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ABSTRACT

Grounding the common-sense reasoning of Large Language Models (LLMs)
in physical domains remains a pivotal yet unsolved problem for embodied AI.
Whereas prior works have focused on leveraging LLMs directly for planning in
symbolic spaces, this work uses LLMs to guide the search of task structures and
constraints implicit in multi-step demonstrations. Specifically, we borrow from
manipulation planning literature the concept of mode families, which group robot
configurations by specific motion constraints, to serve as an abstraction layer be-
tween the high-level language representations of an LLM and the low-level physical
trajectories of a robot. By replaying a few human demonstrations with synthetic
perturbations, we generate coverage over the demonstrations’ state space with
additional successful executions as well as counterfactuals that fail the task. Our
explanation-based learning framework trains an end-to-end differentiable neural
network to predict successful trajectories from failures and as a by-product learns
classifiers that ground low-level states and images in mode families without dense
labeling. The learned grounding classifiers can further be used to translate language
plans into reactive policies in the physical domain in an interpretable manner. We
show our approach improves the interpretability and reactivity of imitation learning
through 2D navigation and simulated and real robot manipulation tasks. Website:
https://yanweiw.github.io/glide/

1 INTRODUCTION

Language models, in particular, pretrained large language models (LLMs) contain a large amount
of knowledge about physical interactions in an abstract space. However, a grand open challenge
lies in extracting such semantic knowledge and grounding it in physical domains to solve multi-step
tasks with embodied agents. Previous methods, given the symbolic and abstract nature of language,
primarily focus on leveraging LLMs to propose abstract actions or policies in purely symbolic spaces
or on top of manually defined high-level primitive abstractions (Liu et al., 2023; Ahn et al., 2022;
Wang et al., 2023). Such approaches inherently require a set of predefined primitive skills and
additional toolkits for estimating affordances or feasibility before executing a plan generated by an
LLM (Ahn et al., 2022; Lin et al., 2023).

To address this important limitation, in this paper, we consider the problem of grounding plans
in abstract language spaces into robot demonstration trajectories, which lie in the low-level robot
configuration spaces. Our key idea is that many verbs; such as reach, grasp, and transport; are
all grounded on top of mode families that are lower-dimensional manifolds in the configuration
space (as in manipulation mechanics, see Mason, 2001; Hauser & Latombe, 2010). Therefore,
LLMs can be prompted to describe the multi-step structure of demonstrations in terms of semantic
mode abstractions: valid mode transitions describe pre-conditions for mode-based skills, and mode
boundaries explicitly encode motion constraints in the physical space that are critical for task success.

Building upon this idea, we propose Grounding Language in DEmonstrations (GLiDE, illustrated
in Fig. 1), which casts the language grounding problem into two stages: learning to classify current
modes from states, and learning mode-specific policies. The main challenge in mode classification is
that learning a decision boundary fundamentally requires both positive and negative labeled examples.
To avoid having humans exhaustively provide dense mode annotation that covers the entire state
space, we propose to systematically perturb demonstrations to generate “counterfactual” trajectories
and use a simple “overall” task success predictor as sparse supervision. Intuitively, perturbations to
inconsequential parts of a successful replay add unseen state coverage, while perturbations that cause
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Figure 1: GLiDE framework Given a common-sense LLM that understands (a) the appropriate state abstrac-
tions for a task and (b) how to solve the task via a sequence of manipulation modes in semantic space and (c) a
few unsegmented human demonstrations that embody the transitions through these modes, we learn a grounding
classifier that maps continuous physical states and observations to discrete semantic modes. Mode boundaries
discovered by the classifier encode constraints implicit in the demonstrations that are critical for task success.

counterfactual failing outcomes reveal constraints in the demonstration. Next, we use an explanation-
based learning paradigm (DeJong & Mooney, 1986; Segre & DeJong, 1985) to recover the mode
families that successful demonstrations implicitly transition through. With a learned classifier that
maps continuous physical states to discrete abstract modes, we can then learn mode-specific policies
and also use LLMs to plan for recovery from external perturbations or other sources of partial failures.
Our system improves both the interpretability and reactivity of robot learning of multi-step tasks.

Our framework of grounding language plans as recovering modes and learning mode-specific policies
brings two important advantages. First, compared to frameworks that generate robot behavior
solely based on text, we do not require pre-built policies and feasibility predictors for primitive
actions. Experiments show that our learning paradigm can successfully identify each mode from the
demonstration data without any human segmentation annotations, and from only a small number
of expert-generated demonstrations. Second, connecting demonstrations with language suggests a
principled way to improve the interpretability and reactivity of motion imitation. While plenty of data
collection systems (Zhao et al., 2023; Fang et al., 2023; Wu et al., 2023; Fu et al., 2024; Chi et al.,
2024) allow humans to demonstrate complex multi-step tasks, these demonstrations are typically
unsegmented without semantic annotations of individual steps. Neither do humans elaborate on the
task constraints that successful trajectories implicitly satisfy. Consequently, the resulting imitation
policies cannot detect whether current actions fail to achieve pre-conditions (Garrett et al., 2021) of
subsequent actions or replan to recover from mistakes due to covariate shift (Ross et al., 2011). Our
system enables the usage of LLMs for replanning and improves the overall system robustness.

2 METHOD

Our framework, GLiDE, takes in a language description of the target task, and a small set of
successful human demonstrations as input, and aims to produce a robust policy that can accomplish
the task successfully even under perturbations. GLiDE first uses a perturbation strategy to augment a
small set of human demonstrations with additional successful executions and failing counterfactuals.
(Section 2.1). Next, it prompts a large language model (LLM) to decompose the very high-level
instruction into a step-by-step abstract plan in language. At this step, the most important outcome
is a feasibility matrix that encodes how we can transition between different modes in this task
(Section 2.2). Given the augmented demonstration and perturbation dataset and the LLM-generated
abstract plan, we ground each mode onto trajectories (Section 2.3) and generate motions for individual
modes to be sequenced by a language plan (Section 2.4).
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Figure 2: (a-c) Example perturbations causing replays (blue) to deviate from successful demonstrations (red).
The task is to pick up the square nut and place it on the peg. End-effector perturbations at different locations
(a) may or (b) may not cause grasp failures. (c) The gripper picks up the nut despite an initial end-effector
perturbation but later drops it due to a gripper perturbation. LLMs can be prompted (d) to describe a task solution
via a discrete mode sequence or (e) to select relevant features and pseudo attractors for solving a task.

2.1 DEMONSTRATION DATA AUGMENTATION WITH COUNTERFACTUAL PERTURBATIONS

To learn a grounding classifier that can partition the state space being considered into mode families,
we need data coverage beyond the regions explored in a few successful demonstrations. Additionally,
to learn mode abstractions that can be used to predict task success–as opposed to clustering data
based on statistical similarity–negative data that fail by crossing infeasible boundaries are necessary.
Assuming an oracle that can label the execution outcome of a synthetically generated trajectory, we
propose the following perturbations to demonstration replays that might reveal task constraints:

End-effector perturbations Illustrated in Fig. 2c, given a successful demonstration shown in blue,
we first sample two points on the trajectory, namely X and Y . Next, we randomly sample a third
point Z in the state space. During the replay shown in red, we replace the XY segment with XZ and
ZY . Depending on the location and magnitude of the perturbations, the robot may still succeed in
the task (Fig. 2b) or fail (Fig. 2a), revealing that grasping the square nut is a pre-condition for the
next step of peg insertion to be successful.

Gripper perturbations Illustrated in Fig. 2c, we randomly toggle the gripper state while otherwise
adhering to the original trajectory. Failure replays where the gripper drops the nut pre-maturely reveal
the motion constraint of holding the nut during transportation.

Given the perturbed trajectories, we execute them using a trajectory-following controller in the
environment and collect a binary task success signal for each trajectory. Essentially, this gives us a
dataset of paired trajectories and their task success labels: ⟨τ i, succi⟩, where τ i = {s1, s2, · · · , sT },
and succi ∈ {0, 1}. To learn the grounding classifier ϕ(·) that can map τ i to its corresponding mode
sequence ϕ(τ i) = {m1,m2, · · · ,mT } (mode and mode families are used interchangeably in this
work), we ask LLMs what modes there are in a demonstration, how they are connected, and what
constitutes a state st for a given task.

2.2 SEMANTIC DESCRIPTION OF DEMONSTRATIONS AND TASK STRUCTURE FROM LLMS

Explaining continuous demonstrations with a discrete mode sequence First, we assume a given
small set of demonstrations {⟨ξi, 1⟩}Di=1, which can be variable at the motion level, satisfy the same
sequential transition through K modes, defined as σ ∈ Σ = {σi}Ki=1 and ϕ(st) = mt ∈ Σ. In other
words, if we reduce self-transitions in the demonstrations where mt = mt+1, mode sequence ϕ(ξi)
for all demonstrations can be reduced to the same K-step transitions σ1 → σ2 → · · ·σK . This is the
form of the language plan we prompt LLMs to generate to describe demonstrations. The plan informs
the number of modes there are as well as the semantic grounding of each mode as seen in Fig. 2d.

Representing states with task-informed abstraction Second, we further prompt LLMs to define
the state representation st as a set of keypoint-based features or image observations that are relevant
to mode classification. In particular, the keypoint-based features come from a pre-defined exhaustive
list of keypoints describing the scene as seen in Fig. 1a. Each keypoint definition contains (1) the
keypoint name and (2) a short description of its semantic meaning. Given a task description, an LLM
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Figure 3: (a) Example feasibility matrices. Specifically, F 3 can describe the modal structure for a pick-
and-place task with solution reach→grasp→transport, where reach→transport directly is infeasible. (b) The
definition of a mode transition implies every state in the second mode is reachable from every state in the first
mode (states Y and Z are in the same mode but not X). We leverage this connection between the continuous
states and the discrete modes to design (c) a fully-differentiable pipeline that calculates overall trajectory success
based on the mode classification of individual states in the trajectory.

can be prompted to either select a subset of keypoints tracking absolute locations or combine pairs
of keypoints to track relative positions as shown in Fig. 2e. For image observations, we either use
the raw image as a state representation or use a pre-trained vision model (Kirillov et al., 2023) or
vision-language model (Huang et al., 2023) to extract features from the image.

Encoding discrete modal structure in a feasibility matrix Lastly, while successful demonstrations
ξi can be reduced to a K-step language plan, not every perturbed trajectory τ i can be as it might
not be successful or correspond to a minimal solution. Therefore, the reduced mode sequence may
contain back-and-forth steps such as σ1 → σ2 → σ1 → · · · or simply invalid mode transitions. To
describe the modal structure of a task in terms of the feasible transitions between modes, we generate
a feasibility matrix FK with K modes by first querying LLMs whether two semantic modes are
directly connected. Then we compute the matrix entry Fij from LLM responses as the negative
shortest path between each pair of modes. In the case of sequential tasks with a linear temporal
structure (true for most experiments considered in this work), zero entries Fij encode valid transitions
that incur zero costs. Negative entries Fij encode infeasible transitions, and the magnitudes denote
the number of missing modes in between. In particular, in Fig. 3a diagonal entries Fii are feasible
self-transitions, and entries Fi,i+1 are demonstrated mode transitions towards the goal. Note for tasks
with complex structures, the matrix may have more negative entries than the ones shown in Fig. 3a.
The feasibility matrix is also interpretable and can be modified manually by humans.

2.3 END-TO-END EXPLANATION-BASED LEARNING FOR MODE CLASSIFICATION

Given a language plan, a task-informed state representation, and a feasibility matrix as discrete
structural information about a task, learning the grounding classifier is an inverse problem that tries
to recover the underlying modal structure from sparsely labeled continuous trajectories. To this end,
we design a differentiable decision-making pipeline to explain the task success of a trajectory on
top of mode predictions. Having trajectory coverage with contrasting execution outcomes allows for
recovering the precise grounding in terms of mode boundaries.

Mode classifier Our mode classifier is a neural network (with softmax output layers) that inputs
a state st and outputs a categorical distribution of the abstract mode at that state. Overloading the
notation ϕ(·) to output both a predicted mode mt and a mode belief, we have bt = ϕ(st). The
architecture of the classifier depends on the state representation. The number of softmax categories K
is chosen based on the sequence length of the LLM-generated plan. If we had dense mode annotations
{⟨st,mt⟩}Tt=1, we could train the classifier directly with a cross-entropy loss. However, we only have
supervision at the trajectory level via task success. Therefore, we need a differentiable forward model
that can predict task success from a sequence of mode beliefs {bt}Tt=1.

Differentiable forward model to predict task success What makes a perturbed trajectory rollout
unsuccessful (or still successful) in solving a task? Following the approach by Wang et al. (2022a),
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we consider a successful trajectory as one that both (1) contains only feasible mode transitions
according to FK and (2) eventually reaches the final mode σK seen in the demonstrations. Since the
perturbations we consider in this work do not affect the starting state s1 and final state sT , the success
criteria for a trajectory τ+ solely concerns intermediate transitions: ϕ(s+t )F

Kϕ(s+t+1) = 0, ∀s+t ∈
τ+. Similarly, a failure trajectory τ− is one that contains at least one invalid mode transition.

To operationalize this idea, let’s consider the dataset of trajectories T containing both successful tra-
jectories T + = {τ i+}Mi=1 and failure trajectories T − = {τ j−}Nj=1. First, we use a cross-entropy loss
to enforce that the starting and ending continuous states for all trajectories must be in the initial and
final mode being demonstrated: Linit = Eτi∼T LCE(ϕ(s

i
1), σ1) and Lfinal = Eτi∼T LCE(ϕ(s

i
T ), σK).

Second, we define the success and failure loss using ft,t+1, which is a shorthand for transition
feasibility score ϕ(st)FKϕ(st+1) between two states:

Lsucc = − 1

M

∑
τi∈T +

1

T − 1

T−1∑
t=1

ft,t+1 Lfail =
1

N

∑
τj∈T −

max(−1,

T−1∑
t=1

ft,t+1) (1)

Intuitively, minimizing Lsucc encourages the classifier to predict mode beliefs such that all transitions
between consecutive states are feasible. Minimizing Lfail encourages the classifier to predict mode
beliefs such that there exists at least one invalid mode transition. The clipping in Lfail at −1 makes
the loss well-defined and treats all invalid mode transitions described by the negative entries in Fig. 3a
equally*. Fig. 3b gives another intuitive example, where states Y and Z constitute the same mode
but not state X . A necessary condition to test if a state s is in mode σi is to check if s can directly
transition to at least one state in mode σi+1 in the trajectory. Adding everything together, we have
Lfull in Eq. 2, where λs, λf , and λi are hyperparameters for balancing loss terms:

Lfull = λsLsucc + λfLfail + λi(Linit + Lfinal) (2)

Extension to underactuated systems. These conditions are sufficient for recovering modes from
a fully-actuated system. For underactuated systems (Tedrake, 2023) such as object manipulation
where objects cannot directly move from one configuration to another via teleportation, it is not
possible to generate a direct transition between any two modes such as the ones shown in 3b using
synthetic perturbations. Hence, we need an additional regularization at the motion level to infer
precise boundaries. Specifically, states in the same mode should go through similar dynamics. In
other words, one should be able to infer (st+1 − st) from (st − st−1). Such mapping should be
different for different modes. For example, the relative transformation between the end-effector pose
and the object pose should remain the same when the robot is rigidly holding the object and change
otherwise. Based on this observation, we instantiate a forward dynamics model ψ(·) that inputs the
current state change and predicts how the state should change next for each mode. Coupled with a
mode belief, we can predict the next state change as ϕ(st)⊺ψ(st − st−1). Consequently, we can train
mode classifiers for underactuated systems by introducing a dynamics loss Ldyn:

Lunder = Lfull + λdLdyn where Ldyn =
∑
τj∈T

T−1∑
t=1

∥ϕ(st)⊺ψ(st − st−1)− (st+1 − st)∥22 (3)

Minimizing Ldyn groups states into modes based on similarity in dynamics. Since losses are differen-
tiable with respect to ϕ and ψ, we use stochastic gradient descent to optimize learnable parameters.

2.4 MODE-BASED MOTION GENERATION

Having learned the explicit mode boundaries, we can leverage them in motion planning to ensure that
the robot avoids invalid mode transitions (LaValle, 1998). Alternatively, we can use the classifier
ϕ(·) to segment demonstrations into mode-specific datasets, with which we can learn imitation
policies πk(a|s) for each mode σk and sequence them using a discrete plan (Wang et al., 2022a).
To further improve the robustness of the learned policy for manipulation tasks, we use the mode
feature identified by the LLM to construct a pseudo-attractor for each mode. If the mode feature is
the absolute pose of the robot end-effector, we compute the mean end-effector poses at which mode
transitions σk → σk+1 occur as the pseudo-attractor; if it is a relative pose, we transform that into an
absolute pose of the end-effector at test time. We use this pseudo-attractor to construct a potential
field that guides the robot to move towards the next mode at inference time. Specifically, the final

*Empirically, setting all negative entries in the matrix to be −1 can get gradient descent optimization stuck.
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Figure 4: Grounding of 2D navigation task. (a) Given six demonstrations that start in mode 1 and end in mode
5, visualized on top of the ground truth, (b) our method GLiDE recovers the underlying mode abstractions. (c)
Without counterfactual data, GLiDE fails to learn precise boundaries. (d) Without a correct feasibility matrix
(e.g. 4-mode instead of 5-mode), GLiDE results will miss modes. (e) Lastly, clustering the 2D state space to the
nearest mode centers, discovered in the demonstrations by kmeans++, produces an incorrect modal structure.

Method 3-Mode (+perturb) 4-Mode (+perturb) 5-Mode (+perturb)

Behavior Cloning (BC) 0.967 (0.908) 0.814 (0.614) 0.810 (0.596)
GLiDE +BC 0.963 (0.887) 0.892 (0.753) 0.893 (0.753)
GLiDE +Planning 0.996 (0.996) 0.987 (0.966) 0.991 (0.974)

Table 1: 2D navigation success rates for mode-agnostic imitation (BC) and mode-based (GLiDE) imitation or
planning for environments consisting of 3, 4, and 5 modes. We test both perturbed and non-perturbed settings
1000 times and report the average success rate. For neural network-based BC policies, we report the average
performance across 10 different random seeds.

mode-based policy π∗
k(a|s) is a weighted sum of the original πk(a|s) and a control command that

moves the end-effector towards the pseudo-attractor for mode σk. We only apply the pseudo-attractor
term when the distance between the current state and the pseudo-attractor is greater than a threshold.
Intuitively, when a large perturbation leads to out-of-distribution states, the potential field will drive
the system back to the demonstration distribution before the imitation policy πk takes sole effect.

3 EXPERIMENT

We evaluate our method on three sets of experiments: (1) a 2D navigation task, (2) simulated robot
manipulation tasks in RoboSuite (Zhu et al., 2020), and (3) a real-robot implementation of the 2D
navigation and a marble-scooping task. Since our robot experiments use end-effector pose control,
we refer to task-space features as states rather than configurations.

3.1 2D NAVIGATION

Setup The 2D navigation environment consists of a sequence of connected randomly generated
polygons, and the goal is to traverse from any state in the free space (mode 1) through the polygon
sequence consecutively as demonstrated until reaching the final polygon. This environment serves
as a 2D abstraction of the modal structure for multi-step manipulation tasks, where each polygon
represents a different mode with its boundaries showing the constraint of the mode. Illegal transitions
include non-consecutive jumps between modes such as direct transitions from free space to any
later modes other than mode 2. This system is fully-actuated with (x, y) coordinate as the state
representation and (ẋ, ẏ) as the agent action. For all environments, we use fewer than 10 successful
demonstrations for classifier learning and policy learning.

Results: Mode classification We visualize the learned grounding classifier in Fig. 4b and Ap-
pendix A. Compared to baselines in Fig. 4(c-e), the mode boundaries recovered by GLiDE are the
closest to the ground truth shown in Fig. 4a. In particular, the poor grounding learned in Fig. 4(c-e)
shows respectively the importance of learning with counterfactual data, a correct task specification
from LLMs, and a task prediction loss beyond clustering solely based on statistical similarities in the
data. Quantitative results and more visualizations can be found on our website.

Results: Task execution Next, we show the learned grounding classifier can be used to improve
task success rates, especially in the face of external perturbations. We use behavior cloning (BC)
as a mode-agnostic baseline to learn a single policy π(a|s) from all successful trajectories. By
contrast, our method (GLiDE +BC) first segments the demonstrations and then learns mode-specific
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Method Can Lift Square

GLiDE 0.83 0.83 0.67
GLiDE - Dynamics Loss 0.67 0.75 0.46
GLiDE - Prediction Loss 0.67 0.68 0.56
GLiDE - Feature Selection 0.55 0.70 0.57
Traj. Seg. Baseline 0.66 0.56 0.54

Table 2: Ablation study of the influence of different loss
terms and baselines on the mode classification accuracy
based on overlap (percentage) with the ground truth.

Method Can Lift Square

BC 0.93 0.99 0.38
BC (p) 0.20 0.18 0.03
GLiDE +BC 0.85 0.99 0.25
GLiDE +BC (p) 0.40 0.39 0.15

Table 3: The success rate of mode-agnostic
imitation (BC) drops more than that of mode-
conditioned imitation (GLiDE +BC) after in-
troducing perturbations (denoted by p).

policies. Additionally, instead of mode-based imitation, we could also do planning to stay in the
mode boundaries recovered by the classifier, since the system is fully-actuated with a single-integrator
dynamics. Specifically, (GLiDE +Planning) uses RRT to compute waypoints to guide motion in
non-convex mode 1 and then uses potential fields in convex polygons to generate trajectories that stay
in the mode until entering the next mode. Table 1 shows that our methods perform slightly better
than BC across different environments. However, when external perturbations are introduced, BC
suffers the biggest performance degradation as recovery at the motion level without attention to mode
boundaries may incur invalid transitions leading to task failures. The fact that (GLiDE +Planning)
can almost maintain the same success rate despite perturbations validates the learned grounding.

Interpretability In the 2D environment, visualization of learned mode families can expose mode
constraints and explain why some but not all perturbed demonstration replays fail the task execution.

3.2 ROBOSUITE

Setup We test GLiDE across three tasks from Robosuite: placing a can in a bin (can), lifting a block
(lift), and inserting a square nut into a peg (square). We use the default action and observation space
of each environment unless an LLM suggests different features (e.g., relative distance to an object or
keypoints). Since the manipulation tasks define underactuated systems, we use Eq. 3 for training.

Results: Mode classification To evaluate the mode classification accuracy, we manually define the
ground truth modes for each environment (details in Appendix B). Table 2 shows the percentage of
overlap between mode predictions from different methods and the ground truth mode segmentation.
The results show that including all of the loss terms in our method achieves the best boundary
alignment with the ground truth as visualized in Appendix B. Ablating the dynamics loss or the
task prediction loss (Lsucc and Lfail) degrades the prediction accuracy as the classifier misses the
precise location of important events such as dropping a grasped object. Comparing GLiDE to training
without feature selection shows the importance of using an LLM to down-sample the feature space
for efficient learning. A trajectory segmentation baseline using kmeans++ clustering on the features
also underperforms GLiDE, highlighting the limitation of similarity-based segmentation methods.

Results: Task execution To show the learned grounding can help recover from perturbations, we
compare a mode-agnostic BC baseline, which is trained on unsegmented successful demonstrations, to
a mode-conditioned method (GLiDE +BC) described in Section 2.4, where each per-model BC policy
is augmented with a pseudo-attractor. While our method is insufficient to recover from all potential
failures, our goal is to demonstrate how even a basic control strategy that leverages the underlying
mode families can benefit policy learning in robotics. Table 3 summarizes the methods’ performance
without and with perturbations, which will randomly displace the end-effector or open the gripper.
We see that for both methods, adding perturbations introduces some amount of performance drop.
We find that the performance degradation for the BC baseline is much higher than with GLiDE +BC.

Interpretability In manipulation environments, it is challenging to directly visualize the mode
families given the high-dimensional state space. However, exposing the mode families allows us
to easily identify mode transition failures which can be used to generate post-hoc explanations of
failures (e.g., videos on our website show invalid mode transitions associated with a task failure).

3.3 REAL ROBOT EXPERIMENTS: 2D NAVIGATION AND SCOOPING TASKS

2D navigation To illustrate GLiDE can also learn grounding classifiers directly from vision inputs,
we implement the simulated 2D navigation task on a real Franka robot, where the end-effector traces
through a sequence of colored polygons in a plane. First, we record 20 human demonstrations
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Figure 5: Illustration of the real robot 2D navigation task (a), where the end-effector traces through a sequence
of colored polygons. (b) shows a perturbed trajectory, overlaid on ground truth mode boundaries, experiences an
invalid transition from mode 1 to mode 4. A vision-based classifier can predict from only pixels the inferred
modes (first color bar) that match ground truth (second color bar) with high probability. (c) visualizes the mode
prediction of individual image states seen in the dataset. The location of the scattered dots indicates where the
images are recorded while the colors show the predictions, which are well-aligned with mode boundaries.

through kinesthetic teaching in the end-effector’s state space that start in various parts of mode 1
and end in mode 5 as seen in 5a. Second, we add end-effector perturbations to the demonstration
replays to generate coverage over the entire tabletop area and record the perturbed trajectories in
image sequences as seen in 5b. For this planar task, we use a simple reset mechanism that brings
the end-effector back to one of the demonstrations’ starting states after each rollout to collect data
continuously. Since we can check if the end-effect is within the convex hull of any colored regions
whose vertices are known, we log the mode sequence of each perturbed trajectory and automatically
label if the trajectory is a successful task execution by checking if all mode transitions are feasible.
Consequently, we were able to collect 2000 labeled trajectories in 2 hours continuously without
human supervision. To learn a vision-based classifier, we switch from using multi-layer perceptrons
(MLP) for state-space inputs to convolutional neural networks (CNN) to encode image inputs. Figure
5c shows the learned classifier can group image observations into correct modes according to the
ground truth mode boundaries.

Marble scooping task The second task requires a spoon-holding robot to scoop marbles from
a bowl and then transport at least one marble to a second bowl across the table. A typical robot
implementation might require engineering a marble detector to check if the spoon is holding marbles
and plan actions accordingly (Wang et al., 2022a). Instead, we learn a marble classifier on a wrist
camera view to leverage LLM-based replanning as shown in Fig. 6. To collect successful executions,
we record the end-effector’s pose and wrist camera view as a human demonstrates scooping from
various starting states. Since it is non-trivial to engineer a reset mechanism for this task, we ask
humans to demonstrate various failures through kinesthetic teaching as well. To improve learning
efficiency, we preprocess the raw wrist image to extract a mask corresponding to marble objects,
where an empty spoon returns an empty mask. Specifically, we prompt an LLM for relevant object
types to track, with which we employ the Segment Anything Model (SAM) (Kirillov et al., 2023) to
generate segmentation masks. The classifier is then trained on a state representation consisting of
end-effector poses and the marble mask. In Fig. 6, we show how our mode classifier can be used to
develop a reactive robot program.

4 RELATED WORK

Learning abstractions from demonstrations. A large body of work focuses on learning action
abstractions from language and interaction. This includes the grounding of natural language (Corona
et al., 2021; Andreas et al., 2017; Andreas & Klein, 2015; Jiang et al., 2019; Sharma et al., 2022;
Luo et al., 2023), programs (Sun et al., 2020), and linear temporal logic (LTL) formulas (Bradley
et al., 2021; Toro Icarte et al., 2018; Tellex et al., 2011). In contrast to learning policies for individual
action terms, this paper focuses on learning mode families in robot manipulation domains. These
learned mode families enable us to construct robust policies under perturbation (Wang et al., 2022a).
Furthermore, our framework is capable of recovering the underlying modes from a small number of
unsegmented demonstrations. Through the use of synthetic noise (Delaney et al., 2021; Wang et al.,
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Figure 6: Illustration of the robot scooping task. Here the perturbations are human-initiated (e.g., moving the
spoon to drop or fail to grasp marbles). A mode-agnostic BC that imitates continuous motion demonstrations
cannot replan at the task level when all marbles are dropped during the transporting mode (a). In contrast,
our mode-conditioned policy enabled by the grounding classifier can leverage LLMs to replan given external
perturbations (b).

2022b), we relieve humans from the burden of providing negative demonstrations that fail a task by
automatically generating positive and negative variations of task executions.

Grounding language in robot behavior. With the rise of LLMs that can decompose high-level
commands into sequences of actions, there has been much recent interest in the ability to ground these
commands in embodied agents. Given that data from environment interactions (including human
demonstrations) do not explicitly identify constraints and success criteria of a task, previous work
has investigated how to infer affordances directly from observations (Ahn et al., 2022). Compared to
prior work (e.g., Lynch et al. (2023)), our method does not require dense labels to learn a grounding
operator. We are also not directly using large language models for planning (Huang et al., 2022;
Li et al., 2022; Huang et al., 2023). Rather, we are using LLM to guide the discovery of mode
abstractions in demonstrations, and as a result, we can also acquire a grounding operator for high-
level language commands. In contrast to the discovery of language-conditioned skills (Lynch &
Sermanet, 2020; Garg et al., 2022), which can consist of multiple modes, our mode decomposition
occurs at a lower level and can explain why certain trajectories fail a task execution.

Counterfactuals. Counterfactuals describe hypothetical situations of alternative outcomes compared
to the original data (Byrne, 2019). In other words, they are fake (non-human generated) data with
a different result (e.g., failing a task instead of succeeding) (Karimi et al., 2020). In this paper,
we define counterfactual perturbations as non-human-generated synthetic probes that test which
parts of the time-series trajectory data (Delaney et al., 2021) demonstrated by humans have implicit
constraints, the violation of which will change the outcome of the successful human demonstrations.

5 CONCLUSION

In conclusion, this work introduces a framework, Grounding Language in DEmonstrations (GLiDE),
to effectively ground the knowledge within large language models into physical domains, via mode
families. Given a small number of human demonstrations and task descriptions, we show how GLiDE
successfully recovers mode families and their transitions required in the task and enables the learning
of robust robot control policies.

Limitations and future work. While GLiDE does not need a large number of human demonstrations,
it requires a large number of trial-and-errors and an environment with a reset capability in order to
collect task success labels of a trajectory. This data inefficiency, however, can be addressed through
active learning where the current belief of mode segmentation can be used to probe demonstrations
only in regions with high uncertainty. Additionally, prompting the LLM to find a suitable state
representation for learning the classifier also requires skill. In future work, we would like to learn the
state representation in conjunction with the mode classifiers in an end-to-end fashion.
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A MORE MODE CLASSIFICATION RESULTS FOR 2D NAVIGATION TASKS

Figure 7 visualizes data augmentation of generating additional successful trajectories (middle) and
failing counterfactuals (right) from a few successful demonstrations (left). Figure 8 visualizes learned
grounding for additional randomly generated 2D navigation environments with a 3-, 4- and 5-mode
task structure.

Figure 7: Additional 2D grounding examples. Column (a) shows the ground truth mode segmentation and
successful demonstrations. Column (b) shows the learned grounding and its percentage overlap with the ground
truth. Columns (c-e) visualize the grounding learned without counterfactual data, a correct feasibility matrix,
and task prediction loss respectively.

Figure 8: Additional 2D grounding examples. Column (a) shows the ground truth mode segmentation and
successful demonstrations. Column (b) shows the learned grounding and its percentage overlap with the ground
truth. Columns (c-e) visualize the grounding learned without counterfactual data, a correct feasibility matrix,
and task prediction loss respectively.
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B HEURISTIC RULES FOR MODE FAMILY GROUNDTRUTH IN ROBOSUITE

We use the following heuristic rules to define the ground truth mode families to evaluate the grounding
learned by GLiDE:

• Can (3 modes): the ground truth modes are reaching for the can (until the end effector makes
contact with the can), transporting the can to the bin, and finally hovering about the target bin.

• Lift (3 modes): the ground truth modes are reaching for the cube (until the end effector makes
contact with the cube), lifting the cube off the table, and finally moving to a certain height
above the table.

• Square (4 modes): the ground truth modes are reaching for the nut (until the end effector makes
contact with the nut), transporting the nut to the peg, aligning the nut above the peg, and finally
lowering the nut into the assembled position.

We assess the predicted and ground truth mode (based on the heuristics) for each sample in the
robosuite demonstrations to compute accuracy (i.e., the percentage of samples where the predicted
and ground-truth modes are the same). Fig. 9 shows the visualization of the mode segmentation from
GLiDE, compared to the ground truth on the can placing task. Our model faithfully identifies all the
modes and yields a high consistency with the modes defined by human-crafted rules.

Figure 9: Comparison on the robosuite can task between our method’s segmented modes and the ground truth
modes. Generally, our system is able to accurately recover mode boundaries.

C PROMPT ENGINEERING FOR ROBOSUITE TASKS

C.1 PROMPT EXAMPLE

14
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You are an expert in generating robot action plans and features.

Given a language description of a task, such as "clean the plate in a sink," you should first generate an
abstract plan for the task. Put them in <plan></plan>. The plan is a list of steps. You should ignore
object finding or localization actions. For example,

<plan>
steps = [{’id’: 1, ’desc’: ’Reach the plate’},
{’id’: 2, ’desc’: ’Close gripper to grasp the plate’},
{’id’: 3, ’desc’: ’Move to the sink’},
{’id’: 4, ’desc’: ’Turn on the faucet’}]

</plan>

Next, you should generate a feasibility matrix between all the steps. Put them in <feasibility></feasibility>
<feasibility>
feasibility = {
(1, 2): True, # after reaching the plate, we can directly close the gripper
(1, 3): False, # after reaching the plate, we can’t directly move to the sink
(1, 4): False, # after reaching the plate, we can’t directly turn on the faucet
(2, 3): True, # after closing the gripper, we can directly move to the sink
(2, 4): False, # after closing the gripper, we can’t directly turn on the faucet
(3, 4): True, # after moving to the sink, we can’t directly turn on the faucet

}
</feasibility>

The user will also give you a list of available features, such as robot poses, object poses. An example is the
following:

<available_features>
avaiable_features = [’plate_pos’, ’plate_quat’, ’plate_to_robot0_eef_pos’, ’plate_to_robot0_eef_quat’, ’

sink_pos’, ’sink_quat’, ’sink_to_robot0_eef_pos’, ’sink_to_robot0_eef_quat’, ’faucet_pos’, ’faucet_quat
’, ’faucet_to_robot0_eef_pos’, ’faucet_to_robot0_eef_quat’, ’robot0_eef_pos’, ’robot0_eef_quat’, ’
gripper_state’]

</available_features>
We will use the following convention: XXX_pos and XXX_quat denote the pose of the object. XXX_to_robot_eef

denotes the relative pose between the object and the robot end-effector.

You should select a subset of features. Such as:
<selected_features>
features = [ ’plate_to_robot0_eef_pos’, ’plate_to_robot0_eef_quat’, ’sink_to_robot0_eef_pos’, ’

sink_to_robot0_eef_quat’, ’faucet_to_robot0_eef_pos’, ’faucet_to_robot0_eef_quat’ ,
’ ’gripper_state’’]
</selected_features>

For each step, you also need to generate a "goal" pose, which is either an absolute pose of the robot or a
relative pose between the robot and another object. In this case,

<goal>
goals = [
{’id’: ’1’, ’feature’: ’plate_to_robot0_eef_pos’},
{’id’: ’2’, ’feature’: ’plate_to_robot0_eef_pos’},
{’id’: ’3’, ’feature’: ’sink_to_robot0_eef_pos’},
{’id’: ’4’, ’feature’: ’faucet_to_robot0_eef_pos’},

]
</goal>

C.2 LLM RESPONSE FOR CAN TASK

Task: move the can from tray 1 to tray 2. Both trays are fixed. Available features:
<available_features>
available_features= [’can_pos’, ’can_quat’, ’can_to_robot0_eef_pos’, ’can_to_robot0_eef_quat’, ’robot0_eef_pos

’, ’robot0_eef_quat’, ’gripper_state’]
</available_features>

<plan>
steps = [{’id’: 1, ’desc’: ’Reach the can in tray 1’},
{’id’: 2, ’desc’: ’Close gripper to grasp the can’},
{’id’: 3, ’desc’: ’Move to tray 2’},
{’id’: 4, ’desc’: ’Open gripper to release the can’}]

</plan>

<feasibility>
feasibility = {
(1, 2): True, # after reaching the can in tray 1, we can directly close the gripper
(1, 3): False, # after reaching the can in tray 1, we can’t directly move to tray 2
(1, 4): False, # after reaching the can in tray 1, we can’t directly open the gripper
(2, 3): True, # after closing the gripper, we can directly move to tray 2
(2, 4): True, # after closing the gripper, we can directly open the gripper
(3, 4): False, # after moving to tray 2, we can’t directly open the gripper

}
</feasibility>

<selected_features>
features = [’can_to_robot0_eef_pos’, ’can_to_robot0_eef_quat’, ’robot0_eef_pos’, ’robot0_eef_quat’, ’

gripper_state’]
</selected_features>

<goal>
goals = [
{’id’: ’1’, ’feature’: ’can_to_robot0_eef_pos’},
{’id’: ’2’, ’feature’: ’can_to_robot0_eef_pos’},
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{’id’: ’3’, ’feature’: ’robot0_eef_pos’},
{’id’: ’4’, ’feature’: ’robot0_eef_pos’},

]
</goal>

C.3 LLM RESPONSE FOR LIFTING TASK

Task: lift a block from the table. Available features:
<available_features> available_features= [’block_pos’, ’block_quat’, ’block_to_robot0_eef_pos’, ’

block_to_robot0_eef_quat’, ’robot0_eef_pos’, ’robot0_eef_quat’, ’gripper_state’]
</available_features>

<plan>
steps = [{’id’: 1, ’desc’: ’Move to the block’},

{’id’: 2, ’desc’: ’Close gripper to grasp the block’},
{’id’: 3, ’desc’: ’Lift the block’}]

</plan>

<feasibility>
feasibility = {
(1, 2): True, # after moving to the block, we can directly close the gripper
(1, 3): False, # after moving to the block, we can’t directly lift the block
(2, 3): True, # after closing the gripper, we can directly lift the block

}
</feasibility>

<selected_features>
features = [’block_to_robot0_eef_pos’, ’block_to_robot0_eef_quat’, ’robot0_eef_pos’, ’robot0_eef_quat’, ’

gripper_state’]
</selected_features>

<goal>
goals = [
{’id’: ’1’, ’feature’: ’block_to_robot0_eef_pos’},
{’id’: ’2’, ’feature’: ’block_to_robot0_eef_pos’},
{’id’: ’3’, ’feature’: ’robot0_eef_pos’},

]
</goal>

C.4 LLM RESPONSE FOR SQUARE PEG TASK

Task: insert a nut with a handle to a peg. Available features:
<available_features> available_features= [’nut_pos’, ’nut_quat’, ’nut_to_robot0_eef_pos’, ’

nut_to_robot0_eef_quat’, ’handle_pos’, ’handle_quat’, ’handle_to_robot0_eef_pos’, ’
handle_to_robot0_eef_quat’, ’peg_pos’, ’peg_quat’, ’peg_to_robot0_eef_pos’, ’peg_to_robot0_eef_quat’, ’
robot0_eef_pos’, ’robot0_eef_quat’, ’gripper_state’]

</available_features>

<plan>
steps = [{’id’: 1, ’desc’: ’Reach the nut’},
{’id’: 2, ’desc’: ’Close the gripper to grasp the nut’},
{’id’: 3, ’desc’: ’Move to the peg’},
{’id’: 4, ’desc’: ’Insert the nut into the peg’}]

</plan>

<feasibility>
feasibility = {
(1, 2): True,
(1, 3): False,
(1, 4): False,
(2, 3): True,
(2, 4): False,
(3, 4): True,

}
</feasibility>

<selected_features>
features = [’nut_to_robot0_eef_pos’, ’nut_to_robot0_eef_quat’, ’peg_to_robot0_eef_pos’, ’

peg_to_robot0_eef_quat’, ’gripper_state’]
</selected_features>

<goals>
goals = [
{’id’: ’1’, ’feature’: ’nut_to_robot0_eef_pos’},
{’id’: ’2’, ’feature’: ’nut_to_robot0_eef_pos’},
{’id’: ’3’, ’feature’: ’peg_to_robot0_eef_pos’},
{’id’: ’4’, ’feature’: ’peg_to_robot0_eef_pos’},

]
</goals>
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D ADDITIONAL INFORMATION FOR MARBLE SCOOPING TASK

We prompt LLM to generate a subset of features relevant to predicting task success: X, and Y
locations of the robot end-effector in the robot base frame as well as the wrist camera mask. Due
to a lack of contact sensors, we omit the scooping mode, and prompt the LLM to generate a plan:
Reaching → Transporting → Dropping (assuming scooping is always successful when transitioning
from the reaching mode to the transporting mode. The corresponding feasibility matrix is F 3. In
Fig. 10 (top), we plot demonstrations in X and Y and use the color of the scattered plot to indicate
ground truth modes (reaching is red, transporting is green, and dropping is blue). Examples of logged
spoon masks along these trajectories are shown at the top. At the bottom, we visualize the learned
classifier, which has correctly learned three modes (indicated by three distinct colors) by partitioning
the space according to X and Y locations and the masks. Note that the location of the learned blue
mode matches the dropping bowl location. Figure 11 shows the classifier successfully learns the
threshold function that turns the continuous mask values to the discrete information that differentiates
reaching mode from transporting mode given the same X, Y locations. Note that for the majority of
the wrist camera images we collected, the learned classifier infers the correct ground truth mode.

Figure 10: Visualizing the state representation of the scooping task demonstrations and the learned mode
partitions.

Figure 11: Learned classification over wrist camera images compared to ground truth. The red color indicates
”No Marble” and the green color indicates ”Has Marble”.
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