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Abstract

Recent advancements in natural language pro-001
cessing (NLP) have greatly improved the per-002
formance of language reasoning and generat-003
ing. However, a well known shortcoming of004
language models is that they tend to generate005
information that is untrue, referred to as hal-006
lucinations. In order to help advance the cor-007
rectness of language models, we improve the008
performance and the computational efficiency009
of models trained on classifying claims as true010
or false. We use the FACTKG dataset, which011
is constructed from the DBpedia knowledge012
graph extracted from Wikipedia. We create013
fine-tuned text models and hybrid models us-014
ing graphs and text that significantly outper-015
form the benchmark FACTKG models and all016
other known approaches, both with respect to017
test-set accuracy and training time. The in-018
crease in performance and efficiency stems019
from simplifying the methods for retrieving020
subgraphs, using simple logical retrievals rather021
than fine-tuned language models. Finally, we022
construct prompts to ChatGPT 4o that achieves023
decent performance, but without the need of024
fine-tuning.025

1 Introduction026

The field of NLP has greatly improved with the027

transformer architecture (Vaswani et al., 2017) and028

vastly scaling up model parameters and training029

data (Achiam et al., 2023; Bubeck et al., 2023).030

Large language models (LLMs) trained on a sub-031

stantial part of all internet data have passed bench-032

marks as passing the BAR exam (Katz et al., 2024),033

follow precise and complex coding instructions034

(Bubeck et al., 2023) and perform data analysis035

tasks with the same performance as human experts036

(Cheng et al., 2023). Despite this improvement,037

state of the art language models still struggle with038

basic planning (Bubeck et al., 2023) and frequently039

generates false information, known as hallucina-040

tion (Xu et al., 2024; Huang et al., 2023; Zhang041

Figure 1: An example claim from FACTKG (Kim et al.,
2023). The claim can be verified or refuted based on the
DBpedia KG (Lehmann et al., 2015). This is Figure 1
from Kim et al. (2023).

et al., 2023). In order to mitigate hallucination, we 042

believe it is crucial to be able to classify which 043

information is correct and which is not. Therefore, 044

we dedicate this article to explore models used for 045

fact verification. 046

One way of structurally working with knowledge 047

is with knowledge graphs (KGs). They consist 048

of nodes and edges linked together to represent 049

structural concepts. The DBpedia KG (Lehmann 050

et al., 2015) is a large KG extracted from Wikipedia. 051

Nodes represent entities, such as persons, things 052

or events, and edges represent relations, conveying 053

how entities are related, as shown in Figure 1. For 054

instance, a node can be the company Meyer Werft, 055

and since it is located in the city Papenburg, they 056

are connected with the edge location. We refer to 057

Meyer Werft, location, Papenburg as a knowledge 058

triple. 059

We propose models trained on FACTKG (Kim 060

et al., 2023), a dataset proposed to better utilise 061

knowledge graphs with fact verification (see Fig- 062

ure 1). It consists of 108 000 English claims that 063

are extracted from the DBpedia knowledge graph. 064
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About a third of the claims are manually written,065

while the rest are generated from the written claims066

to be in a colloquial form by a language model.067

The train and validation datasets are equipped with068

relevant subgraphs for each claim, which one can069

use to train subgraph retrieval.070

In order to work with fact verification, we will071

work with three main model architectures:072

• Textual Fine-tuning: Fine-tuning pretrained073

encoder models on text data for claim verifi-074

cation. We use BERT (Devlin et al., 2018)075

by concatenating the claims with subgraphs076

represented as strings.077

• Hybrid Graph-Language Model: Using078

a modification of a question answer graph079

neural network (QA-GNN) (Yasunaga et al.,080

2021), which both uses a pretrained encoder081

model to embed the claim, and a GNN to struc-082

turally process the subgraphs.083

• LLM Prompting: Deploying state-of-the-art084

language models in a few-shot setting, without085

the need for additional finetuning. We use086

ChatGPT 4o (Achiam et al., 2023; Open AI,087

2024) for this setting.088

We selected these three approaches to explore a089

variety of different models used in NLP, and com-090

pare how they perform on fact verification. The091

text-based finetuning, which is a widely used tech-092

nique, serves as a conventional method. The QA-093

GNN architecture is a more specific model for this094

task, that can efficiently process graph data. We095

explore various ways to retrieve relevant subgraphs096

that do not require training of language models, to097

make the QA-GNN train even more efficient. In098

contrast, the LLM prompting displays how gen-099

eral purpose language models can be used for fact100

verification, without the need of further training.101

By utilising efficient subgraph retrieval methods,102

we are able to substantially increase the test-set ac-103

curacy on FACTKG from 77.65% (Kim et al., 2023)104

to 93.49%. To the best of the authors knowledge,105

this is the best performance achieved so far on the106

dataset. Additionally, our models train quicker, tak-107

ing only 1.5-10 hours, compared to the 2-3 days108

spent on the benchmark model from Kim et al.109

(2023), reported by the authors.110

2 Related Work 111

2.1 The FactKG Dataset 112

The FACTKG dataset (Kim et al., 2023) consists of 113

108 000 English claims for fact verification, where 114

the downstream task is to predict whether the claim 115

is true or false. The claims are constructed from 116

the DBpedia KG (Lehmann et al., 2015), which 117

is extracted from Wikipedia and represents how 118

entities are related to each other. 119

The claims are constructed on either of the fol- 120

lowing five reasoning types: 121

• One-hop: To answer a one-hop claim, one 122

only needs to traverse one edge in the KG. 123

In other words, only one knowledge triple is 124

needed to verify the validity of the claim. 125

• Multi-hop: As opposed to one-hop claims, 126

one needs to traverse multiple steps in the KG 127

to verify multi-hop claims. 128

• Conjunction: The claim includes a combina- 129

tion of multiple claims, which are often added 130

together with the word and. 131

• Existence: These claims state that an entity 132

has a relation, but does not specify which en- 133

tity it relates to. 134

• Negation: The claim contains negations, such 135

as not. The generation process varies depend- 136

ing on the reasoning type of the claim. 137

The dataset is split in a train-validation-test set 138

of proportion 8:1:1. The train and validation set 139

includes relevant subgraphs for each claim, but not 140

the test set. All claims include a list of entities 141

present in the claim and the KG. 142

2.2 Question Answer Graph Neural Networks 143

(QA-GNNs) 144

The QA-GNN (Yasunaga et al., 2021) is a hybrid 145

language and GNN model that both uses a pre- 146

trained language model to process the text, and 147

couples it with a GNN reasoning over a subgraph. 148

It is given text and a subgraph as input. The text, 149

consisting of a question and possible answers, is 150

added as a node to the subgraph. The language 151

model embeds the text, and assigns a relevance 152

score to each node in the subgraph. The relevance 153

scores are multiplied with the node features, be- 154

fore being sent into the GNN. The GNN output, 155

text-node and the text embedding are concatenated 156

before being put into the classification layer. 157
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3 Methods158

3.1 Efficient Subgraph Retrieval159

We experiment with different ways of retrieving160

a relevant subgraph for each claim, focusing on161

computational efficiency. Each datapoint in the162

FACTKG dataset consists of a claim and a list of163

entities that appear both in the claim and the KG.164

Since the part of DBpedia used in FactKG is fairly165

large (1.53GB), it is necessary to only use a small166

subgraph of it as input to the models. The bench-167

mark model from Kim et al. (2023) uses two lan-168

guage models to predict the relevant edges and the169

depth of the graph. We wish to simplify this step in170

order to reduce the model complexity, and propose171

non-trainable methods for subgraph retrieval.172

We experiment with the following methods (ex-173

amples can be found in Figure 2):174

• Direct: Only includes knowledge triples175

where both nodes are present in the entity list.176

• Contextualized: First, include all direct sub-177

graphs. Additionally, lemmatize the words in178

the claim and check if the nodes in the entity179

list have any relations corresponding to the180

lemmatized words in the claim. Include all181

knowledge triples where at least one node is182

in the entity list and the relation is found in183

the claim.184

• Single-step: Includes every knowledge triple185

one can be traversed in one step from a node186

in the entity list. In other words, include every187

knowledge triple that contains at least one188

node in the entity list.189

3.2 Finetuning BERT190

We use BERT (Devlin et al., 2018) as our pretrained191

language model. We first train a baseline model192

using only the claims and no subgraphs, and then193

with all of the different methods for retrieving sub-194

graphs. The subgraphs are converted to strings,195

where each knowledge triple is represented with196

square brackets, and the name of the nodes and197

edges are the same as they appear in DBpedia. The198

order of the knowledge triples is determined by the199

order of the list of entities in the FactKG dataset200

and the order of the edges in DBpedia. The sub-201

graphs are concatenated after the claims and a “ | ”202

separation token.203

Figure 2: Examples of the different subgraphs ex-
plored in this article. Boxes and bold letters represent
entities, while arrows and italic letters represent rela-
tions. This claim is meant for illustrative purposes and
is not present in the FACTKG dataset.

3.3 QA-GNN Architecture 204

In order to adapt the QA-GNN to the fact verifica- 205

tion setting, we perform some slight modifications. 206

Because the possible answers are always “true” or 207

“false”, we embed only the claims, instead of the 208

question and answer combination. Additionally, 209

we do not connect the embedded question or claim 210

to the subgraph. 211

We use a pre-trained BERT (Devlin et al., 2018) 212

model as the language model to embed and calcu- 213

late the relevance scores. In order to reduce the 214

complexity of the model, we use a frozen BERT 215

to calculate the embeddings for the nodes and the 216

edges in the graph. This way, all of the embed- 217

dings in the graph can be pre-calculated. We use 218

the last hidden layer representation of the CLS to- 219

ken, which is of length 768. The BERT that calcu- 220

lates the relevance scores and the embedding of the 221

claim is not frozen. The relevance scores are com- 222

puted as the cosine similarity between the claim 223

embedding and the embedding of the text in the 224

nodes. 225

We use a graph attention network (Veličković 226
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et al., 2017) for our GNN. Since the subgraphs are227

quite shallow, we only use two layers in the GNN,228

and apply batch norm (Ioffe and Szegedy, 2015).229

Each layer has 256 features, which is mean-pooled230

and concatenated with the BERT embedding and231

sent into the classification layer. We add dropout232

(Srivastava et al., 2014) to the GNN layers and the233

classification layer.234

3.4 ChatGPT Prompting235

We construct a prompt for ChatGPT 4o in order to236

answer a list of claims as accurately as possible.237

This is done by creating an initial prompt and vali-238

dating the results on 100 randomly drawn claims239

from the validation set, and by trying different con-240

figurations of the prompt until we do not get a241

better validation set accuracy. We then use the best242

prompt with 100 randomly drawn unseen test-set243

questions, and attempt to ask 25, 50 and 100 claims244

at a time, to see if the amount of claims at a time245

influences the performance. All the experiments246

are run three times.247

Since we do not have access to vast enough com-248

putational resources to run an LLM, this analysis249

is limited by only using 100 datapoints from the250

test set. In order to get access to a state-of-the-art251

LLM, we used the ChatGPT website with a “Chat-252

GPT Plus” subscription to perform the prompting.253

This model is not seeded, so the exact answers are254

not reproducible, but every prompt and answer are255

available in the software provided with this article.256

We used the ChatGPT 4o model 30th of May 2024.257

Every prompt was performed in the “temporary258

chat” setting, so the model did not have access to259

the history of previous experiments.260

Due to the inability to use the entire test set and261

the lack of reproducibility, we do not directly com-262

pare this experiment to the other models. However,263

we still believe it serves as a valuable benchmark.264

Recently, the performance of LLMs has rapidly im-265

proved, which suggests that their applications will266

continue to broaden. Additionally, this approach267

is not fine-tuned, and may work as an interesting268

benchmark that can contextualise the results of the269

other models.270

3.5 Benchmark Models271

We will compare the results against the best bench-272

mark models from (Kim et al., 2023) and the best273

performing models known to the authors, found in274

(Gautam, 2024). These comparisons include both275

baselines that use only the claims and models that276

also incorporate subgraph evidence. 277

Claim-Only Models: 278

• FactKG BERT Baseline: The baseline model 279

from (Kim et al., 2023) uses a fine-tuned 280

BERT, training only on the claims. 281

• RoBERTa Baseline: Similarly to above, the 282

baseline from (Gautam, 2024) uses a fine- 283

tuned language model with claims only, but 284

uses RoBERTa (Liu et al., 2019) as the base 285

model. 286

Models Utilising Subgraphs: 287

• GEAR-Based Model: The benchmark model 288

from (Kim et al., 2023) is inspired by GEAR 289

(Zhou et al., 2019), but has been adapted to 290

handle graph-based evidence. It uses two fine- 291

tuned language models to retrieve the sub- 292

graphs. One of them predicts relevant edges, 293

the other predicts the depth of the subgraph. 294

• FactGenius: This model (Gautam, 2024) 295

combines zero-shot LLM prompting with 296

fuzzy text matching on the KG. The LLM 297

filters relevant parts of the subgraphs, which 298

are then refined using fuzzy text matching. Fi- 299

nally, a fine-tuned RoBERTa is used to make 300

the final prediction. 301

3.6 Further Details 302

Due to computational constraints, we tuned the hy- 303

perparameters one by one, instead of performing a 304

grid search. The training was performed on a RTX 305

2080Ti GPU with 11GB vRAM. The BERT model 306

has 109.483.778 parameters, which all were fine- 307

tuned. The QA-GNN used a total of 109.746.945 308

parameters. The FACTKG dataset comes with a 309

lighter version of DBpedia that only contains rele- 310

vant entries, which was used for this paper. Further 311

details can be found in Appendix A. 312

4 Results: Improved Performance and 313

Efficiency 314

The test results for our best model configurations 315

and the benchmark models can be found in Table 1. 316

The best performing model is the fine-tuned BERT, 317

followed by the QA-GNN and the benchmark mod- 318

els. The fine-tuned BERT without any subgraphs 319

were able to achieve higher performance than the 320

one from (Kim et al., 2023). 321
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Input Type Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only
FACTKG BERT Baseline 69.64 63.31 61.84 70.06 63.62 65.20

FactGenius RoBERTa Baseline 71 72 52 74 54 68
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

With Subgraphs
FACTKG GEAR Benchmark 83.23 77.68 81.61 68.84 79.41 77.65

FactGenius RoBERTa-two-stage 89 85 95 75 87 85
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49

Table 1: Test-set accuracy for the best models from this article and the best benchmark models. The FACTKG
models are from (Kim et al., 2023), while the FactGenius models are from (Gautam, 2024). The fine-tuned BERT
model performed the best, while the QA-GNN was the computationally most efficient model.

Additionally, our models were much faster to322

train. While the GEAR model used 2-3 days to323

train on an RTX3090 GPU (reported by the authors324

by email), our QA-GNN only used 1.5 hours. The325

training time of our fine-tuned BERT model was326

greatly influenced by the size of the subgraphs we327

used. With no subgraphs, it took about 2 hours to328

train, while with the one-hop subgraph it took 10329

hours. FactGenius was reported to use substantially330

more computational resources, running the LLM331

inference on a A100 GPU with 80GB vRAM for 8332

hours.333

4.1 Successful Subgraphs Retrievals334

We now look at the different configurations for335

the subgraph retrievals, which greatly influenced336

the performance of the models. Since the direct337

and contextual approach only includes subgraphs338

if a certain requirement is fulfilled, it will result339

in some of the claims having empty subgraphs.340

In the training and validation set, 49.0% of the341

graphs were non-empty for the direct approach, and342

62.5% were non-empty for the contextual approach.343

The single-step method resulted in vastly bigger344

subgraphs.345

While the QA-GNN could handle the big346

subgraphs efficiently, the fine-tuned BERT was347

severely slowed down when the size of the sub-348

graphs got bigger. Therefore, we substituted any349

empty subgraphs with the single-step subgraph350

when using QA-GNN, but kept the empty graphs351

when using fine-tuned BERT.352

The results can be found in Table 2. We see a353

clear improvement in BERT when using the direct354

subgraphs over none, a small improvement when355

using the contextual subgraphs, and a big improve-356

ment when using the single-step method. The same357

is true for the QA-GNN, but the differences in per-358

formance are smaller.359

Since we used non-trainable subgraph retrieval360

methods and a frozen BERT for embedding the 361

nodes and edges in the subgraphs, we performed 362

this processing before training the models. During 363

training, the models used a lookup table to get the 364

subgraphs and the word embeddings, which signif- 365

icantly decreased the training time. The retrieval 366

of all the subgraphs took about 15 minutes, and the 367

embedding of all the words appearing in them took 368

about 1 hour. We also tried training a QA-GNN 369

without frozen embeddings, but it ran so slow that 370

we were not able to carry out the training with our 371

available computational resources. 372

4.2 ChatGPT Works Better when Asking for 373

Explanations 374

The results for the ChatGPT prompting can be 375

found in Table 3. The accuracy is substantially 376

lower than from our best models, but better than 377

the baselines using only the claims. The accuracy 378

is fairly consistent over the three runs, and we do 379

not see a big difference between the amount of 380

questions asked at a time. 381

We started with an initial prompt asking for just 382

the truth values for a list of claims, and updated 383

it to also include some training examples and to 384

ask for explanations. Several configurations of the 385

prompt were tested, and it was also improved based 386

on feedback from ChatGPT. 387

We saw the biggest improvement when we asked 388

for a short explanation of the answers, instead of 389

just the truth values. Without asking for explana- 390

tions, the amount of answers were often longer or 391

shorter than the amount of questions, but this never 392

happened when explanations were included. We 393

added numbers to the questions to further help with 394

this issue. We also saw a slight improvement by for- 395

mulating the prompt with bullet point lists and by 396

including some example inputs and outputs from 397

the training set. The final prompt can be found in 398

Figure 3. 399
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Model One-hop Conjunction Existence Multi-hop Negation Total
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

BERT (direct) 80.24 83.30 59.05 77.62 74.58 79.64
BERT (contextual) 81.20 84.45 61.05 77.04 77.40 80.25
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49
QA-GNN (direct) 74.60 74.01 58.97 76.41 74.12 75.01

QA-GNN (contextual) 76.58 69.94 84.68 74.58 80.75 76.12
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

Table 2: Test-set accuracy for different subgraph retrieval methods on FACTKG. The direct approach only
includes knowledge triples where both nodes appear in the claim, the contextual also includes edges appearing
in the claim, and the single-step includes all knowledge triples where at least one node appear in the claim. The
QA-GNN models use the single-step subgraph if the direct or contextual is empty, while the BERT does not.

Model Accuracy (mean ± std)
ChatGPT 25 questions 73.67 ± 0.5
ChatGPT 50 questions 76.33 ± 3.3
ChatGPT 100 questions 73.00 ± 1.4

Table 3: Test-set accuracy for different configurations
of ChatGPT prompting. The metrics are averaged over
three runs. The prompts included 25, 50 or 100 claims
at a time, but the same claims were used in all of the
configurations.

5 Discussion400

We were able to train better and more efficient mod-401

els by simplifying the subgraph retrieval methods,402

both by using a fine-tuned BERT and a slightly403

modified QA-GNN model. While the QA-GNN404

models trained the fastest, the fine-tuned BERT405

clearly performed the best, significantly outper-406

forming the benchmark models.407

All of the models performed better the bigger the408

subgraphs were. This suggests that the model archi-409

tectures are able to utilise the relevant parts of the410

subgraphs, without needing an advanced subgraph411

retrieval step. This is emphasised by our fine-tuned412

BERT model achieving a 93.49% test set accu-413

racy by only using the single-step subgraphs, while414

the GEAR model from (Kim et al., 2023), which415

trained two language models to perform graph re-416

trieval, achieved a 77.65% test-set accuracy.417

One possible limitation of our subgraph retrial418

methods is that they never include more than one419

step away from an entity node, while the trained420

approach from Kim et al. (2023) is dynamic and421

may include more. This might make the hypothe-422

sis that the simple subgraph retrieval methods will423

perform worse on multi-hop claims than the dynam-424

ically trained, however, we see the exact opposite425

behaviour. The best BERT and QA-GNN models426

score 80.32% and 74.72% at the multi-hop claims 427

respectively, while the dynamic benchmark model 428

scores 68.84%, even lower than the models not us- 429

ing the subgraphs at all. We do however see that 430

the best performing BERT model clearly performs 431

the worst on the multi-hop claims compared to the 432

other claim types, indicating that even bigger sub- 433

graphs might be beneficial. 434

While the sample size for the ChatGPT metrics 435

were small, it does indicate that non-fine-tuned 436

LLMs can achieve adequate few-shot performance. 437

The performance does not seem to be substan- 438

tially compromised when the amount of questions 439

prompted increases, so with a bigger access to com- 440

putational resources, it might be possible to prompt 441

the full test-set at once. The removal of fine-tuning 442

greatly improves the ease of use if one only needs 443

to verify a few claims. Therefore, despite not per- 444

forming as well as the trained model, this approach 445

could be useful if the performance of LLMs contin- 446

ues to improve. 447

6 Conclusion and Future Work 448

Our results show that with simple, yet efficient 449

methods for subgraph retrieval, our models were 450

able to improve with respect to both performance 451

and efficiency. The fine-tuned BERT model with 452

single-step subgraphs clearly achieves the best per- 453

formance, while the QA-GNN models are more 454

efficient to train. 455

This indicates that complex models can work 456

well with simple subgraph retrieval methods. Since 457

the single-step subgraphs mostly contain informa- 458

tion not relevant for the claims, the model is itself 459

able to filter away irrelevant information, and com- 460

plex subgraph retrieval methods may hence not be 461

necessary for accurate fact verification. Addition- 462

ally, since the best performing model performed 463
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Task:
Determine the truth value (True or False) of the following claims based on information verifiable from Wikipedia, as represented
in the DBpedia knowledge graph. Provide your answers without using real-time internet searches or code analysis, relying
solely on your pre-trained knowledge.
Instructions:

• You will evaluate the following claims, presented one per line.

• Base your answers solely on your knowledge as of your last training cut-off.

• Provide answers in Python list syntax for easy copying.

• Respond with True for verifiable claims, and False otherwise.

• Include a brief explanation for each answer, explaining your reasoning based on your pre-training.

• If the claim is vague or lacks specific information, please make an educated guess on whether it is likely to be True or
False.

Output Format: Format your responses as a list in Python. Each entry should be a tuple, formatted as (claim number, answer,
explanation).
Example Claims:
1. The Atatürk Monument is located in Izmir, Turkey, where the capital is Ankara.
2. Yes, Eamonn Butler’s alma mater is the University of Texas System!
3. I have heard 300 North LaSalle was completed in 2009.
4. The band Clinton Gregory created an album in the rock style. ...
Example output:
[

(1, True, "The Atatürk Monument is indeed located in Izmir, and the capital of Turkey is Ankara."),
(2, False, "Eamonn Butler did not attend the University of Texas System; he is a British author and economist whose

educational background does not include this institution."),
(3, True, "300 North LaSalle in Chicago was indeed completed in 2009."),
(4, False, "Clinton Gregory is primarily known as a country music artist, not rock."),

...
]
Here are the actual claims you should answer:

Figure 3: Final prompt used to get truth values from ChatGPT 4o. The actual questions are not included, but
were in the format of the Example Claims. The Example Claims are from the training set, and the Example
Output is copy pasted from an actual ChatGPT answer.

the poorest with multi-hop claims, future research464

could explore simple subgraphs retrieval methods465

allowing for bigger depths than one. Future work466

should also be directed towards running similar467

experiments on other datasets.468

We also encourage researchers that have access469

to bigger computational resources to further ex-470

plore the performance of LLMs for fact verification.471

A core limitation of our ChatGPT prompting was472

the inability to use the full test-set, and we consider473

this crucial for further development. We also think474

it would be especially interesting to make LLM and475

KG hybrid models. Since our results indicate that476

simple single-step subgraph retrievals outperform477

more complex methods, a promising path of future478

research would be to simply use both the claims479

and the single-step subgraphs as input to the LLM.480

If possible, the LLM could also be fine-tuned on481

the dataset. We also encourage future work to cre-482

ate fully reproducible results with LLMs, which483

we were unable to do. 484

7 Limitations 485

Our experiments with ChatGPT were done on a 486

small sample of test questions, with a model that 487

was not possible to seed, and therefore is not repro- 488

ducible. Due to the small sample size, we are not 489

able to directly compare the performance to other 490

approaches. The lack of reproducibility, which 491

stems from the state-of-the-art model that was avail- 492

able to the author is not fully publicly available, 493

makes it impossible for other researchers to com- 494

pletely verify our findings. Finally, the process for 495

creating prompts were not standardised, we sim- 496

ply tried different configurations based on our own 497

experience with using LLMs until we could not in- 498

crease the validation accuracy further. Due to these 499

limitations, one should therefore be very hesitant 500

to make any conclusions based on the experiments 501

we performed with ChatGPT. 502
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Because our intention was to compare different503

language models’ abilities of fact verification with504

knowledge graphs on the FACTKG dataset, we did505

not conduct any experiments on other datasets. It is506

possible that our results will not be consistent with507

other datasets.508

Additionally, our selection of models and hy-509

perparameter settings could be more diverse. Due510

to computational constraints, we did not perform511

a grid search for hyperparameters, but tuned hy-512

perparameters one by one. Which parameters we513

searched for were not decided in advance. A pre-514

defined grid search might lead to a fairer and more515

reproducible approach.516
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Model Learning Rate Batch Size Best Epoch
BERT (no subgraphs) 1e-4 32 6

BERT (direct) 1e-4 32 7
BERT (contextual) 5e-5 8 7
BERT (single-step) 5e-5 4 7
QA-GNN (direct) 1e-4 128 8

QA-GNN (contextual) 5e-5 64 17
QA-GNN (single-step) 1e-5 128 20

Table 4: Final hyperparameters for the different mod-
els. The direct QA-GNN model used GNN and classifier
dropout rates of 0.3 and 0.3, while both the two other
QA-GNN used 0.1 and 0.5.

A Hyperparameter Details633

We used an AdamW optimizer (Loshchilov and634

Hutter, 2017) and a linear learning rate scheduler635

with 50 warm up steps. We used the model from636

the epoch with lowest accuracy loss. The hyperpa-637

rameters were tuned in a line search, first testing638

different learning rates, and testing all the other639

hyperparameters with the best learning rate. We640

searched for learning rates in {1e− 3, 5e− 4, 1e−641

4, 5e − 5, 1e − 5} for all models. We initially set642

the batch size to 32, except for the BERT models643

with large subgraphs, which were set to 4 due to644

memory constraints. After finding the learning rate,645

we tried batch sizes in {32, 64, 128, 256}. For the646

QA-GNN model, we initially set the GNN dropout647

and the classifier dropout to 0.3, and tried values 648

in {0, 0.1, 0.3, 0.5, 0.6}. We also tried to freeze 649

some of the layers in the base model, and to use a 650

RoBERTa model instead of BERT, but neither of 651

these approaches approved the validation loss. 652

The final hyperparameters can be found in Ta- 653

ble A. 654

B Scientific Artifacts 655

We conducted the experiments using many python 656

libraries, including PyTorch version 2.0.1 (Paszke 657

et al., 2019) with CUDA version 11.7, Hugging- 658

Face Transformers (Wolf et al., 2020), NumPy 659

(Harris et al., 2020), SpaCy (Honnibal and Montani, 660

2017) and NLTK (Bird et al., 2009). We will make 661

all the code used for this paper publicly available. 662
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