
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DOPAMINE TRANSIENTS IN THE VENTRAL STRIA-
TUM PROVIDE EVIDENCE FOR AVERAGE-REWARD RE-
INFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Agents in real environments need to organize their behavior over a wide range
of time scales. This might be achieved by reinforcement learning (RL) algo-
rithms employing a spectrum of discount factors. Neural evidence for this idea
includes recordings of dopamine (DA) release transients, which appear to reflect
shorter time horizons in dorsal striatum and much longer horizons in ventral stria-
tum (VS). However, this also presents a challenge, because with very long time
horizons all states have similar, large values, impeding learning. Prior theoret-
ical work has therefore proposed algorithms, including average-reward RL, that
segregate out the large shared component of value. Here we compare temporal-
difference reward prediction errors derived from recurrent neural network models
(RNNs) to rat VS DA transients measured in three behavioral tasks. We show
that using average-reward RL to train RNNs can provide an improved match to
VS DA, compared to using discounting alone. We further find that the activity
dynamics in RNNs trained with average-reward RL readily encodes key decision
variables such as recent reward history, in a task-specific manner. The functional
alignment between DA dynamics and average-reward RL may offer new insights
into neural mechanisms of learning and decision-making.

1 INTRODUCTION

A seminal connection between neuroscience and machine learning has been the interpretation of
dopamine (DA) signals as conveying temporal-difference (TD) reward prediction errors (RPEs)
of reinforcement learning (RL) (Schultz et al., 1997; Sutton & Barto, 2018). Within this frame-
work, agents adapt their behavior to optimize an estimate of aggregate future rewards—typically
discounted over time. Encoding of RPE has been observed both in DA cell firing and release tran-
sients, especially in the striatum (Hart et al., 2014; Mohebi et al., 2019). In Mohebi et al. (2024), DA
transients in three different striatal regions were recorded throughout an extended period of training,
from the initial cue exposure to the successful learning of associations between different cues and
rewards. DA transients in dorsolateral and dorsomedial striatum were effectively modeled using RL
with discount factors corresponding to time scales from seconds to tens of seconds. However, DA in
the ventral striatum (VS) appeared to reflect a much longer time scale of reward estimation (e.g. on
the order of 1000 s) according to a variety of measures across multiple behavioral tasks. Notably, it
was reported that DA transients in the VS (unlike other striatal regions) required extended training
to distinguish between different cues, and also showed positive responses to the cue that is never
followed by reward. This was interpreted as reflecting the inherent difficulty in distinguishing val-
ues associated with cues when—over a long time horizon that encompasses many trials—all cues
are followed by a large number of rewards.

More generally, using long time horizons that encompass many episodes of experience can result
in all states having similar, large values (Naik et al., 2024). This can tax representational accuracy
and impede learning. To avoid this, various approaches have been proposed that segregate out the
component of value that is shared across states—notably average-reward RL (Mahadevan, 1996;
Dewanto et al., 2020). In neuroscience, average-reward TD learning has been proposed to model
behavior and DA signals during classical conditioning (Daw & Touretzky, 2000; 2002; Daw et al.,
2006) and foraging (Shuvaev et al., 2020). In this work, we propose that VS DA transients in
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particular may reflect RPEs from an algorithm similar to average-reward RL, that estimates values
relative to a shared reference value. Using average-reward RL we train recurrent neural networks
(RNNs) to perform both Pavlovian conditioning and operant tasks, and show that network RPE
signals resemble DA transients recorded in the VS of rats performing the same tasks. Average-
reward RL avoids a difficulty encountered by models that discount with long time horizons, namely
values that continue to grow despite extended training.

A second goal of this work was to examine the internal processes by which RNNs are able to effec-
tively estimate values and make adaptive choices in these simulated behavioral tasks. We find that
the network dynamics of RNNs trained using average-reward RL appropriately track the decision
variables—such as reward rate—that are useful for the specific task. This enables ”meta-learning”
(Wang et al., 2018) whereby the network can make adaptive adjustments in output based on recent
experience without requiring changes in connection weights. These observations support the possi-
bility that algorithms resembling average-reward RL may be employed by the brain, especially by
circuits including VS that help guide behavior over extended time scales.

2 METHODS AND MATERIALS

2.1 BEHAVIORAL TASKS AND THEIR IMPLEMENTATIONS

We consider three behavioral tasks: two Pavlovian conditioning tasks and one operant bandit task,
as described in detail in previous work (Mohebi et al., 2019; 2024). For the conditioning task with
probabilistic rewards, one of three possible auditory cues indicated a reward delivery after a fixed
delay with probability 75%, 25% or 0%, respectively. Each cue lasted for 2.6 s, then after a 0.5 s gap
could be followed by a reward delivery click in a rewarded trial indicating the reward was ready to be
collected. The inter-trial interval (ITI) period lasted between 15-30 s. There were also unpredicted
reward deliveries with the same frequency as the other cues. For the conditioning task with multiple
delays, one of three possible cues indicated a 75% chance of reward delivery after a cue-reward
delay of 0.6, 3 or 12 s, respectively. In the bandit task, a trial started when the center port light
turned on (light-on). After the rat poked into the center port (center-in), it had to keep holding there
for a variable period of 0.5-1.5 s till a go-cue occurred and lights at the two adjacent ports turned on.
The rat then freely chose one of the two adjacent ports (side-in), each with a predefined probability
of triggering a click indicating reward delivery at the food port. The reward probabilities for the
two side-ports included all combinations of 0.1, 0.5 and 0.9, and remained constant during blocks of
40-60 trials. After a block ended, the reward probabilities changed randomly without notification.
ITIs ranged from 5-10 s.

In modeling the two conditioning tasks, we followed the task implementation in Mohebi et al.
(2024). There were two actions ”poke” and ”non-poke”, and a small action cost was introduced
after taking the action ”poke”. The cues included both one-hot and overlapping portions of their
representations. In modeling the bandit task, the actions included ”non-engaged”, ”engage”, poking
into each of the three ports, poking into the food port, and ”movement”. During the ITI period of
each trial, the action started with ”non-engaged”, then switched to ”engage” before poking to the
middle port (”center-in”) and starting the holding period. Transition from one action to another
required passing through at least one ”movement” action.

For the conditioning task with probabilistic rewards, the inputs to the RNN represented environ-
mental signals, which were composed of the background input, the cues, and reward delivery click
(Mohebi et al., 2024). The background input has 3 dimensions (dim) with content 1. Each cue
representation has 20 dim, with 17 dim as overlapping features with content 1 and 3 dim as one-hot
representation for three different cues. The reward click was 1 dim with content 5. In total, the
inputs were 24 dim. The same input representation was used for the conditioning task with multiple
delays, although in the two tasks the three cues have different meanings.

For the bandit task, the inputs to the RNN included three components. The environmental signals
included the light-on signals for the three ports (3 dim), the go-cue (1 dim), reward click (1 dim) and
background input (3 dim). The remaining two components were composed of the reward received
at the last timestep (1 dim) and one-hot representation of the action taken at the last timestep (7 dim,
the size of the action space). In total the inputs were 16 dim.
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DA signals (as reported in Mohebi et al. (2019; 2024)) were measured using fiber photometry of
the fluorescent sensor dLight, in the rat VS. For the conditioning task with probabilistic rewards,
recordings started from the beginning of training. For the conditioning task with multiple delays
and the bandit task, recordings started after the rats had fully learned the task.

2.2 NETWORK MODEL

We built RNNs with an actor-critic structure (Mnih et al., 2016; Wang et al., 2018). The network is
composed of LSTM (long short-term memory) units (Hochreiter & Schmidhuber, 1997). The loss
function included three terms, policy loss, value loss and entropy term (Mnih et al., 2016):

Lθ = LP (θ) + βV L
V (θ)− βEL

E(θ) . (1)

The network was trained with APO (Ma et al., 2021), which is a generalization of proximal policy
optimization (PPO) (Schulman et al., 2017) to the average reward case. During training, the average
reward was updated as

η̂ ← (1− α)η̂ + α
1

T

T−1∑
t=0

rt , (2)

where rt is the reward received at time step t, and T is the sequence length.

The policy loss has the following form

LP
t (θ) = min(ρtÂt, clip(ρt, 1− ϵ, 1 + ϵ)Ât) , (3)

where ρt =
πθ(at|st)

πθold
(at|st) was the probability ratio clipped with a parameter ϵ. The advantage Ât was

the generalized advantage estimator (GAE) (Schulman et al., 2015) of the TD error δt = rt+1− η̂+

V̂t+1 − V̂t. The value loss was given by

LV
t (θ) =

1

2
(r̄t − νb− Vt)

2 , (4)

where r̄t = rt − η̂ + V̂t+1 is the TD target in average-reward RL, b = 1
T

∑T−1
t=0 V̂t is the mean

value over sequence length T and ν is a parameter. The b term was added to ensure the mean of
values was 0 as expected in the average-reward driven RL (Ma et al., 2021). For the bandit task,
we used r̄t = Ât + V̂t to better account for the GAE influence. Le is the entropy of the probability
distribution for taking each action, added to encourage exploration (Mnih et al., 2016). The network
weights were updated using the Adam method (Kingma & Ba, 2014). In the conditioning task, a
long continuous sequence of 500 s was used to mimic the session structure in rat experiments and to
capture the development of RPEs during training (in above equations we dropped the batch index to
represent this setup). For the bandit task, the network was trained using parallel environments (batch
size 64) for better sampling efficiency, with a sequence length of 40 s. When analyzing network
activity in the bandit task we considered only the trained network with already optimized choosing
behavior. Parameters used for the conditioning and bandit tasks are shown in Table 1. For the bandit
task, we used the implementation in Huang et al. (2022) and extended it to the average-reward RL
(Ma et al., 2021). The simulation was performed on a CPU cluster.

For training RNN with a long time horizon and reward centering, we also used the algorithm pro-
vided in Ma et al. (2021). The discount factor γ and time horizon τ are related by γ = e−dt/τ , where
dt is the time step size. For dt = 0.1 s, the time horizon τ = 1000 s as suggested for the VS in
Mohebi et al. (2024) corresponds to γ = 0.9999. It is well known that when γ → 1, the accumulated
discounted rewards ηπ,γ and average reward ηπ under a given policy π in a Markov decision process
(MDP) was given by ηπ,γ → 1

1−γ ηπ , i.e., the accumulated reward diverges as γ → 1 (Puterman,
1994). Therefore, when subtracting the reward at each time step by ηπ , i.e, ”reward centering” as
proposed in Naik et al. (2024), the value function under a policy π could be defined as

Vπ, γ(s) = Eω∼π

[ ∞∑
t=0

γt(r(st, at)− ηπ) | s0 = s

]
, (5)

where st, at, and r(st, at) are the state, action and reward at time step t, and the expectation is
over the sampled path ω = (a0, s1, a1, s2, a2, ...) from the policy π. The value function defined in
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Table 1: Network model and training parameters
Name Conditioning tasks Bandit task

time step size dt (s) 0.1 0.1
seq length T (s) 500 40
num LSTM units 32 64
input dim 24 16
action space 2 7
action cost -0.0006 0
learning rate 0.0005 0.0002
λ in GAE 0.98 0.95
ϵ in clip 0.1 0.1
βV 0.8 0.5
βE 0.001 0.05
α 0.1 0.1
ν 0.5 0.5

Eq. (5) was well behaved for any γ and has zero mean at state s (Cao, 2007; Ma et al., 2021; Naik
et al., 2024). Specifically, Ma et al. (2021) provided a unified trust region theory for both γ < 1
(Schulman, 2015; Achiam et al., 2017) and γ = 1 (Zhang & Ross, 2021). We used algorithm from
Ma et al. (2021) for both average-reward RL and discount RL with reward centering.

In the two conditioning tasks, the network was first updated 500 times with cue presentations turned
off (pretraining period). In the bandit task, the network was first trained to learn center-in, side-in and
food-port-in actions (i.e., receiving rewards after learning each of those procedures) before learning
the full task. This helped with procedural learning, resembling the sequential steps used to train
rats to perform the same task. The source code for our simulations is available at this anonymous
GitHub repository.

2.3 ADDITIONAL ANALYSIS DETAILS

The RPE to be compared with the DA signal was defined as

RPEt = rt − η̂ + V̂t − V̂t−1 , (6)

where rt is the reward received at time step t and V̂t is the estimated value at time step t.

In the bandit task, we defined a reward rate ρ using a leaky integrator:

ρt = (1− α0)ρt−1 + α0rt , (7)

where rt is the reward received at time step t and α0 = 0.001. We divided all the trials used in
evaluation (200 blocks with the first block excluded) into three quantiles (High, Med, and Low)
based on the reward rate at light-on for each trial.

3 RESULTS

3.1 RPES AND VALUES IN THE CONDITIONING TASKS

As DA dynamics in the VS appeared to reflect estimates of reward over very long time scales, we
considered the possibility that the underlying algorithm might actually implement average-reward
RL, with an infinite time horizon. We trained an actor-critic RNN with an average-reward driven
policy gradient method as developed in Ma et al. (2021). We found that RPEs at cue onset (Fig.
1c, d) showed similar patterns to the DA transients from rats (Fig. 1a, b) and to the RPEs from an
RNN model with a long time horizon (Fig. 5c, d in Appendix). Both types of RNN model displayed
a notable feature previously reported for VS DA dynamics: the delayed discrimination of different
cues across training (Mohebi et al., 2024). This slow discrimination reflected the slow development
of distinct trajectories of unit activity for different cues (Fig. 2a). Both types of RNN also effectively
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Figure 1: The RNN model trained using average-reward RL reproduced the DA transients at VS
in the conditioning task with probabilistic rewards. a. Top, cues (colors indicate different pitches
for auditory pip trains) and potential reward click times (red lines) for the four intermixed trial types
(three with cues, and unpredicted rewards). Bottom, DA transients in the VS, averaged over the last
three days of training. b. Development of DA transients at cue onset over training. c. RPEs for
each trial type from the network model at training step 1000. d. Development of RPEs at cue onset
time for the three cues over training. e. Value functions for each trial type at training step 1000.
f. Development of RPEs at reward delivery click time in rewarded trials over training. Data in a-b
were adopted from Mohebi et al. (2024). Data in c-f were presented as mean± s.e.m, averaged over
20 seeds with each run including 1000 trials.

reproduced the RPE patterns at cue onset seen for DA (Mohebi et al., 2024). However, the long-
horizon model showed an ever-increasing value function during training (Fig. 2b). As anticipated,
the average-reward model resolved this problem by subtracting the average-reward from the value
function (Eq. 5 with γ = 1), which makes the value function zero mean (Fig. 1e, Fig. 2b). At the
time of the reward click, VS DA also encoded RPE: greater DA release was observed when reward
was received following the 25% cue compared to the 75% cue (Fig. 1a) (Mohebi et al., 2024). This
pattern was reproduced by the average-reward model (Fig. 1c, d), but not the long-horizon model
(Fig. 5c in Appendix).

While average-reward RL avoids discounting altogether, an alternative proposed solution retains
long-horizon discounting but simply subtracts the average reward from the value function (”reward
centering”, as proposed in (Naik et al., 2024)). With reward centering, an RNN with long horizon
produced similar RPE and value function results to the model trained with average-reward RL (Fig.
6 in Appendix). This is as expected, since γ = 0.9999 (correspondingly, τ = 1000 s with dt = 0.1
s) is very close to the limit 1 (infinite horizon), and in this limit average-reward RL and discount RL
with reward centering are identical (Ma et al., 2021).

In the conditioning task with multiple delays, the average-reward RL model reproduced the exper-
imentally observed DA scaling patterns (Mohebi et al., 2024): the cue response decreased with the
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Figure 2: Unit activities and value functions with training and trajectories in the PCA space in
the RNN model trained using average-reward RL. a. Development of Euclidean distance between
unit activities of cue pairs over training, to measure discrimination between cues. Distances were
measured right after cue onset and one step before cue onset, and averaged over all pairs of the
three cue types. b. Development of mean values for average-reward RL (τ = ∞) over training.
For comparison, values from discount RL (τ = 1000 s) without and with reward centering were
also showed. In a-b, data were presented as mean ± s.e.m, averaged over 20 seeds with each run
including 1000 trials. c. Trajectories of unit activities in PCA space for all the cued trials in an
example run (same color scheme as Fig. 1). The black dot represents an attractor right before cue
onset. Arrow direction indicates the subsequent time flow. Each trajectory moves away from the
attractor during the cue, then changes direction sharply at cue offset; a subsequent split in each
trajectory reflects whether the reward click occurred or not.
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Figure 3: RPEs and population dynamics for the RNN model trained using average-reward RL in
the conditioning task variant with multiple delays. a. Development of RPEs at cue onset time with
training for three trial types with different inter-stimulus intervals (ISIs) and unpredicted reward
clicks. b. Experimental DA activity from well-trained rats. Data adopted from Mohebi et al. (2024).
c. RPEs at cue onset showed only weak dependence on time step size. Data were from training
step 3000. In a and c, data were presented as mean ± s.e.m, averaged over 10 seeds with each run
including 1000 trials. d. Trajectories of unit activities in PCA space for all the cued trials in an
example run. The black dot represents an attractor right before cue onset. Arrow direction indicates
the time flow after cue onset.

increase of reward delay (Fig. 3a, b; Fig. 8 in Appendix). We found that this scaling held for a wide
range of model time resolutions (Fig. 3c).
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3.2 POPULATION DYNAMICS IN THE CONDITIONING TASKS

After training in the probabilistic rewards task, RNN population activity followed distinct trajecto-
ries (visualized in the space of the first three principal components; Fig. 2c). These highly stereo-
typed trajectories were determined only by the cue type and whether a reward was delivered. This
was appropriate for this task, for which trials were independent from each other, in a randomly de-
termined sequence. Notably, unit activities right before the cue resided at an attractor state (Vyas
et al., 2020). Using the library from Golub & Sussillo (2018), we confirmed that this constitutes a
stable fixed point. For a given cue type, all trials followed the same trajectory (Fig. 2c; Fig. 9a,
right in Appendix). Depending on whether reward was received, there were 6 trajectories to follow
during the ITI period before receiving a new cue or unpredicted click (Fig. 9a, left in Appendix).
On each trajectory, trials with different ITIs approached the fixed point such that the subsequent cue
could trigger population activity to follow a fixed trajectory determined solely by that cue.

These observations also held for the multiple delays task (Fig. 3d, Fig. 9b in Appendix). Interest-
ingly, for the multiple delays task, all seven trajectories resided on the same plane in the PCA space
during the ITI period (Fig. 9c in Appendix).

3.3 RPES AND VALUES IN THE OPERANT BANDIT TASK

When trained for the bandit task using average-reward RL, the model displayed adaptive choice
behavior (Fig. 10 in Appendix) and reached an average trial-wise reward (0.61) well above chance
level (0.5; the maximal level for an agent with complete knowledge of reward probabilities would be
0.67). The RPEs at the reward cue or omission (which occur at the ”side-in” event) scaled inversely
with recent reward rate (Fig. 4a, Fig. 11d in Appendix), resembling that observed for rats trained
with the same task (Mohebi et al., 2019; 2024). Trial onset (light-on) also evoked (smaller) RPEs
(Fig. 11a in Appendix); these scaled positively with reward rate, reflecting the greater expectation
of upcoming reward when more recent trials had been rewarded.

3.4 POPULATION DYNAMICS IN THE OPERANT TASK

Unit activity right before side-in, displayed in the first two PCA axes, showed clustering according
to both reward history (Fig. 4b, right) and left/right choices (Fig. 4c, right). This separation in
state space was particularly obvious when considering different types of trial blocks. Unit activities
at side-in for trials in three block types with high, medium, and low reward rates clustered into
different regimes along the first PCA axis (PC1; Fig. 4b, left). In four other block types with clearly
distinct left vs right reward probabilities (e.g., [0.9, 0.1], [0.1, 0.5]), the unit activities showed a
clustering along the second PCA axis (PC2; Fig. 4c, left). This clustering was already apparent even
before the trial start at light-on (Fig. 11b, c in Appendix). In this way, the network located its unit
activity into corresponding dynamical regimes reflecting recent prior experience, and adaptively
biased the choice to be made in the upcoming trial (Wang et al., 2018). This contrasted with the
attractor dynamics observed for the conditioning tasks, where the trials were wholly independent
from each other and maintaining a network state based on recent history would not be helpful.

4 DISCUSSION

In this work we compared RPEs from RNNs in simulations of behavioral tasks, with DA transients
in the VS of rats performing those tasks. We conclude that training using average-reward RL can
reproduce RPE-like features of VS DA across multiple tasks, and in some respects does so better
than discounting with a very long time horizon (γ very close to 1). This provides evidence that
the prediction of future reward by brain circuits segregates away the component of value that is
shared across states, as happens in average-reward RL (and also reward centering). Of course, the
present work is only one, limited step towards understanding the brain processes of value estimation
and the control of DA signals. DA release in VS is regulated by many factors including other
neuromodulators, DA autoreceptors, and complex local circuits (Liu & Kaeser, 2019; Holly et al.,
2024). Furthermore, striatal circuits also do not operate in isolation, but rather are components of
broader networks involved in value estimation, including e.g., the frontal cortex (Wang et al., 2018)
and other sub-brain structures like the amygdala (Averbeck & Costa, 2017).
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Figure 4: RPEs, values and population activity for the RNN model trained using average-reward RL
in the bandit task. a. RPEs (left) and values (right) at the side-in event. b. Clustering of population
activity at side-in reflecting reward history. Left, data from the last 20 trials in blocks with high
([0.9, 0.9]), medium ([0.5,0.5]) and low ([0.1, 0.1]) reward probabilities. Right, all trials with high,
medium and low reward rates. c. Clustering of population activity at side-in reflecting choice bias.
Left, data from the last 20 trials in each of the four block types in which one choice is better than the
other, including left-better blocks ([0.9, 0.1], [0.5, 0.1]), and right-better blocks ([0.1,0.9], [0.1,0.5]).
Right, all trials labeled with choice in the current trial. Data were from 200 blocks of evaluation.

DA has been implicated in both motivational and reinforcement processes (Dayan & Balleine, 2002;
Berke, 2018). Tonic (slowly varying) DA has been argued to control motivation or vigor, and has
been specifically suggested to encode a time-varying reward rate as part of optimizing time alloca-
tion (Niv et al., 2007). This continuously adjusted reward rate has been used in some implemen-
tations of average-reward RL (Daw & Touretzky, 2002). However, we used average-reward RL in
a quite distinct way- for batch-level training of RNN models rather than an online, time-varying
learning target or decision variable. We do make use of ongoing reward rate for analysis of RNN
dynamics—finding that it is implicitly encoded in the RNN population state—but it is not a direct
part of the RNN training process.

In the conditioning tasks both forms of RNN training (average-reward vs discounting with long-
time-horizon; Fig. 7 in Appendix) resulted in a stable fixed point right before cue onset. This attrac-
tor may have been important for mimicking VS DA transients at cue onset—specifically the distinct
and stereotyped responses to different cues, regardless of inter-trial-interval or prior trial history.
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Attractors in the population dynamics of neuronal activities have been identified in various tasks,
exhibiting not only point attractors but also more complex structures such as 1D and 2D attractors
(Seung, 1996; Mante et al., 2013; Chaisangmongkon et al., 2017; Inagaki et al., 2019; Chaudhuri
et al., 2019; Vyas et al., 2020; Finkelstein et al., 2021; Khona & Fiete, 2022; Langdon et al., 2023;
Sorscher et al., 2023).Population dynamics and attractor structures have also been explored in recur-
rent networks trained on multiple tasks (Yang et al., 2019; Driscoll et al., 2022; Goudar et al., 2023;
Turner & Barak, 2024). Another limitation of the present work is that we simulated each task using
separate RNNs. It would be interesting to investigate how population dynamics track key decision
variables when a single RNN is trained using average-reward RL to perform both conditioning and
operant tasks.
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A APPENDIX
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Figure 5: Comparison of experimental VS DA observations with results from an RNN using dis-
counting with a long time horizon. Data adopted from Mohebi et al. (2024)). a. Top, cues and
potential reward click times for different trial types. Bottom, DA transients in the VS, averaged
over the last three days of training. b. Development of DA transients at cue onset over training.
c. RPEs from the discount RL model for the VS with τ = 1000 s at training step 500. Note that
the discounting model RPE after the reward click is not smaller for the 75% cue (yellow) than for
the 25% cue (orange), in contrast to the DA transients. d. Development of RPEs at cue onset over
training.
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γ = 0.9999 with dt = 0.1 s) and reward centering. b. Development of RPEs at cue onset time
for the three cues over training. c. Value functions for each trial type at training step 1000. d.
Development of RPEs at reward click time in rewarded trials over training. Data were presented as
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Figure 7: Population activity trajectories for units from RNNs with long time horizon. The time
horizon used, τ = 1000 s, corresponds to γ = 0.9999 with dt = 0.1 s. a. Trajectories of all
trials from the probabilistic rewards task in PCA space for the whole trajectories (left), ITI periods,
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centering. b. Same as a but with reward centering. The directions of arrows indicate time flow.
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Figure 9: Population activity trajectories for units from RNNs trained using average-reward RL in
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15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.0

0.5

1.0

6450 6500 6550 6600 6650 6700 6750 6800 6850 6900
0.0

0.5

1.0

ch
oi
ce

Trial numbers

p
(re
w
ar
d)

Figure 10: Example of behavioral choice adaptation from the RNN model trained with average-
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Figure 11: Additional results for RPEs, values and unit activities from the RNN model trained
using average-reward RL in the bandit task. a. Dependence of RPEs (left) and values (right) on
reward rate when aligned with the light-on event. b. Clustering of population activities at light-on
reflecting reward history. Left, the last 20 trials in blocks with high ([0.9, 0.9]), medium ([0.5,0.5])
and low ([0.1, 0.1]) reward probabilities. Right, all trials with high, medium and low reward rates.
c. Clustering of population activities at light-on reflecting choice preference. Left, the last 20 trials
in four block types with clearly distinct reward probabilities, including left-better blocks ([0.9, 0.1],
[0.5, 0.1]), and right-better block ([0.1,0.9], [0.1,0.5]). Right, population activity states for all trials,
labeled by choice in the current trial. d. Dependence of RPEs (left) and values (right) on reward
rate for non-rewarded trials when aligned with the side-in event. Data were from 200 blocks of
evaluation.
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