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Decouped Variational Graph Autoencoder for Link Prediction
Anonymous Author(s)∗

ABSTRACT
Link prediction is an important learning task for graph-structured
data, and has become increasingly popular due to its wide ap-
plication areas. Graph Neural Network (GNN)-based approaches
including Variational Graph Autoencoder (VGAE) have achieved
promising performance on link prediction outperforming conven-
tional models which use hand-crafted features. VGAE learns latent
node representations and predicts links based on the similarities
between nodes. While the inner product based decoder effectively
utilizes the node representations for link prediction, it exhibits
sub-optimal performance due to the intrinsic limitation of the in-
ner product. We found that the the cosine similarity and norm
simultaneously try to explain the link probability, which hinders
the gradient flow during training. We also point out the message
passing scheme is unexpectedly dominated by the nodes with large
norm values. In this paper, we propose a stochastic VGAE-based
method that can effectively decouple the norm and angle in the
embeddings. Specifically, we relate the cosine similarity and norm
to two fundamental principles in graph: homophily and node popu-
larity respectively. Following the principles in graph, we define a
generative process in the VGAE framework. Our learning scheme
is based on a hard expectation maximization learning method; we
infer which of the two has been exerted for link formation, and
subsequently optimize based on this guess. We comprehensively
evaluate our proposed method on link prediction task. Through
extensive experiments on real-world datasets, we demonstrate our
model outperforms the existing state-of-the-art methods on link
prediction and achieves comparable performances on other down-
stream tasks such as node classification and clustering. Our code is
at https://anonymous.4open.science/r/dvgae-A0B4.

CCS CONCEPTS
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latent representations;

KEYWORDS
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1 INTRODUCTION
Graph-structured data is omnipresent in various fields, such as cita-
tion networks, social networks, recommender systems, and knowl-
edge graphs. In graph-structured data, links reflect the relation
between the nodes, where nodes in such applications can be docu-
ments, web users, items, or concepts. One of the main challenges
with graph-structured data is link incompleteness, where many
edges are missing or unobserved. Due to this nature, link prediction
is one of the critical tasks in network analysis and has attracted
increasing attention. Under the homophily assumption [10, 34, 52],
link prediction approaches attempt to estimate the link through
evaluating the similarity within a pair of nodes based on observed
links and the associated attributes of nodes.

The link prediction problem has been a long-standing challenge
and has been extensively studied within academia and industry.
The recent success of Graph Neural Networks (GNNs) has boosted
research on various graph learning tasks, including capturing the
relations between nodes in graph-structured data. Several recent
studies present promising results on link prediction [5, 21, 22, 39,
48, 54]. Methods adopting GNNs, including Graph Convolutional
Network (GCN) [23] automatically learn latent representations from
node attributes and their local neighborhoods. The core of GNN
lies in the message-passing scheme [21, 48], where the the node
embeddings are passed along the edges of the graph. GNN-based
approaches replace hand-crafted algorithms to optimize graph and
permits more flexible modeling. Variational Graph Autoencoder
(VGAE) [22] is a variational probabilisitc generative framework
with GCN. With its flexibility and proven performance, various
extensions have been proposed within this framework. However,
they exhibit underperformance in link prediction on low-degree and
high-degree nodes. We hypothesize that this is due to the intrinsic
limitation of inner-product decoder in VGAE.

The inner-product can be decomposed into the cosine similarity
(or normalized inner product) and norm, where these two compo-
nents compete each other simultaneously trying to explain the link
probability. This becomes problematic when one of the components
becomes easier to perform gradient descent during backpropaga-
tion, which motivates our study. Figure 1a shows the norm of node
embeddings from Cora and PubMed datasets obtained via VGAE
with respect to the node degrees. For the nodes with high degree
or low degree, the loss with inner-product can be easily compen-
sated through the norm values. In Figure 1a, we observe low-degree
nodes tend to have small norms in their node embeddings, and vice
versa. For high-degree nodes, the norm of node embedding gets
high to account for the high number of edges; thus cosine similarity
has minimal effect on the link probability. The same logic applies
to the opposite case with low-degree nodes. For high-degree and
low-degree nodes, optimizing the node embeddings in terms of the
direction in vector space can be challenging. However, the high
norm (magnitude) value causes a negative impact on message pass-
ing scheme, where messages are aggregated from the neighboring
nodes. Specifically, we illustrate how high norm of node embedding
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(a) 𝑙2 norm of z in Cora (left) and PubMed (right)

(b) Messages are aggregated at the target vertex (gray). The
vector in 3-d box represents the node embedding vector ob-
tained through VGAE; the color (red/blue) represents the node
attribute.

Figure 1: (a) Degree of nodes and their ∥z∥s learned from
VGAE. The norm of node embedding increases respect to its
degree. (b): Node embedding with large norm unexpectedly
dominates the message passing to the node in gray.

harms the message passing in Figure 1b. When the messages are
propagated to the target node in gray, the node with high norm un-
expectedly dominates the messages. As such, when the high-degree
node happen to behave differently with embedding vector heading
toward different direction, the message passing scheme can hinder
the learning of node embeddings.

To solve the aforementioned problems, we propose a novel gener-
ative algorithm to decouple the two components in the inner prod-
uct within VGAE framework. Specifically, we incorporate two differ-
ent embedding spaces, namely the embedding space for homophily
with the cosine similarity based decoder and the embedding space
for node popularity with the norm based decoder. Through this
approach, we can effectively learn each embedding and account
for the links independently. Moreover, when decoupled, we can
also restrict the message passing only on angular embeddings to
avoid the domination effect in Figure 1b. However, even with the
separate-space approach, decoupling the two effects is not trivial as
the two effects are not observable. A simple remedy is to focus only
on one (homophily) by ignoring the other (node popularity). While
it is effective than vanilla-VGAE, it is still sub-optimal. Our model
considers both components individually through decoupling the
two properties through the proposed stochastic generative process.
We also propose a hard Expectation-Maximization (EM) algorithm
to perform end-to-end learning. Our model achieves state-of-the-art
(SOTA) results in link prediction on attributed networks.

We summarize the main contributions of our work as follows:

• We discuss the intrinsic limiation of VGAE decoder, and
propose an end-to-end approach within the framework of
VGAE, which decouples norm and angular node embed-
dings through the proposed generative process.

• We comprehensively evaluate our method on numerical
experiments and show that it consistently outperforms the
existing state-of-the-art link prediction models.

• We additionally show how the latent embeddings learned
only from the normalized form excluding the norm compo-
nent performs for link prediction, which already achieves
better results than the current SOTA model.

2 RELATEDWORK
Link prediction. While the work in link prediction spans many

fields over a long period of time, we review three major streams of
research in link prediction: heuristic methods, network embedding
methods, and graph neural networks. Heuristic methods compute
the likelihood of an edge to appear based on different heuristic
metrics between nodes within a pair. Common neighbor [29], Katz
index [19], and PageRank [4] rely on hand-crafted rules. Network
embedding methods map nodes in a network to lower dimensional
spaces while effectively preserving the network structure. Random-
Walk based models such as DeepWalk [40] and Node2Vec [13]
define notations of the node’s neighborhood and learn latent space
representations of social interactions. Methods adopting GCN au-
tomatically learn node embeddings for link prediction and other
downstream tasks, such as node classification and community detec-
tion. Our model and the baseline approaches in this study perform
link predictions using graph neural networks. We later review the
link predictions with GNNs as baseline models in more detail (see
Section 5.2).

Node Popularity. Node popularity has been frequently discussed
in the community detection literature prior to the introduction of
GNNs. In [18], the authors proposed the degree-corrected block-
model for community detection. In [24], heterogeneity of actor
degrees has been taken into account for latent cluster random ef-
fects models. The authors in [12] integrated node popularity into
themixedmembership stochastic blockmodels [2], which is perhaps
the closest to ours in spirit. In their approach, the probability of a
link is defined by the membership assignment and the node popu-
larity through linear summation. Our approach however decouples
the two effects and lets one of each effect attend to the probability
of a link, which avoids the smoothing of the two. The decoupling
can also prevent message passing the high-magnitude embeddings.
Node popularity has been more frequently accounted for in the
Recommender System (RS) literature. Previous studies [6, 27, 30, 46]
in this literature incorporated item popularity to RS. To the best
of our knowledge, this is the first in VGAE to incorporate node
popularity. We emphasize that our proposed model is not just an
extension of previous studies in homophily and node popularity,
but rather a study finding the problem of the competition between
norm and angular embeddings.We associate themwith two popular
phenomena in network science simply for better explanation.
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3 PRELIMINARIES
3.1 Problem Formulation
We are interested in the problem setting where we are given an
undirected, unweighted graph G = (V, E) with 𝑁 = |V| nodes
and a 𝑁 × 𝐷 feature matrix X. Let A be an adjacency matrix of
G, and D be its degree matrix. With these settings, the goal is to
predict whether an edge exists within an unobserved pair of nodes
based on X and observed links with A. This can be achieved by
learning the 𝐹 -dimensional node embeddings (or stochastic latent
variables) z𝑖 that best reconstruct the network Â, where we can
summarize the {z𝑖 } in an 𝑁 × 𝐹 matrix Z.

3.2 Background: VGAE For Link Prediction
Variational Graph Autoencoder. VGAE [22] tries to solve the prob-

lem of observed link predictions by learning the node embeddings
(or latent variables) z𝑖 that best reconstruct the network Â. VGAE
learns a distribution over the latent space for each input, where
z𝑖 is sampled from the distribution. Given Z = {z1, . . . , z𝑁 }, a sim-
ple inner-product decoder in VGAE reconstructs the adjacency
matrix as Â = 𝜎 (ZZ⊤) with a Gaussian prior. Thus, the encoder
𝑞𝜙 (Z | X,A) becomes the inference model which learns the vari-
ational posterior; the decoder 𝑝𝜃 (A | Z) becomes the generative
model.

Inference model. Due to the intractability of the marginal likeli-
hood, true posterior is approximated by a Gaussian distribution in
variational inference [22, 50].

𝑞𝜙 (z𝑖 | X,A) = N(𝝁𝑖 , diag(𝝈2
𝑖 )), (1)

where the mean vector and variance vector for Gaussian distribu-
tion are parameterized by a two-layer graph convolutional network
(GCN) [23]: 𝝁𝑖 = GCN𝜇 (X,A) and log𝝈𝑖 = GCN𝜎 (X,A). Here, the
node features are naturally incorporated thorugh input X.

Generative Model. In the generative model, the similarity are
computed across all pairs of nodes, where the inner product is used
along with sigmodal function.

𝑝 (𝐴𝑖 𝑗 = 1 | z𝑖 , z𝑗 ) = 𝜎 (z⊤𝑖 z𝑗 ), (2)

where the probability of a link between node 𝑖 and 𝑗 is determined
by the similarity between the node embeddings. Here, the inner
product is used for similarity measure, which is fed into sigmoid.

Observation. The inner-product in the decoder is a simple yet
effective method, where the VGAE and its extensions have been
achieving SOTA performances. However, we found that the inner-
prodcut decoder likely results in sub-optimal performance when
performed on low-degree nodes or high-degree nodes. We hypothe-
size that the two factors, namely norm and cosine similarity, provide
different and complementary effects to the inner product while the
two effects are tightly coupled and trained jointly. This observation
and the property motivate us to decouple the two effects for better
training. In this study, we correspond the norm to node popularity;
the cosine similarity to homophily. Thus, the main research ques-
tion we consider is RQ1) how to decouple the node popularity and
homophily in graph structured data. Decoupling the two property
is not trivial as the two simultaneously try to account for the prob-
ability of link generation. In backpropagation, the gradient can still

flow to any direction unless specified. This becomes problematic
when one of the factor is favored dominantly in backpropagation
over the other factor. Similar observation also has been discussed in
[1], where only the norms of node embeddings gets close to zero for
nodes with small degree. Their remedy to this problem was using
the normalized embeddings (or the cosine similarity). However, the
approach in [1] can only account for the homophily. Their experi-
mental results also reveal how the normalized embeddings become
effective especially when the network is sparse. While it effectively
addresses the problems with near-zero-degree nodes, due to the ad-
ditional constraints, it becomes less flexible than the vanilla-VGAE.
In fact, the model in [1] exhibits performance degradation on link
predictions associated with high-degree nodes (see Appendix B.1).

When the node popularity and homophily can be decoupled,
it brings us to the second research question. We are interested to
see RQ2) whether the embedding for homophily itself becomes
more accurate when the node popularity effect gets removed during
training. When the two effects coexist and are trained jointly, we
suspect that the two effects interfere each other, which may distort
the node embeddings. As such, we expect to have more accurate
embedding when the node popularity gets removed during training.
However, this is not trivial as the property (node popularity vs
homophily) that contributes to generation of link is not observable.
To this end, we propose a novel approach that can decouple the
node popularity and the homophily for link prediction. While there
have been some studies in recommendation system literature using
GNN for addressing item popularity [8, 28, 30], to the best of our
knowledge, this is the first study to incorporate node popularity in
VGAE for link prediction.

4 PROPOSED METHOD
Here, we address the aforementioned questions by introducing a
model within VGAE framework. Our main idea is threefold; (a)
we consider two properties in graph namely node popularity and
homophily for link predictions, (b) we propose an EM-like learn-
ing algorithm that alternates between estimating the associated
effects from the two and learning their embeddings, (c) we stochas-
tically estimate the respective effect and achieve more attended
representations.

The term node popularity also appears in other literature, and
we introduce our definition of node popularity for this study.

Definition 1 (Node Popularity in Graph). For a graph G = (V, E),
given two nodes 𝑖, 𝑗 ∈ V , a link can be generated even when there
is no similarity between node 𝑖 and 𝑗 . An undirected link is defined
by a node popularity function of node 𝑖 or 𝑗 .

In our generative process, at each interaction between a given
pair, one of the promising scenario under homophily or node popu-
larity is stochastically sampled. This is particularly a natural idea,
where we observe frequently in real-world. In social network, users
also make friends with or follow popular users without sharing com-
mon interest. In this section, we elaborate our generative model in
VGAE framework, and provide the learning algorithm. Our model
decouples the node embeddings into two components: norm and an-
gular, which corresponds to the decoder only using the norms and
the decoder only using the cosine similarities separately. We name

3
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our model “Decoupled VGAE (D-VGAE)”. The overall framework
and its learning process is illustrated in Figure 2.

4.1 Generative Process
D-VGAE generative process. We assume each node can establish

a link with others under one of the two phenomena: homophily or
node popularity. For each pair, instead of stochastically selecting
one of the two phenomena directly, we first sample the value (in
binary) of interaction through Bernoulli with respect to the simi-
larity measure between the two nodes. We take this approach for
three reasons: (1) two phenomena are not observable and cannot
be compared directly unless one of the function is pre-given; (2) ho-
mophily can be directly inferred from the node features, while the
node popularity can be inferred indirectly by removing homophily;
and (3) decoder collapse (two decoders behave similarly) can be bet-
ter prevented. We start by extending the embedding vector z from
VGAE to z𝑝 and zℎ for node popularity and homophily respectively,
and further define the generative process. The overall generative
process can be summarized as below:

• For each node 𝑖 ∈ V , sample node latent variables for
homophily: zℎ

𝑖
∼ N(𝝁ℎ, 𝚺ℎ) .

• For each node 𝑖 ∈ V , sample node latent variables for node
popularity: z𝑝

𝑖
∼ N(𝝁𝑝 , 𝚺𝑝 ) .

• For each pair of node 𝑖 and 𝑗 , draw a binary undirected link
from a Bernoulli distribution through two-stage process:
(1) Homophily: Draw a binary undirected link from a

Bernoulli

𝐴𝑖 𝑗 ∼ Bernoulli(𝜎 (sim(zℎ𝑖 , z
ℎ
𝑗 ))), (3)

where 𝜎 (·) is a sigmoid function, and sim(·) is a simi-
larity measure function.

(2) Node Popularity: If no link were sampled in stage 1,
draw a binary undirected link

𝐴𝑖 𝑗 ∼ Bernoulli(𝜎 (snp(z𝑝
𝑖
, z𝑝

𝑗
))), (4)

where snp(·) is a function that measures the strenght
of node popularity.

In vanilla-VGAE, we identify that the engagement of norm and
cosine similarity within the inner product hinders the learning of
node embedding. Through our generative process, we expect the
homophily (sim(·)) only account for the quasi-cosine similarity;
and expect the node popularity (snp(·)) only account for the quasi-
norm. Thereby, we use normalized inner product for sim(·) and
summation of each of the strength of given pair for snp(·). More
details on snp(·) is provided in the Appendix B.2. Through the two-
stage generative process we propose, homophily and node popular-
ity can be decoupled and considered separately. In the following,
we elaborate the above through inference model and generative
model within the VGAE framework. To fully verify our hypoth-
esis, we add only necessary changes incorporating our scheme.
Finding better posterior distribution can be found in [16], and also
in [20, 38, 41] from more general VAE literature. We also refer the
readers to [14, 16, 43, 45, 47] for designing better decoder than a
simple inner product.

Inference model. We use a probabilistic encoder to perform vari-
ational posterior inference. The posterior distribution (Eq. 1) is
parameterized by encoder which generates the mean 𝝁𝑖 and the
log𝝈𝑖 . As our proposed generative process requires zℎ

𝑖
and z𝑝

𝑖
, we

let our probabilistic encoder generate two sets of variational pa-
rameters in the same sense. For learning the embedding of z𝑝 , we
remove the message passing scheme, as node popularity is the char-
acteristic of a node itself and to prevent the domination effect. We
use the encoder from VGNAE [1] as one of the building blocks in
our implementation. The 𝑙2-normalization in VGNAE can naturally
account for the cosine similarity (or normalized inner-product) as-
sumption for homophily. To accomplish this 𝑙2-normalization, a
GCN called graph normalized convolutional network (GNCN) was
proposed in [1], which is defined as follows:

GNCN(X,A, 𝑠) = 𝑠D− 1
2AD− 1

2𝑔(XW), (5)

where 𝑔( [h1, h2, ..., h𝑛]⊤) = [ h1
∥h1 ∥ ,

h2
∥h2 ∥ , ...,

h𝑛
∥h𝑛 ∥ ]

⊤, W is a learn-
able weight matrix, and 𝑠 is a scaling factor which is set to 1.8
in the following experiments. In a nutshell, normalization in the
encoder of GNAE brings same effect as having cosine similarity
based decoder. Using GNCN as our encoder can also verify the
effectiveness of our proposed scheme over the current SOTA model:
VGNAE.

Generative model. Through reparameterization trick [22], z𝑝 and
zℎ are sampled from the variational distribution. Given the z𝑝 and
zℎ for all the nodes, every possible pair are compared through
two-stage process. We first draw a binary undirected link using
the Gumbel trick [17], where we have 𝑝 (𝐴𝑖 𝑗 = 1) = 𝜎 (zℎ

𝑖

⊤
zℎ
𝑗
).

When a positive link is sampled at this stage, it becomes the final
link for Â; otherwise a binary undirected link can be sampled with
𝑝 (𝐴𝑖 𝑗 = 1) = 𝜎 ((z𝑝

𝑖
+z𝑝

𝑗
)⊤ [1, 0]), where {z𝑝

𝑖
} in an 𝑁 ×2 matrix Z𝑝 .

We elaborate why we use two-component vector z𝑝 and take one
scalar for computing strength of node popularity treating the other
as dummy. The encoder generates normalized vectors zℎ through
GNCN. When performing inner product with normalized vectors,
the inner product in sigmoid function becomes bounded within
acceptable limits through scaling factor. The value z𝑝 should be
bounded as such, otherwise model loses its stability. Therefore,
we use the two-component vector for z𝑝 for normalization, and
only use one of the component: z𝑝⊤ [1, 0]. We can naturally have a
bounded values of z𝑝 by separately normalizing the given vector
through GNCN. The links of interest in the literature is the undi-
rected link, and we can sum the two node properties to account
for the link due to node popularity. We also only perform message
passing on zℎ but not on z𝑝 . This is because node polularity is not a
feature that propagates through its neighbor, but rather an unique
value of a given node itself. Most of all, this avoids the domination
effect from Figure 1b. Our additional experimental results in Ap-
pendix B.3 justifies our idea. The most closest to ours is [12], which
integrates node popularity with community detection. However,
their approach tries to incorporate node popularity in a mixed man-
ner, while we are more interested in decoupling the two effects.
We also incorporate their idea into VGAE framework for further
analysis and discuss on the differences in Section 5.4.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Decouped Variational Graph Autoencoder for Link Prediction WWW ’24, Under review, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Normalized 
encoder

X

A

Z

£ Forward Pass

sim(ݖ௜௛ǡ ௝௛ݖ )

¤ sample

I Encoder Z ௜ݖ����
௣ǡ ௝ݖ

௣�

¥ Forward Pass

Homophily

Expectation step

Maximization step

෡�௛ ෡�௣

based on ei,j (         or        )

¦ Backpropagation on homophily

¦ Backpropagation on node popularity

Figure 2: The overview of D-VGAE’s learning scheme.

4.2 The Variational Bound
Evidence Lower-Bound. For the inference and learning, we opti-

mize the evidence lower bound (ELBO) with respect to the varia-
tional parameters 𝝓.

log 𝑝 (A) ≥ E𝑞𝜙 (Z𝑝,ℎ |X,A) [log 𝑝𝜃 (A | Z(𝑝,ℎ) )]

− KL(𝑞𝜙 (Z𝑝 | I,A) | |𝑝 (Z𝑝 )) − KL(𝑞𝜙 (Zℎ | X,A) | |𝑝 (Zℎ))
def
= L(𝝓, 𝜽 ;A) . (6)

The first term of RHS in Equation 6 can be reformulated into fol-
lowing expression:

E𝑞𝜙 (Z𝑝,ℎ |X,A) log𝑝𝜃ℎ (A | Zℎ)𝑝ℎ+E𝑞𝜙 (Z𝑝,ℎ |X,A) log𝑝𝜃𝑝 (A | Z𝑝 )𝑞ℎ,
(7)

where 𝑝𝜃ℎ (A | Zℎ) and 𝑝𝜃𝑝 (A | Z𝑝 ) follow Equation 3 and 4
respectively, which accounts for homophily and node popularity.
The 𝑝ℎ and 𝑞ℎ = 1 − 𝑝ℎ are Bernoulli parameters which reflects
the probability of a link generated under homophily. We rely on
EM-like learning algorithm to estimate each probability, where
we provide the details in the following section. The second and
third term of the ELBO are the Kullback-Leibler (KL) divergneces
between the variational distribution and true prior for each latent
embedding. Following previous work, we use the Gaussian prior
with 𝑝 (z𝑖 ) = N(z𝑖 | 0, I) and assume the posterior approximation
𝑞(z𝑖 | x𝑖 ,A) as Gaussian, which brings the closed form of KL-
divergence. It is also worth noting that the inference model for
node popularity takes I instead of X for its input (see second term
in RHS in Equation 6). This is mainly because node popularity is
one of the characteristics of node itself, and the dependence on X
has been intentionally dropped.

4.3 Training and Inference
Our model follows a ‘winner-take-gradient’ training strategy [26]
by positing the problem to hard EM algorithm for end-to-end learn-
ing.We thus introduce additional parameter e as an indicator, where
Pr
(
e𝑖 𝑗 = 1

)
= 𝑝ℎ

𝑖 𝑗
. At each interaction, e𝑖 𝑗 ∈ {0, 1} is sampled from

Bernoulli. The overall learning process is provided in Algorithm 1.

Algorithm 1 Training procedure for D-VGAE

Require: X ∈ R𝑁×𝐷 , A ∈ N𝑁×𝑁

Ensure: 𝝓ℎ, 𝝓𝑝 for a single GNCN encoder while normalizations
are performed separately for homophily and node popularity.
Initialize 𝝓ℎ , 𝝓𝑝
while not converged do

Obtain batch of nodes
Expectation step:
for node 𝑖, 𝑗 in a batch do

Sample e𝑖 𝑗 from the variational distribution with the lat-
est setting of 𝑝ℎ

𝑖 𝑗
.

end for
Maximization step:
Take average of gradients from the batch to maximize

L(𝝓, 𝜽 ;A) with e𝑖 𝑗 from Expectation step.
end while

Specifically, when we sample e𝑖 𝑗 , we borrow the latest setting of
𝑝ℎ which can be obtained from Equation 3 with temperature added.
We anneal the temperature from high value to low value in a way
the model can sufficiently explore the two scenarios and avoid over-
confidence issue. We also reveal how our ‘winner-take-gradient’
training strategy (hard EM) achieves better performance than soft
counterpart through our experimental results in Appendix B.4.
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Table 1: Dataset statistics

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3

CS 18,333 163,788 6,805 15
Physics 34,493 495,924 8,415 5
Computers 13,752 491,722 767 10
Photo 7,650 238,162 745 8

5 EXPERIMENTS
5.1 Experimental Setup

Configuration. Before presenting our experimental results, we
first describe the experimental setup for the empirical evaluations
of our proposed method. The model is implemented and trained
based on PyTorch Geometric [9] library. The experiments are con-
ducted using an NVIDIA RTX A6000. Every experiment in this
paper follows the experimental protocols in [22] with 10% of links
for testing, and 5% of links for validation. The models are trained
on 85% of links, and the associated node features. In validation and
testing, we compare the positive edges against the same number of
negative edges which have been sampled randomly from pairs of
unconnected nodes. Following a standard manner of learning-based
link prediction, we also perform 10 runs of experiments and report
area under the ROC curve (AUC) and average precision (AP) on the
test set. The embedding of each node is learned in 256-dimensional
latent space. Further details on configuration is provided in the
Appendix.

Datasets. We evaluate the proposed approach based on bench-
mark network datasets with node features for undirected link pre-
diction. Table 1 summarizes each dataset used across our exper-
iments. The datasets in top three rows in Table 1 have always
been used in previous methodologies for performance evaluations.
Cora [33], CiteSeer [11], and PubMed [35] are citation network
datasets containing list of citation links between documents and
bag-of-words (BOW) feature vectors for each document. The CS,
Physics, Computers, Photo datasets have been used in [1] along
with Cora, CiteSeer, and PubMed. CS and Physics are co-authorship
graphs based on the Microsoft Academic Graph from the KDD Cup
2016 challenge. In CS and Physics datasets, authors are connected
if the authors co-published a paper, where paper keywords for each
author’s papers are aggregated for node features. Computers and
Photo are segments of the Amazon co-purchase graph in [32]. In
Computers and Photo datasets, nodes represent goods, edges are
generated if the two goods are frequently bought together, and
bag-of-words encoded product reviews are used as node features.
While these four datasets have been originally used for node classi-
fications when first appread in [44], we use these datasets for link
prediction as in [1] removing node labels. As in the previous studies,
if the original links are directed, they were treated as undirected
links. Node labels are only being used in specific downstream tasks:
classification and clustering.

5.2 Baselines
We compare D-VGAE against the competitive baseline methods
including the current SOTA model. GAE and VGAE are introduced
in [22], where both GAE and VGAE use the Graph Convolutional
Network (GCN) [23] encoder and a simple inner-product decoder.
The GCN in GAE/VGAE has been replaced by a simple linear model
in LGAE [42]. Experimental results in [42] shows how the sim-
ple first-order linear encoders are effective as the popular GCNs.
ARGA [37] is an adversarial graph embedding framework for graph
data, which enforces latent representation to match a prior distribu-
tion. GIC [31] leverages cluster-level node information through dif-
ferentiable𝐾-means. sGraphite [7] tries to enlarge the normal neigh-
borhood throughmaximizing themutual information. SIG-VAE [16]
combines semi-implicit variational inference (SIVI) [53] and nor-
malizing flow (NF) [20, 38, 41] into the VGAE framework, and
also proposes a new Bernoulli-Poisson link decoder. MSVGA [15]
tries to learn multiple sets of low-dimensional vectors of different
dimensions, which is extended by SPN-MVGAE [51] that incorpo-
rates conditional sum-product networks as constraints. GIC+WP
is reported as the best performing model in [36], which applies a
new pooling scheme called WalkPool on embeddings learnt from
GIC. Among these baseline models, GNAE/VGNAE [1] achieves the
best performance both on Cora and CiteSeer datasets; GIC+WP[36]
achieves the best performance on PubMed. GIC+WP cannot be com-
pared directly to other end-to-end baselines. Models using class
labels associated to nodes haven’t been included as our baseline
methods.

5.3 Numerical Results
Main Results. We quantitatively evaluate D-VGAE through ex-

periments on the benchmark datasets for link prediction. Our first
set of experiments compares D-VGAE against existing baseline
methods. The experiment has been standardized by [22], where
10% of links were used for testing and other 5% of links for valida-
tion. We perform link predictions using the baseline approaches
and D-VGAE using the rest of 85% of the links and the features of
the associated nodes. With the observed link and its full feature
data used asA andX for the input through D-VGAE, we obtain each
probability of the component of Â. When 10% of links were sampled
for testing, the same number of non-link were sampled. We use
these links and non-links as the ground-truth and compare them
to our predictions. Through binary classification, for each round
of experiments, AUC (area under the ROC curve) and AP (average
precision) can be obtained. We perform 10 rounds of link prediction
for each dataset across all the models in this study, and report the
overall results in Table 2. The best results in each metric are marked
in bold. We set all the hyperparameters the same throughout three
benchmark datasets, without further tuning on each dataset. From
Tables 2 and 3, we observe D-VGAE achieves state-of-the-art results
consistently across all the benchmark datasets.

Larger Graph. We further validate D-VGAE on larger datasets.
We use CS, Physics, Computers, and Photo dataset for evaluation,
where the statistics of each dataset have been provided in Table 1.
From Table 2, we found GNAE/VGNAE generally achieves results
comparing to other end-to-end models. We thus mainly compare
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Table 2: Comparing our proposed method against the benchmark models. The results (except for GNAE/VGNAE) are taken
from the respective original papers. All of the models follows the experimental protocols in [22] with 10% of the links for
testing, and 5% of the links for validation. Our model is tested in two ways: end-to-end (E2E) and with WalkPool (+WP).

Model Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

GAE [22] NIPS-W’16 91.0 ± 0.02 92.0 ± 0.03 89.5 ± 0.04 89.9 ± 0.05 96.4 ± 0.00 96.5 ± 0.00

VGAE [22] NIPS-W’16 91.4 ± 0.01 92.6 ± 0.01 90.8 ± 0.02 92.0 ± 0.02 94.4 ± 0.02 94.7 ± 0.02

ARGA [37] IJCAI’18 92.4 ± 0.003 93.2 ± 0.003 91.9 ± 0.003 93.0 ± 0.003 96.8 ± 0.001 97.1 ± 0.001

LGAE [42] NIPS-W’19 92.05 ± 0.93 93.32 ± 0.86 91.50 ± 1.17 92.99 ± 0.97 95.88 ± 0.20 95.89 ± 0.17

SIG-VAE [16] NeurIPS’19 96.04 ± 0.04 95.82 ± 0.06 96.43 ± 0.02 96.32 ± 0.02 97.01 ± 0.07 97.15 ± 0.04

sGraphite [7] IJCNN’20 93.7 ± 0.13 93.5 ± 0.11 94.1 ± 0.13 95.4 ± 0.09 94.8 ± 0.03 96.3 ± 0.02

GIC [31] PAKDD’21 93.5 ± 0.6 93.3 ± 0.7 97.0 ± 0.5 96.8 ± 0.5 93.7 ± 0.3 93.5 ± 0.3

GNAE [1] CIKM’21 95.38 ± 0.02 95.91 ± 0.02 96.81 ± 0.02 97.19 ± 0.03 97.27 ± 0.01 97.21 ± 0.01

VGNAE [1] CIKM’21 95.32 ± 0.02 95.36 ± 0.03 96.96 ± 0.02 97.01 ± 0.03 97.24 ± 0.02 97.11 ± 0.02

MSVGA [15] WSDM’22 95.3 ± 0.05 95.4 ± 0.04 95.4 ± 0.03 96.1 ± 0.04 - -
GIC+WP [36] ICLR’22 95.90 ± 0.5 - 95.94 ± 0.53 - 98.72 ± 0.10 98.72 ± 0.10

SPN-MVGAE [51] WWW’23 94.6 ± 0.02 95.6 ± 0.02 95.5 ± 0.02 96.3 ± 0.01 97.0 ± 0.00 97.5± 0.01

D-VGAE (E2E) 96.34 ± 0.03 96.13 ± 0.03 97.37 ± 0.03 97.29 ± 0.03 98.07 ± 0.04 97.87 ± 0.05

D-VGAE (+WP) - - - - 98.94 ± 0.04 98.93 ± 0.05

Table 3: Link prediction results with same protocol.

Model CS Physics Computers Photo

AUC AP AUC AP AUC AP AUC AP

VGAE [22] 95.94 95.37 96.33 95.81 92.32 92.19 94.38 93.69
VGNAE [1] 96.12 95.53 96.04 95.23 94.90 94.74 95.97 95.33
D-VGAE (E2E) 97.77 97.43 97.39 96.87 97.18 96.67 97.70 97.17

D-VGAE against GNAE/VGNAE and vanilla GAE/VGAE. The exper-
iments are conducted following the same experimental protocols in
[22]. The hyperparameters were kept the same from the previous
set of experiments, without further tuning for each datasets. Ta-
ble 3 shows how our model outperforms other models. Moreover,
the improvement is much more pronounced than that seen with
standard datasets. The results show how our model consistently
outperforms the baseline with respect to all metrics, which reflects
the efficacy of decoupling of node embeddings.

Node classification . While our node embeddings have been opti-
mized for predicting links, we can leverage the node embeddings for
other downstream tasks such as node classification and clustering.
Here, we use all the available link information (100% links for train-
ing) for learning the node embeddings, and use the embeddings for
node classification. Following [44], we use the node embeddings as
input and train a simple classifier with training data which have
been randomly selected: 20 samples per class. We compare our
results to other downstream classification results reporting the av-
erage accuracy over 20 runs1. The embeddings learned by D-VGAE
exhibit competitive results as shown in Table 4, where we achieve
higher performances than previous models except one dataset.

1Semi-supervised approaches were not compared in this experiments.

Table 4: Node Classification accuracy (in %). The results are
directly borrowed from the corresponding papers. Experi-
ments follow the protocol in [44]. ‘h only’ means we only
use angular node embedding (homophily).

Model Accuracy
Cora CiteSeer PubMed CS Physics Computers Photo

DGI [49] 80.0 70.5 76.8 88.7 91.8 77.9 86.8
SIG-VAE [16] 79.7 70.4 79.3 - - - -
GIC [31] 80.7 70.8 77.4 89.3 92.4 79.5 89.0

D-VGAE (h only) 82.6 70.2 80.7 90.2 93.8 79.6 90.1

5.4 Ablative Analysis
We provide indepth ablative analysis to determine which aspects
of our model contribute to the model performance. In the first
analysis, we implement the link prediction model inspired by [12]
in VGAE framework, which is compared against D-VGAE. In the
second analysis, we perform link prediction only using the node
embedding from homophily while training in a same manner as
in D-VGAE, and provide an answer to RQ2. Finally in the third
analysis, we compare the performance of WalkPool [36] by using
different preprocessings. Further ablative analysis can be found in
the Appendix.
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Figure 3: Link prediction using VGAE-AMP [12]
(center bar in orange for each dataset)

Figure 4: Link predictionwith homophily fromD-VGAE (center
bar in orange for each dataset)

Figure 3 compares the performance of three models, where
VGAE-AMP is our VGAE implementation of AMP in [12]. In VGAE-
AMP, we take into account both homophily and node popularity
in a same manner as in AMP, where the logit of link probability is
defined by linear sum of node popularity and homophily. In Cora
and CiteSeer datasets, we observe VGAE-AMP underperforms VG-
NAE [1], while in PubMed, it slightly performs better than VGNAE.

The results reflects how decoupling the two effects contributes
to the model performance answering RQ1. The other research
question to be answered was RQ2) whether the embedding for
homophily itself becomes more accurate when the node popularity
effect gets removed during training. The results in Figure 4 provide
the answer, where we observe the link prediction performed only
using zℎ without node popularity effect have already improve the
performance from the previous SOTA. We believe the embedding
for homophily itself becomes more accurate when the node popu-
larity effect gets removed during training letting homophily better
captured.

Table 5: Applying WalkPool

Model Method PubMed

AUC AP

GIC [31] -WP 93.00 92.32
+WP 98.72 98.72

VGNAE [1] -WP 95.32 95.36
+WP 98.89 98.88

D-VGAE (ours) -WP 98.07 97.87
+WP 98.94 98.93

WalkPool. In Table 2,
D-VGAE+WP on PubMed
achieved higher perfor-
mance than the results
from [36]. The results in
Table 5 show that the re-
sults we achieved are not
merely due to the GNCN
(by comparing against VG-
NAE). We also stress that
VGAE variants cannot be
directly comparedwith the
results from [36]. VGAE
and D-VGAE are end-to-end models, while the model in [36] re-
quires node embedding obtained from other models such as GIC,
VGAE. The authors reported GIC+WP as their best performing
model, which we had as one of our baselines in Table 2.

5.5 Qualitative Evaluations
For qualitative study, we use IMDb network data, and learn node
embeddings of z𝑝 and zℎ . This dataset has been crawled in 2018,
where the edge means the two actors have appeared in a movie.
The dataset has 11,384 nodes and 68,264 undirected edges, which
is summarized in Figure 5 with degree. The size and color of node
represents degree. The dataset we use in this study is featureless
network data, where we take featureless approach replacing input

Figure 5: IMDb actor network

X with the identity matrix. We want to verify whether the node
popularity we learn is beyond observable degree. The top 10 actors
in terms of node degree in the data happen to be all Indian actors
with Prakash Raj the highest followed byMohan Joshi. Interestingly,
the popular nodes we found based on z𝑝 were quite different from
the actors based on degree. The node with highest node popularity
was Pierce Brosnan. In top 10, we additionally found Nicolas Cage,
Jonny Depp, Sylvester Stallone. We qualitatively show that D-VGAE
can capture popular nodes of which the links are established beyond
homophily, e.g., across various genres, countries. We also observe
that the popularity is not a mere artifact of degree.

6 CONCLUSION
In this paper, we discuss the intrinsic limitation of inner product
based decoder in VGAE, where the norm and the cosine similar-
ity both try to explain the probability of link. We propose a novel
framework of VGAE through decoupling the two effects and as-
sociate each component to its own phenomena: node popularity
and homophily. The decoupling also avoids unexpected domination
effect in message passing. To effectively decouple the two effects,
we propose a two-stage generative process accounting for each
individually. We perform end-to-end learning using the hard EM
algorithm consistently achieving SOTA results on standard datasets.
The link prediction which only uses the node embedding from ho-
mophily in our model already outperforms previous models. We
hope our study can inspire other researchers to perform further
studies in VGAE.
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A EXPERIMENTAL DETAILS
A.1 Implementation
We implement D-VGAE based on PyTorch Geometric [9] 2.0.4. In
our experiments with D-VGAE, we use Graph Normalized Convolu-
tional Network (GNCN) as our encoderwhich is introduced in [1]. In
our experiments with D-VGAE, we use instances of GNCNEncoder.
We define a class, DVGAE that takes an encoder and a decoder of our
own following the Equation 3 and 4. The decoder uses Gumbel-trick
to predict edge under homophily or node popularity. To select one
property, our generative model performs hard sampling. Following
the previous approaches [3, 17, 25], the temperature 𝜏 is annealed
from a high temperature to small temperature.

A.2 Additional Experimental Details
The experiments are conductedwith PyTorch 1.10.2 using anNVIDIA
RTX A6000. The latent embedding dimension is fixed to 256 in our
experiments. The model uses validation set for early stopping. For
the baseline models, we also tested with different hyperparameters,
but found the hyperparameters from the original papers perform
the best. The Gumbel-Softmax temperature has been annealed from
{10.0, 5.0, 2.0, 1.0} to {2.0, 1.0, 0.5, 0.1, 0.01}. We found having high
temperature as 2.0 and low temperature as 0.5 generally achieves
competitive performance. We anneal the temperature to 0.01 when
reporting our results.

B EXTENDED EXPERIMENTS
B.1 VGNAE with High-Degree Nodes
When the similarity between nodes aremearsured using the normal-
ized innder product, the link probability is bounded in a range for
every nodes regardless of the node degree. While it brings perfor-
mance improvement for low-degree nodes, it causes performance
degradation for high-degree nodes. In this experiments, we perform
link predictions with links associated with high-degree nodes. For

(a) In VGAE, we observe higher
performance on links with
high-degree nodes

(b) In VGNAE, we observe
lower performance on links
with high-degree nodes

Figure 6: For two models, we compare the overall perfor-
mance and the performance on links associated with high
degree nodes. While VGAE achieve performance improve-
ment, VGNAE shows performance degradation.

each of dataset, we use node with degree above 5 as high-degree
nodes.

As shown in Figure 6a, VGAE achieves higher performance when
the links are associated with high-degree nodes. This is expected as
the magnitude of high-degree nodes can account for the link prob-
ability, which have been shown in Figure 1a. However, we observe
the opposite behavior when we perform the same testing using
VGNAE with normalized inner product. As shown in Figure 6b, the
performance for high-degree nodes are always worse than overall
performance. In fact, in certain cases, such as for the case with
PubMed, performance on low-degree nodes (or isolated nodes) are
better than the high-degree nodes.

B.2 Node Popularity : snp(·)
In Equation 4, we have snp(·) which reflects the node popularity.
We try three functions for snp(·). As the link of our interest is
undirected, the probability of link under node popularity is affected
by one of the two nodes. In this regard, we try adding the two z𝑝s
for snp(·). Another way of defining the node popularity function is
to have sum of square values of z𝑝s. In this approach, bias should
be added in the sigmoid function to ensure the value can be be-
tween 0 and 1. The other function we try is obtaining z𝑝s using
vanilla-encoder without normalization. In this approach, we ob-
serve performance improvement on CiteSeer dataset (see Table 6).
For CiteSeer dataset, the normalization constraint restrict the model
to find best z𝑝 that reconstruct the links.

Table 6: D-VGAE (no norm) excludes nomalization for node
popularity.

Model Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

VGNAE 95.32 ± 0.02 95.36 ± 0.03 96.96 ± 0.02 97.01 ± 0.03 97.24 ± 0.02 97.11 ± 0.02

D-VGAE 96.34 ± 0.03 96.17 ± 0.03 97.37 ± 0.03 97.29 ± 0.03 98.07 ± 0.04 97.87 ± 0.05

D-VGAE (no norm) 95.55 ± 0.04 95.91 ± 0.04 97.40 ± 0.03 97.45 ± 0.03 97.63 ± 0.05 97.65 ± 0.05

B.3 Message Passing the Node Popularity
In this ablative study, we perform link prediction using a model
based on our model, D-VGAE, where we apply propagation scheme
both on homophily and node popularity. We denote this variant as
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D-VGAE (PNP) in Table 7 and compare with D-VGAE which only
performs propagation on embeddings for homophily.

Table 7: D-VGAE (PNP) applies message passing scheme on
node popularity, which we compare to our proposed model
with propagation scheme only applied on homophily.

Model Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

VGNAE 95.32 ± 0.02 95.36 ± 0.03 96.96 ± 0.02 97.01 ± 0.03 97.24 ± 0.02 97.11 ± 0.02

D-VGAE 96.34 ± 0.03 96.17 ± 0.03 97.37 ± 0.03 97.29 ± 0.03 98.07 ± 0.04 97.87 ± 0.05

D-VGAE (PNP) 95.47 ± 0.02 95.53 ± 0.02 96.59 ± 0.04 96.89 ± 0.03 97.82 ± 0.05 97.72 ± 0.05

As shown in Table 7, we observe that D-VGAE always outper-
forms other methods including our extension. We observe D-VGAE
(PNP) performs bettern than VGNAE in two datasets: Cora and
PubMed. The results support our hypothesis that the node popular-
ity is the property of the node itself, which is not affected by their
neighbors.

B.4 Stochastic Sampling
Our model follows a ‘winner-take-gradient’ training strategy [26]
by positing the problem to hard EM algorithm. In our E-like step,
we perform sampling for e𝑖 𝑗 for a given pair of node 𝑖 and 𝑗 , where
we use Gumbel-trick for hard sampling. With the indicator vector
e𝑖 𝑗 , we let the gradient flow only through the selected property
(homophily vs node popularity). Here, we verify how our approach
is effective by comparing D-VGAE against the variant which uses
probabilistic values instead of the e𝑖 𝑗 .

Table 8: D-VGAE (softmax) uses softmax for inferring the
property between homophily and node popularity.

Model Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

VGNAE 95.32 ± 0.02 95.36 ± 0.03 96.96 ± 0.02 97.01 ± 0.03 97.24 ± 0.02 97.11 ± 0.02

D-VGAE 96.34 ± 0.03 96.17 ± 0.03 97.37 ± 0.03 97.29 ± 0.03 98.07 ± 0.04 97.87 ± 0.05

D-VGAE (softmax) 94.93 ± 0.04 94.55 ± 0.03 96.92 ± 0.03 96.82 ± 0.03 97.48 ± 0.05 97.36 ± 0.04

D-VGAE (softmax) performs worse than VGNAE on Cora dataset.
We also observe D-VGAE (softmax) slightly underperforms than
VGNAE on CiteSeer. However, on PubMed dataset, D-VGAE per-
forms better than VGNAE. On evey dataset, our proposed model
D-VGAE with Gumbel-trick sampling always performs better than
D-VGAE (softmax). We believe this is mainly due to the decoupling
effect, which clearly devides the two property through sampling,
and our generative process.

B.5 Performing Normalization in GNCN
In this ablative study, we perform inference and obtain full node
embeddings, and split the embeddings into homophily embedding
and node popularity embedding. This is quite different from our
proposed approach, where we perform GNCN for homophily and
different GNCN for node popularity. We compare the performance
from the two approaches.

The results in Table 9 provides the results when the embedding
is normalized together first and split later. While this approach
also takes into account the homophily and node popularity , and

Table 9: D-VGAE (norm and split) performs GNCN and split
the embedding vector into two: homophily and node popu-
larity

Model Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

VGNAE 95.32 ± 0.02 95.36 ± 0.03 96.96 ± 0.02 97.01 ± 0.03 97.24 ± 0.02 97.11 ± 0.02

D-VGAE 96.34 ± 0.03 96.17 ± 0.03 97.37 ± 0.03 97.29 ± 0.03 98.07 ± 0.04 97.87 ± 0.05

D-VGAE (norm and split) 95.13 ± 0.05 94.42 ± 0.04 96.82 ± 0.03 96.21 ± 0.04 97.23 ± 0.05 96.87 ± 0.05

looks similar, major difference lies in the encoder. The embedding
of homophily and node popularity should be learned separately
and each should have its own normalization.

B.6 Clustering Visualization

(a) Cora (b) CiteSeer (c) PubMed

Figure 7: Angular node embeddings (zℎ) from D-VGAE are vi-
sualized using 2D 𝑡-SNE, where we compare with the ground-
trugh labels in different colors.

We perform 2D 𝑡-SNE projections of the node embeddings ob-
tained through D-VGAE. For visualization, we only use the angular
node embedding (zℎ), and no extra process has been applied. When
compared with the ground-truth label, we qualitatively verify how
D-VGAE performs on clustering.
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