.15 0.15
CaRules
(non-moto.)

0.74 0.93 0.70 0.70 1.00 1.00 1.00 1.00

OOD 0.9

Neural-LP 0.79 0.81 0.78 0.78 0.44 0.41 0.41 0.41
DRUM 0.88 0.99 0.93 0.82 0.32 0.76 0.39 0.32
CaRules 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97
CaRules
(non-moto.)

1.00 1.00 1.00 1.00 0.84 0.92 0.82 0.82

Table 5: Experimental results of link prediction task on
family data set. Results of DRUM and Neural-LP are
taken from (Sadeghian et al., 2019).

Method MRR Hits@10 Hits@3 Hits@1
Neural-LP 0.91 0.99 0.96 0.86

DRUM 0.92 1.00 0.99 0.86
CaRules 0.96 0.99 0.98 0.94

diction method. Our method provides a path to find 535

the high level knowledge, which can explain the 536

generation mechanism. Moreover the results show 537

the CaRules can learn both the monotonic and non- 538

monotonic rules. With the our proposed inference 539

method, CaRules achieves the highest performance 540

in all settings. 541

5.2 Kinship Prediction 542

Following DRUM (Sadeghian et al., 2019), we 543

conducted experiments on the kinship prediction 544

task based on a family dataset (Kok and Domingos, 545

2007), which contains the bloodline relationships 546

between individuals of multiple families. Com- 547

pared with the open KGs, the relationships of fami- 548

lies on the dataset (Kok and Domingos, 2007) are 549
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Table 6: Experimental results of link prediction task on
family data set under limited rules number.

MRR Hits@10 Hits@3 Hits@1
Neural-LP(Top1) 0.43 0.44 0.43 0.39
CaRules(Top1) 0.61 0.66 0.62 0.49
Neural-LP(Top2) 0.68 0.68 0.67 0.64
CaRules(Top2) 0.78 0.89 0.84 0.68
Neural-LP(Top3) 0.81 0.82 0.81 0.76
CaRules(Top3) 0.83 0.93 0.88 0.75

more strong and compact. This data set is con-550

venient to evaluate the quality and interpretability551

of the rules. In the link prediction experiments of552

family data set in DRUM, the facts are split into553

three parts: facts, train and test, where facts are554

used to construct the relation adjacency matrix and555

train are used to learn the parameters of the model.556

Since facts and train are all visible in the training557

period for the baseline, we use facts and train to558

learn the rules and use the test data to examine the559

method. The maximum path length ℓ is 2, which is560

a best choice based on DRUM’s results. The rules561

in family data set are monotonic, so we adopt the562

same inference method with DRUM to achieve the563

fair comparison.564

Table 5 shows the results of the proposed method565

and baseline methods. Particularly, for Hits@10566

and Hits@3, CaRules performs slightly worse than567

DRUM by 1%, while it obtains significantly im-568

provement on MRR and Hits@3 by 4% and 8%569

respectively, which demonstrates the effectiveness570

of the proposed method. Besides, we further eval-571

uate the quality of the mined rules using the top-k572

explainable rules given by each algorithm. Accord-573

ing to the results shown in Table 6, we can find the574

our method significantly outperform the baseline575

method on all metrics, especially when only one576

rule is used in the link prediction. In the mean-577

while, we also show the top-3 interpretable results578

for three relations in Table 3 for reference, and we579

can find the following two observations: (1) the pro-580

posed methods gives more accurate prediction than581

Neural-LP; (2) the proposed method gives more582

stable prediction than DRUM. For the three rela-583

tions, our method can give at least one rule, whose584

body’s relations can infer head’s relation uniquely.585

Table 7: Movie Rating Prediction

Method Neural-LP DRUM CaRules
Accuracy 72.86 74.17 77.39

5.3 Movie Rating Prediction 586

To demonstrate the effectiveness of CaRules for 587

mining quantitative causal rules, we conduct an 588

experiment on a typical recommendation applica- 589

tion, movie rate prediction. We use the real data set 590

collected from Douban and construct a KG, whose 591

statistics are shown in Table 1. Douban3 is a fa- 592

mous Chinese website of movie information and 593

reviews, where the user can rate any movies and re- 594

views about them. The rates fall in the range of 1 to 595

5, where higher ratings mean users like the movies 596

while lower rates mean users’ negative feedbacks 597

to the movies. Normally, a movie is identified as 598

a user’s favorite movie if the user rates the movie 599

with a score of 4 or 5. So we transform the original 600

5-level rating to 2-level rating with the threshold 601

4. Based on the data set, we first mine the causal 602

rules which may effect the rating of the users for 603

movies. Then we evaluate the discovered rules, by 604

the rating prediction task. 605

Although this experiment also is a binary pre- 606

diction task, it is not the same with the state link 607

prediction, like the kinship prediction. Because 608

given a user-movie pair, the corresponding rating 609

relation actually has three possibilities: high, low 610

and not existent. In this experiment, we take the 611

prediction accuracy for the Rating of test queries 612

as the evaluation metric. Due to the space limita- 613

tion, we give the experimental details in Appendix. 614

Besides, Table 7 shows the proposed method also 615

gives the best recommendation result, surpassing 616

the runner up by 3.22%. 617

6 Conclusion 618

In this paper, we investigate the problem of distill- 619

ing the causal component of metaknowledge from 620

knowledge graph, that is the causal rules generat- 621

ing the factual knowledge. For this purpose, we 622

define the concept of KG schema and learn the 623

causal relationship between two KGSs on the ba- 624

sis of a generic mining paradigm. To effectively 625

capture the explainable causal rules, we propose 626

a novel algorithm called CaRules, consisting of 627

the candidate causes search via the advanced path 628

finding method and an efficient PC-like process 629

that conducts reduced conditional independence 630

tests to find causal structure. The extensive experi- 631

ments can well support our claims from a variety 632

of aspects. 633

3https://www.douban.com/

8



References634

Antoine Bordes, Nicolas Usunier, Alberto Garcia-635
Duran, Jason Weston, and Oksana Yakhnenko.636
2013. Translating embeddings for modeling multi-637
relational data. Advances in neural information638
processing systems 26 (2013).639

Mark Burgin. 2016. Theory of knowledge: structures640
and processes. Vol. 5. World scientific.641

Xiao Cui and Hao Shi. 2011. A*-based pathfinding642
in modern computer games. International Journal643
of Computer Science and Network Security 11, 1644
(2011), 125–130.645

James A Evans and Jacob G Foster. 2011. Metaknowl-646
edge. Science 331, 6018 (2011), 721–725.647

Santo Fortunato, Carl T Bergstrom, Katy Börner,648
James A Evans, Dirk Helbing, Staša Milojević,649
Alexander M Petersen, Filippo Radicchi, Roberta650
Sinatra, Brian Uzzi, et al. 2018. Science of science.651
Science 359, 6379 (2018).652

Mohamed H Gad-Elrab, Daria Stepanova, Jacopo653
Urbani, and Gerhard Weikum. 2016. Exception-654
enriched rule learning from knowledge graphs. In655
International Semantic Web Conference. Springer,656
234–251.657

Luis Galárraga, Christina Teflioudi, Katja Hose, and658
Fabian M Suchanek. 2015. Fast rule mining in onto-659
logical knowledge bases with AMIE+. The VLDB660
Journal 24, 6 (2015), 707–730.661

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose,662
and Fabian Suchanek. 2013. AMIE: association663
rule mining under incomplete evidence in ontolog-664
ical knowledge bases. In Proceedings of the 22nd665
international conference on World Wide Web. 413–666
422.667

Luis Antonio Galárraga, Christina Teflioudi, Katja668
Hose, and Fabian Suchanek. [n.d.]. AMIE: as-669
sociation rule mining under incomplete evidence670
in ontological knowledge bases. In Proceedings of671
the 22nd international conference on World Wide672
Web - WWW ’13 (Rio de Janeiro, Brazil, 2013).673
ACM Press, 413–422. https://doi.org/10.674
1145/2488388.2488425675

Clark Glymour, Kun Zhang, and Peter Spirtes. 2019.676
Review of causal discovery methods based on graph-677
ical models. Frontiers in genetics 10 (2019), 524.678

Manuel Heusner, Thomas Keller, and Malte Helmert.679
2018. Best-case and worst-case behavior of greedy680
best-first search. International Joint Conferences on681
Artificial Intelligence.682

Vinh Thinh Ho, Daria Stepanova, Mohamed H Gad-683
Elrab, Evgeny Kharlamov, and Gerhard Weikum.684
2018. Rule learning from knowledge graphs guided685
by embedding models. In International Semantic686
Web Conference. Springer, 72–90.687

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau- 688
dia d’Amato, Gerard de Melo, Claudio Gutierrez, 689
Sabrina Kirrane, José Emilio Labra Gayo, Roberto 690
Navigli, Sebastian Neumaier, et al. 2021. Knowledge 691
graphs. Synthesis Lectures on Data, Semantics, and 692
Knowledge 12, 2 (2021), 1–257. 693

Guido W Imbens and Donald B Rubin. 2010. Rubin 694
causal model. In Microeconometrics. Springer, 229– 695
241. 696

Stanley Kok and Pedro Domingos. 2007. Statisti- 697
cal predicate invention. In Proceedings of the 24th 698
international conference on Machine learning. 433– 699
440. 700

Daniel R Lanning, Gregory K Harrell, and Jin Wang. 701
2014. Dijkstra’s algorithm and Google maps. In 702
Proceedings of the 2014 ACM Southeast Regional 703
Conference. 1–3. 704

Alexander Marx and Jilles Vreeken. 2019. Testing con- 705
ditional independence on discrete data using stochas- 706
tic complexity. In The 22nd International Conference 707
on Artificial Intelligence and Statistics. PMLR, 496– 708
505. 709

Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe 710
Wang. 2019. An embedding-based approach to rule 711
learning in knowledge graphs. IEEE Transactions on 712
Knowledge and Data Engineering (2019). 713

Judea Pearl. 2010. Causal inference. Causality: 714
Objectives and Assessment (2010), 39–58. 715

Ali Sadeghian, Mohammadreza Armandpour, Patrick 716
Ding, and Daisy Zhe Wang. 2019. DRUM: End- 717
To-End Differentiable Rule Mining On Knowledge 718
Graphs. Advances in Neural Information Processing 719
Systems 32 (2019), 15347–15357. 720

Peter Spirtes, Clark N Glymour, Richard Scheines, and 721
David Heckerman. 2000. Causation, prediction, and 722
search. MIT press. 723

Thomas Pellissier Tanon, Daria Stepanova, Simon 724
Razniewski, Paramita Mirza, and Gerhard Weikum. 725
2017. Completeness-aware rule learning from 726
knowledge graphs. In International Semantic Web 727
Conference. Springer, 507–525. 728

Michail Tsagris. 2019. Bayesian network learning with 729
the PC algorithm: an improved and correct varia- 730
tion. Applied Artificial Intelligence 33, 2 (2019), 731
101–123. 732

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie 733
Li, Xing Xie, and Minyi Guo. 2019b. Multi-task 734
feature learning for knowledge graph enhanced rec- 735
ommendation. In The World Wide Web Conference. 736
2000–2010. 737

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and 738
Tat-Seng Chua. 2019a. Kgat: Knowledge graph at- 739
tention network for recommendation. In Proceedings 740
of the 25th ACM SIGKDD International Conference 741
on Knowledge Discovery & Data Mining. 950–958. 742

9

https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425


Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong743
Long, Chengqi Zhang, and S Yu Philip. 2020. A744
comprehensive survey on graph neural networks.745
IEEE transactions on neural networks and learning746
systems 32, 1 (2020), 4–24.747

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jian-748
feng Gao, and Li Deng. 2015. Embedding Entities749
and Relations for Learning and Inference in Knowl-750
edge Bases. In Proceedings of the International751
Conference on Learning Representations (ICLR)752
2015 (proceedings of the international conference753
on learning representations (iclr) 2015 ed.).754

Fan Yang, Zhilin Yang, and William W Cohen. 2017.755
Differentiable learning of logical rules for knowl-756
edge base reasoning. In Proceedings of the 31st757
International Conference on Neural Information758
Processing Systems. 2316–2325.759

10



Appendix760

We supply the details of the movie rating predic-761

tion task here. This task aims to prove the effec-762

tiveness of CaRules for mining quantitative causal763

rules. Although we transform the original 5-level764

rating to 2-level rating to fit other baseline mod-765

els, it is worth noting that it is not the same with766

the state link prediction, like the kinship predic-767

tion, because the corresponding rating relation ac-768

tually has three possibilities: high, low and not769

existent. Therefore, for the traditional state rule770

mining method, we transform the rating relation771

into two relations high rating and low rating and772

conduct the rule mining for them, respectively. For773

a query Rating(user1, movie1), we conduct the link774

prediction task for both highrating(user1,?) and775

lowrating(user1,?). The relation, which give the776

higher rank for movie1, will be treated as the final777

result. For the quantitative relation, our method778

only consider existent samples in rule mining pe-779

riod. In the prediction period, the queried entity780

pair (user1, movie1) corresponds to the specific781

information of quantitative causal rules in the train-782

ing data. Taking the first mined causal rules in783

Table 8 as an example, in the training data, we can784

access all the ratings of user1 for a movie, whose785

editor is the same with movie1’s. Therefore in this786

experiment, we give the rating prediction results787

for the query Rating(user1,movie1) based on the788

following formula:789

yv =

K∑
i

w̃i

(
QiȲ

s
Xi=1 + (1−Qi)Ȳ

s
Xi=0

)
+

H∑
i

w̃iȲ
q
i ,

(6)790

where K and H is the number of state and quan-791

titative causal rules, respectively, w̃i is the normal-792

ized weight, Ȳ s
Xi=1 denotes the mean of the queried793

Table 8: Rules for recommendation dataset

Rank Rules
1 Rating(User,Movie)← Rating(User,Movie),Writer(Person,Movie),Writer(Person,Movie)
2 Rating(User,Movie)← Rating(User,Movie),Actress(Person,Movie),Actress(Person,Movie)
3 Rating(User,Movie)← Rating(User,Movie),Director(Person,Movie),Actor(Person,Movie)
4 Rating(User,Movie)← Rating(User,Movie),Director(Person,Movie),Director(Person,Movie)
5 Rating(User,Movie)← Rating(User,Movie),Composer(Person,Movie),Composer(Person,Movie)
6 Rating(User,Movie)← Rating(User,Movie),Director(Person,Movie),Writer(Person,Movie)
7 Rating(User,Movie)← Rating(User,Movie),Producer(Person,Movie),Producer(Person,Movie)
8 Rating(User,Movie)← Rating(User,Movie),Writer(Person,Movie),Director(Person,Movie)
9 Rating(User,Movie)← Rating(User,Movie),Writer(Person,Movie),Actor(Person,Movie)

relation when the body of the ith state causal rule 794

is true in the training data and Ȳ s
Xi=0 denotes the 795

mean of the queried relation to be true when the 796

body of the ith causal rule is false. Qi = 1 when 797

the body of the ith causal rule holds for the entity 798

pair (user1,movie1), otherwise Qi = 0. And Ȳ q
i 799

denotes the mean of the instances’ rating, which 800

satisfied the ith quantitative causal rule. For a query 801

Rating(user1,movie1), the result will be high if yv 802

is over than 0.5, otherwise it is low. 803

The results in Table 8 suggests that the rating 804

from the uses is mainly based on the rated movies 805

which shares the same staff, such as writer, actors, 806

director, etc. According to the rating results, we 807

can find a stronger causal relationship between the 808

rating of the movie and its writer than other pairs. 809
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