Fact or Fiction? Exploring Diverse Approaches to Fact Verification with
Language Models

Anonymous ACL submission

Abstract

Recent advancements in natural language pro-
cessing (NLP) have greatly improved the per-
formance of language reasoning and generat-
ing. However, a well known shortcoming of
language models is that they tend to generate
information that is untrue, referred to as hal-
lucinations. In order to help advance the cor-
rectness of language models, we improve the
performance and the computational efficiency
of models trained on classifying claims as true
or false. We use the FACTKG dataset, which
is constructed from the DBpedia knowledge
graph extracted from Wikipedia. We create
fine-tuned text models and hybrid models us-
ing graphs and text that significantly outper-
form the benchmark FACTKG models and all
other known approaches, both with respect to
test-set accuracy and training time. The in-
crease in performance and efficiency stems
from simplifying the methods for retrieving
subgraphs, using simple logical retrievals rather
than fine-tuned language models. Finally, we
construct prompts to ChatGPT 4o that achieves
decent performance, but without the need of
fine-tuning.

1 Introduction

The field of NLP has greatly improved with the
transformer architecture (Vaswani et al., 2017) and
vastly scaling up model parameters and training
data (Achiam et al., 2023; Bubeck et al., 2023).
Large language models (LLMs) trained on a sub-
stantial part of all internet data have passed bench-
marks as passing the BAR exam (Katz et al., 2024),
follow precise and complex coding instructions
(Bubeck et al., 2023) and perform data analysis
tasks with the same performance as human experts
(Cheng et al., 2023). Despite this improvement,
state of the art language models still struggle with
basic planning (Bubeck et al., 2023) and frequently
generates false information, known as hallucina-
tion (Xu et al., 2024; Huang et al., 2023; Zhang

Claim: Yeah! Actually AIDA Cruise line operated a
ship which was built by a company in Papenburg!

Evidence: -
DBpedia
operator builder location
< P e e
AIDA AIDA Meyer Papen-
Cruises Stella Werft burg

Label: SUPPORTED

Figure 1: An example claim from FACTKG (Kim et al.,
2023). The claim can be verified or refuted based on the
DBpedia KG (Lehmann et al., 2015). This is Figure 1
from Kim et al. (2023).

et al., 2023). In order to mitigate hallucination, we
believe it is crucial to be able to classify which
information is correct and which is not. Therefore,
we dedicate this article to explore models used for
fact verification.

One way of structurally working with knowledge
is with knowledge graphs (KGs). They consist
of nodes and edges linked together to represent
structural concepts. The DBpedia KG (Lehmann
etal.,2015) is a large KG extracted from Wikipedia.
Nodes represent entities, such as persons, things
or events, and edges represent relations, conveying
how entities are related, as shown in Figure 1. For
instance, a node can be the company Meyer Werft,
and since it is located in the city Papenburg, they
are connected with the edge location. We refer to
Meyer Werft, location, Papenburg as a knowledge
triple.

We propose models trained on FACTKG (Kim
et al., 2023), a dataset proposed to better utilise
knowledge graphs with fact verification (see Fig-
ure 1). It consists of 108 000 English claims that
are extracted from the DBpedia knowledge graph.

About a third of the claims are manually written,
while the rest are generated from the written claims
to be in a colloquial form by a language model.
The train and validation datasets are equipped with
relevant subgraphs for each claim, which one can
use to train subgraph retrieval.

In order to work with fact verification, we will
work with three main model architectures:

* Textual Fine-tuning: Fine-tuning pretrained
encoder models on text data for claim verifi-
cation. We use BERT (Devlin et al., 2018)
by concatenating the claims with subgraphs
represented as strings.

* Hybrid Graph-Language Model: Using
a modification of a question answer graph
neural network (QA-GNN) (Yasunaga et al.,
2021), which both uses a pretrained encoder
model to embed the claim, and a GNN to struc-
turally process the subgraphs.

* LLM Prompting: Deploying state-of-the-art
language models in a few-shot setting, without
the need for additional finetuning. We use
ChatGPT 4o (Achiam et al., 2023; Open Al,
2024) for this setting.

We selected these three approaches to explore a
variety of different models used in NLP, and com-
pare how they perform on fact verification. The
text-based finetuning, which is a widely used tech-
nique, serves as a conventional method. The QA-
GNN architecture is a more specific model for this
task, that can efficiently process graph data. We
explore various ways to retrieve relevant subgraphs
that do not require training of language models, to
make the QA-GNN train even more efficient. In
contrast, the LLM prompting displays how gen-
eral purpose language models can be used for fact
verification, without the need of further training.

By utilising efficient subgraph retrieval methods,
we are able to substantially increase the test-set ac-
curacy on FACTKG from 77.65% (Kim et al., 2023)
t0 93.49%. To the best of the authors knowledge,
this is the best performance achieved so far on the
dataset. Additionally, our models train quicker, tak-
ing only 1.5-10 hours, compared to the 2-3 days
spent on the benchmark model from Kim et al.
(2023), reported by the authors.

2 Related Work

2.1 The FactKG Dataset

The FACTKG dataset (Kim et al., 2023) consists of
108 000 English claims for fact verification, where
the downstream task is to predict whether the claim
is true or false. The claims are constructed from
the DBpedia KG (Lehmann et al., 2015), which
is extracted from Wikipedia and represents how
entities are related to each other.

The claims are constructed on either of the fol-
lowing five reasoning types:

* One-hop: To answer a one-hop claim, one
only needs to traverse one edge in the KG.
In other words, only one knowledge triple is
needed to verify the validity of the claim.

* Multi-hop: As opposed to one-hop claims,
one needs to traverse multiple steps in the KG
to verify multi-hop claims.

* Conjunction: The claim includes a combina-
tion of multiple claims, which are often added
together with the word and.

» Existence: These claims state that an entity
has a relation, but does not specify which en-
tity it relates to.

* Negation: The claim contains negations, such
as not. The generation process varies depend-
ing on the reasoning type of the claim.

The dataset is split in a train-validation-test set
of proportion 8:1:1. The train and validation set
includes relevant subgraphs for each claim, but not
the test set. All claims include a list of entities
present in the claim and the KG.

2.2 Question Answer Graph Neural Networks
(QA-GNNs)

The QA-GNN (Yasunaga et al., 2021) is a hybrid
language and GNN model that both uses a pre-
trained language model to process the text, and
couples it with a GNN reasoning over a subgraph.
It is given text and a subgraph as input. The text,
consisting of a question and possible answers, is
added as a node to the subgraph. The language
model embeds the text, and assigns a relevance
score to each node in the subgraph. The relevance
scores are multiplied with the node features, be-
fore being sent into the GNN. The GNN output,
text-node and the text embedding are concatenated
before being put into the classification layer.

3 Methods

3.1 Efficient Subgraph Retrieval

We experiment with different ways of retrieving
a relevant subgraph for each claim, focusing on
computational efficiency. Each datapoint in the
FACTKG dataset consists of a claim and a list of
entities that appear both in the claim and the KG.
Since the part of DBpedia used in FactKG is fairly
large (1.53GB), it is necessary to only use a small
subgraph of it as input to the models. The bench-
mark model from Kim et al. (2023) uses two lan-
guage models to predict the relevant edges and the
depth of the graph. We wish to simplify this step in
order to reduce the model complexity, and propose
non-trainable methods for subgraph retrieval.

We experiment with the following methods (ex-
amples can be found in Figure 2):

* Direct: Only includes knowledge triples
where both nodes are present in the entity list.

¢ Contextualized: First, include all direct sub-
graphs. Additionally, lemmatize the words in
the claim and check if the nodes in the entity
list have any relations corresponding to the
lemmatized words in the claim. Include all
knowledge triples where at least one node is
in the entity list and the relation is found in
the claim.

* Single-step: Includes every knowledge triple
one can be traversed in one step from a node
in the entity list. In other words, include every
knowledge triple that contains at least one
node in the entity list.

3.2 Finetuning BERT

We use BERT (Devlin et al., 2018) as our pretrained
language model. We first train a baseline model
using only the claims and no subgraphs, and then
with all of the different methods for retrieving sub-
graphs. The subgraphs are converted to strings,
where each knowledge triple is represented with
square brackets, and the name of the nodes and
edges are the same as they appear in DBpedia. The
order of the knowledge triples is determined by the
order of the list of entities in the FactKG dataset
and the order of the edges in DBpedia. The sub-
graphs are concatenated after the claims and a “|”
separation token.

Claim: "The University of Oslo is in
Norway, and has a CEO."

Direct Subgraph:
Located i
University of Oslo ocatedin Norway
Contextual Subgraph:
Located il
University of Oslo ocated in Norway
EO of
I CEOo Svein Stolen
Single-step Subgraph:
Department of
Mathematics (UiO) . Oslo
THas Department \ lCapital of
Located i
University of Oslo ocaledin Norway
CEO of
4 ° Svein Stolen

Figure 2: Examples of the different subgraphs ex-
plored in this article. Boxes and bold letters represent
entities, while arrows and italic letters represent rela-
tions. This claim is meant for illustrative purposes and
is not present in the FACTKG dataset.

3.3 QA-GNN Architecture

In order to adapt the QA-GNN to the fact verifica-
tion setting, we perform some slight modifications.
Because the possible answers are always “true” or
“false”, we embed only the claims, instead of the
question and answer combination. Additionally,
we do not connect the embedded question or claim
to the subgraph.

We use a pre-trained BERT (Devlin et al., 2018)
model as the language model to embed and calcu-
late the relevance scores. In order to reduce the
complexity of the model, we use a frozen BERT
to calculate the embeddings for the nodes and the
edges in the graph. This way, all of the embed-
dings in the graph can be pre-calculated. We use
the last hidden layer representation of the CLS to-
ken, which is of length 768. The BERT that calcu-
lates the relevance scores and the embedding of the
claim is not frozen. The relevance scores are com-
puted as the cosine similarity between the claim
embedding and the embedding of the text in the
nodes.

We use a graph attention network (Velickovic¢

et al., 2017) for our GNN. Since the subgraphs are
quite shallow, we only use two layers in the GNN,
and apply batch norm (Ioffe and Szegedy, 2015).
Each layer has 256 features, which is mean-pooled
and concatenated with the BERT embedding and
sent into the classification layer. We add dropout
(Srivastava et al., 2014) to the GNN layers and the
classification layer.

3.4 ChatGPT Prompting

We construct a prompt for ChatGPT 4o in order to
answer a list of claims as accurately as possible.
This is done by creating an initial prompt and vali-
dating the results on 100 randomly drawn claims
from the validation set, and by trying different con-
figurations of the prompt until we do not get a
better validation set accuracy. We then use the best
prompt with 100 randomly drawn unseen test-set
questions, and attempt to ask 25, 50 and 100 claims
at a time, to see if the amount of claims at a time
influences the performance. All the experiments
are run three times.

Since we do not have access to vast enough com-
putational resources to run an LLM, this analysis
is limited by only using 100 datapoints from the
test set. In order to get access to a state-of-the-art
LLM, we used the ChatGPT website with a “Chat-
GPT Plus” subscription to perform the prompting.
This model is not seeded, so the exact answers are
not reproducible, but every prompt and answer are
available in the software provided with this article.
We used the ChatGPT 40 model 30th of May 2024.
Every prompt was performed in the “temporary
chat” setting, so the model did not have access to
the history of previous experiments.

Due to the inability to use the entire test set and
the lack of reproducibility, we do not directly com-
pare this experiment to the other models. However,
we still believe it serves as a valuable benchmark.
Recently, the performance of LLMs has rapidly im-
proved, which suggests that their applications will
continue to broaden. Additionally, this approach
is not fine-tuned, and may work as an interesting
benchmark that can contextualise the results of the
other models.

3.5 Benchmark Models

We will compare the results against the best bench-
mark models from (Kim et al., 2023) and the best
performing models known to the authors, found in
(Gautam, 2024). These comparisons include both
baselines that use only the claims and models that

also incorporate subgraph evidence.
Claim-Only Models:

* FactKG BERT Baseline: The baseline model
from (Kim et al., 2023) uses a fine-tuned
BERT, training only on the claims.

* RoBERTa Baseline: Similarly to above, the
baseline from (Gautam, 2024) uses a fine-
tuned language model with claims only, but
uses RoBERTa (Liu et al., 2019) as the base
model.

Models Utilising Subgraphs:

* GEAR-Based Model: The benchmark model
from (Kim et al., 2023) is inspired by GEAR
(Zhou et al., 2019), but has been adapted to
handle graph-based evidence. It uses two fine-
tuned language models to retrieve the sub-
graphs. One of them predicts relevant edges,
the other predicts the depth of the subgraph.

* FactGenius: This model (Gautam, 2024)
combines zero-shot LLM prompting with
fuzzy text matching on the KG. The LLM
filters relevant parts of the subgraphs, which
are then refined using fuzzy text matching. Fi-
nally, a fine-tuned RoOBERTza is used to make
the final prediction.

3.6 Further Details

Due to computational constraints, we tuned the hy-
perparameters one by one, instead of performing a
grid search. The training was performed on a RTX
2080Ti GPU with 11GB vRAM. The BERT model
has 109.483.778 parameters, which all were fine-
tuned. The QA-GNN used a total of 109.746.945
parameters. The FACTKG dataset comes with a
lighter version of DBpedia that only contains rele-
vant entries, which was used for this paper. Further
details can be found in Appendix A.

4 Results: Improved Performance and
Efficiency

The test results for our best model configurations
and the benchmark models can be found in Table 1.
The best performing model is the fine-tuned BERT,
followed by the QA-GNN and the benchmark mod-
els. The fine-tuned BERT without any subgraphs
were able to achieve higher performance than the
one from (Kim et al., 2023).

Input Type Model One-hop Conjunction Existence Multi-hop Negation | Total
Claim Only FACTKG BERT Baseline. 69.64 63.31 61.84 70.06 63.62 65.20
FactGenius RoBERTa Baseline 71 72 52 74 54 68
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99
FACTKG GEAR Benchmark 83.23 77.68 81.61 68.84 79.41 77.65
With Subgraphs | FactGenius RoOBERTa-two-stage 89 85 95 75 87 85
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49

Table 1: Test-set accuracy for the best models from this article and the best benchmark models. The FACTKG
models are from (Kim et al., 2023), while the FactGenius models are from (Gautam, 2024). The fine-tuned BERT
model performed the best, while the QA-GNN was the computationally most efficient model.

Additionally, our models were much faster to
train. While the GEAR model used 2-3 days to
train on an RTX3090 GPU (reported by the authors
by email), our QA-GNN only used 1.5 hours. The
training time of our fine-tuned BERT model was
greatly influenced by the size of the subgraphs we
used. With no subgraphs, it took about 2 hours to
train, while with the one-hop subgraph it took 10
hours. FactGenius was reported to use substantially
more computational resources, running the LLM
inference on a A100 GPU with 80GB vRAM for 8
hours.

4.1 Successful Subgraphs Retrievals

We now look at the different configurations for
the subgraph retrievals, which greatly influenced
the performance of the models. Since the direct
and contextual approach only includes subgraphs
if a certain requirement is fulfilled, it will result
in some of the claims having empty subgraphs.
In the training and validation set, 49.0% of the
graphs were non-empty for the direct approach, and
62.5% were non-empty for the contextual approach.
The single-step method resulted in vastly bigger
subgraphs.

While the QA-GNN could handle the big
subgraphs efficiently, the fine-tuned BERT was
severely slowed down when the size of the sub-
graphs got bigger. Therefore, we substituted any
empty subgraphs with the single-step subgraph
when using QA-GNN, but kept the empty graphs
when using fine-tuned BERT.

The results can be found in Table 2. We see a
clear improvement in BERT when using the direct
subgraphs over none, a small improvement when
using the contextual subgraphs, and a big improve-
ment when using the single-step method. The same
is true for the QA-GNN, but the differences in per-
formance are smaller.

Since we used non-trainable subgraph retrieval

methods and a frozen BERT for embedding the
nodes and edges in the subgraphs, we performed
this processing before training the models. During
training, the models used a lookup table to get the
subgraphs and the word embeddings, which signif-
icantly decreased the training time. The retrieval
of all the subgraphs took about 15 minutes, and the
embedding of all the words appearing in them took
about 1 hour. We also tried training a QA-GNN
without frozen embeddings, but it ran so slow that
we were not able to carry out the training with our
available computational resources.

4.2 ChatGPT Works Better when Asking for
Explanations

The results for the ChatGPT prompting can be
found in Table 3. The accuracy is substantially
lower than from our best models, but better than
the baselines using only the claims. The accuracy
is fairly consistent over the three runs, and we do
not see a big difference between the amount of
questions asked at a time.

We started with an initial prompt asking for just
the truth values for a list of claims, and updated
it to also include some training examples and to
ask for explanations. Several configurations of the
prompt were tested, and it was also improved based
on feedback from ChatGPT.

We saw the biggest improvement when we asked
for a short explanation of the answers, instead of
just the truth values. Without asking for explana-
tions, the amount of answers were often longer or
shorter than the amount of questions, but this never
happened when explanations were included. We
added numbers to the questions to further help with
this issue. We also saw a slight improvement by for-
mulating the prompt with bullet point lists and by
including some example inputs and outputs from
the training set. The final prompt can be found in
Figure 3.

Model One-hop Conjunction Existence Multi-hop Negation | Total

BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99
BERT (direct) 80.24 83.30 59.05 77.62 74.58 79.64
BERT (contextual) 81.20 84.45 61.05 77.04 77.40 80.25
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49
QA-GNN (direct) 74.60 74.01 58.97 76.41 74.12 75.01
QA-GNN (contextual) 76.58 69.94 84.68 74.58 80.75 76.12
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

Table 2: Test-set accuracy for different subgraph retrieval methods on FACTKG. The direct approach only
includes knowledge triples where both nodes appear in the claim, the confextual also includes edges appearing
in the claim, and the single-step includes all knowledge triples where at least one node appear in the claim. The
QA-GNN models use the single-step subgraph if the direct or contextual is empty, while the BERT does not.

Model Accuracy (mean + std)
ChatGPT 25 questions 73.67 £0.5
ChatGPT 50 questions 76.33 + 3.3
ChatGPT 100 questions 73.00£ 14

Table 3: Test-set accuracy for different configurations
of ChatGPT prompting. The metrics are averaged over
three runs. The prompts included 25, 50 or 100 claims
at a time, but the same claims were used in all of the
configurations.

5 Discussion

We were able to train better and more efficient mod-
els by simplifying the subgraph retrieval methods,
both by using a fine-tuned BERT and a slightly
modified QA-GNN model. While the QA-GNN
models trained the fastest, the fine-tuned BERT
clearly performed the best, significantly outper-
forming the benchmark models.

All of the models performed better the bigger the
subgraphs were. This suggests that the model archi-
tectures are able to utilise the relevant parts of the
subgraphs, without needing an advanced subgraph
retrieval step. This is emphasised by our fine-tuned
BERT model achieving a 93.49% test set accu-
racy by only using the single-step subgraphs, while
the GEAR model from (Kim et al., 2023), which
trained two language models to perform graph re-
trieval, achieved a 77.65% test-set accuracy.

One possible limitation of our subgraph retrial
methods is that they never include more than one
step away from an entity node, while the trained
approach from Kim et al. (2023) is dynamic and
may include more. This might make the hypothe-
sis that the simple subgraph retrieval methods will
perform worse on multi-hop claims than the dynam-
ically trained, however, we see the exact opposite
behaviour. The best BERT and QA-GNN models

score 80.32% and 74.72% at the multi-hop claims
respectively, while the dynamic benchmark model
scores 68.84%, even lower than the models not us-
ing the subgraphs at all. We do however see that
the best performing BERT model clearly performs
the worst on the multi-hop claims compared to the
other claim types, indicating that even bigger sub-
graphs might be beneficial.

While the sample size for the ChatGPT metrics
were small, it does indicate that non-fine-tuned
LLMs can achieve adequate few-shot performance.
The performance does not seem to be substan-
tially compromised when the amount of questions
prompted increases, so with a bigger access to com-
putational resources, it might be possible to prompt
the full test-set at once. The removal of fine-tuning
greatly improves the ease of use if one only needs
to verify a few claims. Therefore, despite not per-
forming as well as the trained model, this approach
could be useful if the performance of LLMs contin-
ues to improve.

6 Conclusion and Future Work

Our results show that with simple, yet efficient
methods for subgraph retrieval, our models were
able to improve with respect to both performance
and efficiency. The fine-tuned BERT model with
single-step subgraphs clearly achieves the best per-
formance, while the QA-GNN models are more
efficient to train.

This indicates that complex models can work
well with simple subgraph retrieval methods. Since
the single-step subgraphs mostly contain informa-
tion not relevant for the claims, the model is itself
able to filter away irrelevant information, and com-
plex subgraph retrieval methods may hence not be
necessary for accurate fact verification. Addition-
ally, since the best performing model performed

Task:
Determine the truth value (True or False) of the following claims based on information verifiable from Wikipedia, as represented
in the DBpedia knowledge graph. Provide your answers without using real-time internet searches or code analysis, relying

solely on your pre-trained knowledge.
Instructions:

False.

explanation).
Example Claims:

3. I have heard 300 North LaSalle was completed in 2009.

Example output:

[

educational background does not include this institution."),

Here are the actual claims you should answer:

* You will evaluate the following claims, presented one per line.

* Base your answers solely on your knowledge as of your last training cut-off.

¢ Provide answers in Python list syntax for easy copying.

* Respond with True for verifiable claims, and False otherwise.

¢ Include a brief explanation for each answer, explaining your reasoning based on your pre-training.

* If the claim is vague or lacks specific information, please make an educated guess on whether it is likely to be True or
Output Format: Format your responses as a list in Python. Each entry should be a tuple, formatted as (claim number, answer,
1. The Atatiirk Monument is located in Izmir, Turkey, where the capital is Ankara.

2. Yes, Eamonn Butler’s alma mater is the University of Texas System!
4. The band Clinton Gregory created an album in the rock style. ...
(1, True, "The Atatiirk Monument is indeed located in Izmir, and the capital of Turkey is Ankara."),

(2, False, "Eamonn Butler did not attend the University of Texas System; he is a British author and economist whose

(3, True, "300 North LaSalle in Chicago was indeed completed in 2009."),
(4, False, "Clinton Gregory is primarily known as a country music artist, not rock."),

Figure 3: Final prompt used to get truth values from ChatGPT 40. The actual questions are not included, but
were in the format of the Example Claims. The Example Claims are from the training set, and the Example

Output is copy pasted from an actual ChatGPT answer.

the poorest with multi-hop claims, future research
could explore simple subgraphs retrieval methods
allowing for bigger depths than one. Future work
should also be directed towards running similar
experiments on other datasets.

We also encourage researchers that have access
to bigger computational resources to further ex-
plore the performance of LLMs for fact verification.
A core limitation of our ChatGPT prompting was
the inability to use the full test-set, and we consider
this crucial for further development. We also think
it would be especially interesting to make LLM and
KG hybrid models. Since our results indicate that
simple single-step subgraph retrievals outperform
more complex methods, a promising path of future
research would be to simply use both the claims
and the single-step subgraphs as input to the LLM.
If possible, the LLLM could also be fine-tuned on
the dataset. We also encourage future work to cre-
ate fully reproducible results with LLMs, which

we were unable to do.

7 Limitations

Our experiments with ChatGPT were done on a
small sample of test questions, with a model that
was not possible to seed, and therefore is not repro-
ducible. Due to the small sample size, we are not
able to directly compare the performance to other
approaches. The lack of reproducibility, which
stems from the state-of-the-art model that was avail-
able to the author is not fully publicly available,
makes it impossible for other researchers to com-
pletely verify our findings. Finally, the process for
creating prompts were not standardised, we sim-
ply tried different configurations based on our own
experience with using LLMs until we could not in-
crease the validation accuracy further. Due to these
limitations, one should therefore be very hesitant
to make any conclusions based on the experiments
we performed with ChatGPT.

Because our intention was to compare different
language models’ abilities of fact verification with
knowledge graphs on the FACTKG dataset, we did
not conduct any experiments on other datasets. It is
possible that our results will not be consistent with
other datasets.

Additionally, our selection of models and hy-
perparameter settings could be more diverse. Due
to computational constraints, we did not perform
a grid search for hyperparameters, but tuned hy-
perparameters one by one. Which parameters we
searched for were not decided in advance. A pre-
defined grid search might lead to a fairer and more
reproducible approach.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023.
Is gpt-4 a good data analyst? arXiv preprint
arXiv:2305.15038.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sushant Gautam. 2024. Factgenius: Combining zero-
shot prompting and fuzzy relation mining to im-
prove fact verification with knowledge graphs. arXiv
preprint arXiv:2406.01311.

Charles R Harris, K Jarrod Millman, Stéfan J Van
Der Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming
with numpy. Nature, 585(7825):357-362.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by re-
ducing internal covariate shift. In International con-
ference on machine learning, pages 448—456. pmlr.

Daniel Martin Katz, Michael James Bommarito, Shang
Gao, and Pablo Arredondo. 2024. Gpt-4 passes the
bar exam. Philosophical Transactions of the Royal
Society A, 382(2270):20230254.

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James
Thorne, and Edward Choi. 2023. Factkg: Fact veri-
fication via reasoning on knowledge graphs. arXiv
preprint arXiv:2305.06590.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, et al. 2015. Dbpedia—a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167-195.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Open Al 2024. Hello gpt 40. https://openai.com/
index/hello-gpt-40/, Accessed 30.05.2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929-1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024. Hallucination is inevitable: An innate lim-
itation of large language models. arXiv preprint
arXiv:2401.11817.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. Qa-
gnn: Reasoning with language models and knowl-
edge graphs for question answering. arXiv preprint
arXiv:2104.06378.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023. Siren’s song in the ai ocean:
a survey on hallucination in large language models.
arXiv preprint arXiv:2309.01219.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun.
2019. Gear: Graph-based evidence aggregating
and reasoning for fact verification. arXiv preprint
arXiv:1908.01843.

Model Learning Rate Batch Size Best Epoch

BERT (no subgraphs) le-4 32 6
BERT (direct) le-4 32 7
BERT (contextual) 5e-5 8 7
BERT (single-step) Se-5 4 7
QA-GNN (direct) le-4 128 8
QA-GNN (contextual) 5e-5 64 17
QA-GNN (single-step) le-5 128 20

Table 4: Final hyperparameters for the different mod-
els. The direct QA-GNN model used GNN and classifier
dropout rates of 0.3 and 0.3, while both the two other
QA-GNN used 0.1 and 0.5.

A Hyperparameter Details

We used an AdamW optimizer (Loshchilov and
Hutter, 2017) and a linear learning rate scheduler
with 50 warm up steps. We used the model from
the epoch with lowest accuracy loss. The hyperpa-
rameters were tuned in a line search, first testing
different learning rates, and testing all the other
hyperparameters with the best learning rate. We
searched for learning rates in {1e — 3, 5e — 4, le —
4,5e — 5,1e — 5} for all models. We initially set
the batch size to 32, except for the BERT models
with large subgraphs, which were set to 4 due to
memory constraints. After finding the learning rate,
we tried batch sizes in {32, 64,128, 256}. For the
QA-GNN model, we initially set the GNN dropout

and the classifier dropout to 0.3, and tried values
in {0,0.1,0.3,0.5,0.6}. We also tried to freeze
some of the layers in the base model, and to use a
RoBERTa model instead of BERT, but neither of
these approaches approved the validation loss.

The final hyperparameters can be found in Ta-
ble A.

B Scientific Artifacts

We conducted the experiments using many python
libraries, including PyTorch version 2.0.1 (Paszke
et al., 2019) with CUDA version 11.7, Hugging-
Face Transformers (Wolf et al., 2020), NumPy
(Harris et al., 2020), SpaCy (Honnibal and Montani,
2017) and NLTK (Bird et al., 2009). We will make
all the code used for this paper publicly available.

	Introduction
	Related Work
	The FactKG Dataset
	Question Answer Graph Neural Networks (QA-GNNs)

	Methods
	Efficient Subgraph Retrieval
	Finetuning BERT
	QA-GNN Architecture
	ChatGPT Prompting
	Benchmark Models
	Further Details

	Results: Improved Performance and Efficiency
	Successful Subgraphs Retrievals
	ChatGPT Works Better when Asking for Explanations

	Discussion
	Conclusion and Future Work
	Limitations
	Hyperparameter Details
	Scientific Artifacts

