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Abstract

This paper addresses the challenge of handling001
unseen modalities at test time and dynamic002
modality combinations with our proposed text-003
centric alignment method. This training-free004
in-context-learning alignment approach unifies005
different input modalities into a single seman-006
tic text representation by leveraging in-context007
learning with Large Language Models and uni-008
modal foundation models. Our method signifi-009
cantly enhances the ability to manage unseen,010
diverse, and unpredictable modality combina-011
tions, making it suitable for both generative012
and discriminative models to adopt on top. Our013
extensive experiments primarily evaluates on014
discriminative tasks, demonstrating that our015
approach is essential for LLMs to achieve ro-016
bust modality alignment performance. It also017
surpasses the limitations of traditional fixed-018
modality frameworks in embedding represen-019
tations. This study contributes to the field by020
offering a flexible and effective solution for021
real-world applications where modality avail-022
ability is dynamic and uncertain.023

1 Introduction024

This work targets the challenge of handling test-025

time unseen modalities and dynamic modality com-026

binations for multimodal models where the input027

modality in the testing (or prediction) phase differs028

from that in training. The motivation for this re-029

search arises from the dynamic nature of real-world030

data, where modalities can unpredictably vary or031

even be absent at inference time. Consider the032

following scenario: A hospital has extensive im-033

age and text data about its patients, such as X-ray034

images and doctors’ written diagnoses. This data035

can be used to train an AI model that diagnoses036

patients based on both image and text inputs. How-037

ever, to enhance patient satisfaction, the hospital038

wants to develop a dialog system that can diagnose039

patients based on their audio descriptions of their040

symptoms. Typically, achieving this would require041
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Figure 1: This paper establishes a general method appli-
cable to all mismatch types and combinations. As the
figure shows, the model utilizes three modalities during
training. Our unified model can handle any combination
of modalities during inference with in-context learning,
including completely unseen modalities. Additionally,
it can deal with the situation that modality combinations
dynamically change during inference, covering all pos-
sible combinations of both seen and unseen modalities.

collecting audio data and employing transfer learn- 042

ing or domain adaptation techniques to align the 043

information across modalities, a process that de- 044

mands significant additional effort, cost, and time. 045

Traditional multimodal learning methods, typi- 046

cally fixated on static modality combinations dur- 047

ing both training and inference, fall short in such 048

fluid environments. Therefore, this paper explores 049

the possibility of creating a supervised model that 050

utilizes only existing modalities (e.g., images and 051

text in the hospital scenario, and time series and 052

tables in the bank scenario) during training, yet 053

allows for the incorporation of an unseen modality 054

(e.g., audio signals or text inputs) during inference. 055

If successful, this approach would eliminate the 056

need for additional data collection and modality 057

alignment, thereby reducing the associated costs 058

and efforts. 059

There are two plausible directions to tackle this 060

challenge. First, we can rely on universal models 061

pre-trained on vast datasets across numerous modal- 062

ities to encode these modalities into embeddings. 063

However, collecting data that have multiple modal- 064
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Training modality table table table
Testing modality text+image text image

Embedding-based 0.287 0.289 0.279
Naive Text-centric 0.194 0.193 0.196
GPT-4o few-shot 0.167 0.204 0.168
TAMML 0.360 0.360 0.364

Table 1: A brief summary of the experiment results
showing that TAMML alignment are necessary to
perform well in text space, particularly in complex
scenarios involving multiple modality combinations.
Embedding-based and Text-centric are illustrated in Fig-
ure 2.

ity aligned is extremely rare and costly. Moreover,065

changes in the input modality necessitate retrain-066

ing the entire model for accurate predictions. The067

second direction, which this paper adopts, is to068

convert every modality into a single modality and069

build the model based on that unified modality. We070

argue that converting all modalities into text could071

be a favorable choice. Text can serve as a unified072

semantic space, leveraging the extensive zero-shot073

prediction capabilities of Large Language Mod-074

els (LLMs). The modality-invariant nature of text075

provides a versatile bridge across different data076

types, potentially circumventing issues like modal-077

ity collapse and extending generalizability to un-078

seen modalities. Furthermore, advanced text anal-079

ysis tasks such as translation, summarization, and080

explanation have been extensively researched and081

integrated into LLMs, offering powerful capabili-082

ties to align various modalities effectively.083

Our objective is to develop a downstream model084

that is invariant across modalities. This model085

should be capable of being trained on data of086

certain modalities and performing zero-shot pre-087

dictions on various modality combinations during088

testing, regardless of whether they were seen dur-089

ing training, as shown in Figure 1 and Figure 3.090

Note that simply converting all modalities into text091

for training and inference is insufficient, as the092

mismatch between different modalities does not093

translate and align as seamlessly in text, especially094

in complex scenarios involving multiple modality095

combinations. A brief summary of the results is096

shown in Table 1, with more detailed findings pre-097

sented in the Experiment section. To address these098

issues, our work has explored challenges such as099

modality alignment, translation, and augmentation.100

TAMML employs LLMs for data transformation101

across various modalities, with the aim of creating102
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Figure 2: Traditional downstream training relies on em-
beddings extracted from upstream foundation models,
with one foundation model designated for each modal-
ity. This approach limits the downstream model’s ability
to adapt to unseen modalities at test time without un-
dergoing complete retraining. Previous research has
addressed this issue by implementing zero-shot cross-
modality translations during the inference phase.

a unified semantic space. This process is conducted 103

exclusively through in-context learning. Initially, 104

we transform different modalities into text. Re- 105

cently, various solutions have been developed, such 106

as GPT-4 (OpenAI, 2023), Blip2 (Li et al., 2023a) 107

for vision, and TabLLM (Hegselmann et al., 2023) 108

for tabular data. Following this, we engage LLMs 109

in text-style translation across modalities, ensuring 110

that all modalities in their textual representation 111

adopt a consistent linguistic structure, thereby re- 112

ducing the gap between different modalities. To fur- 113

ther align these modalities within a closer semantic 114

space, remove redundant information, and mitigate 115

the heterogeneity inherent in text data from diverse 116

sources, we further conduct modality summariza- 117

tion. This step involves a concise summarization of 118

the translated data. Additionally, TAMML includes 119

a reasoning augmentation step akin to the Chain- 120

of-Thought (Wei et al., 2022) method, where we 121

enhance the data with LLMs to boost prediction 122

and judgment capabilities. Moreover, we leverage 123

LLMs as a source of large-scale external knowl- 124

edge, enriching the data understanding and interpre- 125

tative depth (Chen et al., 2023). We aim to answer 126

several hypotheses through extensive experiments. 127

First, whether TAMML is more effective compared 128

to existing solutions in predicting data of unseen 129

modalities. Second, although this work focuses 130

on predicting unseen modalities, we want to un- 131

derstand whether the proposed solution is effective 132

when the modality in testing is already seen during 133
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training. Third, whether the text-as-the-medium134

strategy is more robust compared to embedding-135

based cross-modality transfer solutions. We bench-136

marked TAMML against existing methodologies in137

closely related tasks, particularly focusing on zero-138

shot learning cross-modality translation, which in-139

volves translating unseen source data to a different140

target domain. Techniques like MIDiffusion (Wang141

et al., 2023b) and SDEdit (Meng et al., 2022)142

demonstrate commendable performance in tasks143

such as domain translation within images. How-144

ever, these methods encounter challenges when the145

source and target domains represent completely146

different modalities.147

Our contributions can be summarized as follows:148

• We investigate the potential advantage of us-149

ing LLMs and text representation for multi-150

modal learning. We propose TAMML , an151

in-context cross-modality translation method152

that utilizes foundation models to tackle train-153

ing/testing modality mismatch and generalize154

to any unseen modality at test time. TAMML155

eliminates the need for any pre-training, fine-156

tuning, and the collection of multi-modality157

aligned data.158

• We demonstrate that TAMML can signifi-159

cantly outperform SOTA approaches by con-160

ducting multiple experiments on real-world161

datasets. We also have an ablation study to162

analyze the effectiveness of each component163

in TAMML .164

• Additional experiments further verify that165

even when the testing modality is already seen166

during training, TAMML can still outperform167

the competitors by a large margin.168

2 Related Works169

2.1 Multimodal Foundation Models170

Recent advances in foundation models have greatly171

improved multimodal generation. However, align-172

ing the semantic spaces of independently trained173

models remains challenging, limiting seamless174

modality transfer at test time. Multimodal LLMs175

(MLLMs) have shown strong reasoning and gen-176

eration abilities (Yin et al., 2023), but large-scale177

pretraining across multiple modalities still demands178

extensive data.179

To address this, many works convert modality180

inputs into text for LLM alignment. LLaVA (Liu181

et al., 2023) and VideoChat-Text (Li et al., 2023b) 182

turn images or videos into captions. Cosmos (Agar- 183

wal et al., 2025) uses video summaries for re- 184

trieval (Blog, 2024), while ChatCAD (Wang et al., 185

2023a) and OphGLM (Gao et al., 2023) generate 186

diagnostic text from X-rays. NExT-GPT (Wu et al., 187

2023) also builds a general-purpose multimodal 188

LLM via modality adaptors, but unlike TAMML , 189

it requires training projection layers. In contrast, 190

we achieve any-to-any alignment through text alone 191

using in-context learning. 192

2.2 Zero-shot Learning for Cross-Modality 193

Translation 194

Zero-shot learning (ZSL) offers a promising ap- 195

proach for cross-modality translation when source 196

modality data is unavailable. A key challenge for 197

learning-based methods is their limited generaliza- 198

tion to unseen classes (Wang et al., 2021; Bucher 199

et al., 2017; Kuchibhotla et al., 2022). Traditional 200

ZSL methods map features to a shared semantic 201

space via discriminative (Palatucci et al., 2009; 202

Akata et al., 2015) or generative models (Long 203

et al., 2017; Wang et al., 2018). 204

In modality translation, GAN-based approaches 205

perform latent space manipulation through GAN 206

inversion (Zhu et al., 2020; Shi et al., 2022; Abdal 207

et al., 2020), while diffusion-based methods (Ho 208

et al., 2020; Kawar et al., 2022; Meng et al., 2022) 209

enable zero-shot alignment by perturbing features 210

toward target distributions. Despite strong results 211

when domains are numerically aligned (Cheng 212

et al., 2023), performance often degrades with large 213

appearance mismatches. 214

2.3 Training-based Modality Binding 215

Recent works such as ImageBind (Girdhar et al., 216

2023) and LanguageBind (Zhu et al., 2023) reduce 217

the complexity of aligning modality pairs by lever- 218

aging a central anchor—text in LanguageBind and 219

image in ImageBind. This design simplifies cross- 220

modality alignment from requiring explicit pair- 221

wise supervision across all modalities to aligning 222

each modality with a single anchor. This idea aligns 223

closely with our motivation in TAMML , which 224

also uses text as a unifying interface. 225

However, both ImageBind and LanguageBind 226

rely heavily on large-scale supervised training 227

across diverse modality pairs. While they reduce 228

the need for all modalities to be jointly present 229

during training, they still require extensive paired 230

data between each modality and the anchor (text 231
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Figure 3: In the training phase, each raw input modality is transformed into text representations using a corresponding
foundation model. Following the modality transformation, summarization, and augmentation are applied in parallel.
Finally, the output texts are concatenated as the training inputs to a transformer model for downstream prediction.
The inference phase follows a similar pattern, with the exception of utilizing an LLM for the text-style translation
after the text transformation module. We apply a one-shot in-context learning approach to adapt the linguistic style
as anticipated during training.

or image). In contrast, we proposed a training-free232

framework that operates solely using pre-trained233

modality-to-text converters and in-context LLM234

reasoning, making it more lightweight and deploy-235

able under resource-constrained settings.236

3 Methodologies237

This section describes how TAMML enables the238

generalization to unseen testing modalities and un-239

seen modality combinations. We explicitly separate240

our pipeline into two phases: Training-Free Align-241

ment Method, which includes modules that do not242

require any model training (Sections 3.2.1 to 3.2.4),243

and Downstream Prediction, which requires min-244

imal supervised training (Section 3.3). Figure 3245

presents an overview of the entire process.246

In Section 3.1, we define the problem setup247

and notations. Sections 3.2.1–3.2.4 explain the248

components of the training-free alignment method:249

text transformation, text-style translation, modality250

summarization, and LLM reasoning augmentation.251

Section 3.3 describes the downstream task setup252

with minimal supervised training.253

3.1 Problem Formalization254

Suppose we have a set M of p modalities, M =255

{m1,m2, . . . ,mp}. In the training phase, a subset256

of modalities MT ⊆ M is used. In the inference257

phase, a different subset MI ⊆ M is utilized. This258

subset meets the critical condition MT ∩MI = ∅, 259

ensuring no overlap in modalities between training 260

and inference. 261

Within this framework, we define two distinct 262

datasets: one for the training phase and another 263

for the inference phase. The training dataset DT 264

consists of nT samples. Each sample x is re- 265

stricted to MT , denoted as DT = {(xiMT
, yi)}nT

i=1. 266

Similarly, the inference dataset DI consists of 267

nI samples, each restricted to MI , formalized as 268

DI = {(xiMI
, yi)}nI

i=1. Our algorithms are de- 269

signed to build the model F on DT and evaluate 270

unseen data and modality combinations in DI . This 271

evaluation measures the model’s ability to general- 272

ize knowledge in zero-shot multimodal learning. 273

3.2 Training-Free Alignment Method 274

3.2.1 Text Transformation 275

We map heterogeneous modalities into a shared tex- 276

tual space using pre-trained modality-to-text mod- 277

els. These transformations are performed without 278

training. For image modality, we use image cap- 279

tioning models to generate descriptions. For tables, 280

we follow the TabLLM (Hegselmann et al., 2023) 281

template-based serialization. Text is retained in 282

its original form. This conversion harmonizes in- 283

puts at the representation level without requiring 284

task-specific finetuning. Real-world Example in 285

Appendix C.6.1 286
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Background
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Descriptions
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1. The predicted output choices (EX: 

each class of classification task)
2. Output format for two keys

Examples(Optional)
For each choice, collects at least one CoT
example from the training data. 

LLM Reasoning Augmentation

2.1   Predicted Label
2.2   Detailed Reason

Figure 4: Examples of prompt templates for each modules

3.2.2 Text-style Translation across Modality287

Despite converting all inputs to text, style and se-288

mantic gaps remain due to modality-specific for-289

matting. We address this with in-context learning290

using LLMs, which learn to translate textual inputs291

from inference-time modalities into the style of292

training-time modalities. This reduces distribution293

shift without model finetuning. Prompts use three294

few-shot examples from DT . Real-world Example295

in Appendix C.6.2296

3.2.3 Modality Summarization297

To enhance alignment and eliminate redundancy,298

we use LLMs to summarize the transformed modal-299

ity inputs. This improves representation uniformity300

and highlights shared content. The summariza-301

tion prompt includes a demonstration constructed302

from DT , and one-shot in-context learning is ap-303

plied for each sample. Real-world Example in Ap-304

pendix C.6.3305

3.2.4 LLM Reasoning Augmentation306

We augment the inputs with LLM-generated rea-307

soning traces to incorporate external knowledge308

and explain predictions. Prompts include task-309

specific instructions and examples. No model train-310

ing is involved; all augmentation is via in-context311

LLM calls. Real-world Example in Appendix C.6.4312

3.3 Downstream Prediction313

Following the training-free multimodal alignment,314

we evaluate performance on a range of downstream315

tasks, including regression, classification, and rank-316

ing. The aligned and summarized text representa-317

tions are processed by a transformer encoder (Long-318

former (Beltagy et al., 2020)), followed by mean 319

pooling and a lightweight Multilayer Perceptron 320

(MLP) for final prediction. Only the MLP is trained 321

during this phase, while all preceding components 322

remain frozen. We use Cross Entropy Loss for 323

classification tasks and Mean Squared Error for re- 324

gression. This minimal training setup isolates the 325

contribution of the alignment method. 326

4 Experiments 327

4.1 Experiment Setup 328

In all experiments, we primarily present results 329

from GPT-4-Vision for image captioning, unless 330

specified otherwise. For additional results involv- 331

ing other image caption models, please refer to Ta- 332

ble 10. The detailed information of the dataset, met- 333

rics, computation resource are in Appendix A.4. 334

4.1.1 Competitors 335

We compare TAMML against several zero-shot 336

cross-modality translation baselines, including 337

embedding-based approaches and a naive GPT- 338

4-vision method. A schematic of embedding- 339

based pipelines is shown in Figure 2. We include 340

two perturbation-diffusion models—SDEdit (Meng 341

et al., 2022) and DDRM (Kawar et al., 2022)—and 342

one GAN-based method, Idinvert (Zhu et al., 2020). 343

These methods train generative models (diffusion 344

or GANs) to map embeddings from unseen modal- 345

ities into the training distribution. At test time, 346

modality-specific encoders extract embeddings, 347

which are transformed via generative models into 348

aligned representations. For diffusion-based meth- 349

ods, we train a score-based model (Ho et al., 2020) 350
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Training Testing SDEdit DDRM Idinvert
Naive MLLM TAMML Methods
Transformation LLaMa 3 8B Mistral 7B Mixtral 8x7B Mixtral 8x22B GPT-3.5

PetFinder | Accuracy ↑
text+image tabular 0.282 0.291 0.279 0.310 0.309 0.301 0.317 0.332 0.348
text+tabular image 0.289 0.277 0.286 0.329 0.306 0.322 0.335 0.323 0.380
image+tabular text 0.281 0.297 0.279 0.305 0.303 0.304 0.320 0.313 0.355
text image+tabular 0.291 0.283 0.289 0.282 0.315 0.304 0.330 0.368 0.344
text image 0.289 0.276 0.287 0.293 0.355 0.341 0.307 0.360 0.374
text tabular 0.293 0.259 0.277 0.297 0.295 0.286 0.325 0.341 0.357
image text+tabular 0.290 0.297 0.284 0.314 0.310 0.322 0.346 0.342 0.341
image text 0.288 0.282 0.280 0.306 0.323 0.325 0.329 0.330 0.319
image tabular 0.291 0.287 0.284 0.300 0.322 0.302 0.341 0.319 0.348
tabular text+image 0.290 0.271 0.285 0.194 0.314 0.309 0.327 0.333 0.360
tabular text 0.289 0.265 0.280 0.193 0.295 0.294 0.302 0.317 0.364
tabular image 0.289 0.263 0.277 0.196 0.294 0.305 0.338 0.311 0.364

Average 0.289 0.279 0.282 0.277 0.312 0.310 0.326 0.332 0.355

Airbnb | MSE ↓
text+image tabular 0.935 0.600 0.799 0.365 0.303 0.371 0.326 0.313 0.367
text+tabular image 0.656 0.778 0.643 0.957 0.626 0.466 0.451 0.447 0.508
image+tabular text 0.514 0.565 0.781 0.695 0.413 0.325 0.312 0.359 0.332
text image+tabular 1.548 0.914 0.915 0.438 0.315 0.368 0.323 0.284 0.421
text image 1.513 0.895 1.010 0.524 0.537 0.521 0.439 0.404 0.520
text tabular 1.061 0.824 0.931 0.759 0.308 0.348 0.345 0.297 0.448
image text+tabular 0.556 0.530 0.602 0.457 0.431 0.368 0.382 0.392 0.395
image text 0.678 0.589 0.759 0.423 0.439 0.389 0.375 0.421 0.391
image tabular 0.592 0.538 0.516 0.668 0.459 0.452 0.487 0.405 0.414
tabular text+image 0.637 0.675 0.662 0.480 0.467 0.347 0.310 0.379 0.280
tabular text 0.569 0.693 0.707 0.477 0.481 0.341 0.313 0.339 0.301
tabular image 0.609 0.715 0.615 0.913 0.627 0.461 0.431 0.535 0.551

Average 0.822 0.693 0.745 0.596 0.451 0.396 0.375 0.381 0.411

Avito | MSE ↓
text+image tabular 0.103 0.113 0.126 0.051 0.045 0.045 0.043 0.041 0.044
text+tabular image 0.130 0.133 0.142 0.051 0.048 0.048 0.047 0.048 0.046
image+tabular text 0.113 0.125 0.137 0.040 0.045 0.045 0.045 0.043 0.046
text image+tabular 0.124 0.123 0.131 0.050 0.046 0.047 0.046 0.046 0.045
text image 0.124 0.122 0.129 0.052 0.048 0.050 0.047 0.048 0.047
text tabular 0.127 0.124 0.134 0.052 0.045 0.046 0.046 0.046 0.044
image text+tabular 0.123 0.126 0.134 0.044 0.044 0.044 0.044 0.044 0.044
image text 0.118 0.124 0.129 0.045 0.045 0.046 0.047 0.046 0.045
image tabular 0.119 0.126 0.134 0.049 0.044 0.044 0.045 0.043 0.044
tabular text+image 0.128 0.139 0.137 0.044 0.046 0.045 0.046 0.044 0.046
tabular text 0.124 0.131 0.138 0.046 0.046 0.044 0.047 0.044 0.045
tabular image 0.126 0.137 0.140 0.044 0.050 0.047 0.048 0.046 0.048

Average 0.122 0.127 0.135 0.048 0.046 0.046 0.046 0.045 0.045

Table 2: This table presents a detailed comparison, highlighting TAMML ’s performance against all baseline models
under modality mismatch scenarios. The PetFinder dataset uses accuracy as the key evaluation metric. The Airbnb
dataset and the Avito dataset both use Mean Squared Error (MSE) as the key evaluation metric.

using DDIM (Song et al., 2020) as the backbone.351

For GANs, we adopt StyleGAN (Karras et al.,352

2019). All baselines use modality-specific foun-353

dation model encoders, followed by alignment lay-354

ers and a transformer for downstream prediction355

after fine-tuning. We also include a LanguageBind-356

style training as baseline, which serves as an upper357

bound for our method when sufficient paired data358

is available.359

4.2 Main Results360

Here, we articulate our hypotheses and address the361

research questions to evaluate the effectiveness of362

TAMML . Q1: Under test-time unseen modality363

scenarios, is TAMML better than the embedding-364

based SOTA zero-shot cross modality translation?365

Q2 (follow Q1): Is TAMML still effective for sit-366

uations in which the testing modality has been in- 367

volved during training? (i.e. training: all modal- 368

ities, testing: some of the modalities) and other 369

modality mismatch combinations? The following 370

three questions are presented in Appendix C. Q3: 371

Is text representation generally more robust than 372

embedding representation for cross-modality trans- 373

lation? Q4: What is the performance of text-based 374

solutions versus embedding-based solutions when 375

training and testing modalities are exact identical? 376

Q5: How about comparing TAMML to non-zero- 377

shot transferring methods, such as domain adapta- 378

tion? Q6: How does LanguageBind-Style training 379

serves as a upper vound performance compared to 380

TAMML when sufficient paired multimodal data is 381

available? 382

Additional inquiries, Q3, Q4, Q5, Q6 and de- 383
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Training Testing Pet | Acc ↑ Airbnb | MSE ↓ Avito | RMSE ↓
SDEdit DDRM Idinvert TAMML SDEdit DDRM Idinvert TAMML SDEdit DDRM Idinvert TAMML

all tabular 0.282 0.269 0.252 0.338 0.428 0.621 0.732 0.270 0.108 0.123 0.133 0.041
all image 0.285 0.286 0.267 0.356 0.566 0.649 0.711 0.486 0.114 0.123 0.136 0.044
all text 0.284 0.284 0.274 0.349 0.502 0.601 0.695 0.253 0.113 0.123 0.131 0.044
all image+tabular 0.307 0.276 0.256 0.382 0.394 0.556 0.683 0.251 0.118 0.124 0.129 0.042
all text+tabular 0.315 0.306 0.283 0.377 0.353 0.470 0.544 0.185 0.124 0.124 0.134 0.041
all text+image 0.292 0.286 0.244 0.378 0.489 0.537 0.673 0.212 0.110 0.115 0.125 0.043
all all 0.334 0.304 0.281 0.395 0.345 0.463 0.542 0.178 0.109 0.114 0.123 0.042

Average 0.300 0.287 0.265 0.368 0.440 0.557 0.654 0.262 0.112 0.121 0.130 0.042

all comb 0.294 0.285 0.263 0.362 0.455 0.572 0.673 0.299 0.115 0.122 0.131 0.043
text+image comb 0.282 0.290 0.277 0.320 0.643 0.623 0.747 0.331 0.108 0.120 0.132 0.043
text+tabular comb 0.290 0.278 0.282 0.341 0.517 0.645 0.674 0.318 0.120 0.127 0.134 0.044
image+tabular comb 0.296 0.296 0.269 0.358 0.452 0.524 0.666 0.236 0.116 0.121 0.132 0.042

Average 0.291 0.287 0.273 0.345 0.517 0.591 0.690 0.286 0.115 0.123 0.132 0.043

Table 3: This table presents a detailed comparison, highlighting TAMML ’s performance against embedding-based
translation baselines when the model is trained on all modalities and tested on different subset modalities. The result
shows the effectiveness of TAMML even when the testing modality has been involved during training. Mixtral
8x7B is used in this experiment.

tailed descriptions of our experimental setup, in-384

cluding model checkpoints, hyperparameters, and385

dataset specifics, are provided in Appendix C.386

Q1: Under Modality Mismatch Scenarios, How387

Does TAMML Compare To the SOTA Zero-shot388

Cross Modality Translation? In Q1, we focus389

on situations where training and testing modali-390

ties are completely different. We mainly compare391

our results to several zero-shot cross-modality data392

translation methods. The key findings outlined in393

Table 2 underscore the superior performance of394

TAMML , which achieves substantial gains over395

competing baselines across various modality com-396

binations and different foundation models. Specif-397

ically, with the best-performing GPT-3.5 on the398

PetFinder dataset, TAMML enhances accuracy by399

an average of approximately 21%, significantly400

outperforming the best-performing baseline meth-401

ods. Similarly, in the Airbnb dataset, TAMML402

achieves an average reduction in mean square error403

of around 54%, dwarfing the maximum 16% error404

reduction seen with alternative baselines. Further405

examination of the differences among various foun-406

dation models within the TAMML framework un-407

derscored the impact of model size on quality. For408

instance, Mixtral 8x22B improved accuracy by 7%409

on the PetFinder dataset compared to Mistral 7B.410

For complex tasks such as summarization and trans-411

lation, larger models performed better. However,412

even smaller models showed improvement com-413

pared to baselines in mismatch scenarios. These414

results suggest that the proposed strategy, which415

integrates LLMs’ in-context learning with founda-416

tion models, holds a decisive edge over all existing417

methods.418

Q2: Is the Proposed Solution Effective When 419

There is No Train/Test Modality Mismatch or 420

Only Partial Mismatch in Various Modality 421

Combinations? The key findings outlined in 422

Table 3 underscore the superior performance of 423

TAMML , which still achieves substantial gains 424

over competing baselines across various modal- 425

ity combinations. These results suggest that de- 426

spite no modality mismatching, our strategy holds 427

a decisive edge over embedding-based methods. 428

Specifically, on the PetFinder dataset, our tech- 429

nique enhances accuracy by an average of approx- 430

imately 22.6%, significantly outperforming the 431

best-performing embedding-based methods. Sim- 432

ilarly, in the Airbnb dataset, TAMML achieves a 433

decrease of approximately 40.5% in mean squared 434

error, indicating a significant improvement in pre- 435

diction accuracy. Moreover, in the Avito dataset, 436

the decrease is even more pronounced, with a re- 437

duction of approximately 62.5% in mean squared 438

error when applying TAMML . 439

4.3 Ablation Studies 440

This section evaluates the contribution of individual 441

components in TAMML through a series of abla- 442

tion studies using GPT-3.5 as the foundation LLM. 443

We incrementally add each module and summarize 444

the performance impact in Table 14. 445

We first observe that converting modality fea- 446

tures into text (Text Transformation) improves per- 447

formance by 2% over embedding-based meth- 448

ods like SDEdit, suggesting reduced modality mis- 449

match. However, tabular data sees a 10% drop, 450

likely due to rigid text formatting that diverges from 451

natural language style. Adding Modality Summa- 452

rization significantly boosts tabular accuracy from 453
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Training Testing PetFinder | Accuracy ↑

SDEdit Text +Modality +Reasoning +Text-style
Transformation Summarization Augmentation Translation

text+image tabular 0.282 0.310 0.321 0.338 0.348
text+tabular image 0.289 0.329 0.365 0.363 0.380
image+tabular text 0.281 0.305 0.295 0.321 0.355
text image+tabular 0.291 0.282 0.296 0.343 0.344
text image 0.289 0.293 0.298 0.341 0.374
text tabular 0.293 0.297 0.318 0.315 0.357
image text+tabular 0.290 0.314 0.289 0.325 0.341
image text 0.288 0.306 0.330 0.336 0.319
image tabular 0.291 0.300 0.307 0.303 0.348
tabular text+image 0.290 0.194 0.366 0.341 0.360
tabular text 0.289 0.193 0.306 0.327 0.364
tabular image 0.289 0.196 0.357 0.353 0.364

Average ± Variance (×10−4) 0.289± 0.12 0.277± 25.91 0.321± 7.2 0.334± 2.5 0.355 ± 2.4

Table 4: Ablation studies on various components of TAMML . Our observations reveal that text transformations
significantly enhance performance across all modality combinations except for tabular data, which is in fixed
formatted text. The formatting issue is effectively solved by incorporating a summarization module, resulting
in a substantial enhancement in performance. Furthermore, the inclusion of both the translation module and the
reasoning augmentation module leads to further improvements in overall performance.

0.277 to 0.321, helping normalize structure and454

reduce formatting inconsistencies. Incorporating455

LLM Reasoning Augmentation further improves456

the average score to 0.334, while also reducing per-457

formance variance across different modality pairs.458

Finally, applying Text-Style Translation contributes459

the largest gain, raising the average to 0.355. This460

step proves especially effective when there is a per-461

sistent style gap between training and inference,462

as in image-to-tabular translation, by helping the463

model maintain consistent mapping across phases.464

5 Computational Cost and Practicality465

Analysis466

We report the average runtime latency for each467

component of TAMML and compare it with ex-468

isting baselines in Table 5. While our alignment469

pipeline introduces some overhead (1.76s per sam-470

ple), it remains comparable to SDEdit (1.63s) and471

DDRM (1.89s), and is significantly more practical472

than methods like Idinvert (2.01s). The overhead473

primarily stems from LLM in-context operations,474

which are fully parallelizable.475

TAMML does not require model retraining and476

allows flexible module use, enabling practical de-477

ployment across different latency budgets. Though478

our method incurs additional token usage (400-479

600 tokens per sample), this remains well within480

modern LLM context limits (8k-32k). Overall,481

TAMML balances scalability, robustness, and de-482

ployment simplicity.483

Table 5: Average Latency per Sample (in seconds) for
Each Component and Baseline Methods.

Method / Operation Latency (s) Method / Operation Latency (s)

TAMML Baseline
Text Transformation 0.42 SDEdit 1.63
Text-style Translation 0.37 DDRM 1.89
Modality Summarization 0.45 Idinvert 2.01
LLM Augmentation 0.52 Direct Input 0.25
Total 1.76

6 Conclusion and Future Directions 484

Our study has effectively harnessed Large Lan- 485

guage Models (LLMs) for multimodal learning, 486

creating a unified semantic space that integrates var- 487

ious data modalities through text in a complete in- 488

context learning manner. Through techniques such 489

as text transformation, text-style translation, sum- 490

marization, and reasoning augmentation, we have 491

demonstrated our proposed TAMML alignment 492

that the operations performed in the text domain 493

using in-context learning with LLMs can achieve 494

comparable performance to traditional methods op- 495

erating in embedding space. This approach not 496

only opens new avenues in multimodal learning 497

but also underscores the significant potential and 498

advantages of text as a unifying medium. Future 499

efforts will focus on refining TAMML for broader 500

multimodal tasks as well as other challenges in 501

multimodal learning through text-centric approach, 502

such as modality robustness, modality collapse and 503

modality competition. 504
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7 Limitation505

One of the key limitations of our study is the inher-506

ent randomness of the LLM text generation. Due507

to cost constraints, we only performed three run508

for each of our experiments. While this approach509

provides a general indication of performance, it510

may not fully capture the variability and could lead511

to less accurate conclusions. More extensive exper-512

imentation with a larger number of runs would be513

necessary to achieve a higher degree of confidence514

in the results. In addition, we cannot guarantee to515

reproduce the results on the closed-source LLMs.516

Use of AI Assistants517

ChatGPT was utilized to refine paper writing. The518

authors paid careful attention to ensuring that AI-519

generated content is accurate and aligned with the520

author’s intentions.521
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A Experiment Detail Setup 712

A.1 GPU Settings and Computational Resources 713

All experiments were conducted on NVIDIA A6000 GPUs with GB memory. Most evaluations used 714

single-GPU inference for LLM components. 715

The latency analysis in Table 5 was benchmarked using batch size 1 and greedy decoding for all LLM 716

components. Prompt construction and tokenization were handled using Hugging Face Transformers 717

and OpenAI APIs (GPT-3.5/GPT-4-V). All runs were executed on Linux systems with CUDA 12.1 and 718

PyTorch 2.1. 719

A.2 Model Checkpoints 720

We conduct all experiments with GPT-3.5-turbo as the LLM and GPT-4-vision as the image caption model 721

through OpenAI APIs (OpenAI, 2023), except for the analysis experiment that compares different LLMs 722

and foundation models. 723

Model Checkpoints

GPT-3.5-turbo gpt-3.5-turbo-0613
GPT-4-vision gpt-4-vision-preview
BLIP2 huggingface: Salesforce/blip-image-captioning-large
Kosmos2 huggingface: microsoft/kosmos-2-patch14-224
Vision Transformer huggingface: google/vit-base-patch16-224
Flamingo huggingface: openflamingo/OpenFlamingo-9B-vitl-mpt7b
Longformer huggingface: allenai/longformer-base-4096
LLAMA-2-7b-chat huggingface: meta-llama/Llama-2-7b-chat
LLAMA-2-13b-chat huggingface: meta-llama/Llama-2-13b-chat
LLAMA-2-70b-chat huggingface: meta-llama/Llama-2-70b-chat
Mixtral-8x7b huggingface:mistralai/Mixtral-8x7B-Instruct-v0.1

Table 6: Model checkpoints.

A.3 Hyperparameters 724

Model Hyperparameters

GPT-3.5-turbo temperature=1, max_tokens=4096
GPT-4-vision temperature=0.8, max_tokens=300
BLIP2 default parameter
Kosmos2 default parameter
Vision Transformer default parameter
Flamingo default parameter
Longformer max_length=2048
LLAMA-2-7b-chat temperature=1, max_tokens=4096
LLAMA-2-13b-chat temperature=1, max_tokens=4096
LLAMA-2-70b-chat temperature=1, max_tokens=4096
Mixtral temperature=1, max_tokens=4096
SDEdit batch_size=1, sample_step=3, noise_scale=150
DDRM batch_size=1, degredation_type=deno, noise=1.5
Idinvert batch_size=64, gradient_accumulate=8, network_capacity=32

Table 7: Hyper parameters.
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A.4 Dataset725

A.4.1 PetFinder.my Adoption Prediction (Addison Howard, 2018)726

examines what factors predict how quickly a pet is adopted after being listed. The dataset is a composite727

of the following modalities:728

• Text: contains the description of the status of the pet729

• Image: contains a profile photo of the pet730

• Tabular: contains basic information, such as gender and breed.731

A.4.2 Airbnb Pricing Prediction (ins, 2023)732

is composed of the following modalities used for making a regression prediction of housing prices:733

• Text: contains the human-written description of the homestay, the neighborhood description, and the734

host’s profile.735

• Image: contains images of the homestay736

• Tabular: delivers essential details such as location, rating score, and review counts.737

A.4.3 Avito Demand Prediction (Guz et al., 2018)738

predicts the likelihood of an ad selling something based on user item and context features:739

• Text: contains the ad title and description.740

• Image: contains a profile photo of the item.741

• Tabular: contains basic information, such as region, city, item category, etc.742

PetFinder

Field Value

url https://www.kaggle.com/competitions/petfinder-adoption-prediction
# instances 13453
tabular columns 23

Airbnb

Field Value

url http://insideairbnb.com/get-the-data/
# instances 12184
tabular columns 30

A.5 Foundation Models743

For image modality, we utilize the embedding layer and tokenization method of the Vision Trans-744

former (Dosovitskiy et al., 2010). This process splits the image into fixed-size patches and then projects745

each patch to obtain embeddings. For tabular modality, we employ the FT-Transformer(Gorishniy et al.,746

2021) method to encode, dividing tabular features into numeric and categorical with separate projection747

layers for dimension enhancement. For text modality, the embedding layer of Longformer(Beltagy et al.,748

2020) is used for projection.749
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Avito

Field Value

url https://www.kaggle.com/competitions/avito-demand-prediction/data
# instances 7000
tabular columns 18

Table 8: Dataset Meta Info
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B Analysis and Discussion750

In this section, we delve into a series of analyses and discussions, extracting valuable insights from our751

discoveries. Specifically, we provide more supportive evidence with visualization and distribution distance752

measurements.753

B.1 Visualization for Distribution Alignment754

In Section C.1, we have validated the effectiveness of text transformation in TAMML through experimental755

performance. Furthermore, we visualized 1,400 data points in these modalities with their position-aware756

embeddings using UMAP (McInnes et al., 2018) in Figure. 5. The left figure illustrates the original757

distributions of image and text embeddings, while the right figure displays the corresponding distributions758

after the summarization module in TAMML . We observe that the distribution boundaries between image759

and text modalities become less distinct, which indicates they are closer in the semantic space. To be760

more precise, TAMML significantly reduces the average instance Euclidean distance between image and761

text in the semantic space from 10.213 to 0.411 as shown in Table 9.762

Figure 5: The left and right pictures illustrate the visualizations of embeddings for image and text data, respectively,
before and after our processes.

w/o Normalization Standardization

Embedding 10.213 5.444 39.151
Text 0.411 0.101 0.584

Table 9: Averaged Euclidean distance between all modalities. Text representation shows a more aligned distribution
between modalities compared to embedding representation.

B.2 Effects of the Image Caption Models763

Some might argue that the improvement in text transformation in TAMML could be attributed to the764

superior GPT-4 model. To investigate this, we replaced the different image caption models in our765

architecture with smaller open-source models. We conducted ablation studies focusing on the performance766

of four image foundation models. Specifically, we showed that our approach maintains strong performance767

even with smaller models. Table 10 showcases the results averaged across twelve training-inference768

modality combinations. The results suggest that using smaller image caption models does not necessarily769

result in significantly inferior performance with TAMML .770

14



Image Caption Models

Pet | Acc ↑ Blip2 Kosmos2 Flamingo GPT4

Average 0.303 0.299 0.293 0.307

Table 10: Image caption model comparison: Each number presented here is an average derived from twelve modality
combination experiments. In general, we can infer that the foundation model has only a limited impact on TAMML .

B.3 In-context Modality Transfer Outperforms Zero-shot Learning Based Methods 771

Text-style translation across modalities in TAMML transforms the training modality combination into the 772

testing modality combination to reduce the semantic gap between them using LLMs. Similar concepts 773

are used in zero-shot learning baselines, which create a generative model for modality translation. For 774

comparison, we collected different pairs of training and testing data and created visualizations for each 775

one of them. 776

Orange is the source modality, blue is the target modality, and purple is the source modality after 777

transformation. Visualization results of Ours are shown in Figure 6. Visualization results of SDEdit are 778

shown in Figure 7. As the results indicate, our translation effectively maps to closely align with the target 779

modality in semantic space. 780

Figure 6: Cross Modality Translation (Ours): training data map to the distribution of target modality.

Figure 7: Cross Modality Translation (PetFinder / SDEdit): training data map to the distribution of target modality.
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C Extra Experiment Results781

In this section, we try to answer additional inquiries, Q4 and Q5, where Q4 explores the performance of782

text-based solutions versus embedding-based solutions when training and testing modalities are identical,783

and Q5 compares our zero-shot in-context learning approach to non-zero-shot methods, such as domain784

adaptation.785

C.1 Q3: Is Text Representation Generally More Robust Than Embedding Representation For786

Cross Modality Translation?787

In this section, we aimed to understand the trade-off between performance and flexibility when converting788

various modalities from embedding into text, especially under modality mismatch conditions.789

C.1.1 MLLMs Baseline790

Previous experiments in Section 4.2 and Section 4.2 cannot compare text representation and embedding791

representation since converting modalities into text involves different foundation models, each with792

different capabilities. For a fair comparison of performance between text representation and embedding793

representation, the most appropriate approach is to utilize multimodal Language Model Models (MLLMs).794

This ensures fairness in the comparison because all modalities are converted from the same foundation795

model. Therefore, we applied the following SOTA MLLMs in our experiments: Kosmos-2 (Peng et al.,796

2023) and Flamingo (Alayrac et al., 2022). In our experiments, we leverage MLLMs as both pre-trained797

feature extractors and text decoders. We then employ mean pooling to aggregate representations, followed798

by using an MLP as a backbone model to generate predictions. We aim to compare the performance gaps799

between a downstream model trained on images and another trained on image captions (attributed to the800

dataset).801

C.1.2 Results802

Results in Table 11 consistently reveal that downstream models trained on image captions exhibit less803

performance degradation compared to those trained on image embeddings in scenarios of modality804

mismatch. This observation holds true across all state-of-the-art multimodal LLMs we investigated.805

Such results strongly suggest that cross-modality translation within text representations, as facilitated806

by TAMML , proves to be a more effective and robust strategy than utilizing embedding representations807

when faced with modality mismatch conditions.808

Pet | Acc ↑ Flamingo Kosmos2
Test/Train caption image caption image

text -0.07 -0.10 -0.09 -0.11
tabular -0.08 -0.10 -0.12 -0.21
text+tabular -0.08 -0.11 -0.10 -0.15

Air | MSE ↓ Flamingo Kosmos2
Test/Train caption image caption image

text -0.00 -0.06 -0.01 -0.03
tabular -0.03 -0.07 -0.05 -0.05
text+tabular -0.02 -0.07 -0.04 -0.03

Table 11: Text representation shows consistently less performance degradation for cross-modality translation when
explicitly compared to embedding representation. Both representations are derived from the same Multimodal
LLMs for fair comparison. Nevertheless, transforming from image to caption has a slight performance reduction.

C.2 Q4: Text-based Solutions Versus Embedding-based Solutions When Training And Testing809

Modalities Are Identical810

Table 12 provides the experiment results under no train/test modality mismatch.811
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Train & Test Regular (Embedding) TAMML (Text)

text 0.352 0.382
image 0.273 0.369
tabular 0.429 0.394
text+image 0.286 0.400
text+tabular 0.411 0.404
image+tabular 0.403 0.408

Table 12: Experiment results under no train/test modality mismatch condition. Under this condition, TAMML does
not show performance degradation and even performs better in several modality combinations. The regular method
means the downstream model is trained on embedding representations. Note that this result differs from the result in
Table 11 because the foundation models used for generating embedding and text representations are not the same.

C.3 Q5: How does TAMML compare to non-zero-shot methods? 812

Table 13 provides the experiment results under modality mismatch with different test time finetuning 813

settings (not zero-shot). The settings are as follows: 814

• no finetuning: complete mismatch scenario same as main result experiments. 815

• unsupervised domain adaptation: finetune- the downstream model given the information of inference 816

modality but without labels. We adopted the ADDA (Tzeng et al., 2017) method. 817

• supervised training (with all modalities): the downstream model given the information of paired 818

train/inference time modality with labels. This means that the modality used in testing is fully trained. 819

Train Test no finetuning: Emb no finetuning: TAMML unsupervised domain adaptation supervised training (all modalities)

text image 0.288 0.374 0.195 0.338
text tabular 0.289 0.357 0.281 0.359
image text 0.270 0.319 0.276 0.306
image tabular 0.273 0.348 0.276 0.359
tabular text 0.289 0.364 0.195 0.306
tabular image 0.279 0.364 0.195 0.338

Table 13: The experiment results showed a condition with other non-zero-shot methods. Under this condition,
TAMML shows no performance degradation and even performs better in several modality combinations in zero-shot.

C.4 Q6: Upper-Bound Performance with LanguageBind-style Training 820

To contextualize the performance of TAMML , we conducted a small-scale experiment following the 821

LanguageBind (?) training strategy. Using identical modality encoders, we fine-tuned them on the 822

PetFinder dataset to establish an upper-bound reference for supervised, embedding-based approaches. As 823

expected, the fine-tuned model achieved higher accuracy across modality translation settings: 824

These results confirm that training-based methods can achieve higher performance when sufficient 825

paired data is available. However, our in-context, zero-shot method still performs competitively without 826

any fine-tuning or additional supervision, demonstrating its practical utility in resource-constrained 827

settings. 828

C.5 Ablation Studies 829

This section explores the contribution of individual components within TAMML by conducting ablation 830

studies. We incrementally add modules to evaluate their impact on performance, with findings summarized 831

in Table 14. In this section, our TAMML framework employs the GPT-3.5 as the foundation LLM. 832
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Training Testing PetFinder | Accuracy ↑

SDEdit Text +Modality +Reasoning +Text-style
Transformation Summarization Augmentation Translation

text+image tabular 0.282 0.310 0.321 0.338 0.348
text+tabular image 0.289 0.329 0.365 0.363 0.380
image+tabular text 0.281 0.305 0.295 0.321 0.355
text image+tabular 0.291 0.282 0.296 0.343 0.344
text image 0.289 0.293 0.298 0.341 0.374
text tabular 0.293 0.297 0.318 0.315 0.357
image text+tabular 0.290 0.314 0.289 0.325 0.341
image text 0.288 0.306 0.330 0.336 0.319
image tabular 0.291 0.300 0.307 0.303 0.348
tabular text+image 0.290 0.194 0.366 0.341 0.360
tabular text 0.289 0.193 0.306 0.327 0.364
tabular image 0.289 0.196 0.357 0.353 0.364

Average ± Variance (×10−4) 0.289± 0.12 0.277± 25.91 0.321± 7.2 0.334± 2.5 0.355 ± 2.4

Table 14: Ablation studies on various components of TAMML . Our observations reveal that text transformations
significantly enhance performance across all modality combinations except for tabular data, which is in fixed
formatted text. The formatting issue is effectively solved by incorporating a summarization module, resulting
in a substantial enhancement in performance. Furthermore, the inclusion of both the translation module and the
reasoning augmentation module leads to further improvements in overall performance.

C.5.1 Text Transformation833

Compared to the embedding-based methods SDEdit, Table 14 shows converting modality features into834

text enhances performance by approximately 2%, indicating less modality mismatch during training and835

inference compared to embedding representations. This improvement is consistent across most data836

modalities, except for tabular data, which sees a decline of about 10%. This discrepancy is attributed837

to the fixed format of tabular text transformation, highlighting a significant style gap with more fluid,838

human-like writing, particularly impacting tabular data’s inference performance.839

C.5.2 Modality Summarization840

Table 14 results indicate modality summarization improves tabular data accuracy significantly from 0.277841

to 0.321 on average. After this stage, TAMML has already outperformed the strongest competitor SDEdit.842

This suggests that summarization effectively standardizes text formats into a cohesive style, mitigating843

heterogeneity in text transformation and enhancing data format alignment.844

C.5.3 Reasoning Augmentation845

Table 14 indicates that augmentation enhanced our average performance from 0.321 to 0.334. Additionally,846

we have observed that it contributes to a more stable performance across different scenarios. The variance847

value with augmentation is substantially lower than that without it.848

C.5.4 Text-Style Translation across Modality849

According to Table 14, text-style translation bridges training and inference phase gaps, with about 6%850

improvement from 0.334 to 0.355. This enhancement is particularly notable when the gap in textual style851

remains consistent across phases, as seen in the image-to-table scenarios. Such consistency aids in more852

accurate mapping function determination by the model.853

C.6 Examples for Methodology Components854

C.6.1 Text Transformation855

A Real-world Example: When predicting diseases, we often have access to patients’ pathology table856

reports, medical imaging, and audio of patient narration. First, we will perform text transformation on these857

data. For the images, we transfer it into captions such as "The patient has sigmoid colon cancer causing858

an obstruction, which has led to dilation in the descending colon." For the tables, we transform it into859

statements like "Histologic Type is Adenocarcinoma" and "Histologic Grade is Moderately differentiated."860
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Train Modalities Test Modality Accuracy

Text + Image Tabular 0.369
Text + Tabular Image 0.387
Image + Tabular Text 0.374
Text Image + Tabular 0.371
Text Image 0.386
Text Tabular 0.383
Image Text + Tabular 0.379
Image Text 0.384
Image Tabular 0.385
Tabular Text + Image 0.389
Tabular Text 0.388
Tabular Image 0.386

Average 0.382

Table 15: Fine-tuned LanguageBind-style embedding results on the PetFinder dataset.

For the audio files, we perform speech recognition and acquire descriptions such as "I’ve been a little 861

bloated for two weeks, and I have had only three bowel movements." 862

C.6.2 Text-style Translation across Modality 863

A Real-world Example: When the training combination for disease prediction includes table modality, 864

and only video modality data is available at inference, we will perform text-style translation on the textual 865

representation of audio data. Continuing the example from Section 3.2.1, the textual representation of the 866

audio, "I’ve been a little bloated for two weeks, and I have had only three bowel movements,", is translated 867

as "Symptom is Bloating. The symptom is difficulty with bowel movements. Duration is Two weeks." 868

C.6.3 Modality Summarization 869

A Real-world Example: Building on the example from Section 3.2.1, now the input includes two 870

modalities: image and table. We summarize the textual representations from these modalities. Here is 871

how the summarization looks: "The patient has moderately differentiated adenocarcinoma of the sigmoid 872

colon, causing an obstruction and dilation of the descending colon." 873

C.6.4 LLM Reasoning Augmentation 874

A Real-world Example: Building on the example from Section 3.2.1, now the input includes two 875

modalities: image and table. The current goal is to determine whether a patient requires hospital 876

observation. The results after augmentation are as follows: "The obstruction in the sigmoid colon can lead 877

to increased risks of bowel perforation, where the colon wall might rupture due to increased pressure. 878

This complication is serious and requires immediate medical intervention." 879
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