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Progress and potential

Despite recent intensive efforts to

improve the environmental

stability of halide perovskite

materials for energy harvesting

and conversion, traditional trial-

and-error explorations face

bottlenecks in the navigation of

vast chemical and compositional

spaces. We develop a closed-loop

optimization framework that

seamlessly marries data from first-

principle calculations and high-

throughput experimentation into

a single machine learning

algorithm. This framework

enables us to achieve rapid

optimization of compositional

stability for CsxMAyFA1�x�yPbI3
perovskites while taking the

human out of the decision-making

loop. We envision that this data
SUMMARY

Search for resource-efficient materials in vast compositional spaces
is an outstanding challenge in creating environmentally stable
perovskite semiconductors. We demonstrate a physics-constrained
sequential learning framework to subsequently identify the most
stable alloyed organic-inorganic perovskites. We fuse data from
high-throughput degradation tests and first-principle calculations
of phase thermodynamics into an end-to-end Bayesian optimization
algorithm using probabilistic constraints. By sampling just 1.8% of
the discretized CsxMAyFA1�x�yPbI3 (MA, methylammonium; FA, for-
mamidinium) compositional space, perovskites centered at
Cs0.17MA0.03FA0.80PbI3 show minimal optical change under
increased temperature, moisture, and illumination with >17-fold
stability improvement over MAPbI3. The thin films have 3-fold
improved stability compared with state-of-the-art multi-halide
Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, translating into enhanced
solar cell stability without compromising conversion efficiency. Syn-
chrotron-based X-ray scattering validates the suppression of chem-
ical decomposition and minority phase formation achieved using
fewer elements and a maximum of 8% MA. We anticipate that this
data fusion approach can be extended to guide materials discovery
for a wide range of multinary systems.
fusion approach is generalizable

to directly tackle challenges in

designing multinary materials,

and we hope that our successful

showcase on perovskites will

encourage researchers in other

fields to incorporate knowledge of

physics into the search algorithms,

applying hybrid machine learning

models to guide discovery of

materials in high-dimensional

spaces.
INTRODUCTION

The environmental instability of organic-inorganic halide perovskitematerials limits their

usage in optoelectronics, such as in solar cells, light emitters, lasers, and photodetec-

tors.1 Compositional engineering is, to date, one of the most effective methods to

improve the stability of perovskites in the presence of heat, humidity, and light without

sacrificing optoelectronic performance.2 This fact has led to intensive research within

combinatorial spaces, such as AxByC1�x�yPb(IzBr1�z)3.
3 However, only a small fraction

of this compositional space has been experimentally explored, in part due to the prohib-

itively expensive brute force synthesis. The paucity of resulting degradation data inhibits

generalization of mechanisms across this diverse chemical and structural space,

requiring each compositional search tobeginwith ab initio experimental investigations.4

This challenge is similar to those faced by other materials communities, including the

search for heterogeneous catalysts, alloyed battery electrodes, and high-entropy metal

alloys for structural and magnetic materials.5–7 The halide perovskite field and several

others require new tools to experimentally navigate these vast spaces efficiently to

locate optima and to extract generalizable scientific insights.8–14
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Machine learning-based sequential learning approaches (e.g., Bayesian optimization

[BO]) have emerged as efficient materials search tools that explore vast variable spaces

in a ‘‘closed-loop’’ fashion, whereby the outcome of one experimental round informs the

next without human intervention. BO, which has attracted increasing attention in the

recent developments of self-driving laboratories in various fields of materials science,

recently successfully directed experimentation in the search of organic hole-transport

materials,15 piezoelectric oxides,16 and organic photocatalysts.10 Within the field of

perovskite solar cells, machine learning has been combinedwith robotic liquid synthesis

for microcrystal crystallization.17–20 However, such a model-free statistical approach

shows limitations without principled guidance from domain expertise, because it has

to learn everything from scratch. Recent in situ experiments and first-principle calcula-

tions independently revealed insights into the fundamental composition-dependent

instability in organic-inorganic perovskites and their alloys; however, merging computa-

tional and experimental insights on selective compositions into a generalizable optimi-

zation policy over the entire chemical space remains a challenge.3 State-of-the-art two-

step approaches of directly applying theoretical screening as a hard constraint before

shortlisted synthesis are limited by inefficiencies arising from: (1) high-performing theo-

retical calculations for organic-inorganic systems are often too sparse to guide experi-

mentation, and (2) the discrepancies between the calculation assumptions and the ex-

periments at non-thermodynamic equilibria decreases search accuracy.21,22 The lack

of physics-informed and iterativematerials search hinders the ultimate goal of designing

perovskite compositions for enhanced environmental stability.

Here, we introduce a data fusion approach to incorporate both Gibbs free energy of

mixing (DGmix ) from density functional theory (DFT) calculation23 and experimentally

quantified degradation from accelerated aging tests to every decision that the BO

algorithm is making. We apply this closed-loop machine learning framework to opti-

mize lead iodide perovskites that suffer from severe heat and moisture-induced

degradation within the five-element space of CsxMAyFA1�x�yPbI3. Under multiplex

environmental stress tests with increased temperature, humidity, and illumination in

air, we identified compositions overperforming the MAPbI3 starting point by 17-fold

and our state-of-the-art reference composition of (Cs0.05(MA0.17FA0.83)0.95P-

b(I0.83Br0.17)3) by 3-fold within three optimization rounds, and the results are found

transferable to device stability. DFT here serves as principled guidance within the

decision-making algorithm to constrain the search space to not only chemically,

but also the structurally stable a-perovskite alloys.
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RESULTS AND DISCUSSION

Closed-loop experimentation platform driven by physics-informed BO

To efficiently guide the compositional search, we constructed a physics-informed

batch BO framework (Figure 1). In BO, promising compositions for the next experi-

mental round are suggested by an acquisition function, such as expected improve-

ment, EIðQÞ, which balances the exploitation of the most stable regions and the

exploration of high-uncertainty regions within the compositional space. As a key al-

gorithm contribution, we fuse DGmix as a probabilistic constraint of the BO acquisi-

tion function in the ‘‘composition selection’’ step, providing additional information

on phase stability to effectively identify multi-cation perovskites that are thermody-

namically stable relative to their single-cation counterparts (Figures 1A and 1B). We

define ‘‘instability index’’ (Ic ), a figure of merit for optimizing stability. The goal of

each optimization round, which consists of three steps of composition selection,

‘‘film synthesis,’’ and ‘‘instability quantification,’’ is to minimize this value. Our batch

BO algorithm makes use of a surrogate ML model, Gaussian process (GP)
1306 Matter 4, 1305–1322, April 7, 2021
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Figure 1. Each optimization round consists of three steps of ‘‘composition selection,’’ ‘‘film

synthesis,’’ and ‘‘instability quantification,’’ and a fourth step of theoretical incorporation into the

closed-loop workflow using a data fusion approach

(A) Composition selection: the selection of nominal compositions of multi-cation perovskites is

driven by machine learning algorithms.

(B) Data fusion: DFT-modeled DGmix is incorporated in the optimization algorithm as a constraint.

(C) Film synthesis: tuning A-site cations in lead iodide perovskites forms CsxMAyFA1�x�yPbI3, a

space of 5,151 compositions (estimated experimental resolution 1%). Thin-film samples are spin

coated in series using precursor solutions of nominal compositions.

(D) Instability quantification: we perform accelerated high-throughput degradation tests with in

situ optical monitoring, enabling 28 thin-film samples to be degraded in parallel. Near-black

photoactive perovskite films turn yellow over time due to the emergence of high-band-gap

degradation products. Quantified optical changes over time, recorded in R (red), G (green), and B

(blue) channels, are used as a proxy to evaluate the chemical instability of the samples under 85%

relative humidity (RH), 85�C sample temperature, and 0.15 Sun visible only illumination. Two

representative sets of sample photographs and curves of the total (R + G + B) area-averaged value

as a function of time are illustrated in (D).
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regression,24 to estimate the value and uncertainty of Ic in non-explored regions of

the compositional space (see the Experimental procedures).

Within each optimization round (one batch in BO), 28 spin-coated thin-film samples

(Figure 1C) are examined in situ in parallel using an environmental chamber under

85% relative humidity (RH) and 85�C in the air (Figure S1). 0.15 Sun visible only illu-

mination is applied to enable automatic image capture every 5 min using an RGB

camera (~200 mm resolution). Photoactive a-perovskite phases within CsxMAy-

FA1�x�yPbI3 exhibit a band gap of ~1.5 eV, whereas their main degradation
Matter 4, 1305–1322, April 7, 2021 1307
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products under hot and humid conditions, PbI2 (2.27 eV)25 d-CsPbI3 (2.82 eV),26 or

d-FAPbI3 (2.43 eV)27 show deteriorated photophysical properties (Figure S2). As

shown in Figure 1D, we hence used a color-based metric as a proxy to capture

themacroscopic evolution of the high-band-gap, non-perovskite phases (see Videos

S1 and S2).28–30 We define the instability index (Ic ) as the integrated color change of

an unencapsulated perovskite film over accelerated degradation test duration T.

Complementary direct band-gap measurements before and after the degradation

tests using UV-vis spectroscopy are listed in Figure S12.

Ic ðQÞ =
X

c = fR;G;Bg

Z T

0min

jcðt; QÞ� cð0;QÞjdt; (Equation 1)

where composition Q = ðx;y;1 � x � yÞ, t is time, and c are area-averaged, color-

calibrated red, green, and blue pixel values of the sample. The cutoff time was set

to T = 7,000 min based on the observed divergence between the most- and least-

stable compositions (Figure S3). Our closed-loop and iterative workflow enable

the systematic optimization of multi-cation perovskites against degradation by vary-

ing the nominal compositions, Q, within CsxMAyFA1�x�yPbI3 (x, y limit to two deci-

mal places) (Tables S1 and S2).
Data fusion approach: incorporation of phase thermodynamics into

automated composition selection

Due to their polymorphic nature, identical perovskite compositions crystallized into

different phases can exhibit diverse degradation behaviors, making it essential to eval-

uate phase stabilities in any perovskite composition optimization.1 The endmembers of

the compositional space in this study consist of the cubic a-FA/MAPbI3 perovskites and

the non-perovskite d-CsPbI3 at the synthesis temperature.31 Phase de-mixingduring syn-

thesis leads to minority phases within thin-film samples before degradation tests and

are, therefore, not captured in Ic . Nevertheless, phase de-mixing during film formation

or soon after is not desirable because it causes deterioration of the electronic properties

of the perovskite.32 Schelhas et al.23 recently demonstrated the use of DFT calculations

to predict the phase de-mixing tendency between a-CsxMAyA1�x�yPbI3 (Gmix ) and their

single-cation perovskite polymorphs APbI3 (A = Cs, MA, or FA) (G0) at a given temper-

ature. Here, we fuse the composition-dependent change inGibbs free energy ofmixing,

DGmix as a constraint into the experimental optimization loop (Figure 2A). This approach

allows the a- and d-phase relative stability in the non-degradedperovskite samples to be

considered in the composition selection, thus enabling us to reduce sampling in regions

with high probability of minority phase formation.

Data fusion refers to a set of techniques where ML is used to map two or more data-

sets coming from related but distinct distributions. In our case, we relate the theo-

retical DGmixðQÞ and the experimental Ic ðQÞ. The two data streams account for

distinct mechanisms of modeled thermodynamic phase instability and measured

macroscopic thermal-moisture instability, respectively. Hence, it is inadequate to

combine both datasets as equivalent or include DFT directly as a prior following

state-of-the-art model-free BO.33,34 Here, we define a data-fused probabilistic

constraint approach according to Equation 2:

PðDGmixðQÞ;bDFT Þ =
1

1+ e�DGmix ðQÞ=bDFT ; (Equation 2)

where PðDGmixðQÞ;bDFT Þ is a logistic cumulative distribution function modeling the

phase mixing probability and bDFT is a data fusion parameter calibrated according

to DGmix calculations to control the smoothness of the boundaries from stable to
1308 Matter 4, 1305–1322, April 7, 2021



Figure 2. Fusion of DFT and experiments guides the optimization of compositional stability

(A) DFT-modeled Gibbs free energy of mixing, DGmix ; of 47 binary compositions of CsMA, CsFA,

and MAFA a-perovskites relative to end members of d-CsPbI3, a-MAPbI3, and a-FAPbI3. We fit a

Gibbs free energy model, DGmixðQÞ, where Q is a composition in the ternary space, to the phase

thermodynamics data using Gaussian process regression. DGmixðQÞ is transformed into a

probabilistic constraint, PðDGmixðQÞ;bDFT Þ that models the cumulative probability of phase mixing

at above 300 K. Multiplying P with the acquisition function of the Bayesian optimization algorithm,

EIðQÞ, gives a DFT-weighted acquisition function, EICðQÞ.
(B) Starting from 15 equally spaced compositions in the initialization round, for each optimization

round, 28 sample films (black markers) are synthesized and undergo degradation tests.

Compositions are chosen by a Bayesian optimization algorithm that suggests them using EICðQÞ
(blue surface color).

(C) Experimentally measured instability indices ( Ic ) (pixels 3 hours), of 112 samples over one

initialization and three optimization rounds. The black boxes indicate the mean and standard

deviation of each round. The dashed line indicating the most stable compositions in each

experimental round is for eye guidance only.
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unstable compositions, forming a soft compositional boundary as shown in Figure 2A

(see the Experimental procedures for algorithm details).

Given the computational cost and complexity of DFT calculations on organic-inor-

ganic hybrid systems, we first regress 85 DFT-modeled DGmix values on 47 single-

cation and binary alloyed compositions (29 MAFA and CsFA compositions from

Schelhas et al.23 and 12 CsMA compositions computed for the present work using

the same methods) over the quasi-ternary CsxMAyA1�x�yPbI3 phase space using

an auxiliary GP model that defines DGmixðQÞ. Figure 2A visualizes the probability

of phasemixing PðDGmixðQÞ; bDFT Þ˛½0;1�, where low values suggest phase instability

(DGmix>> 0) and high values suggest phase stability (DGmix << 0).

Our work is inspired by the unknown constraint BO proposed by Gelbart et al.35 By

developing a probabilistic constraint model PðDGmixðQÞ;bDFT Þ instead of applying a

hard constraint boundary, we are able to discount regions predicted by DFT to go

through phase de-mixing rather than completely exclude any unfavorable regions.
Matter 4, 1305–1322, April 7, 2021 1309
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This approach accounts for the inherent uncertainty in DFT predictions, chemical ac-

curacy, and data scarcity through the use of the soft compositional boundary to

model the stability threshold (see the Experimental procedures for bDFT calibration).

The proposed algorithm allows us to seamlessly adapt DFT into the experimental

optimizations loop, thereby achieving a physics-informed and sample-efficient

search without being limited by the unknown exact phase boundaries across a

vast compositional space (Figures S4 and S5).

To integrate the probabilistic constraint into the BO formulation, we weigh the

acquisition function with the value of PðDGmixðQÞ;bDFT Þ and obtain a DFT-weighted

BO acquisition function, EICðQÞ; as illustrated in Figure 2A. Traditional EIðQÞ utilizes
the Ic results of our first experimental round without DFT and indicates two potential

optima in Cs-poor and Cs-rich regions, respectively. The DFT-weighted EICðQÞ
effectively reduces sampling in energetically unfavorable Cs-rich regions despite

low Ic : the subsequent optimization rounds converge to stable nominal composi-

tions with a high probability of stable a-perovskite films amongCs-poor regions (Fig-

ures 2A, S6, and S7). Comparisons of optimization with and without DFT weighting

using a teacher-student model are shown in Figures S8 and S9, which validates that,

without data fusion, the model-free BO algorithm continues to suggest sampling in

Cs-rich regions despite their phase instability.

Figure 2B demonstrates that batch BO sequentially identifies the most stable re-

gions over one initialization and three optimization rounds of synthesis and degra-

dation tests. Iterative evolution of the landscape (posterior mean of Ic , IcðQÞ, with un-

certainty) is presented in Figures S3 and S4. Figure 2C reveals a rapid decrease in

experimentally quantified Ic from Rounds 0–3. The search converges after three opti-

mization rounds (see Figure S5 for convergence conditions) to an optimal composi-

tion region centered at Cs0.17MA0.03FA0.80PbI3 and bounded by 8%–29% Cs, <14%

MA, and 68%–92% FA. The identification of the global optimum lying within an FA-

rich, and Cs- and MA-poor region is consistent with the reports that FA-rich perov-

skites show superior environmental stability compared with their MA-rich counter-

parts and the less volatile Cs is expected to enhance the heat and moisture resis-

tance.36 Interestingly, we found a local optimum near Cs0.26MA0.36FA0.38PbI3,

which emerged in Round 1. We sampled four additional compositions in Round 3

and validated that the non-intuitive local optima suggested by the algorithm is

reproducible. The ability to rapidly identify non-intuitive regions of success is a major

advantage of using an automated closed-loop optimization algorithm over materials

search strategies leveraging human intuition alone. Further experimental validation

and mechanisms study of the identified compositional regions of interest are dis-

cussed in the next subsection. We define the compositional space as the discretized

quasi-ternary-phase space subdivided by theminimum achievable experimental res-

olution (1% composition). This yields 5,151 possible singular, binary, and ternary

cation compositions, 1.8% of which were sampled experimentally while converging

to the optimal region (i.e., 94 unique compositions and 112 samples within Round 0–

3, see the Supplemental information for more details). Three additional degradation

rounds of seven representative compositions were performed to validate the insta-

bility trend, with structural and optical characterization shown in Table S3 and Fig-

ures S10–S13.

Composition-, phase-, and time-dependent instability landscapes

We find the overall stability landscape within the CsxMAyFA1�x�yPbI3 compositional

space to be non-linear. To quantify the divergence in degradation profiles, Figure 3A

presents the composition-dependent instability landscape, IcðQÞ for
1310 Matter 4, 1305–1322, April 7, 2021



Figure 3. Composition-dependent

instability landscape

(A) The instability landscape IcðQÞ
mapped over the

CsxMAyFA1�x�yPbI3 compositional

space evolves in time. The

posterior mean of the Bayesian

optimization surrogate model

estimating Ic is shown after 6 h at

the end of the aging test (using the

experimentally measured samples

from Rounds 0–3). Three distinct

compositional regions are

identified. Regions I–III are labeled

following ascending order of

measured Ic .

(B) Roles of cations in the realized

degradation routes. (A) Ic of all

experimentally measured samples

as a function of Goldschmidt’s

tolerance factor, co-visualizing the

proportion of MA. *Experimental

uncertainty of measured Ic across

batches in the control composition,

MAPbI3 (see Data S1 for a full list of

samples).
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CsxMAyFA1�x�yPbI3 after three experimental optimization rounds, where three distinct

compositional regions (Regions III/ I) with descending Ic are clearly identified. The evo-

lution of IcðQÞ as a function of degradation time, as shown in Figure S3, further reveals

that fast degradations ofMA-rich compositions are evident after 6 h of degradation tests

(Region III), while two additional regions, representing compositions in local optima (Re-

gion II) and the global optima (Region I), are sequentially distinctive after 100 h of degra-

dation tests. Experimentally measured Ic data reveal a >17-fold reduction from the

MAPbI3 endpoint in Region III to the ML-optimum, at Cs0.17MA0.03FA0.80PbI3, in Region

I. Interestingly, several MA-containing compositions show comparable Ic with their CsFA

binary cation counterparts as shown in Figure 3B. Up to 8%MA, the least chemically sta-

ble cation in the design space, can be added into the perovskite structure before envi-

ronmental stability is significantly compromised.

Figure 3B visualizes experimentally measured Ic as a function of Goldschmidt’s toler-

ance factor (TF) calculated using the average ionic radius of A-site cations in nominal

compositions. TF is empirical guidance that has been widely applied to estimate the

intrinsic structural stability of hybrid perovskites.37,38 We find that TF optimization is

necessary but not sufficient criteria for achieving high environmental stability. During

optimization Rounds 1–3, an increasing number of compositions within a TF of 0.93–

0.97 are suggested by ML, indicating high stability of compositions with a TF of

around 0.95. This value is lower than TF = 1 of an ideal cubic structure, attributing

to the incorporation of small-radius and non-volatile Cs into the a lattice to improve

moisture and heat resistance (Figure S11).

To validate the scientific relevance of the data fusion approach, which effectively dis-

counts experimental sampling in the regions with high probabilities of minority

phase formation, we sought to determine the impact of thermodynamics-driven
Matter 4, 1305–1322, April 7, 2021 1311



Figure 4. Degradation mechanisms in optimized perovskites

(A) GIWAXS images of the as-synthesized thin films of Cs0.26MA0.36FA0.38PbI3 in Region II and the

ML-optimum composition, Cs0.17MA0.03FA0.80PbI3, in Region I. Over-stoichiometric precursors with

excess PbI2 were added in all samples following the high-efficiency perovskite solar cell recipe in

Saliba et al.36

(B) GIWAXS peak intensity ratios of the non-perovskite phases and PbI2 relative to the perovskite

phase as an estimate for the extent of degradation for representative compositions in Regions I and

II, including (C) Cs0.26MA0.36FA0.38PbI3 in Region II, (D) Cs0.26FA0.74PbI3 near the boundary of

Regions I and II with high Cs, (E) Cs0.13MA0.08FA0.79PbI3 near the boundary of Regions I and II with

high MA, and (F) Cs0.17MA0.03FA0.8PbI3 at the center of Region I.
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minority phases on degradation dynamics. Within the CsxMAyFA1�x�yPbI3, we

examined the structural evolution after 0-, 6-, and 100-h degradation tests, respec-

tively, using ex situ synchrotron-based grazing incidence wide-angle scattering (GI-

WAXS) measurements (Figures S14 and S15). Comparing the ML-local optimum, (ii)

Cs0.26MA0.36FA0.38PbI3 in Region II, and the ML-optimum, (i) Cs0.17MA0.03FA0.80PbI3
in Region I (Figure 4A), we observe that the two compositions (i) and (ii) exhibit com-

parable lattice parameters of a-perovskites; however, local optimum (ii) contains an

additional d-CsPbI3 minority phase before degradation tests. Interestingly, only a

slightly larger increase in PbI2 is observed in (ii) than in global optimum (i) after a

6-h degradation run. After 100 h, (ii) exhibits a significantly greater loss of intensity

of a-perovskites and crystallinity (Figure S14).

To understand the distinctive roles of MA, Cs, and minority phases that govern the

divergence in degradation profiles behind the optimization results, we further quan-

tified the peak intensities of PbI2 (001), d-CsPbI3 (002), FAPbI3 (001), and a-perov-

skite (001) of four representative compositions in Regions I and II (Figures 4C–4F).

Two composition-dependent degradation mechanisms were observed (Figures

S16 and S17; Tables S5 and S6). While all four samples show increased PbI2 content

(evidence of chemical decomposition to precursors), the emergence of d-CsPbI3 and

d-FAPbI3 minority phases in Region I films with low Cs and MA content (Figures 4E

and 4F) indicates additional mechanisms of phase separation during degradation

tests. We find that MA plays a competing role as it accelerates chemical decompo-

sition while suppressing phase separation (additional X-ray diffraction results are

shown in Figure S10). Reducing MA content from 8% to 3% (Figures 4E and 4F)

shows effective suppression of chemical decomposition within the first 6 h. If we re-

move MA completely, we observe a faster phase separation emerging between 6

and 100 h of degradation (Figures 4C and 4D). Phase separation as a degradation

mechanism is observed to take place in a longer timescale compared with chemical

decomposition. Overall, the stability optimization pathway from Region II to Region I

to achieve kinetically suppressed degradation can be summarized as follows: (1)

reducing MA to suppress chemical decomposition, (2) reducing Cs to limit
1312 Matter 4, 1305–1322, April 7, 2021



Figure 5. Suppressed degradation in thin-film and photovoltaic devices

(A) Optical changes as a function of degradation time, showing the onset of degradation for

representative compositions in Regions I–IV, Cs0.17MA0.03FA0.80PbI3, Cs0.26MA0.36FA0.38PbI3,

Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 (I/Br), and MAPbI3, respectively.

(B) The percentage ratios of the solar cell efficiency after 50 h of full damp heat degradation tests for

unencapsulated devices over the initial efficiencies based on I/Br and three ML-informed

compositions in Region I, Cs0.17MA0.03FA0.80PbI3, Cs0.13MA0.08FA0.79PbI3, and Cs0.13FA0.87PbI3,

respectively.
(C) Initial device efficiency based on the ML-optimum composition in Region I, and the their

current-voltage curves before and after 50 hours accelerated degradation tests under 85% RH/85�C
unencapsulated in air in dark.

(D) Initial device efficiency based on the I/Br reference composition in Region IV, and their current-

voltage curves before and after the same degradation tests as in (C).
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thermodynamics-driven minority phase formation, and (3) balancing MA, FA, and Cs

for restraining additional minority phase formation in hot and humid conditions.
Insights into the effects of compositional complexity on thin-film and device

stability

To determine the impact of ML-informed compositions in the field of perovskite op-

toelectronics, we first demonstrated the improvement of thin-film stability in this

study against the state-of-the-art. Figure 5A illustrates the quantitative optical

change analysis for three representative thin-film compositions from Region I,

including the ML-optimum Cs0.17MA0.03FA0.80PbI3 (i), the ML-local optimum

Cs0.26MA0.36FA0.38PbI3 (ii), and MAPbI3 (iii). We further compared the optimized

five-element iodide perovskites (i) with a six-element iodide-bromide reference

composition, Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 (iv) (I/Br). I/Br is outside the

design space of this study (referred to as Region IV), but is among the most widely
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used compositions in high-efficiency perovskite solar devices.36,39,40 We found that

(i) yields a 3.5-fold lower Ic than (iv). In addition to suppressed total degradation in

optimized iodide perovskites, the degradation onset is also postponed. This is re-

flected by the >3-fold delay in the onset of sharp optical change as in Figure 5A.

The ML-optimum within the iodide perovskite space overperforms the more com-

plex I/Br mix, which contradicts a long-standing assumption in the perovskite field

that increasing compositional complexity entropically stabilizes the absorber. The

overall environmental stability based on thin-film stability is Region I > Region II >

Region IV > Region III.

We then demonstrated the enhanced stability of full photovoltaic devices without

compromising conversion efficiency. To ensure rigorous environmental tests that

match the reliability requirement for perovskite solar cell commercialization, we

used ambient air, 85% RH, and 85�C temperature full damp heat testing on unencap-

sulated devices (close to the conditions of accelerated film degradation tests), which

is a much harsher stress condition than most current laboratory testing for perovskite

devices. Figure 5B reveals that devices of the three ML-informed compositions from

Region I all overperform the state-of-the-art I/Br reference, leading to an increased

efficiency (after aging/before aging) ratio from 73% to 87% after a 50-h accelerated

degradation test. While devices of both the ML-optimum and the reference compo-

sition show initial efficiencies of >19% (as shown in Figures 5C and 5D), more severe

photocurrent decay is observed in the reference. An average of the 77% of the per-

formance is maintained in the ML-optimum in comparison with 71% in I/Br (Fig-

ure 5B, over 18 devices) after degradation tests. In addition to the ML-optimum

(3% MA), two other Region I iodide perovskites, Cs0.13MA0.08FA0.79PbI3 (8% MA)

and Cs0.13FA0.87PbI3 (0% MA) also overperform I/Br in both film and device stability

(Figure S18). We find that compositions with fewer elements lead to improved

thermo-moisture stability, where the MA-free, iodide-only composition in this

comparative study achieved the highest device stability.

We note that, in a solar cell, other layers than the absorber within a device may also

accelerate the degradation depending on the device architectures. Unencapsulated

full devices are often found to undergo faster degradations than bare films, in partic-

ular in the first several hours, attributing to interface-related degradations.4,23 In this

study we only focus on the correlations between film and device stability from an

angle of perovskite layer degradation without device architecture optimization. To

confirm if the device stability improvement holds under additional stress of 1 Sun

illumination, we further compared the photostability of devices under 1 Sun at

65�C in N2 (different from the conditions applied for thin-film optimization in this

study) and the results show a photo-thermostability of 8% MA > ML-optimum (3%

MA) > I/Br > 0%MA (Figure S19). The higher device photostability of MA-containing

compositions suggest a beneficial role of MA in suppressing illumination-induced

degradation in multi-cation iodide perovskites.

Our device stability results highlight the non-intuitive conclusion that simplifying the

perovskite formulation yields a higher device stability in hot and humid environ-

ments. This finding emphasizes the importance of achieving a holistic understanding

of a compositional space to effectively identify optima. The physics-constrained

sequential learning approach developed in this study can be extended to experi-

mentally navigate higher-dimensional spaces under operational conditions, such

as to identify the most environmentally stable I/Br-chloride perovskite alloys in the

growing chemical space of AxByCzD1�x�y�zPb(IpBrqCl1�p�q)3, to further improve

the efficiency and reliability of perovskite solar cells.
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Conclusions

In this study we develop a closed-loop optimization strategy for CsxMAyFA1�x�yPbI3
multi-cation perovskites against heat-, moisture-, and light-induced degradation by

introducing a physics-constrained BO framework. We identify an FA-rich and Cs-

poor region centered at Cs0.17MA0.03FA0.8PbI3 with >17-fold stability optimization

from MAPbI3 while sampling only 1.8% of the discretized compositional space,

achieving superior search efficiency and scientific relevance to brute force screening

and state-of-the-art model-free BO, respectively. The study demonstrates the power

of data fusion to allowmaterial search over vast and sparsely sampled compositional

spaces, where the DFT-modeled phase mixing serves as a probabilistic constraint

and provides principled guidance to ML-directed experimentation.

We apply this physics-informed optimization framework to achieve a holistic under-

standing of the fundamental composition-, phase-, and time-dependent behavior of

organic-inorganic perovskites. As a consequence of competing roles of cations in

different degradation mechanisms, a composition window of up to 8% addition of

the least chemically stable cation, MA, contributes to kinetically suppressed degra-

dation, whereas the most chemically stable cation in this design space, Cs, contrib-

utes to accelerated degradation through phase separation even in the most macro-

scopically stable candidates found in the CsxMAyFA1�x�yPbI3 compositional space,

which potentially limits the benefits of Cs as a perovskite stabilizing agent. These

findings highlight the detrimental effects of minority phase formation as a degrada-

tion pathway, which occurs over a longer time frame than chemical decomposition,

and hence are easily underestimated in the initial compositional engineering.

We further suggest several optimized iodide perovskites, including Cs0.17MA0.03

FA0.8PbI3 and Cs0.13MA0.08FA0.79PbI3, that show superior photo-, thermo-, and

moisture device-stability to the state-of-the-art I/Br mixed perovskite (Cs0.05(MA0.17

FA0.83)0.95Pb(I0.83Br0.17)3), providing insights into simplifying perovskite composi-

tions for solar cell reliability.

This data fusion approach combines multiple data sources into a single search algo-

rithm and can be utilized to include other experimental or theoretical constraints

with non-negligible uncertainty into the materials design strategy. The method

can be generalized to direct experimentation in other material systems, merging

complementary experiments and theory to collectively inform synthesis in a

closed-loop fashion across a vast chemical and structural space.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead contact, Tonio Buonassisi (buonassisi@mit.edu).

Materials availability

This study did not generate new reagents. Reagents used were purchased from

Sigma-Aldrich as described in subsection Materials.

Data and code availability

Details of materials, experimental methods, machine learning framework, and cam-

era-based in situ degradation monitoring platform details are available in the Sup-

plemental information. The codes and the datasets used for Bayesian optimization

are available in GitHub repository https://github.com/PV-Lab/SPProC. Lists of
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samples and raw data of XRD characterization, and thin-film degradation results, are

shown in Data S1.

Materials

Perovskite precursor solutions were spin coated on UV-ozone glass substrates. Glass

microscope slides (VWR) cut into square pieces were cleaned with sonication in 2%

Hellmanex-DI water mix, DI water, and IPA, respectively. We performed perovskite

synthesis with over-stoichiometric PbI2 in a molar ratio of 1.09 (PbI2) to 1 (halide salt

of CsI, MAI, and FAI). Lead(II) iodide stock solution was prepared in 9:1 N,N-dime-

thylformamide (Sigma-Aldrich) to dimethyl sulfoxide (Sigma-Aldrich) solvent. The

perovskite precursor solution was prepared by mixing individual stock solutions

following the ratios of Cs, FA, andMA suggested by themachine learning algorithm.

The films were annealed at 403 K for 20min using the central part of a hot plate in the

glovebox. The spin-coating program follows a two-step approach: 1,000 rpm for

10 s and acceleration of 200 rpm/s, with a subsequent 6,000 rpm for 30 s and accel-

eration of 2,000 rpm/s. Chlorobenzene (Sigma-Aldrich) antisolvent (150 mL) was

dropped 5 s at the beginning of the second step of spin coating. The annealed sam-

ples were cooled to room temperature before being transferred to the degradation

test. Cs0.05(FA0.83MA0.17)0.95Pb(I0.87Br0.13)3 was synthesized following Correa-Baena

et al.41

Accelerated degradation tests

Humidity, temperature, and visible light illumination level were controlled at 85�CG

2�C, 85% G 5%, and 0.15 G 0.01 Sun, respectively, using an in-house built environ-

mental chamber. Samples were photographed automatically every 5 min during the

aging test and, additionally, the humidity and temperature of the aging chamber

were tracked automatically. That the illumination conditions remained stable during

the aging tests was confirmed by following a reference color chart that had been

placed into the picture area and the collected data were color-calibrated (see the

Supplemental experimental procedures). Accelerated degradation, automation,

parallel degradation of 28 samples, and a fault-resistant measurement method using

photography enabled high-throughput aging testing compared with traditional

methods. After the aging test, the samples were stored in a glovebox until further

characterization.

Physics-informed BO framework

In the BO setting, a surrogate machine learning model, GP regression, is used to

approximate the mean and uncertainty of IcðQÞ in non-sampled regions of the

compositional space. Once the model is fitted, an acquisition function is used for

suggesting locations in the compositional space with a high chance of leading to

an optimum. Our chosen base acquisition function that we modify by data fusion

principle is expected improvement EIðQÞ,

EIðQÞ = ðmnðQÞ� tÞF
�
mnðQÞ � t

snðQÞ
�
+snðQÞ4

�
mnðQÞ � t

snðQÞ
�
;

whereF is the standard normal cumulative distribution, mnðQÞ is the mean of the sur-

rogate model’s (here GP regression) posterior, t is an incumbent best point, sn is the

variance of the GP model’s posterior, 4 is the standard normal probability distribu-

tion, and n is degradation round. By maximizingEIðQÞ, the most promising location

Q� (either due to a low expected instability index or a high uncertainty of the esti-

mate) for the next experimental round is determined. To suggest more than one

promising composition Q per round, we use the local penalization algorithm to re-

sample EIðQÞ, as described by González et al.42 To include the physical constraints
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in the BO algorithm, the acquisition function is weighted according to the probabi-

listic model PðDGmixðQÞ;bDFTÞ following the method of Gelbart et al.35:

EICðQÞ = EIðQÞ PðDGmixðQÞ;bDFTÞ:
Once DGmix is modeled (see the Supplemental experimental procedures), the prob-

abilistic model PðDGmixðQÞ; bDFTÞ can be computed. The inherent bias and precision

of DFT calculations justifies the probabilistic treatment of the constraint. Referring to

the constraint value as F = PðDGmixðQÞ; bDFTÞ, we formulate the data fusion process

as maximizing the likelihood LðbDFT;F; DGmixÞ such that:

b�
DFT = argmaxbDFTLðbDFT;F; DGmixÞ:

Using a Bernoulli likelihood, this definition is equivalent to fitting a logistic regres-

sion model via maximum likelihood, with DGmix as the independent variable and

the probability of phase de-mixing as the dependent variable. In this sense, one

could estimate a certain critical energy above which the crystalline structure is

unstable and will decompose into its constituent phases. In the context of

convex hull stability calculations, this value is often considered to be around

�0.025 eV/f.u. We hence choose bDFT so that it produces a cumulative probability

of Pð� 0:025eV =f :u;b�DFTÞ = 0.7 and Pð� 0:05eV =f :u;b�DFTÞ = 0.9. This assumption

defines a smooth gradual boundary for phase mixing in the compositional space,

considering the inherent uncertainty of first-principle calculations. Our choice of

probabilistic model is common in machine learning literature, due to the simplicity

and expressivity of logistic models.43
DFT calculations

The methodology used here for alloyed halide perovskites has been discussed in

detail in our recently published work (Schelhas et al.23 and Goyal et al.44). In this pa-

per we performed additional DFT calculations for the binary (Cs-MA) and ternary (Cs-

MA-FA) alloys, as well as using our previously published DFT calculations on binaries

(Cs-FA, FA-MA) (Schelhas et al.23), to generate adequate initial DFT data in the

three-dimensional-phase space that feeds into the optimization model. DFT calcu-

lations were performed within the projected augmented wave method45 as imple-

mented in the VASP code.46 The Perdew Burke Ernzerhof exchange correlation func-

tion47 was used with GGA, and spin-orbit coupling was included in the total energy

calculations. A plane wave cutoff of 340 eV and a Monkhorst-Pack k-point sampling

scheme48 were used. Alloy structures were created using the pseudo-cubic as the

starting structure for the pure compositions (obtained from Stoumpos et al.49)

with random substitution at the A-site. A special quasi-random structure method,50

as implemented in the ATAT package,51,52 was used to obtain structures for various

A-site alloy compositions. Two different supercell sizes (96 and 144 atoms) were

used and for each A-site composition with multiple (two or three) structures, varia-

tion in the orientation of the MA and FA molecules was considered. For both pure

and alloy phase calculations all degrees of freedom (cell shape, volume, and ionic

positions) were relaxed in DFT. Following the relaxations, A-site alloy structures at

various compositions were found to retain the overall cubic symmetry. As bench-

marked in Lejaeghere et al.,53 the reproducibility and precision in our DFT total en-

ergy calculations was very high.

Thermodynamic modeling: to model the thermodynamic phase stability of mixed A-

site halide perovskites, we compute the Gibbs free energy of mixing (DGmix = DHmix

– TDSmix) of these materials as a function of the A-site composition. The modeled

DGmix has two components: (1) the enthalpy of mixing (DHmix) and (2) the entropy

of mixing (DSmix). The enthalpy of mixing is calculated from DFT by taking the
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difference between the total energy of the mixed A-site halide perovskite with

respect to the total energy of the constituent, or pure, phase. The temperature

dependence (TDSmix) to Gibbs free energy is incorporated by considering the

entropic contributions associated with the configuration and rotations degrees of

freedom. Further details of thermodynamic modeling can be found in Schelhas

et al.23 The variability in the computed value of Gibbs free energy at a specific

composition is between 5 and 20 meV/unit, and this is a result of the varying orien-

tation of the FA andMAmolecules between themultiple structures considered in our

simulations.

X-ray diffraction

Grazing incidence X-ray diffraction (incident angle of 1�) was performed using Ri-

gaku SmartLab with Cu-Ka sources on the as-synthesized thin films to investigate

the crystal structures and to examine minority phases.

UV-visible spectroscopy

The absorbance of the films was calculated based on transmission and reflection

measurements taken using a PerkinElmer Lambda 950 UV/Vis Spectrophotometer.

Band gaps were calculated using Tauc methods assuming direct band gaps.

Scanning electron microscopy

The filmmorphology was investigated using a Zeiss Ultra-55 field-emission scanning

electron microscope (FESEM, Zeiss), with an in-lens detector and a 3.00 kV EHT gun.

The grain sizes were counted using ImageJ within an area of ~0.72 mm2. Various

compositions show different distributions of grain sizes. The grain sizes of the

composition with high Cs (Cs0.26FA0.74PbI3), with Cs > 20%, are mostly between

300 and 500 nm and some of them reach 1,200 nm, indicating the presence of the

d-phase. The grain sizes of MAPbI3 are mostly between 200 and 400 nm, and reach

1,000 nm. The grain sizes of the rest of the compositions, which have low Cs (<20%),

are mostly between 200 and 400 nm.

GIWAXS measurements

GIWAXS measurements were taken at beamline 11-BM (CMS) at the National Syn-

chrotron Light Source II (NSLS-II) of Brookhaven National Laboratory. An X-ray

beam with an energy of 13.5 keV was shone on the perovskite films in grazing inci-

dent geometry. The data presented in the study were taken at an incident angle

q = 0.2, which probes the bulk structure of the films. The scattering spectra were

collected using an exposure time of 30 s with an area detector (DECTRIS Pilatus

800K) placed 257 mm away from the sample. Data analysis was performed by using

custom-made software (SciAnalysis).54

Device fabrication

Unless stated otherwise, all materials were purchased from Sigma-Aldrich or Merck and

used as received. MAI and FAI were purchased from Xi’an P-OLED. PbI2 was purchased

from Lumtec. The Ta-WOx colloidal solution was purchased from Avantama. The SnO2-

PEIE solution was prepared by mixing 15 wt % SnO2 aqueous solution (300 mL) with

1.8 mL of isopropanol and H2O (1/1, v/v) and 20 mL of PEIE. First, ITO substrates

were sonicated in acetone/isopropanol for 10/5 min, respectively. Before spin coating

the SnO2-PEIE solution (80 mL) at 3,500 rpm for 30 s, the ITO substrates were treated

with UV-ozone for 10 min in ambient air. After annealing at 150�C/10 min in ambient

air, 80 mL of PCBM:PMMA solution was spin coated on a SnO2/PEIE layer at

2,000 rpm for 30 s and then annealed at 150�C for 10min. A 1.2M PbI2 and FAI solution

was prepared first in DMF and DMSO (4:1, v/v), and 1.2 M MAI/CsI solution was
1318 Matter 4, 1305–1322, April 7, 2021
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prepared in DMSO. The MAxCsyFA1�x�yPbI3 precursors were prepared by mixing the

mother solutions in the target ratio. The perovskite precursor solution was spin coated

on the PCBM substrate using the following parameters: 200 rpm for 2 s, 2,000 rpm for

2 s, and 5,000 rpm for 40 s (a = 3 s). Then, 180 mL of chlorobenzene was dropped on the

film at 20 s, followed by annealing at 110�C for 10 min and 150�C for 5 min. PDCBT for

the hole transporting layer was spin coated at 2,000 rpm for 40 s and annealed at 90�C
for 5 min. Finally, 100 mL of Ta-WOxwas coated on the PDCBT at 2,000 rpm for 30 s and

annealed at 75�C in ambient air. A 100-nm-thick Au electrode was deposited through

a shadow mask via thermal evaporation. For the devices used in the stability tests, a

200-nm Au layer was deposited.
Device characterization

The J–V curves of the solar cells were obtained using a Keithley source under

100 mW cm�2 AM1.5G illumination. The J–V characteristics were measured from

�0.1 to 1.2 V (forward scan) at a scan rate of 20 mV/s. No hysteresis was observed

in the devices. For the thermal stability test at 85�C/85% RH, the devices were stored

in a sample box in a climate chamber in the dark without any encapsulation. The de-

vices were tested before and after storing in the climate chamber for 50 h. For the

photostability test at 85�C, the devices were stored in a sealed chamber with N2

flow under metal halide light illumination (100 mW cm�2). The devices were contin-

uously measured with forward scan at a scan rate of 20 mV/s.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.matt.

2021.01.008.
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