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ABSTRACT

What does it mean to find the shortest path in stochastic environments if every strat-
egy has a non-zero probability of failing? At the core of this question is a conflict
between two seemingly-natural notions of planning: maximizing the probability of
reaching a goal state and minimizing the expected number of steps to reach that
goal state. Reinforcement learning (RL) methods based on minimizing the steps to
a goal make an implicit assumption: that the goal is always reached within some
finite horizon. This assumption is violated in practical settings and can lead to
suboptimal strategies. In this paper, we bridge between these two notions of plan-
ning by estimating the probability of reaching the goal at different future timesteps.
This is not the same as estimating the distance to the goal – rather, probabilities
convey uncertainty in ever reaching the goal at all. We then propose a practical RL
algorithm, Distributional NCE, for estimating these probabilities. Taken together,
our results provide a way of thinking about probabilities and distances in stochastic
settings, along with a practical algorithm for goal-conditioned RL.

1 INTRODUCTION

The reinforcement learning (RL) community has seen growing excitement in goal-conditioned
methods in recent years. These methods promise a way of making RL self-supervised: RL agents
can learn meaningful (goal-reaching) behaviors from data or interactions without reward labels. This
excitement is reinforced by the fact that goal-conditioned RL also seems to suggest effective ways
of learning representations that are directly aligned with the RL objective (Eysenbach et al., 2022;
Ma et al., 2022). However, for a long time, there has been a sticking point in both discussion and
algorithmic development of goal-conditioned RL: what is the objective?

Perhaps the most natural objective is to minimize the hitting time, the expected number of steps
required to reach a goal. Indeed, this is the basis for much of the classical work in this area (often
under the guise of stochastic shortest-path problems (Bertsekas & Tsitsiklis, 1991)), as well as more
recent work based on dynamical distance learning (Hartikainen et al., 2019; Venkattaramanujam
et al., 2019; Alakuijala et al., 2022). However, these methods implicitly assume that the goal state
is always reached; without this assumption, the expected hitting time can be infinite. Nonetheless,
RL researchers have proposed a number of methods to optimize this “natural” notion of distance,
often with methods that first estimate this distance and then select actions that minimize this distance,
methods that often achieve excellent results.

In this paper, we attempt to reconcile this tension with the steps-to-goal objective. We first lay out
a few subtle issues with this objective. We show that it can lead to suboptimal behavior, both on
analytic examples and on continuous-control benchmarks. What, then, is the right way to think about
hitting times for goal-conditioned tasks? We advocate for taking a probabilistic approach: estimate
the probability of reaching the goal after exactly t steps. We extend prior work that estimates the
discounted stationary distribution of future goals via contrastive learning. We do this by learning
a classifier that explicitly predicts the probability of reaching the goal at specific timesteps. By
estimating the probability at different values of t, we are able to capture the local temporal structure
and thereby reason about when the goal will be reached. But, importantly, these probabilities do not
assume that the goal will always be reached, i.e., these probabilities remain well-defined in settings
with stochastic policies and dynamics. Our analysis shows that, in deterministic environments, these
two objectives are closely related.

1



Under review as a conference paper at ICLR 2024

Based on this analysis, we propose an algorithm for goal-conditioned RL that estimates the probability
of reaching the goal for varying values of t. Our method can be viewed as a distributional extension
to recent work on contrastive RL (Eysenbach et al., 2022). Our experiments show that this framing
of “distances as probabilities” offers competitive performance on both low-dimensional and image-
based goal-reaching tasks. Finally, using our analysis, we propose an auxiliary objective based on a
self-consistency identity that these probabilities should satisfy. Augmenting our goal-conditioned
methods with this auxiliary objective can further boost performance. Taken together, our analysis not
only provides a better algorithm for goal-conditioned RL, but also provides a mental model to reason
about “distances” in settings with uncertainty.

2 RELATED WORK

Goal-Conditioned RL. Goal-conditioned RL is one of the long-standing problems in AI (Newell
et al., 1959), and has seen much progress in recent years (Durugkar et al., 2021; Zhai et al., 2022;
Andrychowicz et al., 2020; Berner et al., 2019). While many works rely on a manually-designed
reward function (Andrychowicz et al., 2020; Popov et al., 2017; Akella et al., 2021; Berner et al., 2019),
more recent work lifts this assumption and instead learns directly from a sparse reward (Eysenbach
et al., 2022; Ghosh et al., 2019; Yang et al., 2022; Hejna et al., 2023), often using variants of hindsight
relabeling (Kaelbling, 1993; Andrychowicz et al., 2017).

In the recent decade, researchers have proposed a wide array of successful approaches for goal-
conditioned RL, including those based on conditional imitation learning (Sun et al., 2019; Ghosh
et al., 2019; Lynch et al., 2020), temporal difference learning (Durugkar et al., 2021), contrastive
learning (Eysenbach et al., 2020; 2022) and planning (Tian et al., 2021; Ma et al., 2022). Many of
these approaches employ a form of hindsight relabeling (Andrychowicz et al., 2017) to improve
sample efficiency, or even as a basis for the entire algorithm (Eysenbach et al., 2022). Our work
builds directly on prior contrastive RL methods, which are heavily inspired by noise contrastive
estimation (NCE) (Gutmann & Hyvärinen, 2010). Our key contribution will be to show how such
methods can be extended to give finer-grain predictions: predicting the probability of arriving at a
goal state at specific times.

Distances in RL. Shortest path planning algorithms are the workhorse behind many successful robotic
applications, such as transportation and logistics (Kim et al., 2005; Fu & Rilett, 1998; Pattanamekar
et al., 2003; Cheung, 1998). Many RL methods have built upon these ideas, such as devising methods
for estimating the distances between two states (Eysenbach et al., 2019; Hartikainen et al., 2019;
Venkattaramanujam et al., 2019; Alakuijala et al., 2022). Our analysis highlights some subtle but
important details in how these distances are learned and what they represent, showing that distances
can be ill-defined and that using distances for selecting actions can yield poor performance.

Probabilistic approaches. One way to look at our method is that we are learning a distributional
critic to represent the likelihood of reaching the goal at each future timestep, as opposed to learning a
single scalar unnormalized density over future goals (Eysenbach et al., 2020; Rudner et al., 2021).
Adding this temporal dimension to the contrastive NCE (Eysenbach et al., 2022) algorithm enables the
critic network to break down a complex future density distribution into hopefully simpler per-timestep
probabilities. In other words, for each positive example of a state and goal, contrastive NCE receives
just one bit of information (Was this goal reached?) while distributional NCE receives logH bits
(When in the next H steps was this goal reached?). This framework also allows one to (i) enforce
structural consistency for probabilities across timesteps (closely related to n-step Bellman backup),
(ii) make the critic more interpretable, and (iii) reason over future probabilities as distances.

Distributional Approaches. Our proposed method will be reminiscent of distributional approaches
to RL (Dabney et al., 2018; Bellemare et al., 2017; Sobel, 1982): rather than estimating a single scalar
value, they estimate a full distribution over possible future returns. In the goal-reaching setting, it is
natural to think about this distribution over future values as a distribution over distances (Eysenbach
et al., 2019). However, as we will show, distances are not well defined in many stochastic settings,
yet a probabilistic analogue does make theoretical sense and achieves superior empirical performance.
While our proposed method does not employ temporal difference updates, Sec. 5.2 will introduce
an auxiliary objective that resembles TD updates. This auxiliary objective boost performance,
perhaps in a similar way that the distributional RL loss enjoys stable gradients and smoothness
characteristics (Sun et al., 2022).
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Stochastic Shortest Path. Our work is similar to prior work in stochastic shortest path problems
in that we aim to learn policies that learn efficient strategies for reaching goals. However, unlike
prior work in this area (Chen et al., 2021; Rosenberg et al., 2020; Tarbouriech et al., 2020), we do
not assume that there always exists a policy that always succeeds in reaching the goal (i.e., a proper
policy). Our objective (maximizing probabilities) will extend to the setting where even the best policy
occasionally fails to reach the goal.

3 PRELIMINARIES

We consider the reward-free goal-conditioned RL framework, which is defined by a state-space S,
action-space A, a transition dynamics function p(st+1 | st, at), an initial state distribution ρ0 and a
goal distribution p(g). Unlike the classical RL framework, the reward function is implicitly defined
by the transition dynamics and a discount factor γ ∈ [0, 1) : rg(st, at) = (1−γ)p(st+1 = g | st, at).
For this reward function, the corresponding action-value function of a goal-conditioned policy
πg(a|s) = π(a | s, g) takes the form of the discounted future density pπg (s+ = g | s, a) over the
goal states:

Qπg (st, at) = (1− γ)Eπ

[
∞∑

∆=0

γ∆p(st+∆+1 = g | st+∆, at+∆)

]
= pπg (s+ = g | st, at).

By using this Q-function to score actions, the policy directly maximizes the chance of reaching the
goal in the future. We estimate the Q-function using noise contrastive estimation (NCE) (Gutmann &
Hyvärinen, 2010), which trains a binary classifier with cross-entropy objective:

argmin
C

Eg∼pπ(g|s,a)[logC(s, a, g)] + Eg∼p(g)[log(1− C(s, a, g))],

where the classifier C(s, a, g) learns to distinguish between samples from the distribution of future
states pπ(. | s, a) and the marginal goal distribution p(g). The resulting Bayes’ optimal classifier Cπ

for a policy π is then proportional to its Q function:

Cπ(s, a, g) =
pπg (s+ = g | s, a)

pπg (s+ = g | s, a) + p(g)
, so

Cπ(s, a, g)

1− Cπ(s, a, g)
=

pπg (s+ = g | s, a)
p(g)

.

Since the noise distribution p(g) is independent of the actions, we can then optimize a policy with
respect to the classifier by argmaxa C

π(s, a, g).

4 THE PERILS OF MONTE CARLO DISTANCE FUNCTIONS

A common strategy in prior work is to predict the number of steps that elapse between one obser-
vation and another (Tian et al., 2021; Shah et al., 2021). This estimate is then used as a distance
function, either for greedy action selection (Shah et al., 2021), planning (Tian et al., 2021), or reward
shaping (Hartikainen et al., 2019). We will call this approach “Monte Carlo (MC) distance regression.”
We define the MC distance function dπ(s, a, g) associated with a policy π as follows:

dπ(s, a, g) = Eτ∼π|si=s,ai=a,si+j=g,j≥i [j − i] , (1)

where τ is a sample trajectory generated by π that first passes through the state s, taking action a,
and then g.

Intuitively, it seems like such an approach is performing RL with the reward function that is −1 at
every step until the goal is reached. Prior work thus interprets the distances as a Q function. However,
it turns out that this distance function is not a Q function. In this section, we show that these distance
functions do not (in general) correspond to a Q function, and their predictions can be misleading.

4.1 TOY EXAMPLE ILLUSTRATING PATHOLOGICAL BEHAVIOR

We begin by showcasing an example to illustrate why MC regression can yield very suboptimal
policies, an example which proves the following proposition.

Proposition 1. Relative to the reward-maximizing policy, MC regression can incur regret that
is arbitrarily large. That is, for any regret R ∈ R, there exists an MDP with goal state g and
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(a) (b)

Figure 1: Toy MDPs to illustrate the pathological behaviors exhibited by MC distance regression. Solid lines
and dashed lines denote deterministic and stochastic state transitions, respectively.

reward function rg(s, a) = 1(s = g) − 1 such that the difference in expected returns between the
return-maximizing policy and a policy learned via MC regression (πMC) is at least R:

max
π

Eπ

[ ∞∑
t=0

γtrg(st, at)

]
− EπMC

[ ∞∑
t=0

γtrg(st, at)

]
≥ R.

Proof. We prove this proposition by constructing such an MDP (see Fig. 1(a)). The goal state is 4
and the absorbing state is 3. From state 1, the agent can choose an action a1 to directly reach the goal
state 4 in a single step with a probability of p, but risks getting trapped in state 3 with 1− p odds. On
the other hand, the agent can choose an action a2 to deterministically reach the goal 4 in 2 steps. The
agent receives a reward of −1 at every timestep it is not at the goal, and the episode terminates once
the agent reaches the goal state 4.

For this example, let’s estimate the MC distance function d(s, a, g) using the definition in Eq. 1.
Interestingly, d(1, a1,4) = 1. This is because all the rollouts that start from the state 1 and reach the
goal state 4 after taking an action of a1 are always unit length. Similarly, d(1, a2,4) = 2. If we treat
−d(s, a, g) as the Q function, we will always end up picking action a1.

Assuming a discount factor γ, we can compute the optimal Q function analytically: Q(1, a1,4) =

− (1−γp)
(1−γ) and Q(1, a2,4) = −(1+ γ). When the transition probability p < γ, choosing the action a1

is suboptimal with a linear regret of Q(1, a∗ = a2,4)−Q(1, a1,4) =
γ(γ−p)
(1−γ) . In the limit γ → 1,

this regret is unboundedly large for any p ∈ [0, 1) (proves Proposition 1).

Figure 2: MC distances and optimal nega-
tive Q-values at disagreement for 1 → 4 on
the toy MDP in Fig. 1(a) with γ = 0.99 and
p = 0.1. The y-axis has a logarithmic scale.

The above example highlights that MC distances ignore
the risk of getting indefinitely stuck in the trap state 3.
Moreover, the MC distance does not depend on the tran-
sition probability p, suggesting that it offer an optimistic
distance estimate by ignoring the stochasticity in dynam-
ics. Acting greedily with an MC distance function results
in a policy that takes the shortest path on the graph by treat-
ing stochastic edges as being deterministic, which can be
very suboptimal in stochastic settings. For instance, Fig. 2
shows that if the transition probability p = 0.1 for 1 → 4,
MC distance suggests the suboptimal action a1 which in-
curs a significantly higher regret that the optimal action a2,
as suggested by the optimal Q-function. This demonstrates
a fundamental disconnect between shortest-path solutions
and reasoning about the likelihood of reaching a goal state
in the future.
Proposition 2. There exists an MDP such that the the

“distance” learned by MC regression d : S × S → R+ violates the triangle inequality:

d(s1, s3) ≥ d(s1, s2) + d(s2, s3), ∃ s1, s2, s3 ∈ S.
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Proof. Proof by contradiction: we prove Proposition 2 by constructing a toy MDP where the MC
distance function violates the triangle inequality. Consider the MDP in Fig. 1b, where the agent
has no control over state transitions through actions. The MC distance function d(s, g)1 answers the
following question: if the agent traveled from s to g, how many steps would elapse (on average)?. For
example, d(3,4) = 1 because this state 4 always occurs one step after state 3. However, d(1,2) = 1:
even though it may be unlikely that state 2 occurs after state 1, if state 2 occurs, it would occur
after a single step. Similarly, d(2,6) = 1. While d(1,2) + d(2,6) = 2, the estimated MC distance
directly from 1 to 6 is d(1,6) = 2p2+3(1−p)

p2+(1−p) is greater than 2 for all p ∈ [0, 1). This is a violation of
triangle inequality, since d(1,6) > d(1,2) + d(2,6).

Corollary 1. There exists an MDP such that the “distance” learned by MC regression d : S×S → R+

is (i) not a proper metric or quasimetric and (ii) not an optimal goal-conditioned value function for
any non-negative cost function.

Proof. Corollary 1 directly follows from the proof of Proposition 1. MC distance functions do not
always satisfy the triangle inequality and hence cannot be a valid distance metric (nor quasimetric).
Moreover, an optimal goal-conditioned value function has to obey the triangle inequality (Wang et al.,
2023). Thus, the MC distance function cannot correspond to the optimal goal-conditioned value
function for any non-negative cost function.

Why do MC distance functions exhibit these pathological behaviors? In the examples from
Fig. 1, the MC distance estimates do not account for the transitions that could result in getting stuck
in a trap state (3 and 5 in Fig. 1(a) and (b) respectively). More generally, the pathological behaviors
of MC distances can be attributed to their optimism bias, wherein they are computed assuming the
agent will inevitably reach the goal without considering the associated risks.

4.2 CONNECTION BETWEEN MAXIMIZING LIKELIHOOD AND STOCHASTIC SHORTEST PATH

Imagine an MDP where the episode does not terminate upon reaching the goal. In this setting, the
reward-free goal-conditioned RL agent that is incentivized to maximize its time at the goal is closely
related to an agent that is trying to minimize the expected time to the goal (proof in Appendix A):

max
π

log

(
(1− γ)Eπ

[
∞∑
t=0

γtr(st, at, g)

])
≥ max

π
−E∆∼π[∆] log

(
1

γ

)
,

where ∆ ∼ π denotes the length of a trajectory drawn out of the policy π to reach the goal.

If both maximizing likelihood and shortest-path planning seem closely related in theory, why do
shortest-path methods suffer from pathological behaviors? The answer lies in the logarithmic
transformation that gets applied to the likelihood. In simple words, the likelihood of success while
failing to reach the goal is 0, which is a well-defined number, whereas the corresponding expected
distance to the goal is unboundedly large (the negative logarithm of 0).

4.3 INTERPRETING DISTANCE REGRESSION AS A CLASSIFICATION PROBLEM

Monte-Carlo distance regression can be estimated by learning a normalized distance classifier over
the observed horizon, followed by using the bin probabilities to obtain the mean distance. More
precisely, let H ∈ {0, 1, · · ·B − 1} be a random variable denoting how far ahead to look to sample
the future states (a.k.a goals). The distance classifier represented by C(s, a, g) ∈ PB can then be
learned using a categorical cross-entropy loss:

Ep(H),st,at∼p(s,a),g∼pπ(st+H |st,at) [logC(st, at, g)[H]] .

Obtaining distances from this classifier is straightforward: d(s, a, g) =
∑

H H C(s, a, g)[H]. Using
Bayes’ Rule, we can express the Bayes optimal classifier as

Cπ(st, at, g)[H] = Pπg (H | st, at, g) =
pπg (st+H = g | st, at)p(H)

pπg (s+ = g | s, a)
. (2)

1d(s, g) is short for d(s, a = ∅, g) in a Markov process (i.e., an MDPs without actions). Fig. 1b is one such
example.
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This expression reveals a subtle nuance with distance regression. This distance classifier predicts
normalized probabilities, which implicitly assume that the goal can be reached within a finite horizon.
Consider this example: say that action a1 has pπg (g | s, a1, H = 1, 2, 3, ...) = [0.01, 0, 0, · · · ] while
a2 has pπg (g | s, a2, H = 1, 2, 3, ...) = [1, 1, 1, · · · ]. Then, the normalized distance classifier (Eq. 2)
prefers action a1 over a2 since d(s, a1, g) = 1 and d(s, a2, g) > 1, despite it succeeding in reaching
the goal with 100× lower probability. On the other hand, when goal g is unreachable from (s, a), i.e.,
C(s, a, g)[H] = [0, 0, ...], the MC distance is ill-defined, as it results in division by 0.

5 THE FIX: ESTIMATE PROBABILITIES, NOT DISTANCES

In this section, we propose a method that directly estimates the probabilities of reaching goals at
different horizons. We describe our method and provide analysis in Sec. 5.1. As we will show in our
experiments, this method can already achieve excellent results in its own right. Sec. 5.2 proposes a
regularization term based on an identity that our probabilities should satisfy. Our experiments will
demonstrate that adding this regularization term can further boost performance.

5.1 OUR METHOD: DISTRIBUTIONAL NCE

The underlying issue with distance classifiers (discussed in Sec. 4.3) is that they are normalized
across the horizon; they have a softmax activation. Replacing that softmax activation with a sigmoid
activation resolves this issue and opens the door to new algorithms that resemble distributional RL.

The connection with distributional RL is interesting because it motivates distributional RL in a
different way than before. Usually, distributional RL is motivated as capturing aleatoric uncertainty,
providing information that can disambiguate between a strategy that always gets +50 returns and a
strategy that gets +100 returns 50% of the time. Here, we instead show that distributional RL emerges
as a computationally efficient way of learning distances, not because it gives us any particular notion
of uncertainty. This is also interesting in light of prior work that distributional RL does not necessarily
produce more accurate value estimates (Bellemare et al., 2017).

We start by introducing an MC method to learn a distance classifier C(s, a, g) ∈ [0, 1]B; note that
each element of this vector is a probability, but they need not sum up 1. This distance classifier can
be learned via binary classification:
max
C

Ep(H)p(st,at)

[
Eg∼pπ(st+H |st,at)[logC(st, at, g)[H]] + Ep(g)[log(1− C(st, at, g)[H])]

]
.

(3)
The Bayes’ optimal classifier satisfies

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
=

pπg (st+H = g | st, at)
p(g)

. (4)

On the RHS, note that actions only appear in the numerator. This means that selecting the actions
using the LHS is equivalent to selecting the actions that maximize the probability of getting to the
goal in exactly H steps. While this notion of success is non-Markovian, this same classifier can be
used to maximize the (Markovian) RL objective with r(s, a, g) = 1(s = g) using the following:

∞∑
∆=1

γ∆−1 Cπ(st, at, g)[∆]

1− Cπ(st, at, g)[∆]
=

∞∑
∆=1

γ∆−1 p
πg (st+∆ = g | st, at)

p(g)
=

pπg (s+ = g | st, at)
(1− γ)p(g)

. (5)

The expression on the RHS is the same as the objective in Contrastive NCE (Eysenbach et al., 2022),
which corresponds to maximizing the likelihood of the goal state under the discounted state occupancy
measure. However, a regular contrastive critic only receives one bit of information (Was this goal
reached?) from a positive example of a state and goal, whereas a distributional critic receives logH
bits (When in the next H steps was this goal reached?). This additional supervision may help explain
why, empirically, distributional NCE outperforms Contrastive NCE in practice (Fig. 4, Sec. 6).

In practice, we use the last bin of the distributional NCE classifier as a catch-all bin. This modification
avoids ill-defined Q-values due to a finite number of bins, by accounting for the future states from the
trajectory that are at least h steps away, where h is the number of classifier bins in the distributional
NCE algorithm. See the Appendix B.1 for more details about using the catch-all bin. Implementing
the distributional NCE fix is easy: (1) change the final activation of the distance classifier from a
softmax to a sigmoid; (2) change the loss for the distance classifier from a categorical cross-entropy
to an (elementwise) binary cross entropy.
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Algorithm 1 DISTRIBUTIONAL NCE: h is the number of bins in the classifier output, which may be
less than the task horizon. Comments denote the shapes of tensors.

def critic_loss(states, actions, future_states, dt):
# dt: relative time index of future state
logits = classifier(states, actions, future_states) # (batch_size, batch_size, h)
probs = sigmoid(logits)
labels = one_hot(dt, num_classes=h)
loss = BinaryCrossEntropy(logits, labels)
return loss.mean()

def actor_loss(states, goals):
actions = policy.sample(states, goal=goals) # (batch_size, action_dim)
logits = classifier(states, actions, goals) # (batch_size, batch_size, h)
prob_ratio = exp(logits) # p(g|s,a,h) / p(g) = C(s,a,g)[h] / (1 - C(s,a,g)[h])
Q = sum(discount ** range(h) * prob_ratio, axis=-1) # (batch_size, batch_size)
return -1.0 * Q.mean()

Analysis. The Bayes optimal MC distance classifier can be obtained from normalizing the Bayes
optimal distributional NCE classifier across the horizon:

Pπg (H = h | st, at, g) =
pπg (st+h = g | st, at)P (h)

pπg (s+ = g | st, at)
=

wπ(st, at, g)[h]P (h)∑
h′ wπ(st, at, g)[h′]P (h′)

, (6)

where wπ(s, a, g)[h] = Cπ(s,a,g)[h]
1−Cπ(s,a,g)[h] . The Q-function we obtain from aggregating the bins of the

distributional NCE classifier with geometric weights (Eq. 5) is the same as the contrastive NCE
method (Eysenbach et al., 2022). Under mild assumptions (invoking the results from Sec. 4.5 and
Appendix B in Eysenbach et al. (2022)), we prove that distributional NCE is performing approximate
policy improvement and is a convergent contrastive RL algorithm (more details in Appendix B.2).

5.2 SELF-SUPERVISED TEMPORAL CONSISTENCY OBJECTIVE

The problem of learning goal-directed behavior exhibits a certain structure: the probability of reaching
a goal in 10 days starting today is related to the probability of reaching that same goal in 9 days
starting tomorrow. In Appendix C, we derive the following auxiliary objective based on this idea:

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊C(st+k, at+k, g)[H − k]⌋ logC(st, at, g)[H]

+ ⌊(1− C(st+k, at+k, g)[H − k])⌋ log (1− C(st, at, g)[H])
]
. (7)

We hypothesize that adding this additional objective to distributional NCE will enable information to
flow back in time and accelerate training.

6 EXPERIMENTS

In this section, we provide empirical evidence to answer the following questions:

1. Does the distributional NCE algorithm offer any benefits over the MC distance regression and
distance classifier in deterministic goal-reaching environments, with function approximation
and a stochastic policy?

2. Can distributional NCE accurately estimate the probability of reaching the goal at a specific
future time step?

3. Are there any benefits to using the distributional architecture for classifier learning?
4. Does the temporal consistency term accelerate the distributional NCE training?

Environments. We selected seven standard goal-conditioned environments (Plappert et al., 2018;
Yu et al., 2020) to test these hypotheses: fetch_reach, fetch_push, sawyer_push, sawyer_bin,
fech_reach_image, fetch_push_image, and sawyer_push_image. The latter three environments
have image-based observations. fetch_reach is the simplest task; The fetch_push and sawyer_push
environments are more challenging and require the robot to use its gripper to push an object to
the specified goal position. Lastly, the pick-and-place in sawyer_bin presents a hard exploration
challenge. See Appendix E for more information on the environments and implementation details.
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Figure 3: Distributional NCE is able to solve all the goal-reaching tasks with a good success rate, whereas
the MC distance functions fail at almost all the tasks, despite the tasks being deterministic. This performance
degradation is also seen in stochastic environments as shown in Appendix D.4. This result supports our
hypothesis that MC distances are not a good choice for the Q-function of goal-conditioned RL tasks.

Figure 4: Comparison with baselines. Distributional NCE outperforms the Contrastive NCE (Eysenbach et al.,
2022) and C-Learning (Eysenbach et al., 2020) in all but the easiest tasks (fetch_reach, fetch_reach_image).
Applying temporal consistency on top of Distributional NCE accelerates learning and boosts asymptotic
performance. More comparisons with prior GCRL baselines can be found in Appendix D.1.

Comparison with distance regression. In the earlier section, we showed that using the MC distance
metric can be very suboptimal for stochastic MDPs with a countable state space, where the optimal
policy was known beforehand. Our first experiment is designed to test if distance functions learned
via MC regression and distance classifier can be used in the place of a Q-function to greedily optimize
a stochastic policy. We hypothesize that the stochasticity in action sampling from the policy, along
with the associated risk of choosing the shortest path are ignored by MC distance functions, which
will result in suboptimal behavior. We test out the MC distance regression and distance classifier
algorithms on the three following tasks with increasing difficulty: fetch_reach, fetch_push, and
sawyer_push. We also included a comparison with distributional NCE to check if the proposed
algorithm fills in the shortcomings of using MC distance functions. We use the same number of
classifier bins for both the distance classifier and the distributional NCE.

Our results from Fig. 3 suggest that MC distance regression only succeeds at fetch_reach, the simplest
of the selected tasks, which only requires greedily moving to a target goal position. Surprisingly, MC
distance classifier fails at all the tasks. In every other setting, MC distance functions are not able to
do considerably better than a randomly initialized policy. On the other hand, the distributional NCE
algorithm is able to learn a policy that solves all the tasks.

Comparing to prior goal-conditioned RL algorithms. We now compare the performance of
distributional NCE against two high-performance goal-conditioned RL algorithms: Contrastive NCE
and C-learning algorithms. Comparing against Contrastive NCE directly allows us to study whether
our distributional critic boosts performance, relative to a contrastive method (contrastive NCE) that
predicts a single scalar value. Distributional NCE is an on-policy algorithm, so the comparison with
C-learning (an off-policy algorithm) lets us study whether this design decision decreases performance.

The results, shown in Fig. 4, demonstrate that distributional NCE is roughly on par with the prior
methods on the easiest tasks (fetch_reach and fetch_reach_image), but can perform notably better on
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Figure 5: Visualizing the probabilistic distance predictions for future goals that are 5 (Left) and 10 (Right)
steps away, on the fetch_push task. These results confirm that the distance predictions offered by distributional
NCE correlate well with the true distance and are well-calibrated in uncertainty.

some of the more challenging tasks; relative to the strongest baseline, distributional NCE realizes a
+24% improvement on fetch_push and a +20% improvement on sawyer_bin.

As discussed in Sec. 5.2, the predictions from distributional NCE should obey a certain consistency
property: the probability of getting to a goal after t time steps from the current state should be similar
to the probability of getting to that same goal after t− 1 steps starting at the next state. We equip
distributional NCE with the auxiliary objective proposed in Eq. 7 based on this property. We show
the results from this variant of distributional NCE (“distributional NCE with consistency”) in green
in Fig. 4. While we see no effect on the easiest tasks (fetch_reach, fetch_reach_image), the auxiliary
term improves the sample efficiency of the fetch_push task (2.8× 105 fewer samples to get to 60%
success rate) and improves the asymptotic performance on the sawyer_push and sawyer_bin tasks by
+16% and +13% respectively.

Analyzing distributional NCE’s predictions. To better understand the success of distributional
NCE, we visualize its predictions. We do this by taking two observations from the fetch_reach
task that take 5 steps to transit between under a well-trained policy. We show the predictions from
distributional NCE in Fig. 5 (left). Note that distributional NCE outputs a probability for each time
step t. The highest probability is for reaching the goal after exactly 5 steps, but the method still
predicts that there is a non-zero probability of reaching the goal after 4 steps or after 6 steps. We
also compare to the predictions of the “MC Distance” baseline from Fig. 3. We see that this baseline
makes an accurate estimate for when the goal will be reached.

We include another visualization of the distributional NCE predictions in Fig. 5 (right), this time for
two observations that occur 10 steps apart. Again, the predictions from distributional NCE appear
accurate: the goal has the highest probability of being reached after 10 – 12 steps. These predictions
highlight an important property of the distributional NCE predictions: they do not sum to one. Rather,
it may be likely that the agent reaches the goal after 9 steps and remain at that goal, so the probability
of being in that goal after 11 steps is also high.

7 CONCLUSION

This paper takes aim at the tension between two conflicting objectives for goal-reaching: maximizing
the probability of reaching a goal, and minimizing the distance (number of steps) to reach a goal.
Our analysis shows that distance-based objectives can cause poor performance on both didactic and
benchmark tasks. Based on our analysis, we propose a new method that predicts the probability of
arriving at the goal at many different time steps; this method outperforms prior goal-conditioned
RL methods, most notably those based on regressing to distances. Our analysis also suggests a
temporal-consistency regularizer, which can be added to boost performance. Together, we believe
that these results may prove hopeful both to new researchers attempting to build a mental model
for goal-conditioned RL, as well as veteran researchers aiming to develop ever more performant
goal-conditioned RL algorithms.

Limitations. One limitation of our method, compared with prior contrastive approaches, is that the
classifier is now tasked with predicting many values (one per time step) rather than a single value. We
use the same architecture as the contrastive NCE (Eysenbach et al., 2022) baseline while changing
the output dimension of the last linear layer in the critic network. While this increases the number of
parameters (+6.5%), we found it had a negligible effect on training speed. A second limitation is
that our method is on-policy: it estimates the probabilities of reaching goals under the behavioral
policy. Figuring out how to build performant goal-conditioned algorithms that can perform off-policy,
distributional reasoning remains an important problem for future work.
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A CONNECTION BETWEEN MAXIMIZING LIKELIHOOD AND STOCHASTIC
SHORTEST PATH METHODS

In this section, we provide proof for the statements in Sec. 4.2. Let’s consider a policy π for reaching
a goal and define ∆ as the number of timesteps required to reach the goal from the start state. Note
that ∆ is a discrete random variable that takes integer values. Formally, we define π(∆) as the
distribution over the number of timesteps required to reach the goal under the policy. Then, a policy
that tries to reach the goal as soon as possible is trying to optimize the following objective:

max
π

−E∆∼π[∆] (8)

Alternatively, consider an MDP where the episode does not terminate upon reaching the goal. In this
setting, the reward-free goal-conditioned RL agent is incentivized to maximize its time at the goal:

max
π

(1− γ)Eπ

[ ∞∑
t=0

γtr(st, at, g)

]
= max

π
(1− γ)Eπ

[ ∞∑
t=0

γtδ(st == g)

]

= max
π

(1− γ)E∆∼π

[ ∞∑
t=0

γt+∆

]

= max
π

(1− γ)E∆∼π

[
γ∆

1− γ

]
= max

π
E∆∼π

[
γ∆
]
.

By applying a log transformation on both sides of the equation, followed by Jensen’s inequality, we
get:

max
π

log

(
(1− γ)Eπ

[ ∞∑
t=0

γtr(st, at, g)

])
= max

π
log
(
E∆∼π

[
γ∆
])

≥ max
π

E∆∼π

[
log
(
γ∆
)]

= max
π

−E∆∼π [∆] log

(
1

γ

)
. (9)

The final RHS expression can be interpreted as minimizing the expected time to the goal under the
policy (Eq. 8), which corresponds to the shortest-path planning objective with a discount factor of 1.
Thus, optimizing the shortest-path planning objective with a discount factor of 1 is a lower bound
to the max likelihood objective with a discount factor γ < 1. If the policy always takes the same
number of steps to reach the goal, i.e. π(∆) is a Dirac distribution, then the lower bound becomes
an equality and maximizing the probability of reaching the goal (LHS) is equivalent to minimizing
the expected steps to reach the goal (RHS). One setting where this always happens is deterministic
MDPs with deterministic policies.

If both maximizing likelihood and shortest-path planning seem closely related in theory, why do
shortest-path methods suffer from pathological behaviors? The answer lies in the logarithmic
transformation that gets applied to the likelihood. In simple words, the likelihood of success while
failing to reach the goal is 0, which is a well-defined number, whereas the corresponding expected
distance to the goal is unboundedly large (the negative logarithm of 0). More formally, the problem
with optimizing the shortest-path objective in RHS is that it remains unclear how to correctly train a
distance function in stochastic settings, when every strategy has a non-zero chance of failing to reach
the goal. For instance, training a distance function via MC regression (Hartikainen et al., 2019; Tian
et al., 2021) provides optimistic distance estimates because the training goals are always reached
within some finite horizon, which can result in very sub-optimal behaviors as shown in Sec. 4.1. A
naive approach to fixing this optimism bias is to train the distance function on unreachable goals as
well. However, this poses two practical problems:

1. Sampling from the distribution of unreachable goals under a policy is non-trivial: One can
sample from the set of easily reachable goals (positive examples) under the policy by simply
rolling it out in the environment for a short duration. However, sampling far-away goals
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(hard to reach under the current policy) requires one to run long policy rollouts, making
such far-away goals sparser than easily reachable goals in the collected dataset. Extending
this idea to the limit, one can simply never know if a state is unreachable from the policy
even after a large number of steps through Monte-Carlo policy rollouts alone. But even if
one could sample these negative goals,

2. optimal distance functions become ill-defined when the regression targets are unboundedly
large: An unreachable state has an unboundedly large target distance (infinity). This
makes it numerically unstable to perform direct MC regression since a part of the dataset
involves regressing to infinite target distances. Alternatively, one can learn a normalized
distance classifier (Sec. 4.3) with a catch-all bin to handle hard-to-reach and unreachable
goals. However, converting such a distance classifier into an MC distance function by
computing the expected distance d(s, a, g) =

∑
H H C(s, a, g)[H] is again ill-defined

since the upper-bound of the catch-all bin is unboundedly large (infinity).

Prior works in contrastive RL (Eysenbach et al., 2022; 2020) are closely related to the former
idea of sampling negative goal examples with subtle modifications: (1) instead of sampling from
the distribution of unreachable goal states, we simply sample from a noise distribution, and (2)
replace regression objective with the NCE classification objective (Gutmann & Hyvärinen, 2010)
to differentiate between samples drawn from the positive and negative goal distributions. However,
these methods directly estimate the likelihood of reaching the goal without providing any information
about the dynamical distance, i.e., the expected timesteps to reach the goal. Our work proposes a
distributional variant of contrastive NCE algorithm (Eysenbach et al., 2022), which can: (1) estimate
the likelihood of reaching the goal, and (2) reason about the dynamical distance via normalization
using Bayes rule (Eq. 6).

B ANALYSIS OF THE DISTRIBUTIONAL NCE ALGORITHM

In this section, we introduce the modifications to the Distributional NCE framework from Sec. 5.1 to
turn it into a practical algorithm. We start by introducing a catch-all bin in B.1 to avoid truncation
errors and optimize for the true (Markovian) RL objective. Next, we provide convergence guarantees
for the Distributional NCE Algorithm in B.2, by drawing equivalence to a prior convergent contrastive
RL algorithm. Lastly, we provide the derivation for 1-step and Multi-step temporal consistency
regularization in C, highlighting their connections to temporal difference (TD) learning approaches.

B.1 NECESSITY OF A CATCH-ALL BIN

In Sec. 5.1, we introduced the Distributional NCE algorithm (Alg. 1) that estimates the likelihood of
reaching the goal at specific future timesteps (up to proportionality, Eq. 4). We then showed that these
estimates can be aggregated using geometrically-decaying weights to optimize for the (Markovian)
RL objective with r(s, a, g) = 1(s = g) in Eq. 5. However, implementing this naively would require
a large number of bins to prevent temporal truncation errors and could lead to ill-defined Q-values.

The contrastive learning framework (Gutmann & Hyvärinen, 2010) used in Distributional NCE and
prior works (Eysenbach et al., 2022; 2020) can estimate any arbitrary positive goal distribution upto a
proportionality, as long as one can draw samples from it. In the Distributional NCE implementation
with h classifier bins, we repurpose the last bin to predict if the goal was sampled for t ≥ h rather
than t == h event, referring to it as the “catch-all” bin in the rest of the paper. More precisely, the
objective for the catch-all bin is as follows:

max
C

Ep(H≥h)p(st,at)

[
Eg∼pπ(st+H |st,at)[logC(st, at, g)[h]] + Ep(g)[log(1− C(st, at, g)[h])]

]
,

(10)

where p(H ≥ h) = (1 − γ)γH−h = GEOM(γ)[H − h] is a Geometric distribution shifted by h
units. Then, the Bayes’ optimal catch-all classifier for a policy π satisfies:

Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]
= Ep(H≥h)

[
pπg (st+H = g | st, at)

p(g)

]
. (11)
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This classifier can be used to maximize the (Markovian) RL objective with r = 1(s = g) as follows:

h−1∑
∆=1

(
(1− γ)γ∆−1 Cπ(st, at, g)[∆]

1− Cπ(st, at, g)[∆]

)
+ γh−1 Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]

=

h−1∑
∆=1

(
(1− γ)γ∆−1 p

πg (st+∆ = g|st, at)
p(g)

)
+ γh−1Ep(H≥h)

[
pπg (st+H = g | st, at)

p(g)

]

=

h−1∑
∆=1

(
(1− γ)γ∆−1 p

πg (st+∆ = g|st, at)
p(g)

)
+ γh−1

∞∑
∆=h

(
(1− γ)γ∆−h p

πg (st+∆ = g|st, at)
p(g)

)

= (1− γ)

∞∑
∆=1

(
γ∆−1 p

πg (st+∆ = g|st, at)
p(g)

)
=

pπg (s+ = g|st, at)
p(g)

(12)

The expression on the RHS is the same as the objective in C-learning, which corresponds to maximiz-
ing the likelihood of the goal state under the discounted state occupancy measure.

In Distributional NCE, each classifier bin is crucial for estimating the corresponding component in
the discounted future state density. An interesting future direction can be to employ redundancy in
classifier bins, i.e., use multiple catch-all bins and exploit the relation between them as additional
temporal consistency. Such a temporal ensembling procedure can be very similar to consistency
training approaches (Xie et al., 2020) from semi-supervised learning literature.

B.2 CONVERGENCE PROOF

To prove convergence of the Distributional NCE algorithm, we make the same assumptions as the
Contrastive NCE (Eysenbach et al., 2022) work:

1. Bayes-optimality of the Critic: We assume that the distributional critic is Bayes-optimal for
the current policy.

2. Training Data Filtering: We only consider (st, at, st+h) tuples for the policy improvement
step, whose probability of the trajectory τt:t+h = (st, at, st+1, at+1, ..., st+h) when sam-
pled from π(.|., sg) under the commanded goal sg is close to the probability of the same
trajectory when sampled from π(.|., st+h), under the relabelled goal st+h.

Proposition 3. When the above-mentioned assumptions hold, the Distributional NCE update corre-
sponds to approximate policy improvement in tabular settings.

Proof. We first point out that the Bayes optimal Distribuitional NCE critic can be used to obtain
the Bayes optimal Contrastive NCE (Eysenbach et al., 2022) critic, by geometrically averaging the
classifier bins according to Eq. 12. Using this result, Proposition 3 is validated by the proof for the
Contrastive NCE update corresponding to approximate policy improvement in tabular settings (Sec
4.5 and Appendix B in Eysenbach et al. (2022)). This result still holds when we apply the consistency
objective, since the Bayes optimal distributional critics are temporally consistent (Eq. 17).

C TEMPORAL CONSISTENCY AUXILIARY OBJECTIVE

The problem of learning goal-directed behavior exhibits a certain structure: the probability of reaching
a goal in 10 days starting today is related to the probability of reaching that same goal in 9 days
starting tomorrow. This idea highlights a simple identity that the distributional probabilities must
satisfy to remain temporally consistent:

pπg (g | st, at, H) = E(st+1,at+1)∼(st,at) [p
πg (g | st+1, at+1, H − 1)] .

Note that the probabilities on both LHS and RHS of the equation are quantifying the likelihood of the
(H + t)th timestep. This is because the state in RHS is from t+ 1th timestep while the bin index is
H − 1, effectively quantifying the likelihood of the (H + t)th timestep. This identity can be used
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to derive a temporal consistency identity for distributional NCE, which is satisfied by the Bayes’
optimal classifier (the solution to Eq. 4):

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
= E(st+1,at+1)∼(st,at)

[
Cπ(st+1, at+1, g)[H − 1]

1− Cπ(st+1, at+1, g)[H − 1]

]
. (13)

We now turn this identity into a penalty for the distributional NCE classifier as follows:

LTC = E(st,at,g,st+1,at+1)

[
⌊C(st+1, at+1, g)[H − 1]⌋ logC(st, at, g)[H]

+ ⌊(1− C(st+1, at+1, g)[H − 1])⌋ log (1− C(st, at, g)[H])
]
, (14)

where ⌊.⌋ denotes the stop-gradient operator. Because the identity in Eq. 13 is satisfied by the Bayes’
optimal classifier, adding the corresponding penalty (Eq. 14) to the distributional NCE loss (Eq. 3)
does not change the solution.

C.1 MULTI-STEP TEMPORAL CONSISTENCY

In Sec. 5.2, we detailed the temporal consistency identity in Eq. 13 and proposed a 1-step temporal
consistency regularization objective in Eq. 14 to enforce it. We also briefly introduced a k-step
extension of this objective in Eq. 7. In this section, we formally derive the k-step consistency
objective.

Deriving the multi-step consistency regularization. Let pπ(τ)(st, at, g,H) be the distribution
over H-length state-action trajectories generated by the goal-conditioned policy πg = π(.|., g) with
st as the start state and at as the first action. Then, the future state probabilities under πg satisfy the
following identity:

pπg (g | st, at, H) = E(st+1,at+1,st+2,at+2,...,st+H−1,at+H−1)∼pπ(τ)(st,at,g,H−1) [p(g | st+H−1, at+H−1)]

= Est+1∼p(.|st,at),at+1∼π(.|st+1,g)

[
E(st+2,at+2,...,st+H−1,at+H−1)∼pπ(τ)(st+1,at+1,g,H−2)

[p(g | st+H−1, at+H−1)]
]

= Est+1∼p(.|st,at),at+1∼πg(.|st+1) [p
πg (g | st+1, at+1, H − 1)] . (15)

This identity can be enforced over the distributional classifier using the 1-step temporal consistency
regularization objective in Eq. 14. However, this property also holds for k > 1 steps:

pπg (g | st, at, H) = E(...,st+k,at+k)∼pπ(τ)(st,at,g,k) [p
πg (g | st+k, at+k, H − k)] . (16)

We use the identity in Eq. 16 to derive a temporal consistency identity for distributional NCE. This
identity is satisfied by the Bayes’ optimal classifier (the solution to Eq. 4)2:

Cπ(st, at, g)[H]

1− Cπ(st, at, g)[H]
= E(...,st+k,at+k)∼pπ(τ)(st,at,g,k)

[
Cπ(st+k, at+k, g)[H − k]

1− Cπ(st+k, at+k, g)[H − k]

]
, (17)

and then turn this identity into an auxiliary, consistency objective:

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊C(st+k, at+k, g)[H − k]⌋ logC(st, at, g)[H]

+ ⌊(1− C(st+k, at+k, g)[H − k])⌋ log (1− C(st, at, g)[H])
]
. (18)

The consistency objective above is valid for any goal-conditioned policy π(.|., g), as long as
(st+k, at+k) is the kth intermediate step on the Markov chain generated by the policy that con-
nects st and g. In our practical implementation, we sample (st, at, st+k, at+k, st+H), k < H , from
the replay buffer, and relabel the goal g = st+H to train the critic via direct contrastive loss (Eq. 3) and
k-step temporal consistency regularization (Eq. 18). As a result, the critic estimates the future state
density of the average hindsight-relabeled policy over the replay buffer rather than the current policy,
just like prior MC contrastive RL algorithms (Eysenbach et al., 2022). In our implementation, the

2We use Cπ(s, a, g) to denote the Bayes’ optimal classifier for a policy π(a|s, g).

16



Under review as a conference paper at ICLR 2024

future goal distance H is a random variable sampled from a Geometric distribution H ∼ GEOM(γ),
and the intermediate state distance k is sampled from a truncated distribution to enforce that k < H .
We call this method “Distributional NCE with Multi-step temporal consistency regularization.” Like
temporal difference methods (Eysenbach et al., 2020), the temporal consistency regularization en-
ables information and uncertainty over future states to flow back in time, thereby accelerating the
Monte-Carlo classifier training.

Handling the edge-case: Consistency update for the catch-all bin. When applying the k-step
temporal consistency loss, the catch-all bin gets mapped to k + 1 bins from the future state, unlike
regular classifier bins that have a 1 : 1 mapping with a corresponding future classifier bin. This is
an artifact of using a finite number of bins to represent the infinite-horizon discounted probabilities.
More precisely, the equivalent temporal consistency identity (Eq. 17) for the catch-all bin, which is
satisfied by the Bayes’ optimal classifier (the solution to Eq. 4):

Cπ(st, at, g)[h]

1− Cπ(st, at, g)[h]
=

E(st+k,at+k)

[
h−1∑
i=1

(
(1− γ)γi−1 Cπ(st+k, at+k, g)[i− k]

1− Cπ(st+k, at+k, g)[i− k]

)
+ γh−1 Cπ(st+k, at+k, g)[h− k]

1− Cπ(st+k, at+k, g)[h− k]

]
,

where h is the total number of classifier bins and also the index of the catch-all bin. This identity can
then be turned into a penalty as follows:

Lk
TC = E(st,at,g,st+k,at+k)

[
⌊w(st+k, at+k, g)⌋ logC(st, at, g)[H]

+ ⌊(1− w(st+k, at+k, g))⌋ log (1− C(st, at, g)[H])
]
,

where w(s, a, g) =
∑h−1

i=1

(
(1− γ)γi−1 C(s,a,g)[i−k]

1−C(s,a,g)[i−k]

)
+ γh−1 C(s,a,g)[h−k]

1−C(s,a,g)[h−k] .

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON WITH PRIOR (NON-CONTRASTIVE) GCRL BASELINES

In Fig. 6, we report the performance of the Distributional NCE algorithm with prior (non-contrastive)
GCRL baselines. Our baselines consist of (i) TD3+HER (Andrychowicz et al., 2017): a performant
off-policy actor-critic algorithm combined with hindsight relabeling, (ii) goal-conditioned supervised
learning (GCSL) (Ghosh et al., 2019): iteratively behavior clones the hindsight relabeled policy, and
(iii) a model-based baseline: a goal-conditioned implementation of MBPO (Janner et al., 2019). We
do not include an reward shaping experiments since prior work (Andrychowicz et al., 2017) has
already shown has shown that they perform quite poorly (<10% success rate in most tasks) on robotic
manipulation tasks, even when combined with hindsight relabeling.

D.2 EXPLORING THE LOSS LANDSCAPE OF DISTRIBUTIONAL CLASSIFIERS

Prior works (Bellemare et al., 2017; Sun et al., 2022) have identified that distributional RL methods
enjoy stable optimization and better learning signal compared to their counterpart RL methods. In
particular, Sun et al. (2022) demonstrates that distributional value function approximations have a
desirable smoothness property during optimization, which is characterized by small gradient norms.
In this section, we try to examine if using the proposed distributional NCE algorithm enjoys some of
these benefits. Note that prior works use the distributional critic to estimate the continuous return
distribution with discretized bins (Bellemare et al., 2017; Dabney et al., 2018), which is different
from our work that estimates the distributional probabilities of reaching the goal at discrete future
timesteps.

In Fig. 8, we visualize the training loss and the gradient norm for the actor and critic networks over
the course of training when optimized with the contrastive NCE and Distributional NCE algorithms.
We note that the training loss for the critic network remains nearly unchanged, and the gradient norm
is slightly smaller when switching from contrastive NCE to the Distributional NCE objective. On the
other hand, we observe that actors trained with distributional critics receive gradients with smaller
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Figure 6: Comparison with (non-contrastive) GCRL baselines. Distributional NCE outperforms
these baselines in all but the easiest tasks (fetch_reach, fetch_reach_image).

Figure 7: Comparison with prior goal-conditioned supervised learning methods. Distributional
NCE outperforms GCSL (Ghosh et al., 2019), weighted GCSL (WGCSL) (Yang et al., 2022), and
distance-weighted supervised learning (DWSL) (Hejna et al., 2023) in a majority of the tasks.

norms and achieve an overall lower loss. Note that plots in Fig. 8 are not a fair comparison since the
Distributional NCE and Contrastive NCE agents were trained on different data, one that was collected
by their respective actors interacting with the environment. However, we find the consistently low
actor loss and smaller actor gradient norms with Distributional critics as compelling evidence to
inspire future research works to study these optimization advantages more rigorously.

D.3 COMPARISON WITH THE LAST-LAYER ENSEMBLE BASELINE

The Distributional NCE algorithm uses a distributional critic with h classifier bins, while the Con-
trastive NCE (Eysenbach et al., 2022) uses a regular critic with 1 output bin to directly denote the
probability of reaching the goal in the future (up to proportionality). For the distributional critic,
we simply modified the last linear layer in the regular critic network to have h outputs in all our
experiments. In this section, we examine the importance of the distributional critic architecture
by training a distributional critic with the Contrastive NCE algorithm. We do this by treating the
distributional critic as an ensemble of critic networks, with all but the last-layer parameters shared.

We report the performance of the last-layer ensemble baseline in comparison to Contrastive NCE
and Distributional NCE algorithms on the fetch_push task in Fig. 9. We observe that the last-layer
ensemble baseline outperforms the Contrastive NCE algorithm by +10% higher success. It can also
be seen that the Distributional NCE algorithm outperforms this ensemble baseline by +7%. Further,
Distributional NCE with consistency loss offers a +15% improvement over the ensemble baseline.
This experiment confirms that the algorithm used to train the distributional critic has a huge impact on
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Figure 8: Visualization of the training losses and gradient norms for the actor and critic networks
over the course of training. We do not see a huge difference in critic loss or gradients but observe that
the actor loss is consistently lower and has a smaller gradient norm for Distributional NCE relative to
Contrastive NCE.

the overall performance: Distributional NCE with Consistency > Distributional NCE > Contrastive
NCE.

D.4 PERFORMANCE IN STOCHASTIC ENVIRONMENTS

In Fig. 10, we report the performance of the Distributional NCE algorithm and MC distance regression
in the Stochastic 2D maze environment. We observe that istributional NCE outperforms MC distance
regression by over 20% higher success rate.

D.5 HOW WELL DOES CONSISTENCY REGULARIZATION WORK IN PRACTICE?

We empirically found that 1-step temporal consistency regularization does not improve the per-
formance of Distributional NCE; occasionally it decreases performance. On the other hand, we
found that the multi-step temporal consistency regularization significantly boosts the performance of
Distributional NCE in Fig. 11.
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Figure 9: Distributional Critic trained with Contrastive NCE (last layer ensemble baseline) does not
match Distributional NCE, highlighting the importance of the training algorithm over architectural
choice.

Figure 10: Stochastic 2D maze environment: (a) Maze layout (left) and (b) Distributional NCE
outperforms MC distance regression by over 20% higher success rate (right). The agent’s start and
goal locations are chosen randomly in the valid regions (purple). The action space is [−1, 1]× [−1, 1],
suggesting the displacement to the next state. The agent is not allowed to go through walls (yellow).
To simulate stochasticity, we corrupt the action with a uniform random noise N (0, 0.5)×N (0, 0.5).

D.6 PERFORMANCE OF DISTRIBUTIONAL NCE WITH DIFFERENT NUMBER OF BINS

In this section, we study if the choice of the number of classifier bins has an impact on the performance
of the Distributional NCE algorithm. In theory, this hyperparameter should have no effect on
convergence to the optimal policy since any Bayes-optimal distributional classifier can be mapped to
the Bayes optimal contrastive NCE classifier (num_bins=1) as shown in Eq. 12. However, in practice,
we find setting H to be sufficiently large helps with improving the performance. For instance, when
H = 1, Distributional NCE reduces to Contrastive NCE (Eysenbach et al., 2022), which does not
perform as well (see Fig. 4). On the other hand, we also observed very little difference in performance
for larger value of H . More precisely, on the sawyer_push task in Fig. 12, wherein we see very little
difference in performance for four distinct choices for the number of classifier bins: 11, 21, 51, and
101. For all the rest of the experiments in the paper, we fix the number of classifier bins to 21.

D.7 CONNECTION BETWEEN DISTRIBUTIONAL NCE AND THE “DISTANCE CLASSIFIER”

Our final visualization draws a connection between distributional NCE and the “Distance Classifier”
baseline from Fig. 3. We can recover the Bayes’ optimal distance classifier from the distributional
NCE predictions by normalizing the predicted probabilities (Eq. 6). We visualize a confusion matrix
of these predictions in Fig. 13 by averaging over 1000 states sampled from a trained policy. We
observe that there is a clear trend along the diagonal, indicating that the distributional NCE predictions
(after normalization) can be used to estimate “distances.” This visualization not only provides a
further sanity check that distributional NCE makes reasonable predictions, but also highlights that
(by normalization) distributional NCE retains all the capabilities of distance prediction.
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Figure 11: Multi-step temporal consistency regularization is significantly more effective than 1-
step consistency regularization. In some cases, 1-step consistency regularization actually hurts the
performance of the Distributional NCE algorithm, but Multi-step consistency almost always improves
the performance.

Figure 12: Varying the number of classifier bins has little effect on the performance of Distributional
NCE for sawyer_push task.

E IMPLEMENTATION DETAILS

Figure 13: The predictions from distributional
NCE can be converted into a distance classifier
by normalization. See text for details.

We used the official contrastive RL codebase3 (Eysen-
bach et al., 2022) in the JAX framework (Bradbury et al.,
2018) to run the contrastive RL baselines: Contrastive
NCE (Eysenbach et al., 2022) and C-Learning (Eysen-
bach et al., 2020). Moreover, we implemented the dis-
tributional NCE algorithms by modifying this codebase
as follows:

1. Change the last layer in the critic’s architecture
to output h bins (Alg. 2).

2. Change the Contrastive NCE objective to the
Distributional NCE objective (Alg. 1).

3. Add the consistency loss (Eq. 7,18) to the clas-
sifier training module.

The actor is trained using the actor loss from soft actor-
critic (Haarnoja et al., 2018), while the critic is optimized
for the contrastive classification objective in Eq. 3. In all our experiments, we report the mean
performance and the 95% confidence interval computed across 5 random seeds. We ran all our
experiments on a single RTX 2080 Ti GPU with 11GB memory.

3https://github.com/google-research/google-research/tree/master/contrastive_rl
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Hyperparameter Value

number of classifier bins (h) 21
batch_size 256
EMA target network (τ ) 0.005
discount (γ) 0.99
hidden dims (policy and critic representations) (256, 256)
critic representation dimension 64
learning rate 3e-4
Optimizer Adam (Kingma & Ba, 2014) (β1 = 0.9, β2 = 0.999)
goal relabelling ratio for actor loss 0.5
maximum replay buffer size 1,000,000
minimum replay buffer size 10,000

Table 1: A list of important hyperparameters used in our method and the baselines.

Network Architecture: We use the same architecture as the Contrastive NCE baseline while
modifying the last layer in the critic. The policy is a standard 2-layer MLP with ReLU activations and
256 hidden units. The critic network comprises of a state-action encoder and a goal encoder (Alg. 2),
which are each 2-layer MLP with ReLU activations and 256 hidden units, and a final dimension of
repr_dim× h (repr_dim = 64 and h = 21 in all our experiments). For image-based tasks, we use
the standard Atari CNN encoder (Mnih et al., 2013; Eysenbach et al., 2022) to project the state and
goal image observations into the latent space before passing them into the policy and critic networks.

Hyperparameters: We keep the default hyperparameters of Contrastive NCE (Eysenbach et al.,
2022) for all our experiments (Table 1). The proposed Distributional NCE algorithm only introduces
one extra hyperparameter - the number of classifier bins, which is set to 21 in all the experiments.

E.1 DISTRIBUTIONAL CRITIC IMPLEMENTATION

In this section, we go over the pseudo-code to implement a distributional critic network with h
classifier bins in Alg. 2. The output of the distributional critic is a ternary tensor with the first
two axes corresponding to the state-action and goal indices, and the last axis h is the classifier bin
index. The main diagonal along the first two axes corresponds to positive examples, i.e., state-action
representations paired with their corresponding future states (reachable goals). Every other off-
diagonal term corresponds to a negative example, i.e., a state-action representation paired with a
randomly sampled goal.
Algorithm 2 DISTRIBUTIONAL CLASSIFIER: The contrastive classifier block, where the main
diagonal corresponds to positive examples and off-diagonal entries correspond to negative examples.
h is the number of bins in the classifier output, which may be less than the task horizon. Comments
denote the shapes of tensors.

def classifier(states, actions, goals):
sa_repr = sa_encoder(states, actions) # (batch_size, h, repr_dim)
g_repr = g_encoder(goals) # (batch_size, h, repr_dim)
logits = einsum('ikl, jkl->ijk') # (batch_size, batch_size, h)
# logits[i, j, k] is the probability of going from s[i] to s[j] in k steps.
return logits

E.2 TASK DESCRIPTIONS

We conduct our experiments on four standard simulated robot manipulation tasks (Plappert et al.,
2018; Yu et al., 2020) with increasing complexity: fetch_reach, fetch_push, sawyer_push, and
sawyer_bin. All our tasks are framed as reward-free goal-reaching problems where the performance
of the agent is tracked by the fraction of times it successfully reaches the goal.

fetch_reach: This task involves controlling a simulated fetch robotic arm to move the gripper to a
specified 3D goal position. This is the simplest of all four tasks, where greedily moving the gripper
toward the target position solves the task.
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(a) fetch_reach (b) fetch_push (c) sawyer_push (d) sawyer_bin

Figure 14: Illustration of the goal-reaching tasks used in this paper. The top row is a sample state at
the time of initialization, and the bottom row is the corresponding goal state.

Task Observation Space (state and goal) Action Space Max Episode Length

fetch_reach 20 4 50
fetch_push 50 4 50

sawyer_push 14 4 150
sawyer_bin 14 4 150

fetch_reach_image 64× 64× 6 4 50
fetch_push_image 64× 64× 6 4 50

sawyer_push_image 64× 64× 6 4 150

Table 2: Environment details for the selected goal-reaching tasks.

fetch_push: In this task, the same simulated fetch robotic arm needs to push a block placed on the
table to a specified position. This is a harder task since the agent needs to reason about the dynamics
of precisely pushing a block to a specified location. The agent needs to be careful as it can enter
unrecoverable states, such as the block falling off the table if pushed incorrectly. Note that the gripper
fingers are disabled, in order to force the agent to push the block to the goal rather than pick-and-place
it at the goal.

sawyer_push: This task is similar to fetch_push but involves controlling a simulated sawyer robotic
arm. A key difference is that this is a longer horizon task with 3× as many steps as fetch_push in
each episode before termination.

sawyer_bin: In this task, the same simulated sawyer robotic arm needs to pick a block from a
randomized position in one bin and put it in a goal location in another bin. This is a hard exploration
problem since the agent must learn the skills associated with (i) picking and dropping an object and
(ii) moving the gripper to a desired location, and learn to coordinate these skills in the pick-move-drop
sequence to solve the task. Failing to do even one of these skills/sub-tasks correctly will result in an
unsuccessful outcome.

We also conduct our experiments on the following image-based variants of the above-mentioned
tasks: fetch_reach_image, fetch_push_image, and sawyer_push_image. In these tasks, the low-
dimensional observation space is replaced with a 64× 64 image. We chose these tasks to demonstrate
that the Distributional NCE algorithm is able to estimate the probability of reaching the goal over
future timesteps directly from image observations. To get a better idea of the tasks, we visualized a
random start state and the corresponding goal state for each of these tasks in Fig. 14. Moreover, the
dimensionality of the observation and action space is described in Table 2.
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