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Abstract: Learning-based control policies are widely used in various tasks in the
field of robotics and control. However, formal (Lyapunov) stability guarantees for
learning-based controllers with nonlinear dynamical systems are difficult to ob-
tain. We propose a novel control approach, namely Control with Patterns (CWP),
to address the stability issue over data sets corresponding to nonlinear dynamical
systems. For such data sets, we introduce a new definition, namely exponential
attraction on data sets, to describe the nonlinear dynamical systems under con-
sideration. The problem of exponential attraction on data sets is transformed into
a problem of pattern classification one based on the data sets and parameterized
Lyapunov functions. Furthermore, D-learning is proposed as a method to perform
CWP without knowledge of the system dynamics. Finally, the effectiveness of
CWP based on D-learning is demonstrated through simulations and real flight ex-
periments. In these experiments, the position of the multicopter is stabilized using
real-time images as feedback, which can be considered as an Image-Based Visual
Servoing (IBVS) problem.

Keywords: Lyapunov Methods, Reinforcement Learning, Control with Patterns,
D-learning, Visual Servoing
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Figure 1: Closed-loop system by CWP.

In a data-rich age, a system is often in operation
when measurements of system inputs and out-
puts are accessible for collection through inex-
pensive and numerous information-sensing de-
vices. Based on the input and output data, a
direct way is often to model the dynamical sys-
tem according to the first principles. Then, ex-
isting methods are used to analyze the stability
or design controllers for the identified system. However, there exist two difficulties. First, it is not
easy to get the true form of the considered system, so the approximation may not be satisfied. Sec-
ond, except for only a few experts, the approximated model may still be hard to handle with existing
model-based methods.

The development of deep learning and Reinforcement Learning(RL) [1], [2] has led to new advances
in these difficulties [3], [4], [5]. The advancement of deep learning and RL has contributed signifi-
cantly to the development of neural network controllers for robotic systems [6], [7], [8]. For further
discussion of related work, please refer to Appendix A.

Despite the impressive performance of these controllers, many of these studies lack critical stability
guarantees that are essential for safety-critical applications. To overcome this lack, Lyapunov sta-
bility [20] in control theory provides a well-known framework for ensuring the closed-loop stability
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of nonlinear dynamical systems. The core concept of this theory is the Lyapunov function, a scalar
function whose value decreases along the closed-loop trajectory of the system. This function repre-
sents the process by which the system transitions from the system at any state within the Region of
Attraction (ROA) to a stable equilibrium.
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Figure 2: Overview of our method. The main content consists of two parts. For the policy evaluation
step, the Lyapunov function and the D-function are updated by solving (13). After learning the D-
function, we train the CWP controller by solving (14). For more details, please see Appendix E.

Previous studies [9], [10] that integrate deep learning and Lyapunov control methods have primarily
provided guarantees for state feedback control based on structured information (e.g., the state of
a linear time-invariant system). Our work addresses the more challenging but practically relevant
problem of feedback control based on unstructured information by identifying and overcoming the
limitations of existing approaches to synthesize, and certify controllers for real-world applications.
In order to demonstrate the effectiveness of our method on real robotic systems, we design a model-
free flight controller that can (1) stabilize a hovering multicopter with images as feedback, similar
to visual servoing controllers; (2) outperform RL; and (3) provide Lyapunov stability guarantees.

Our key contributions are:

• We propose an approach, namely Control with Patterns (CWP), to the stability problem of dynam-
ical systems, which transforms the controller design problem into a pattern classification problem.
CWP represents a novel framework related to Lyapunov function learning, that can be used to de-
velop model-free controllers for general dynamical systems.

• We propose D-learning, which parallels to Q-learning [11] in RL to obtain both Lyapunov function
and its derivative (see in Fig.6). Unlike existing Lyapunov function learning methods that rely on
controlled models or their approximation with neural networks [12], [13], the system dynamics are
encoded in the so-called D-function depending on the actions. This allows CWP to be performed
without any knowledge of the system dynamics.

• Results from the simulation platform and real flight experiments show that our approach can stabi-
lize a multicopter with real-time images as feedback. Furthermore, the D-learning trained controller
shows superior performance to the RL trained controller.

2 Problem Formulation

Consider the following autonomous system
ẋ′ = f ′ (x′,u) = f ′ (x′, c (x))

x = s (m (x′))

where x′ ∈ D′ ⊆ Rn′
is the original state not available for measurement, m (x′) ∈ M is a

measurement in the form of unstructured data such as images, s (·) is a feature selection function
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designed to encode the measurement into a vector x ∈ D ⊆ Rn, and u = c (x) is the control policy.
We want to focus on x rather than x′, namely, consider the following autonomous system

ẋ =
∂s

∂m

∂m

∂x′ f
′ (x′,u) ≜ f (x,u) (1)

where f : D → Rn,x (0) = x0 ∈ D. From observing the system (1), we can obtain the data set

Pu = {(ẋi,xi) , i = 1, · · · , N} . (2)

We prepare to solve the exponential attraction (see Definition B.2) problem using the Lyapunov
method. The Lyapunov function for the data set (2) is supposed to have the following form

V (x) = g (x)
T
θg (3)

where V (0n×1) = 0, V : D/ {0n×1} → R+ and θg ∈ Sg ⊆ Rl1 . The set Sg is used to guarantee
that the function V (x) is a Lyapunov function. The derivative of V (x) yields

V̇ (x) =

(
∂g (x)

∂x
ẋ

)T

θg. (4)

We hope that the derivative satisfies
V̇ (x) ≤ −W (x) (5)

where W (x) is also a Lyapunov function, which can be further written as

W (x) = h (x)
T
θh

where θh ∈ Sh ⊆ Rl2 . Similarly, the set Sh is used to guarantee that the function W (x) is a
Lyapunov function as well.

For the data set (2), suppose that we have(
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi

)T

θg ≤ −h (xi)
T
θh (6)

where i = 1, · · · , N. Then, in the following, based on (6), we show that the equilibrium state
x = 0n×1 is exponentially attractive on the data set P in Theorem 2.1. For proof, please see
Appendix C.2.

Theorem 2.1. Under Assumptions C.1-C.6, for the system (1), if there exist parameter vectors θg ∈
Sg and θh ∈ Sh such that (6) holds for the data set P , then the equilibrium state x = 0n×1 is
exponentially attractive on the data set P.

Consequently, according to Theorem 2.1, the exponential attraction problem is converted to make
the inequality (6) hold. The inequality (6) is rewritten as

yT
i θ ≥ 0, i = 1, · · · , N (7)

where

yi = −
[ (

∂g(x)
∂x

∣∣∣
x=xi

ẋi

)T

h (xi)
T
]T

θ =

[
θg
θh

]
∈ S ≜ Sg × Sh.

Formally, according to Theorem 2.1, we construct the CWP problem formulation represented as
follows

Design u ∈ U and find θ ∈ S to make (7) hold on the data set (2) (8)

This problem can be classified as a pattern classification [14] problem. Here, yi is the compound
features which describe the stability pattern for the system (1). Consequently, f (θ) = yTθ can be
regarded as a linear discriminant function [14]. So far, we turned the stability problem (6) into the
pattern classification problem (8).
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3 Control with Patterns based on D-learning

After formulating the CWP problem (8), we are going to consider how to construct the model-free
controller based on data sets. To this end, we will design a CWP controller based on a proposed
D-learning method.

3.1 Control with Patterns

In order to solve the CWP problem (8), we solve the following optimization

min
η,θg∈Sg,a>0,c

wa− η

s.t. −
(
∂g(x)
∂x

∣∣∣
x=xi

ẋi (c)

)T

θg −W (θh,xi) ≥ 0

Fg (θg) ≤ a

(9)

where i = 1, · · · , N, Fg(·) is a constraint on θg, W (θh,x) is a Lyapunov function mentioned in
(5). In the following for simplicity, let W (θh,x) = η ∥x∥2. An iterative procedure for solving the
inequality (9) may be used, including policy evaluation and policy improvement.

• Initialization. Select any admissible (i.e., stabilizing) control c0, k = 0.

• Policy Evaluation Step. Under ck, at state xi, the control is u = ck (xi) ∈ U , resulting in
ẋi (ck) ∈ D. Determine the solution θg,k, a > 0, ηk by

min
η,θg∈Sg,a>0

wa− η

s.t. −
(
∂g(x)
∂x

∣∣∣
x=xi

ẋi (ck)

)T

θg − η ∥xi∥2 ≥ 0

Fg (θg) ≤ a

(10)

where i = 1, · · · , Nk.

• Policy Improvement Step. Determine an improved policy using

min
c,η

−η

s.t. −
(
∂g(x)
∂x

∣∣∣
x=xi

ẋi (c)

)T

θg,k − η ∥xi∥2 ≥ 0
(11)

where i = 1, · · · , Nk.

By fixing xi for every step k, the iteration can be terminated after a sufficient number of steps if
wak − ηk and −ηk are nearly not changed. This is due to the fact that the iterative procedure is in
fact used to solve the optimization (9) with the coordinate descent [15].

3.2 Control with Patterns Based on D-learning

Unfortunately, in the Policy Improvement Step (11) , one requires knowledge of the system dynamics
ẋi (c). To circumvent the necessity of understanding the system dynamics, similar to Q-learning in
the field of RL, we can rewrite V̇ (x) in (4) as

D (x,u) =

(
∂g (x)

∂x
f (x,u)

)T

θg

where (1) is utilized. We call it the D-function as it is the derivative of the Lyapunov function and
it is expected to be decreased. If one obtains D (x,u) by learning directly, then the use of the
input coupling function is avoided. In the nonlinear case, it is assumed that the value of D (x,u)
is sufficiently smooth. Referring to [35], according to the Weierstrass higher-order approximation
theorem , there exists a dense basis set {φi (x,u)} such that

D (x,u) =

∞∑
i=1

θiφi (x,u) =

L∑
i=1

θiφi (x,u) +

∞∑
i=L+1

θiφi (x,u) ≜ θT
dϕ (x,u) + εL (x,u)
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where basis vector θd = [θ1 θ2 · · · θL]T, ϕ (x,u) = [φ1 (x,u) φ2 (x,u) · · · φL (x,u)]T and εL
converges uniformly to zero as the number of terms retained L→ ∞.

It is expected to make D (x,u) − V̇ (x) as small as possible. From a mathematical standpoint,it is
imperative to minimize the value of b while adhering to the following constraint∣∣∣∣∣θT

dϕ (xi, ck (xi))− θT
g

∂g (x)

∂x

∣∣∣∣
x=xi

ẋi (ck (xi))

∣∣∣∣∣ ≤ b

where i = 1, · · · , Nk, k = 1, · · · ,M.

On the other hand, (5) is rewritten as

θT
dϕ (x,u) ≤ −η ∥x∥2 .

Furthermore, the inequality (7) is rewritten as

y′T
i θ

′ ≥ 0, i = 1, · · · , N (12)

where

y′
i = −

[
ϕ (xi,ui)

T
h (xi)

T ]T

θ′ =

[
θd
θh

]
∈ S ′ ≜ RL × Sh.

With the D function, iterative procedures for solving the inequality (9) should be rewritten, including
policy evaluation and policy improvement.

• Initialization. Select any admissible (i.e., stabilizing) control c0, k = 0.

• Policy Evaluation Step (Based on D-learning). Under ck, at state xi, the control is u = ck (xi) ∈
U , resulting in ẋi (ck) ∈ D. Determine the solution θg,k,θd,k, ak, bk > 0, ηk ∈ R by

min
θd∈RL,θg∈Sg,a,b>0,η∈R

−η + w1a+ w2b

s.t. −θT
dϕ (xi, ck (xi))− η ∥xi∥2 ≥ 0∣∣∣∣θT
dϕ (xi, cj (xi))− θT

g
∂g(x)
∂x

∣∣∣
x=xi

ẋi (cj (xi))

∣∣∣∣ ≤ b

Fg (θg) ≤ a

(13)

where w1, w2 > 0 are weights, ẋi (cj (xi)) = f (xi, c(xi)), j = 0, · · · , k, i = 1, · · · , Nk.

• Policy Improvement Step (Based on D-learning). Determine an improved policy using

min
c,η∈R

−η

s.t. −θT
d,kϕ (xi, c (xi))− η ∥xi∥2 ≥ 0

(14)

where i = 1, · · · , Nk.

4 Simulations and Experiments

In this section, simulations and experiments demonstrate that the CWP-based controller can stabilize
a hovering multicopter with images as feedback, which can be considered as an IBVS [16] problem.

4.1 Simulations Design

4.1.1 Problem Formulation of Visual Servoing

Since the camera is fixed to the body of the multicopter, based on Semi-Autonomous Autopilots
(SAAs), the plant [17] can be modeled as

ṙ = v

I = mc (r)
(15)
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where r,v ∈ R3 indicate the position and velocity of the multicopter, and I = mc(r) represents the
mapping from the position r of the multicopter to the image I ∈ I taken by the camera.

For IBVS, visual servoing can be conceptualized as a minimization problem between the image
features s(r) extracted from the current position r and the desired features s∗ from the desired
position r∗. Then, the controller is decided by

e = s(I)− s(I∗)

v = c (e)
(16)

where s(·) ∈ S is a designed feature selection function, such as neural networks, to code the mea-
surement to a vector in a latent space S; v = c(e) represents the controller based on CWP, and its
input e is the feature error between the current image I ∈ I and the desired image I∗.

To extract the features from the current image I , we use deep metric learning methods, suggested
by the work [18], to train the feature selection function. More details about feature extraction can
be obtained in Appendix D.

4.1.2 D-learning Controller Design

We train the D-learning controller based on the latent space S. The Lyapunov function is designed
as a quadratic function, as follows:

V (e) = eTPe = gT (e)θg (17)

where e = s(I) − s(I∗), g (e) =
[
eT ⊗ e

]T
(⊗ represents Kronecker product), and θg = vec (P)

,which represents the vectorization of the positive definite matrix P.

Using the Lyapunov function (17), the CWP controller u = c(e) is given in Algorithm 1, in which
the D-function D(e,u) and the CWP controller u = c(e) is both designed as a 4-layer perceptron,
with ReLU activations after each hidden layer.

Algorithm 1: Control with Patterns Based on D-learning with Constraints
Input: The data set generated by any admissible (i.e., stabilizing) control u = c0(e)
Output: CWP controller u = ck(e)

1 Initialization. Select any admissible (i.e., stabilizing) control policy parameters u = c0(e) ,
D-function parameters θd,0 , Lyapunov function parameters θg,0, and data set
P = {(ei,ui, ti) , i = 1, . . . , N} ;

2 while stopping criterion not satisfied η > 0 do
3 Calculate the parameter θg of the Lyapunov function by solving optimization problem

min
θg∈Sg,a>0

wa− η

s.t. −
(
g(ei+1)

Tθg − g(ei)
Tθg
)
− η (ti+1 − ti) ∥ei∥2 ≥ 0

Fg (θg) ≤ a

where i = 1, . . . , N − 1, and Fg (·) represents the constraints on the variable θg ;
4 Estimate the Lyapunov derivative function V̇ (ei) = V (ei+1)− V (ei)/(ti+1 − ti) ;
5 Update D-function by (13), where w1, w2 > 0 are weights, i = 1, · · · , N − 1;
6 Determine an improved policy u = ck(e) by solving optimization problem (14);
7 end

4.2 Simulations Results

To verify the effectiveness of our control algorithm in the IBVS task, we first perform experimental
validation in a simulation environment constructed using RflySim1.

We sample the camera position in a dimension of 22m × 8m centered on the desired position. Then,
the multicopter departs from a set start position and arrives at the desired position by the Position-
Based Visual Servoing (PBVS) [16] method based on the position information. By sampling with

1https://rflysim.com/
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Figure 3: Simulation experiments and results. (a) The multicopter control system. Given the desired
image I∗ and the current image I captured by the camera, the feature error s(I) ∈ S ⊆ R32 is solved
by the neural network ψ : I → R32. The encoding error e = s(I) − s(I∗) is used as an input
to the controller u = c(e). The output of the controller is the velocity v ∈ R3. (b) Performance
evaluation of the servo error ∆r = r − r∗ on the simulation environment compared between the
controller trained by D-learning and DDPG. The red square shows that the D-learning controller has
a smaller error than the DDPG controller. (c) Principal Component Analysis (PCA) projection of
the Lyapunov function (17) learned for the system (15), overlaid with the trajectories of the system
controlled by the D-learning controller and the DDPG controller, which shows that the D-learning
controller has better stability guarantees than the DDPG controller.

equal spacing, 301 trajectories are captured. Based on the collected data tuple (r,u, I) ∈ R3×R3×
I, we first train the network ψ : I → S to obtain s (I) ∈ R32. Then, we use Algorithm 1 to train
the controller based on D-learning. Finally, we replace the PBVS controller with the D-learning
controller, the experimental results are shown in Fig.3(a). The CWP controller can stabilize the
multicopter using images as feedback.

As a comparison, we also train the RL controller. We consider the collected trajectory data as a
replay buffer, and use the Deep Deterministic Policy Gradient (DDPG) [19] algorithm to train an
actor as a controller.The comparison between the D-learning controller and the DDPG controller
is shown in Fig.3(b), in which the DDPG controller, although it can also converge to the reference
point, the error is larger than that of the D-learning controller and the Lyapunov function fails to
achieve sustained convergence. This result manifests that the D-learning controller provides more
reliable stability guarantees than the RL controller.

Multicopter

Monocular Camera

Desired Image 𝐈∗

TPV FPV

(1)

(2)

(3)

(a) (b)

(1)

(2)

(3)

Desired Image 𝐈∗Multicopter

Figure 4: The real flight experiments and results. (a) On the real flight experiments, we use a
DJI Tello EDU, which has a front-facing camera. The desired image I∗ of IBVS is centered on a
drawing. (b) On the left is the Third-Person-View (TPV) and on the right the First-Person-View
(FPV) of the on-board camera. The multicopter positions tend in the order as (1) → (2) → (3), and
the image from FPV converges to the desired image I∗.
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4.3 Real Flight Experiment

We also deploy our method on a multicopter which features a front-facing camera. We sample
the camera position in a dimension of 1.6m × 0.8m centered on the desired position. The target
image for image servoing is a painting. The details of real flight experiments are shown in Fig.4.
By sampling with equal spacing, 97 trajectories are captured. Based on the collected data tuple
(r,u, I) ∈ R3 × R3 × I, we first train the network ψ : I → S to obtain s (I) ∈ R32. Then, we
use Algorithm 1 to train to get the controller based on D-learning. Finally, We replace the controller
using position as feedback with a controller using only images as feedback. Experimental results are
shown in Fig.5(a). The initial displacement ∆r0 is (−0.60m, −0.02m,−0.29m). The D-learning
controller can stabilize the multicopter using only images as feedback. 3D trajectory pairs based on
the PBVS controller using position as feedback and the D-learning controller using only images as
feedback are shown in Fig.5(b).
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Figure 5: The real flight result for visual servoing. (a) The position error ∆r = r− r∗, the encoding
error in the latent space e = s(I)− s(I∗), and the velocity of multicopter v shows the effectiveness
of CWP based on D-learning. (b) 3D trajectory based on the PBVS controller using 3D positions as
feedback and the D-learning controller using 2D images as feedback.

5 Discussion

Conclusion. We propose a sampling-based stability condition, exponential attraction, to satisfy
the Lyapunov stability for learning-based controller. Based on the Theorem 2.1, we propose CWP,
which transforms the controller design problem into a pattern classification problem. Subsequently,
we propose D-learning for performing CWP in the absence of knowledge regarding the system
dynamics. Finally, on both the simulation platform and the real multicopter platform, we show that
our approach can synthesize and verify neural network controllers for a control system with images
as feedback, and CWP controller has better performance than the controller trained by RL.

Limitation. Despite the success in simulated and real flight tasks, our method has not been evalu-
ated in complex practical scenarios. It is anticipated that our approach will be applicable to more
complex real-world robotic control tasks, such as locomotion and navigation. To achieve this ob-
jective, future work will need to make further improvements in data utilization and provide stability
guarantees. Our future work needs to enhance feature extraction in our work, with a particular fo-
cus on improving the robustness and generalizability of the feature extraction process. Moreover,
the feature function, Lyapunov function, and controller, all in the form of neural networks, can be
learned jointly to achieve superior performance. These will be explored in the future work.
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A Related Work

RL [1], [2] and Lyapunov function learning (or certificate learning further, including barrier function
and contraction metrics learning) [3], [4], have the potential to handle control problems of compli-
cated systems with big data. Q-learning is a RL method. D-learning, which parallels to Q-learning
in RL aims to obtain both Lyapunov function and its derivative. The similarities and differences
between the two are illustrated in Fig.6.

Cost function based on 

Defined Reward

A Value Function determined

by Cost Function

Controller trained

by Q-learning

Richard E. Bellman Aleksandr Lyapunov

Dynamic Programming Lyapunov's Method

Reinforcement Learning Lyapunov Function Learning
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predicted by D function

Controller trained 
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v.s.

Figure 6: The similarities and differences between Q-learning and D-learning. Q-learning is a RL
method, while D-learning is a Lyapunov function learning method.

A.1 Reinforcement Learning and Lyapunov Function Learning

As a solution to optimal control problems forward-in-time, RL often focuses on optimization based
on the Bellman equation [21]. In the traditional control field, the Bellman equation is often used
as an analysis tool rather than a direct design tool in optimization control. Nevertheless, the hand-
design Lyapunov method, which relies on pseudo-energy functions, is the most prevalent tool in both
the analysis and design of control systems. Its objective is to reduce the pseudo-energy functions
over time, thereby causing the state to converge to a fixed point. From a technical standpoint,
RL is required to define the rewards function and compute the value function (optimal objectives
are defined as priors). In contrast, Lyapunov function learning requires training a parameterized
Lyapunov function to match the data set (concrete Lyapunov functions are NOT defined as priors).
Therefore, they are different in both application and design. RL with Lyapunov functions, where
certificates are used to ensure safety or stability, has also been proposed recently [8]. A commonly
used certificate is the sum of cost over a limited time horizon as a valid Lyapunov candidate [5]. In
comparison to RL, Lyapunov function learning offers greater flexibility in candidate selection.

RL based on the Bellman equation is prevalent in the field of computer science due to its model-free
characteristics. More importantly, it can solve very complicated control problems. Compared with
RL, Lyapunov’s methods’ achievements on complicated problems with big data are less. Because
of the gap between developments by the Lyapunov’s method and the Bellman equation, it is hypoth-
esized that there is an increasing focus on Lyapunov function learning from data. The expectation is
to unveil its enormous potential, which is also the major motivation of this paper.

The objective of Lyapunov function learning is to construct Lyapunov functions from data. This
process can be approached in two main ways:

• Construct a Control Lyapunov Functions (CLF) [22] in formal methods. Lyapunov-stable neural-
network control [12], learning-based robust control Lyapunov barrier function [23], neural Lyapunov
control [10], and learning-based robust neuro-control [24] employ neural networks to construct both
Lyapunov functions and controller simultaneously. These formal methods, which synthesize and
verify controllers and Lyapunov functions together, formulate the Lyapunov certification problem
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as a proof that certain functions (the Lyapunov function itself, together with the negation of its time
derivative) are always non-negative over a domain.

• Learn a certificate in deep learning methods. Demonstration learning [25], [26], episodic learning
[27], and imitation learning [28] aim at only searching for a certificate from given control policy
data. Notwithstanding the impressive performance of these controllers, many of these controllers
require a sufficiently large amount of data to learn semiglobal stabilization. The data collected from
actual robotic systems is expensive, which presents a challenge for these controllers.

A.2 Pattern Classification

Pattern classification is a fundamental process in various fields, including machine learning, data
analysis, and computer vision [14]. The objective of pattern classification is to assign a label to
a given input based on its characteristics. This process involves categorizing data into predefined
classes or categories, making it essential for applications such as speech recognition, image analysis,
and bioinformatics. As for the CWP approach, more pattern classification methods and ideas are
applicable:

(i) Methods. Through the CWP approach, the process of learning model-free controllers with Lya-
punov stability guarantees from data can be framed as a pattern classification problem. A variety
of pattern classification methods, including support vector machines [29], random forests [30], and
decision trees [31], can be employed for the construction of CWP controllers.

(ii) Features. CWP employs pattern classification techniques to extract pertinent features from
data and construct data-driven controllers. The expression of unstructured data, such as images,
videos, and sounds, is challenging due to the difficulty in defining clear physical variables. Pattern
classification enables the extraction of low-dimensional structured features from unstructured, high-
dimensional data. As a result, features are abstracted from patterns in the form of a state or a set as
feedback [32].

(iii) Negative samples (or counterexamples). To date, a number of existing methodologies have
employed counterexamples derived from model-based optimization to transform the construction
of the Lyapunov function into a pattern-classified problem [33], [34]. In the novel method, it is
anticipated that a greater number of negative samples will be generated from data that adheres to
the concept of rewards in RL. To illustrate, consider a scenario in which a drone encounters an
obstacle or reaches an incorrect equilibrium point through a sequence of actions and states. In such
an instance, the series of actions and states will be assigned a negative weight within the range of
[−1, 0] . As a result of the aforementioned characteristics, a greater number of pattern classification
methods are now applicable.

B Preliminary Remarks

B.1 Exponentially Stability and Exponentially Attraction

In this part, some definitions about stability are given related to the system (1) and the data set (2).

Definition B.1 (Exponentially Stable). For the system (1), an equilibrium state x = 0n×1 is expo-
nentially stable if there exist α, λ ∈ R+ such that ∥ϕ (τ ; 0,x0)∥ ≤ α ∥x0∥ e−λτ in some neighbor-
hoods around the origin. Global exponential stability is independent of the initial state x0.

Here, ϕ (τ ; 0,x0) represents the solution starting at x0, τ ≥ 0. It should be noted that we can only
use the data set (2). So, a new definition related to stability, especially for the data set is proposed in
the following.

Definition B.2 (Exponentially Attractive on P). For the dynamics (1), an equilibrium state x =
0n×1 is exponentially attractive on the data set P with α, λ, ε ∈ R+ if ∥ϕ (τ ; 0,x)∥ ≤ α ∥x∥ e−λτ ,
∀τ ≥ 0, ∀x ∈ B (xi, ε) for any xi ∈ P , where B (xi, ε) denotes a neighborhood around xi with
radius ε.
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Definition B.2 is to describe the trajectory of the system (1) starting from the state. It is hard or
impossible to get the exponential stability only based on the data set (2) except for more information
on f (x) obtained further. So, the definition of exponential attraction especially for the data set can
be served as an intermediate result for classical stability results. For some special systems, we can
build the relationship between the exponential stability and exponential attraction.

Theorem B.3. For the autonomous dynamics ẋ = Ax, suppose i) the equilibrium state x = 0n×1

is exponential attractive on the data set P with ε, ii) as shown in Fig.7, ∃ l ∈ R+, Cl ⊆ ∪iB (xi, ε) ,
xi ∈ P , where Cl =

{
x ∈ D|xTPx = l

}
for a positive-definite matrix 0 < P = PT ∈ Rn×n.

Then the equilibrium state x = 0n×1 is globally exponential stability.

l

( ),
i
x

i
x

Figure 7: Cl belongs to the collection of B (xi, ε).

Proof. For any x∗ ̸= 0n×1 ∈ Rn, since x∗TPx∗ ̸= 0 due to P being a positive-definite matrix, we
have

x̄∗ = θx∗ ∈ Cl

where θ =
√

l
x∗TPx∗ . Since ϕ (τ ; 0,x) = eAτx, for x̄∗ ∈ Cl, the solution is ϕ (τ ; 0, x̄∗) satisfying

ϕ (τ ; 0, x̄∗) = θϕ (τ ; 0,x∗) .

On the other hand, since the equilibrium state x = 0n×1 is exponential attractive on the data set P
with ε, there exist α, λ, ε ∈ R+ such that ∥ϕ (τ ; 0, x̄∗)∥ ≤ α ∥x̄∗∥ e−λτ , ∀τ ≥ 0. Therefore,

∥ϕ (τ ; 0,x∗)∥ =
1

θ
∥ϕ (τ ; 0, x̄∗)∥

≤ α

θ
∥x̄∗∥ e−λτ

= α ∥x∗∥ e−λτ

∀τ ≥ 0 for any xi ∈ P. Therefore, the equilibrium state x = 0n×1 is globally exponentially stable.
□

Remark 2. Theorem B.3 implies that, for autonomous linear dynamics, exponential attraction is
equivalent to exponential stability if the data set covers the boundary of an ellipsoid. For general
dynamics, the least amount of data required for the equivalence is worth studying. Some research
has applied statistical learning theory to provide probabilistic upper bounds on the generalization
error, but these bounds tend to be overly cautious [3].
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C Details of Theoretical Analysis

C.1 Assumptions of Theorem 2.1

Assumption C.1. For x ∈ D, ∥x∥ ≤ d, where d ∈ R+.

Assumption C.2. For x ∈ D, the function f satisfies ∥∂f (x) /∂x∥ ≤ lf , where lf ∈ R+.

Assumption C.3. For x1,x2 ∈ D, there exists lg ∈ R+ such that∥∥∂g (x) /∂x |x=x1
− ∂g (x) /∂x |x=x2

∥∥ ≤ lg ∥x1 − x2∥ .

Assumption C.4. For x ∈ D, there exist k1, k2 ∈ R+ such that k1 ∥x∥2 ≤
∥∥∥g (x)

T
θg

∥∥∥ ≤ k2 ∥x∥2 .

Assumption C.5. For x ∈ D, there exists a k3 ∈ R+ such that k3 ∥x∥2 ≤ h (x)
T
θh.

Assumption C.6. ∥ẋi∥ , ∥xi∥ ≠ 0 for ∀ (ẋi,xi) ∈ P.

C.2 Proof of Theorem 2.1

Proof. This proof consists of three steps.

Step 1. ∥∆ẋi∥ ≤ lf ∥∆xi∥ .

For any x ∈ B (xi, ε), it can be written as

x = xi +∆xi

where x,xi ∈ D and ∆xi ∈ B (0, ε) . Then ∥∆xi∥ ≤ ε. In this case, we have

ẋ = ẋi +∆ẋi = f (xi +∆xi) ⇒ ∆ẋi = f (xi +∆xi)− f (xi) .

Under Assumption C.2, we further have ∥∆ẋi∥ ≤ lf ∥∆xi∥ .

Step 2. ∥ϕ (τ ; 0,x)∥ ≤ α ∥x∥ e−λτ for ∀x ∈ B (xi, ε) .

For any x ∈ B (xi, ε) , according to the definition of V (x) in (3), we have

V̇ (x) =

(
∂g (x)

∂x
ẋ

)T

θg

=

(
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

(ẋi +∆ẋi)

)T

θg

=

(
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi+
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

(ẋi +∆ẋi)−
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi

)T

θg

=

(
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi +
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

ẋi −
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi +
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

∆ẋi

)T

θg

≤ −h (xi)
T
θh + lg ∥∆xi∥ ∥ẋi∥ ∥θg∥+ lg ∥xi +∆xi∥ ∥∆ẋi∥ ∥θg∥ (From Assumption C.3)

≤ −h (xi)
T
θh + lglf ∥θg∥ ∥xi∥ ε+ lglf ∥θg∥ (∥xi∥+ ε) ε

≤ −h (xi)
T
θh + 2lglf ∥θg∥ ∥xi∥ ε+ lglf ∥θg∥ ε2

≤ −k3 ∥xi∥2 + 2lglf ∥θg∥ ∥xi∥ ε+ lglf ∥θg∥ ε2. (From Assumption C.5)

Then there exists 0 < k4 < k3 and let

ε = −∥xi∥+
∥xi∥

√
4l2gl

2
f ∥θg∥

2
+ 4(k3 − k4)lglf ∥θg∥

2lglf ∥θg∥
> 0
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such that V̇ (x) ≤ −k4 ∥xi∥2 . Then, by Assumption C.1 and Assumption C.4, there exists k5 =
k4 ∥xi∥

/
d2 such that

V̇ (x) ≤ −k4 ∥xi∥2

≤ −k5 ∥x∥2 (From Assumption C.1)
≤ −2λV (x) ,∀x ∈ B (xi, ε) (From Assumption C.4)

where λ = k5 /2k2 . Consequently, for x ∈ B (xi, ε) , we have

V (ϕ (τ ; 0,x)) ≤ ∥V (x)∥ e−2λτ

where τ ≥ 0.

As a result, by Assumption C.4, we have

∥ϕ (τ ; 0,x)∥ ≤ α ∥x∥ e−λτ

for x ∈ B (xi, ε) , where α =
√
k2 /k1 .

With Steps 1,2, there exist α =
√
k2 /k1 , 0 < λ < k3 /2k2 , ε > 0, such that ∥ϕ (τ ; 0,x)∥ ≤

α ∥x∥ e−λτ , ∀τ ≥ 0, ∀x ∈ B (xi, ε). Moreover, α, λ, ε are independent of xi, so the result is
applicable to any xi ∈ P. Therefore, the equilibrium state x = 0n×1 is exponentially attractive on
the data set P.

D Details of Feature Extraction

In order to extract the features from the current image I , a ResNet-18 [36] model, trained using
metric learning, is employed. The principal objective of metric learning is to develop a novel metric
that diminishes the inter-sample distances within a given class and amplifies those between distinct
classes.

In order to more accurately represent the feature in question, it is proposed that a multimodal latent
space, designated as S, be created in which both position and image representations are mapped.
The interrelationship between the latent space, images, and positions is illustrated in Fig.8(a). The
position r maps to a feature embedding sr, and the image I acquired at the position r is noted as sI.
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Figure 8: (a) The proposed latent space for visual servoing. Both images and positions are projected
in the feature space S, where they can be compared. (b) PCA projection of trajectories sI − sI∗ in
the latent space, for 2D motions. Circles show the error for the position embeddings sr − sr∗ for
various distances.
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We argue that for the optimal policy of visual servoing, the distance between two embeddings should
be equal to the distance between their underlying positions: dS(sIj , sIj ) = ∥rj − rk∥2, where dS
represents the Euclidean distance:

dS(sj , sk) = ∥sj − sk∥. (18)

To learn the space S, we propose to use two distinct, parallel neural networks. The first is ϕ : R3 →
S , that maps a position r to an embedding sr = ϕ(r) . The second model ψ : I → S, maps an
image I to its latent representation sI = ψ(I) .

In order to train ϕ and ψ, we devise our loss function LS , which is based on the distances between
the latent representation of the camera tuple (rj , Ij) and the camera tuple (rk, Ik) by

LS = Lϕ,R3 + Lψ,R3 + Lϕ,ψ (19)

where Lϕ,R3 is the loss function to train ϕ : R3 → S, Lψ,R3 is the loss function to train ψ : I → S,
and Lϕ,ψ is the loss function to shape the feature space S in the following

Lϕ,R3 = MSELoss
(
∥rj − rk∥ ,

∥∥srj − srk
∥∥) (20a)

Lψ,R3 = MSELoss
(
∥sIj − srk∥, ∥srj − srk∥

)
(20b)

Lϕ,ψ = MSELoss
(
∥sIj − sIk∥, ∥srj − srk∥

)
. (20c)

By comparing a representation with each specific tuple, we ensure that a single iteration guides the
encoding towards a more stable location. As illustrated in Fig.8(b), the minimization of e in the
latent space results in the emergence of nearly straight lines in the latent space. The error between
position embeddings also correlates well with the error from image representations.

In [37], the authors propose the use of autoencoder visual servoing as a method for performing visual
servoing in the latent space of an autoencoder. An autoencoder is a neural network architecture
comprising an encoder and a decoder. Together, these components learn to project images into low-
dimensional representations and then reconstruct them back to the original space. This approach
is analogous to that of PCA-based visual servoing [38]. In consideration of two encodings, sI, sI∗
, extracted from unstructured data, specifically current image I and desired image I∗, the neural
network-based IBVS control law is expressed as follows:

v = −λL+
sI(sI − sI∗) (21)

where LsI is computed analytically by applying the chain rule:

LsI =
∂sI
∂I

∂I

∂r

and L+
sI represents the Moore-Penrose pseudoinverse of the matrix LsI . While this process is typ-

ically applied to images, the same rationale can be extended to an encoder for any type of inputs,
provided that the interaction matrix of the input can be defined. Neural networks built with PyTorch2

possess automatic differentiation capabilities, ensuring that the features extracted from images are
continuous. This continuity permits their utilization in visual servoing and facilitates the extraction
of structured features from unstructured data.

E Details of Figure 2

In Fig.2, CWP constructs the model-free controller based on the data set F . Here, (x,u,x′) ∼ F
represents the collected data tuple of the unstructured data x , the policy u , and the structured
feature encoding x′ from the unstructured data x. V (x) represents the Lyapunov function in (3),
and V̇ (x) = ∂V

∂x f (x,u) represents the derivative of Lyapunov function in (4). D(x,u) represents
the D-function in (13). To update the control policy u = c(x), CWP computes the gradient ∇c(x)
to minimize the optimization objective in (14).

2https://pytorch.org/
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F Details of Simulations and Real Flight Experiments

Table.1 presents the configuration information of a custom-built multicopter in simulations and Ta-
ble.2 presents the configuration information of a Tello EDU multicopter3 in real flight experiments.
We use the custom built multicopter for data collection and validation in simulations, and use the
Tello EDU multicopter for data collection and validation in the real flight experiments. For commu-
nication, we use DJITelloPy4 as the upper-level flight control communication program.

For data collection, we use a motion capture system to obtain the position r ∈ R3 and velocity
v ∈ R3 of the multicopter. For real flight experiments, we set Remote Controller(RC) to control the
velocity v ∈ R3 of the multicopter.

To ensure real-time control, we use CUDA5 to speed up the inference process. In simulations con-
ducted on a platform with an Intel i7-13700K CPU and an RTX 4070 Ti GPU, the neural network
inference frequency exceeds 100Hz, thereby meeting the requisite standards for real-time image
feedback control.

custom built multicopter
Weight 1.5 kg

Airframe radius 0.225mm
Diagonal size 450mm

Camera frame rate 30 Fps
Camera resolution 720 × 405

Configuration X4
Flight controller in simulations CopterSim running PX4

Table 1: Configurations of the custom built multicopter in simulations.

Tello EDU multicopter
Weight 0.08 kg

Size 98mm × 92.5mm × 41mm
Propeller size 3 inches

Camera frame rate 30 Fps
Camera resolution 960 × 720

Table 2: Configurations of the Tello EDU multicopter in real flight experiments.

3https://www.ryzerobotics.com/tello-edu
4https://github.com/damiafuentes/DJITelloPy
5https://developer.nvidia.com/cuda-toolkit
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