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Abstract

This paper addresses the challenge of handling
unseen modalities at test time and dynamic
modality combinations with our proposed text-
centric alignment method. This training-free
in-context-learning alignment approach unifies
different input modalities into a single seman-
tic text representation by leveraging in-context
learning with Large Language Models and uni-
modal foundation models. Our method signifi-
cantly enhances the ability to manage unseen,
diverse, and unpredictable modality combina-
tions, making it suitable for both generative
and discriminative models to adopt on top. Our
extensive experiments primarily evaluates on
discriminative tasks, demonstrating that our
approach is essential for LLMs to achieve ro-
bust modality alignment performance. It also
surpasses the limitations of traditional fixed-
modality frameworks in embedding represen-
tations. This study contributes to the field by
offering a flexible and effective solution for
real-world applications where modality avail-
ability is dynamic and uncertain.

1 Introduction

This work targets the challenge of handling test-
time unseen modalities and dynamic modality com-
binations for multimodal models where the input
modality in the testing (or prediction) phase differs
from that in training. The motivation for this re-
search arises from the dynamic nature of real-world
data, where modalities can unpredictably vary or
even be absent at inference time. Consider the
following scenario: A hospital has extensive im-
age and text data about its patients, such as X-ray
images and doctors’ written diagnoses. This data
can be used to train an Al model that diagnoses
patients based on both image and text inputs. How-
ever, to enhance patient satisfaction, the hospital
wants to develop a dialog system that can diagnose
patients based on their audio descriptions of their
symptoms. Typically, achieving this would require
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Figure 1: This paper establishes a general method appli-
cable to all mismatch types and combinations. As the
figure shows, the model utilizes three modalities during
training. Our unified model can handle any combination
of modalities during inference with in-context learning,
including completely unseen modalities. Additionally,
it can deal with the situation that modality combinations
dynamically change during inference, covering all pos-
sible combinations of both seen and unseen modalities.

collecting audio data and employing transfer learn-
ing or domain adaptation techniques to align the
information across modalities, a process that de-
mands significant additional effort, cost, and time.

Traditional multimodal learning methods, typi-
cally fixated on static modality combinations dur-
ing both training and inference, fall short in such
fluid environments. Therefore, this paper explores
the possibility of creating a supervised model that
utilizes only existing modalities (e.g., images and
text in the hospital scenario, and time series and
tables in the bank scenario) during training, yet
allows for the incorporation of an unseen modality
(e.g., audio signals or text inputs) during inference.
If successful, this approach would eliminate the
need for additional data collection and modality
alignment, thereby reducing the associated costs
and efforts.

There are two plausible directions to tackle this
challenge. First, we can rely on universal models
pre-trained on vast datasets across numerous modal-
ities to encode these modalities into embeddings.
However, collecting data that have multiple modal-



Training modality | table table table

Testing modality text+image text image
Embedding-based | 0.287 0.289 0.279
Naive Text-centric | 0.194 0.193  0.196
GPT-4o0 few-shot | 0.167 0.204 0.168
TAMML 0.360 0.360 0.364

Table 1: A brief summary of the experiment results
showing that TAMML alignment are necessary to
perform well in text space, particularly in complex
scenarios involving multiple modality combinations.
Embedding-based and Text-centric are illustrated in Fig-
ure 2.

ity aligned is extremely rare and costly. Moreover,
changes in the input modality necessitate retrain-
ing the entire model for accurate predictions. The
second direction, which this paper adopts, is to
convert every modality into a single modality and
build the model based on that unified modality. We
argue that converting all modalities into text could
be a favorable choice. Text can serve as a unified
semantic space, leveraging the extensive zero-shot
prediction capabilities of Large Language Mod-
els (LLMs). The modality-invariant nature of text
provides a versatile bridge across different data
types, potentially circumventing issues like modal-
ity collapse and extending generalizability to un-
seen modalities. Furthermore, advanced text anal-
ysis tasks such as translation, summarization, and
explanation have been extensively researched and
integrated into LLMs, offering powerful capabili-
ties to align various modalities effectively.

Our objective is to develop a downstream model
that is invariant across modalities. This model
should be capable of being trained on data of
certain modalities and performing zero-shot pre-
dictions on various modality combinations during
testing, regardless of whether they were seen dur-
ing training, as shown in Figure 1 and Figure 3.
Note that simply converting all modalities into text
for training and inference is insufficient, as the
mismatch between different modalities does not
translate and align as seamlessly in text, especially
in complex scenarios involving multiple modality
combinations. A brief summary of the results is
shown in Table 1, with more detailed findings pre-
sented in the Experiment section. To address these
issues, our work has explored challenges such as
modality alignment, translation, and augmentation.

TAMML employs LLMs for data transformation
across various modalities, with the aim of creating
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Figure 2: Traditional downstream training relies on em-
beddings extracted from upstream foundation models,
with one foundation model designated for each modal-
ity. This approach limits the downstream model’s ability
to adapt to unseen modalities at test time without un-
dergoing complete retraining. Previous research has
addressed this issue by implementing zero-shot cross-
modality translations during the inference phase.

a unified semantic space. This process is conducted
exclusively through in-context learning. Initially,
we transform different modalities into text. Re-
cently, various solutions have been developed, such
as GPT-4 (OpenAl, 2023), Blip2 (Li et al., 2023a)
for vision, and TabLLM (Hegselmann et al., 2023)
for tabular data. Following this, we engage LLMs
in text-style translation across modalities, ensuring
that all modalities in their textual representation
adopt a consistent linguistic structure, thereby re-
ducing the gap between different modalities. To fur-
ther align these modalities within a closer semantic
space, remove redundant information, and mitigate
the heterogeneity inherent in text data from diverse
sources, we further conduct modality summariza-
tion. This step involves a concise summarization of
the translated data. Additionally, TAMML includes
a reasoning augmentation step akin to the Chain-
of-Thought (Wei et al., 2022) method, where we
enhance the data with LLMs to boost prediction
and judgment capabilities. Moreover, we leverage
LLMs as a source of large-scale external knowl-
edge, enriching the data understanding and interpre-
tative depth (Chen et al., 2023). We aim to answer
several hypotheses through extensive experiments.
First, whether TAMML is more effective compared
to existing solutions in predicting data of unseen
modalities. Second, although this work focuses
on predicting unseen modalities, we want to un-
derstand whether the proposed solution is effective
when the modality in testing is already seen during



training. Third, whether the text-as-the-medium
strategy is more robust compared to embedding-
based cross-modality transfer solutions. We bench-
marked TAMML against existing methodologies in
closely related tasks, particularly focusing on zero-
shot learning cross-modality translation, which in-
volves translating unseen source data to a different
target domain. Techniques like MIDiffusion (Wang
et al., 2023b) and SDEdit (Meng et al., 2022)
demonstrate commendable performance in tasks
such as domain translation within images. How-
ever, these methods encounter challenges when the
source and target domains represent completely
different modalities.

Our contributions can be summarized as follows:

* We investigate the potential advantage of us-
ing LLMs and text representation for multi-
modal learning. We propose TAMML , an
in-context cross-modality translation method
that utilizes foundation models to tackle train-
ing/testing modality mismatch and generalize
to any unseen modality at test time. TAMML
eliminates the need for any pre-training, fine-
tuning, and the collection of multi-modality
aligned data.

* We demonstrate that TAMML can signifi-
cantly outperform SOTA approaches by con-
ducting multiple experiments on real-world
datasets. We also have an ablation study to
analyze the effectiveness of each component
in TAMML .

* Additional experiments further verify that
even when the testing modality is already seen
during training, TAMML can still outperform
the competitors by a large margin.

2 Related Works
2.1 Multimodal Foundation Models

Recent advances in foundation models have greatly
improved multimodal generation. However, align-
ing the semantic spaces of independently trained
models remains challenging, limiting seamless
modality transfer at test time. Multimodal LLMs
(MLLMs) have shown strong reasoning and gen-
eration abilities (Yin et al., 2023), but large-scale
pretraining across multiple modalities still demands
extensive data.

To address this, many works convert modality
inputs into text for LLM alignment. LLaVA (Liu

et al., 2023) and VideoChat-Text (Li et al., 2023b)
turn images or videos into captions. Cosmos (Agar-
wal et al., 2025) uses video summaries for re-
trieval (Blog, 2024), while ChatCAD (Wang et al.,
2023a) and OphGLM (Gao et al., 2023) generate
diagnostic text from X-rays. NExT-GPT (Wu et al.,
2023) also builds a general-purpose multimodal
LLM via modality adaptors, but unlike TAMML ,
it requires training projection layers. In contrast,
we achieve any-to-any alignment through text alone
using in-context learning.

2.2 Zero-shot Learning for Cross-Modality
Translation

Zero-shot learning (ZSL) offers a promising ap-
proach for cross-modality translation when source
modality data is unavailable. A key challenge for
learning-based methods is their limited generaliza-
tion to unseen classes (Wang et al., 2021; Bucher
et al., 2017; Kuchibhotla et al., 2022). Traditional
ZSL methods map features to a shared semantic
space via discriminative (Palatucci et al., 2009;
Akata et al., 2015) or generative models (Long
etal., 2017; Wang et al., 2018).

In modality translation, GAN-based approaches
perform latent space manipulation through GAN
inversion (Zhu et al., 2020; Shi et al., 2022; Abdal
et al., 2020), while diffusion-based methods (Ho
et al., 2020; Kawar et al., 2022; Meng et al., 2022)
enable zero-shot alignment by perturbing features
toward target distributions. Despite strong results
when domains are numerically aligned (Cheng
et al., 2023), performance often degrades with large
appearance mismatches.

2.3 Training-based Modality Binding

Recent works such as ImageBind (Girdhar et al.,
2023) and LanguageBind (Zhu et al., 2023) reduce
the complexity of aligning modality pairs by lever-
aging a central anchor—text in LanguageBind and
image in ImageBind. This design simplifies cross-
modality alignment from requiring explicit pair-
wise supervision across all modalities to aligning
each modality with a single anchor. This idea aligns
closely with our motivation in TAMML , which
also uses text as a unifying interface.

However, both ImageBind and LanguageBind
rely heavily on large-scale supervised training
across diverse modality pairs. While they reduce
the need for all modalities to be jointly present
during training, they still require extensive paired
data between each modality and the anchor (text
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Figure 3: In the training phase, each raw input modality is transformed into text representations using a corresponding
foundation model. Following the modality transformation, summarization, and augmentation are applied in parallel.
Finally, the output texts are concatenated as the training inputs to a transformer model for downstream prediction.
The inference phase follows a similar pattern, with the exception of utilizing an LLM for the text-style translation
after the text transformation module. We apply a one-shot in-context learning approach to adapt the linguistic style

as anticipated during training.

or image). In contrast, we proposed a training-free
framework that operates solely using pre-trained
modality-to-text converters and in-context LLM
reasoning, making it more lightweight and deploy-
able under resource-constrained settings.

3 Methodologies

This section describes how TAMML enables the
generalization to unseen testing modalities and un-
seen modality combinations. We explicitly separate
our pipeline into two phases: Training-Free Align-
ment Method, which includes modules that do not
require any model training (Sections 3.2.1 to 3.2.4),
and Downstream Prediction, which requires min-
imal supervised training (Section 3.3). Figure 3
presents an overview of the entire process.

In Section 3.1, we define the problem setup
and notations. Sections 3.2.1-3.2.4 explain the
components of the training-free alignment method:
text transformation, text-style translation, modality
summarization, and LLM reasoning augmentation.
Section 3.3 describes the downstream task setup
with minimal supervised training.

3.1 Problem Formalization

Suppose we have a set M of p modalities, M =
{m1,ma, ..., mp}. In the training phase, a subset
of modalities M7 C M is used. In the inference
phase, a different subset M; C M is utilized. This

subset meets the critical condition M7 N M7 = 0,
ensuring no overlap in modalities between training
and inference.

Within this framework, we define two distinct
datasets: one for the training phase and another
for the inference phase. The training dataset D
consists of nr samples. Each sample T is re-
stricted to M, denoted as D = { (., y") }i2).
Similarly, the inference dataset D; consists of
ny samples, each restricted to M7, formalized as
Dr = {(z%,,y")}iL,. Our algorithms are de-
signed to build the model F on Dt and evaluate
unseen data and modality combinations in Dj. This
evaluation measures the model’s ability to general-
ize knowledge in zero-shot multimodal learning.

3.2 Training-Free Alignment Method
3.2.1 Text Transformation

We map heterogeneous modalities into a shared tex-
tual space using pre-trained modality-to-text mod-
els. These transformations are performed without
training. For image modality, we use image cap-
tioning models to generate descriptions. For tables,
we follow the TabLLM (Hegselmann et al., 2023)
template-based serialization. Text is retained in
its original form. This conversion harmonizes in-
puts at the representation level without requiring
task-specific finetuning. Real-world Example in
Appendix C.6.1
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Figure 4: Examples of prompt templates for each modules

3.2.2 Text-style Translation across Modality

Despite converting all inputs to text, style and se-
mantic gaps remain due to modality-specific for-
matting. We address this with in-context learning
using LLMs, which learn to translate textual inputs
from inference-time modalities into the style of
training-time modalities. This reduces distribution
shift without model finetuning. Prompts use three
few-shot examples from Dp. Real-world Example
in Appendix C.6.2

3.2.3

To enhance alignment and eliminate redundancy,
we use LLMs to summarize the transformed modal-
ity inputs. This improves representation uniformity
and highlights shared content. The summariza-
tion prompt includes a demonstration constructed
from Dp, and one-shot in-context learning is ap-
plied for each sample. Real-world Example in Ap-
pendix C.6.3

Modality Summarization

3.24 LLM Reasoning Augmentation

We augment the inputs with LLM-generated rea-
soning traces to incorporate external knowledge
and explain predictions. Prompts include task-
specific instructions and examples. No model train-
ing is involved; all augmentation is via in-context
LLM calls. Real-world Example in Appendix C.6.4

3.3 Downstream Prediction

Following the training-free multimodal alignment,
we evaluate performance on a range of downstream
tasks, including regression, classification, and rank-
ing. The aligned and summarized text representa-
tions are processed by a transformer encoder (Long-

former (Beltagy et al., 2020)), followed by mean
pooling and a lightweight Multilayer Perceptron
(MLP) for final prediction. Only the MLP is trained
during this phase, while all preceding components
remain frozen. We use Cross Entropy Loss for
classification tasks and Mean Squared Error for re-
gression. This minimal training setup isolates the
contribution of the alignment method.

4 Experiments

4.1 Experiment Setup

In all experiments, we primarily present results
from GPT-4-Vision for image captioning, unless
specified otherwise. For additional results involv-
ing other image caption models, please refer to Ta-
ble 10. The detailed information of the dataset, met-
rics, computation resource are in Appendix A.4.

4.1.1 Competitors

We compare TAMML against several zero-shot
cross-modality translation baselines, including
embedding-based approaches and a naive GPT-
4-vision method. A schematic of embedding-
based pipelines is shown in Figure 2. We include
two perturbation-diffusion models—SDEdit (Meng
et al., 2022) and DDRM (Kawar et al., 2022)—and
one GAN-based method, Idinvert (Zhu et al., 2020).
These methods train generative models (diffusion
or GANs) to map embeddings from unseen modal-
ities into the training distribution. At test time,
modality-specific encoders extract embeddings,
which are transformed via generative models into
aligned representations. For diffusion-based meth-
ods, we train a score-based model (Ho et al., 2020)



.. . . . Naive MLLM TAMML Methods
Training Testing SDEdit  DDRM  Idinvert Transformation | LLaMa 3 8B Mistral 7B Mixtral 8x7B  Mixtral 8x22B GPT-3.5
PetFinder | Accuracy 1
text+image tabular 0282  0.291 0.279 0.310 0.309 0.301 0.317 0.332 0.348
text+tabular image 0289  0.277 0.286 0.329 0.306 0.322 0.335 0.323 0.380
image+tabular  text 0.281 0.297 0.279 0.305 0.303 0.304 0.320 0.313 0.355
text image+tabular | 0.291 0.283 0.289 0.282 0.315 0.304 0.330 0.368 0.344
text image 0289 0276  0.287 0.293 0.355 0.341 0.307 0.360 0.374
text tabular 0.293 0259  0.277 0.297 0.295 0.286 0.325 0.341 0.357
image text+tabular 0290  0.297 0.284 0.314 0.310 0.322 0.346 0.342 0.341
image text 0288  0.282  0.280 0.306 0.323 0.325 0.329 0.330 0.319
image tabular 0.291 0.287 0.284 0.300 0.322 0.302 0.341 0.319 0.348
tabular text+image 0.290 0.271 0.285 0.194 0.314 0.309 0.327 0.333 0.360
tabular text 0289  0.265 0.280 0.193 0.295 0.294 0.302 0.317 0.364
tabular image 0289  0.263 0.277 0.196 0.294 0.305 0.338 0.311 0.364
Average 0289 0279  0.282 0.277 ‘ 0.312 0.310 0.326 0.332 0.355
Airbnb | MSE |
text+image tabular 0.935 0.600  0.799 0.365 0.303 0.371 0.326 0.313 0.367
text+tabular image 0.656  0.778 0.643 0.957 0.626 0.466 0.451 0.447 0.508
image+tabular  text 0514  0.565 0.781 0.695 0.413 0.325 0.312 0.359 0.332
text image-+tabular | 1.548 0914 0.915 0.438 0.315 0.368 0.323 0.284 0.421
text image 1.513  0.895 1.010 0.524 0.537 0.521 0.439 0.404 0.520
text tabular 1.061 0.824 0931 0.759 0.308 0.348 0.345 0.297 0.448
image text+tabular 0.556  0.530  0.602 0.457 0.431 0.368 0.382 0.392 0.395
image text 0.678  0.589  0.759 0.423 0.439 0.389 0.375 0.421 0.391
image tabular 0592  0.538 0.516 0.668 0.459 0.452 0.487 0.405 0.414
tabular text+image 0.637  0.675 0.662 0.480 0.467 0.347 0.310 0.379 0.280
tabular text 0.569  0.693 0.707 0.477 0.481 0.341 0.313 0.339 0.301
tabular image 0.609  0.715 0.615 0.913 0.627 0.461 0.431 0.535 0.551
Average 0.822  0.693 0.745 0.596 ‘ 0.451 0.396 0.375 0.381 0.411
Avito | MSE |
text+image tabular 0.103  0.113 0.126 0.051 0.045 0.045 0.043 0.041 0.044
text+tabular image 0.130 0.133 0.142 0.051 0.048 0.048 0.047 0.048 0.046
image+tabular  text 0.113  0.125 0.137 0.040 0.045 0.045 0.045 0.043 0.046
text image+tabular | 0.124  0.123 0.131 0.050 0.046 0.047 0.046 0.046 0.045
text image 0.124  0.122  0.129 0.052 0.048 0.050 0.047 0.048 0.047
text tabular 0.127  0.124  0.134 0.052 0.045 0.046 0.046 0.046 0.044
image text+tabular 0.123  0.126  0.134 0.044 0.044 0.044 0.044 0.044 0.044
image text 0.118  0.124  0.129 0.045 0.045 0.046 0.047 0.046 0.045
image tabular 0.119 0.126  0.134 0.049 0.044 0.044 0.045 0.043 0.044
tabular text+image 0.128  0.139  0.137 0.044 0.046 0.045 0.046 0.044 0.046
tabular text 0.124  0.131 0.138 0.046 0.046 0.044 0.047 0.044 0.045
tabular image 0.126  0.137 0.140 0.044 0.050 0.047 0.048 0.046 0.048
Average | 0122 0127 0135 |0.048 | 0.046 0.046 0.046 0.045 0.045

Table 2: This table presents a detailed comparison, highlighting TAMML ’s performance against all baseline models
under modality mismatch scenarios. The PetFinder dataset uses accuracy as the key evaluation metric. The Airbnb
dataset and the Avito dataset both use Mean Squared Error (MSE) as the key evaluation metric.

using DDIM (Song et al., 2020) as the backbone.
For GANs, we adopt StyleGAN (Karras et al.,
2019). All baselines use modality-specific foun-
dation model encoders, followed by alignment lay-
ers and a transformer for downstream prediction
after fine-tuning. We also include a LanguageBind-
style training as baseline, which serves as an upper
bound for our method when sufficient paired data
is available.

4.2 Main Results

Here, we articulate our hypotheses and address the
research questions to evaluate the effectiveness of
TAMML . Q1: Under test-time unseen modality
scenarios, is TAMML better than the embedding-
based SOTA zero-shot cross modality translation?
Q2 (follow Q1): Is TAMML still effective for sit-

uations in which the testing modality has been in-
volved during training? (i.e. training: all modal-
ities, testing: some of the modalities) and other
modality mismatch combinations? The following
three questions are presented in Appendix C. Q3:
Is text representation generally more robust than
embedding representation for cross-modality trans-
lation? Q4: What is the performance of text-based
solutions versus embedding-based solutions when
training and testing modalities are exact identical?
Q5: How about comparing TAMML to non-zero-
shot transferring methods, such as domain adapta-
tion? Q6: How does LanguageBind-Style training
serves as a upper vound performance compared to
TAMML when sufficient paired multimodal data is
available?

Additional inquiries, Q3, Q4, Q5, Q6 and de-



Training Testing Pet | Acc Airbnb | MSE | Avito | RMSE |
SDEdit DDRM Idinvert TAMML | SDEdit DDRM Idinvert TAMML | SDEdit DDRM Idinvert TAMML
all tabular 0.282 0.269 0.252 0.338 0.428 0.621 0.732 0.270 0.108 0.123 0.133 0.041
all image 0.285 0.286 0.267 0.356 0.566 0.649 0.711 0.486 0.114  0.123 0.136 0.044
all text 0284  0.284 0.274 0.349 0.502 0.601 0.695 0.253 0.113 0.123 0.131 0.044
all image+tabular | 0.307 0.276 0.256 0.382 0394  0.556 0.683 0.251 0.118 0.124 0.129 0.042
all text+tabular 0.315 0.306 0.283 0.377 0.353 0.470 0.544 0.185 0.124  0.124 0.134 0.041
all text+image 0.292 0.286 0.244 0.378 0.489 0.537 0.673 0.212 0.110  0.115 0.125 0.043
all all 0334 0304 0.281 0.395 0.345 0.463 0.542 0.178 0.109 0.114 0.123 0.042
Average 0.300  0.287 0.265 0.368 0440  0.557 0.654 0.262 0.112  0.121 0.130 0.042
all comb 0294  0.285 0.263 0.362 0.455 0.572 0.673 0.299 0.115 0.122 0.131 0.043
text+image comb 0.282 0.290 0.277 0.320 0.643 0.623 0.747 0.331 0.108 0.120 0.132 0.043
text+tabular comb 0290 0.278 0.282 0.341 0.517 0.645 0.674 0.318 0.120  0.127 0.134 0.044
image+tabular  comb 0.296 0.296 0.269 0.358 0.452 0.524 0.666 0.236 0.116  0.121 0.132 0.042
Average ‘ 0.291 0.287 0.273 0.345 ‘ 0.517 0.591 0.690 0.286 ‘ 0.115 0.123 0.132 0.043

Table 3: This table presents a detailed comparison, highlighting TAMML ’s performance against embedding-based
translation baselines when the model is trained on all modalities and tested on different subset modalities. The result
shows the effectiveness of TAMML even when the testing modality has been involved during training. Mixtral

8x7B is used in this experiment.

tailed descriptions of our experimental setup, in-
cluding model checkpoints, hyperparameters, and
dataset specifics, are provided in Appendix C.

Q1: Under Modality Mismatch Scenarios, How
Does TAMML Compare To the SOTA Zero-shot
Cross Modality Translation? In QI, we focus
on situations where training and testing modali-
ties are completely different. We mainly compare
our results to several zero-shot cross-modality data
translation methods. The key findings outlined in
Table 2 underscore the superior performance of
TAMML , which achieves substantial gains over
competing baselines across various modality com-
binations and different foundation models. Specif-
ically, with the best-performing GPT-3.5 on the
PetFinder dataset, TAMML enhances accuracy by
an average of approximately 21%, significantly
outperforming the best-performing baseline meth-
ods. Similarly, in the Airbnb dataset, TAMML
achieves an average reduction in mean square error
of around 54 %, dwarfing the maximum 16% error
reduction seen with alternative baselines. Further
examination of the differences among various foun-
dation models within the TAMML framework un-
derscored the impact of model size on quality. For
instance, Mixtral 8x22B improved accuracy by 7%
on the PetFinder dataset compared to Mistral 7B.
For complex tasks such as summarization and trans-
lation, larger models performed better. However,
even smaller models showed improvement com-
pared to baselines in mismatch scenarios. These
results suggest that the proposed strategy, which
integrates LLMs’ in-context learning with founda-
tion models, holds a decisive edge over all existing
methods.

Q2: Is the Proposed Solution Effective When
There is No Train/Test Modality Mismatch or
Only Partial Mismatch in Various Modality
Combinations? The key findings outlined in
Table 3 underscore the superior performance of
TAMML , which still achieves substantial gains
over competing baselines across various modal-
ity combinations. These results suggest that de-
spite no modality mismatching, our strategy holds
a decisive edge over embedding-based methods.
Specifically, on the PetFinder dataset, our tech-
nique enhances accuracy by an average of approx-
imately 22.6%, significantly outperforming the
best-performing embedding-based methods. Sim-
ilarly, in the Airbnb dataset, TAMML achieves a
decrease of approximately 40.5% in mean squared
error, indicating a significant improvement in pre-
diction accuracy. Moreover, in the Avito dataset,
the decrease is even more pronounced, with a re-
duction of approximately 62.5% in mean squared
error when applying TAMML .

4.3 Ablation Studies

This section evaluates the contribution of individual
components in TAMML through a series of abla-
tion studies using GPT-3.5 as the foundation LLM.
We incrementally add each module and summarize
the performance impact in Table 14.

We first observe that converting modality fea-
tures into text (Text Transformation) improves per-
formance by 2% over embedding-based meth-
ods like SDEdit, suggesting reduced modality mis-
match. However, tabular data sees a 10% drop,
likely due to rigid text formatting that diverges from
natural language style. Adding Modality Summa-
rization significantly boosts tabular accuracy from



Training Testing PetFinder | Accuracy 1

SDEdit Text +Modality +Reasoning +Text-style

Transformation ~ Summarization Augmentation  Translation
text+image tabular 0.282 0.310 0.321 0.338 0.348
text+tabular image 0.289 0.329 0.365 0.363 0.380
image+tabular  text 0.281 0.305 0.295 0.321 0.355
text image-+tabular 0.291 0.282 0.296 0.343 0.344
text image 0.289 0.293 0.298 0.341 0.374
text tabular 0.293 0.297 0.318 0.315 0.357
image text+tabular 0.290 0.314 0.289 0.325 0.341
image text 0.288 0.306 0.330 0.336 0.319
image tabular 0.291 0.300 0.307 0.303 0.348
tabular text+image 0.290 0.194 0.366 0.341 0.360
tabular text 0.289 0.193 0.306 0.327 0.364
tabular image 0.289 0.196 0.357 0.353 0.364

Average + Variance (x10™%) ‘ 0.289 £0.12 0.277 £25.91 0.321 £ 7.2 0.334+25 0.355+24

Table 4: Ablation studies on various components of TAMML . Our observations reveal that text transformations
significantly enhance performance across all modality combinations except for tabular data, which is in fixed
formatted text. The formatting issue is effectively solved by incorporating a summarization module, resulting
in a substantial enhancement in performance. Furthermore, the inclusion of both the translation module and the
reasoning augmentation module leads to further improvements in overall performance.

0.277 to 0.321, helping normalize structure and
reduce formatting inconsistencies. Incorporating
LLM Reasoning Augmentation further improves
the average score to 0.334, while also reducing per-
formance variance across different modality pairs.
Finally, applying Text-Style Translation contributes
the largest gain, raising the average to 0.355. This
step proves especially effective when there is a per-
sistent style gap between training and inference,
as in image-to-tabular translation, by helping the
model maintain consistent mapping across phases.

5 Computational Cost and Practicality
Analysis

We report the average runtime latency for each
component of TAMML and compare it with ex-
isting baselines in Table 5. While our alignment
pipeline introduces some overhead (1.76s per sam-
ple), it remains comparable to SDEdit (1.63s) and
DDRM (1.89s), and is significantly more practical
than methods like Idinvert (2.01s). The overhead
primarily stems from LLM in-context operations,
which are fully parallelizable.

TAMML does not require model retraining and
allows flexible module use, enabling practical de-
ployment across different latency budgets. Though
our method incurs additional token usage (400-
600 tokens per sample), this remains well within
modern LLM context limits (8k-32k). Overall,
TAMML balances scalability, robustness, and de-
ployment simplicity.

Table 5: Average Latency per Sample (in seconds) for

Each Component and Baseline Methods.

Method / Operation Latency (s) ‘ Method / Operation Latency (s)

TAMML Baseline

Text Transformation 0.42 SDEdit 1.63
Text-style Translation 0.37 DDRM 1.89
Modality Summarization 0.45 Idinvert 2.01
LLM Augmentation 0.52 Direct Input 0.25
Total 1.76

6 Conclusion and Future Directions

Our study has effectively harnessed Large Lan-
guage Models (LLMs) for multimodal learning,
creating a unified semantic space that integrates var-
ious data modalities through text in a complete in-
context learning manner. Through techniques such
as text transformation, text-style translation, sum-
marization, and reasoning augmentation, we have
demonstrated our proposed TAMML alignment
that the operations performed in the text domain
using in-context learning with LLMs can achieve
comparable performance to traditional methods op-
erating in embedding space. This approach not
only opens new avenues in multimodal learning
but also underscores the significant potential and
advantages of text as a unifying medium. Future
efforts will focus on refining TAMML for broader
multimodal tasks as well as other challenges in
multimodal learning through text-centric approach,
such as modality robustness, modality collapse and
modality competition.



7 Limitation

One of the key limitations of our study is the inher-
ent randomness of the LLM text generation. Due
to cost constraints, we only performed three run
for each of our experiments. While this approach
provides a general indication of performance, it
may not fully capture the variability and could lead
to less accurate conclusions. More extensive exper-
imentation with a larger number of runs would be
necessary to achieve a higher degree of confidence
in the results. In addition, we cannot guarantee to
reproduce the results on the closed-source LLMs.

Use of AI Assistants

ChatGPT was utilized to refine paper writing. The
authors paid careful attention to ensuring that Al-
generated content is accurate and aligned with the
author’s intentions.
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A Experiment Detail Setup

A.1 GPU Settings and Computational Resources

All experiments were conducted on NVIDIA A6000 GPUs with GB memory. Most evaluations used
single-GPU inference for LLM components.

The latency analysis in Table 5 was benchmarked using batch size 1 and greedy decoding for all LLM
components. Prompt construction and tokenization were handled using Hugging Face Transformers
and OpenAl APIs (GPT-3.5/GPT-4-V). All runs were executed on Linux systems with CUDA 12.1 and
PyTorch 2.1.

A.2 Model Checkpoints

We conduct all experiments with GPT-3.5-turbo as the LLM and GPT-4-vision as the image caption model
through OpenAl APIs (OpenAl, 2023), except for the analysis experiment that compares different LLMs
and foundation models.

Model Checkpoints

GPT-3.5-turbo gpt-3.5-turbo-0613

GPT-4-vision gpt-4-vision-preview

BLIP2 huggingface: Salesforce/blip-image-captioning-large
Kosmos2 huggingface: microsoft/kosmos-2-patch14-224

Vision Transformer  huggingface: google/vit-base-patch16-224

Flamingo huggingface: openflamingo/OpenFlamingo-9B-vitl-mpt7b
Longformer huggingface: allenai/longformer-base-4096

LLAMA-2-7b-chat  huggingface: meta-llama/Llama-2-7b-chat
LLAMA-2-13b-chat huggingface: meta-llama/L.lama-2-13b-chat
LLAMA-2-70b-chat huggingface: meta-llama/Llama-2-70b-chat
Mixtral-8x7b huggingface:mistralai/Mixtral-8x7B-Instruct-v0.1

Table 6: Model checkpoints.

A.3 Hyperparameters

Model Hyperparameters

GPT-3.5-turbo temperature=1, max_tokens=4096
GPT-4-vision temperature=0.8, max_tokens=300
BLIP2 default parameter

Kosmos2 default parameter

Vision Transformer  default parameter

Flamingo default parameter

Longformer max_length=2048

LLAMA-2-7b-chat  temperature=1, max_tokens=4096
LLAMA-2-13b-chat temperature=1, max_tokens=4096
LLAMA-2-70b-chat temperature=1, max_tokens=4096

Mixtral temperature=1, max_tokens=4096

SDEdit batch_size=1, sample_step=3, noise_scale=150

DDRM batch_size=1, degredation_type=deno, noise=1.5

Idinvert batch_size=64, gradient_accumulate=8, network_capacity=32

Table 7: Hyper parameters.
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A.4 Dataset

A.4.1 PetFinder.my Adoption Prediction (Addison Howard, 2018)

examines what factors predict how quickly a pet is adopted after being listed. The dataset is a composite
of the following modalities:

* Text: contains the description of the status of the pet
» Image: contains a profile photo of the pet
* Tabular: contains basic information, such as gender and breed.

A.4.2 Airbnb Pricing Prediction (ins, 2023)

is composed of the following modalities used for making a regression prediction of housing prices:

 Text: contains the human-written description of the homestay, the neighborhood description, and the
host’s profile.

* Image: contains images of the homestay
* Tabular: delivers essential details such as location, rating score, and review counts.

A.4.3 Avito Demand Prediction (Guz et al., 2018)
predicts the likelihood of an ad selling something based on user item and context features:

* Text: contains the ad title and description.
* Image: contains a profile photo of the item.

* Tabular: contains basic information, such as region, city, item category, etc.

PetFinder
Field Value
url https://www.kaggle.com/competitions/petfinder-adoption-prediction
# instances 13453
tabular columns 23
Airbnb

Field Value

url http://insideairbnb.com/get-the-data/

# instances 12184

tabular columns 30

A.5 Foundation Models

For image modality, we utilize the embedding layer and tokenization method of the Vision Trans-
former (Dosovitskiy et al., 2010). This process splits the image into fixed-size patches and then projects
each patch to obtain embeddings. For tabular modality, we employ the FT-Transformer(Gorishniy et al.,
2021) method to encode, dividing tabular features into numeric and categorical with separate projection
layers for dimension enhancement. For text modality, the embedding layer of Longformer(Beltagy et al.,
2020) is used for projection.
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Avito

Field Value
url https://www.kaggle.com/competitions/avito-demand-prediction/data
# instances 7000

tabular columns 18

Table 8: Dataset Meta Info

13
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B Analysis and Discussion

In this section, we delve into a series of analyses and discussions, extracting valuable insights from our
discoveries. Specifically, we provide more supportive evidence with visualization and distribution distance
measurements.

B.1 Visualization for Distribution Alignment

In Section C.1, we have validated the effectiveness of text transformation in TAMML through experimental
performance. Furthermore, we visualized 1,400 data points in these modalities with their position-aware
embeddings using UMAP (Mclnnes et al., 2018) in Figure. 5. The left figure illustrates the original
distributions of image and text embeddings, while the right figure displays the corresponding distributions
after the summarization module in TAMML . We observe that the distribution boundaries between image
and text modalities become less distinct, which indicates they are closer in the semantic space. To be
more precise, TAMML significantly reduces the average instance Euclidean distance between image and
text in the semantic space from 10.213 to 0.411 as shown in Table 9.

Traditional Encoders Embeddings via UMAP TAMML Text Embeddings via UMAP
12
text text
® image g{ ® Iimage
10 A @
8 1 6 ¢
6 4
4
24
24
oA
04
2 a 6 8 10 0 2 a 6 8

Figure 5: The left and right pictures illustrate the visualizations of embeddings for image and text data, respectively,
before and after our processes.

‘ w/o Normalization Standardization

Embedding | 10.213 5.444 39.151
Text 0.411 0.101 0.584

Table 9: Averaged Euclidean distance between all modalities. Text representation shows a more aligned distribution
between modalities compared to embedding representation.

B.2 Effects of the Image Caption Models

Some might argue that the improvement in text transformation in TAMML could be attributed to the
superior GPT-4 model. To investigate this, we replaced the different image caption models in our
architecture with smaller open-source models. We conducted ablation studies focusing on the performance
of four image foundation models. Specifically, we showed that our approach maintains strong performance
even with smaller models. Table 10 showcases the results averaged across twelve training-inference
modality combinations. The results suggest that using smaller image caption models does not necessarily
result in significantly inferior performance with TAMML .
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Image Caption Models

Pet | Acc | Blip2 Kosmos2 Flamingo GPT4
Average | 0.303 0.299 0.293  0.307

Table 10: Image caption model comparison: Each number presented here is an average derived from twelve modality
combination experiments. In general, we can infer that the foundation model has only a limited impact on TAMML .

B.3 In-context Modality Transfer Outperforms Zero-shot Learning Based Methods

Text-style translation across modalities in TAMML transforms the training modality combination into the
testing modality combination to reduce the semantic gap between them using LLMs. Similar concepts
are used in zero-shot learning baselines, which create a generative model for modality translation. For
comparison, we collected different pairs of training and testing data and created visualizations for each
one of them.

Orange is the source modality, blue is the target modality, and purple is the source modality after
transformation. Visualization results of Ours are shown in Figure 6. Visualization results of SDEdit are
shown in Figure 7. As the results indicate, our translation effectively maps to closely align with the target
modality in semantic space.
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Figure 6: Cross Modality Translation (Ours): training data map to the distribution of target modality.
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Figure 7: Cross Modality Translation (PetFinder / SDEdit): training data map to the distribution of target modality.
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C Extra Experiment Results

In this section, we try to answer additional inquiries, Q4 and Q5, where Q4 explores the performance of
text-based solutions versus embedding-based solutions when training and testing modalities are identical,
and Q5 compares our zero-shot in-context learning approach to non-zero-shot methods, such as domain
adaptation.

C.1 Q3: Is Text Representation Generally More Robust Than Embedding Representation For
Cross Modality Translation?

In this section, we aimed to understand the trade-off between performance and flexibility when converting
various modalities from embedding into text, especially under modality mismatch conditions.

C.1.1 MLLMs Baseline

Previous experiments in Section 4.2 and Section 4.2 cannot compare text representation and embedding
representation since converting modalities into text involves different foundation models, each with
different capabilities. For a fair comparison of performance between text representation and embedding
representation, the most appropriate approach is to utilize multimodal Language Model Models (MLLMs).
This ensures fairness in the comparison because all modalities are converted from the same foundation
model. Therefore, we applied the following SOTA MLLMs in our experiments: Kosmos-2 (Peng et al.,
2023) and Flamingo (Alayrac et al., 2022). In our experiments, we leverage MLLLMs as both pre-trained
feature extractors and text decoders. We then employ mean pooling to aggregate representations, followed
by using an MLP as a backbone model to generate predictions. We aim to compare the performance gaps
between a downstream model trained on images and another trained on image captions (attributed to the
dataset).

C.1.2 Results

Results in Table 11 consistently reveal that downstream models trained on image captions exhibit less
performance degradation compared to those trained on image embeddings in scenarios of modality
mismatch. This observation holds true across all state-of-the-art multimodal LLMs we investigated.
Such results strongly suggest that cross-modality translation within text representations, as facilitated
by TAMML , proves to be a more effective and robust strategy than utilizing embedding representations
when faced with modality mismatch conditions.

Pet | Acc 1 Flamingo Kosmos2

Test/Train caption image | caption image
text -0.07 -0.10 -0.09 -0.11
tabular -0.08 -0.10 -0.12  -0.21
text+tabular -0.08 -0.11 -0.10 -0.15
Air IMSE | Flamingo Kosmos?2

Test/Train caption image | caption image
text -0.00 -0.06 -0.01  -0.03
tabular -0.03 -0.07 -0.05 -0.05

text+tabular -0.02 -0.07 -0.04 -0.03

Table 11: Text representation shows consistently less performance degradation for cross-modality translation when
explicitly compared to embedding representation. Both representations are derived from the same Multimodal
LLMs for fair comparison. Nevertheless, transforming from image to caption has a slight performance reduction.

C.2 Q4: Text-based Solutions Versus Embedding-based Solutions When Training And Testing
Modalities Are Identical

Table 12 provides the experiment results under no train/test modality mismatch.
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Train & Test Regular (Embedding) TAMML (Text)

text 0.352 0.382
image 0.273 0.369
tabular 0.429 0.394
text+image 0.286 0.400
text+tabular 0.411 0.404
image+tabular  0.403 0.408

Table 12: Experiment results under no train/test modality mismatch condition. Under this condition, TAMML does
not show performance degradation and even performs better in several modality combinations. The regular method
means the downstream model is trained on embedding representations. Note that this result differs from the result in
Table 11 because the foundation models used for generating embedding and text representations are not the same.

C.3 QS5: How does TAMML compare to non-zero-shot methods?

Table 13 provides the experiment results under modality mismatch with different test time finetuning
settings (not zero-shot). The settings are as follows:

* no finetuning: complete mismatch scenario same as main result experiments.

* unsupervised domain adaptation: finetune- the downstream model given the information of inference
modality but without labels. We adopted the ADDA (Tzeng et al., 2017) method.

* supervised training (with all modalities): the downstream model given the information of paired
train/inference time modality with labels. This means that the modality used in testing is fully trained.

Train  Test ‘ no finetuning: Emb ‘ no finetuning: TAMML ‘ unsupervised domain adaptation ‘ supervised training (all modalities)

text image |0.288 0.374 0.195 0.338
text tabular | 0.289 0.357 0.281 0.359
image text 0.270 0.319 0.276 0.306
image tabular | 0.273 0.348 0.276 0.359
tabular text 0.289 0.364 0.195 0.306
tabular image |0.279 0.364 0.195 0.338

Table 13: The experiment results showed a condition with other non-zero-shot methods. Under this condition,
TAMML shows no performance degradation and even performs better in several modality combinations in zero-shot.

C.4 Q6: Upper-Bound Performance with LanguageBind-style Training

To contextualize the performance of TAMML , we conducted a small-scale experiment following the
LanguageBind (?) training strategy. Using identical modality encoders, we fine-tuned them on the
PetFinder dataset to establish an upper-bound reference for supervised, embedding-based approaches. As
expected, the fine-tuned model achieved higher accuracy across modality translation settings:

These results confirm that training-based methods can achieve higher performance when sufficient
paired data is available. However, our in-context, zero-shot method still performs competitively without
any fine-tuning or additional supervision, demonstrating its practical utility in resource-constrained
settings.

C.5 Ablation Studies

This section explores the contribution of individual components within TAMML by conducting ablation
studies. We incrementally add modules to evaluate their impact on performance, with findings summarized
in Table 14. In this section, our TAMML framework employs the GPT-3.5 as the foundation LLM.
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Training Testing PetFinder | Accuracy 1

SDEdit Text +Modality +Reasoning +Text-style

Transformation ~ Summarization Augmentation  Translation
text+image tabular 0.282 0.310 0.321 0.338 0.348
text+tabular image 0.289 0.329 0.365 0.363 0.380
image+tabular  text 0.281 0.305 0.295 0.321 0.355
text image-+tabular 0.291 0.282 0.296 0.343 0.344
text image 0.289 0.293 0.298 0.341 0.374
text tabular 0.293 0.297 0.318 0.315 0.357
image text+tabular 0.290 0.314 0.289 0.325 0.341
image text 0.288 0.306 0.330 0.336 0.319
image tabular 0.291 0.300 0.307 0.303 0.348
tabular text+image 0.290 0.194 0.366 0.341 0.360
tabular text 0.289 0.193 0.306 0.327 0.364
tabular image 0.289 0.196 0.357 0.353 0.364

Average + Variance (x10™%) ‘ 0.289 £0.12 0.277 £25.91 0.321 £ 7.2 0.334+25 0.355+24

Table 14: Ablation studies on various components of TAMML . Our observations reveal that text transformations
significantly enhance performance across all modality combinations except for tabular data, which is in fixed
formatted text. The formatting issue is effectively solved by incorporating a summarization module, resulting
in a substantial enhancement in performance. Furthermore, the inclusion of both the translation module and the
reasoning augmentation module leads to further improvements in overall performance.

C.5.1 Text Transformation

Compared to the embedding-based methods SDEdit, Table 14 shows converting modality features into
text enhances performance by approximately 2%, indicating less modality mismatch during training and
inference compared to embedding representations. This improvement is consistent across most data
modalities, except for tabular data, which sees a decline of about 10%. This discrepancy is attributed
to the fixed format of tabular text transformation, highlighting a significant style gap with more fluid,
human-like writing, particularly impacting tabular data’s inference performance.

C.5.2 Modality Summarization

Table 14 results indicate modality summarization improves tabular data accuracy significantly from 0.277
to 0.321 on average. After this stage, TAMML has already outperformed the strongest competitor SDEdit.
This suggests that summarization effectively standardizes text formats into a cohesive style, mitigating
heterogeneity in text transformation and enhancing data format alignment.

C.5.3 Reasoning Augmentation

Table 14 indicates that augmentation enhanced our average performance from 0.321 to 0.334. Additionally,
we have observed that it contributes to a more stable performance across different scenarios. The variance
value with augmentation is substantially lower than that without it.

C.5.4 Text-Style Translation across Modality

According to Table 14, text-style translation bridges training and inference phase gaps, with about 6%
improvement from 0.334 to 0.355. This enhancement is particularly notable when the gap in textual style
remains consistent across phases, as seen in the image-to-table scenarios. Such consistency aids in more
accurate mapping function determination by the model.

C.6 Examples for Methodology Components

C.6.1 Text Transformation

A Real-world Example: When predicting diseases, we often have access to patients’ pathology table
reports, medical imaging, and audio of patient narration. First, we will perform text transformation on these
data. For the images, we transfer it into captions such as "The patient has sigmoid colon cancer causing
an obstruction, which has led to dilation in the descending colon." For the tables, we transform it into
statements like "Histologic Type is Adenocarcinoma" and "Histologic Grade is Moderately differentiated."
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Train Modalities | Test Modality Accuracy

Text + Image Tabular 0.369
Text + Tabular Image 0.387
Image + Tabular | Text 0.374
Text Image + Tabular 0.371
Text Image 0.386
Text Tabular 0.383
Image Text + Tabular 0.379
Image Text 0.384
Image Tabular 0.385
Tabular Text + Image 0.389
Tabular Text 0.388
Tabular Image 0.386
Average 0.382

Table 15: Fine-tuned LanguageBind-style embedding results on the PetFinder dataset.

For the audio files, we perform speech recognition and acquire descriptions such as "I’ve been a little
bloated for two weeks, and I have had only three bowel movements."

C.6.2 Text-style Translation across Modality

A Real-world Example: When the training combination for disease prediction includes table modality,
and only video modality data is available at inference, we will perform text-style translation on the textual
representation of audio data. Continuing the example from Section 3.2.1, the textual representation of the
audio, "I've been a little bloated for two weeks, and I have had only three bowel movements,", is translated
as "Symptom is Bloating. The symptom is difficulty with bowel movements. Duration is Two weeks."

C.6.3 Modality Summarization

A Real-world Example: Building on the example from Section 3.2.1, now the input includes two
modalities: image and table. We summarize the textual representations from these modalities. Here is
how the summarization looks: "The patient has moderately differentiated adenocarcinoma of the sigmoid
colon, causing an obstruction and dilation of the descending colon."

C.6.4 LLM Reasoning Augmentation

A Real-world Example: Building on the example from Section 3.2.1, now the input includes two
modalities: image and table. The current goal is to determine whether a patient requires hospital
observation. The results after augmentation are as follows: "The obstruction in the sigmoid colon can lead
to increased risks of bowel perforation, where the colon wall might rupture due to increased pressure.
This complication is serious and requires immediate medical intervention."

19



	Introduction
	Related Works
	Multimodal Foundation Models
	Zero-shot Learning for Cross-Modality Translation
	Training-based Modality Binding

	Methodologies
	Problem Formalization
	Training-Free Alignment Method
	Text Transformation
	Text-style Translation across Modality
	Modality Summarization
	LLM Reasoning Augmentation

	Downstream Prediction

	Experiments
	Experiment Setup
	Competitors

	Main Results
	Ablation Studies

	Computational Cost and Practicality Analysis
	Conclusion and Future Directions
	Limitation
	Experiment Detail Setup
	GPU Settings and Computational Resources
	Model Checkpoints
	Hyperparameters
	Dataset
	PetFinder.my Adoption Prediction petfinder-adoption-prediction
	Airbnb Pricing Prediction insideairbnb
	Avito Demand Prediction avito-demand-prediction

	Foundation Models

	Analysis and Discussion
	Visualization for Distribution Alignment
	Effects of the Image Caption Models
	In-context Modality Transfer Outperforms Zero-shot Learning Based Methods

	Extra Experiment Results
	Q3: Is Text Representation Generally More Robust Than Embedding Representation For Cross Modality Translation?
	MLLMs Baseline
	Results

	Q4: Text-based Solutions Versus Embedding-based Solutions When Training And Testing Modalities Are Identical
	Q5: How does TAMML compare to non-zero-shot methods?
	Q6: Upper-Bound Performance with LanguageBind-style Training
	Ablation Studies
	Text Transformation
	Modality Summarization
	Reasoning Augmentation
	Text-Style Translation across Modality

	Examples for Methodology Components
	Text Transformation
	Text-style Translation across Modality
	Modality Summarization
	LLM Reasoning Augmentation



