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Abstract

Evaluating the success of a manifold learning method remains a challenging prob-1

lem, especially for methods adapted to a specific application domain. The present2

work investigates shared geometric structure across different dimensionality reduc-3

tion (DR) algorithms within the scope of neuroimaging applications. We examine4

reduced-dimension embeddings produced by a representative assay of dimension5

reductions for brain data (“brain representations”) through the lens of persistent6

homology, making statistical claims about topological differences using a recent7

topological boostrap method. We cluster these methods based on their induced8

topologies, finding feature type and number — rather than reduction algorithm —9

as the main drivers of observed topological differences.10

1 Introduction11

The present work investigates shared geometric structure across different dimensionality reduction12

algorithms within the scope of neuroimaging applications. For most applications, a “dimensionality13

reduction” is any of a large class of methods that make inferences about structures underlying some14

data, typically to represent this data in both a more efficient and more interpretable way. Many15

dimensionality reduction (DR) problems can be equivalently formulated as “manifold learning”16

problems (i.e., estimating the manifold from which a dataset was sampled), and we will use the terms17

synonymously. Efforts to understand theoretical and empirical relationships between DR methods18

remain active1−10.19

The difficulty of relating dimensionality reductions can be compounded within specific application20

domains because methodologies often branch into variably specialized use cases. Nonetheless,21

specific use cases can also suggest more stringent criteria by which to compare dimension reduction22

outcomes. In functional neuroimaging, specialized dimension reduction algorithms proliferate the23

field, bridging disparate use cases, design philosophies, and biological motivations11,12. These24

DR algorithms share the goal of extracting networks of functional activity from resting-state fMRI25

brain data, and we will refer to them throughout as “brain representations.” We compare brain26

representations in terms of the topologies they induce on a single set of shared data ("subject space")27

and the statistical robustness of the differences between them. We measure these topological statistics28

through persistent homology13 and the related topological bootstrap14,15.29

Problem Statement: Brain Representations & Subject Space30

Our primary goal is to compare the structural changes in a single neuroimaging dataset under a31

variety of brain representations. Because the structure of subject space in the original (un-reduced)32

data is unknown and impractical to compute, it is not feasible to grade brain representations’ quality33
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by structure preservation. Instead, we group brain representations based on the similarity of the34

subject-space structures they induce in reduced data.35

We frame brain representation as a manifold learning problem, and we frame comparisons between36

them as comparisons between estimated manifolds. We suppose our data lies on some manifold37

S ↪→ RD ("subject space"), from which we extract a finite dataset Ŝ of N samples. In this38

work, S consists of resting-state fMRI scans, and Ŝ is the Human Connectome Project (HCP)39

Young Adult dataset; we then have D ∼ 108 and N ∼ 103. A brain representation is any40

mapping φ̂i : Ŝ → Rdi with di ≪ D; for any brain representation, we define its corresponding41

induced subject space Ŝi = φ̂i(Ŝ). We compare brain representations φ̂i and φ̂j by comparing the42

persistent homology of their induced subject spaces Ŝi and Ŝj . To link the persistent homology and43

manifold learning investigations, we make a key modeling assumption: there exists a local extension44

φi : S → Rdi of φ̂i that is a submersion in some neighborhood of Ŝ ⊂ S . This assumption requires45

that dimensionality reductions behave consistently on unseen data near training data, and constitutes46

only a mild smoothness assumption on φ̂i. Under this modeling assumption, we may assert the47

existence of a manifold Si ↪→ Rdi containing Ŝi such that the following diagram commutes:48

Ŝ Ŝi

S Si

φ̂i

φi

While the smoothness assumption on φ̂i is easily met by most DR algorithms, the connection between49

the persistent homology of Ŝi and the manifold Si depends heavily on properties of the manifold50

sampling Ŝ.51

To compare brain representations φi and φj , we compute dissimilarity metrics for all pairs of52

points in Ŝi and Ŝj and examine the resulting Vietoris-Rips complex in each space. This approach53

allows flexibility in the data and dissimilarities under consideration while still allowing claims about54

DR-induced topological differences.55

Related Work: Persistent Homology & Dimensionality Reduction56

Most comparisons in the literature are primarily interested in grading the relative performance57

of different DR algorithms. Though we do not share these goals, many comparative approaches58

articulate frameworks and methods with important relationships to our own. We review a selection of59

comparison methods, organized in roughly increasing order of the similarity between their goals and60

framework to our own.61

Some evaluation methods for dimensionality reduction lead with intuition, formalizing helpful62

heuristics into rigorous ratings. We first reference Lee and Verleysen’s co-ranking matrix4, which63

measures insertions to (“intrusion events”) and deletions from (“extrusion events”) k-neighborhoods64

in the low-dimension vs. high-dimension space. While this measure is non-parametric (with respect to65

the data geometry) and thus extremely flexible, it is sensitive only to local structure in the data. Later,66

Lee and Verleysen showed that the performance of a DR method closely follows its (a) insensitivity67

to norm concentration and (b) plasticity (i.e., the cost function gradient vanishing for distant points)7,68

leveraging a more geometric perspective to the analysis of DR performance than was typical of the69

contemporary literature9. Extending this line of thinking, Wang et al1 recently offered a strictly70

empirical investigation of different DR methods in which they consider only the attractive and71

repulsive forces of the loss function over varying distance scales. They show that this framework is72

sufficient to characterize DR performance and extrapolate robust empirical principles of “good DR73

methods” without need of an underlying formalism. While this work offers striking practical insights,74

it does not offer an immediate path to describing degrees of divergence between DR methods.75

We now consider a class of methods we characterize by their tendency to originate in formal,76

geometric considerations of manifold learning. Singer and Wu’s vector diffusion distance8, an77

extension of diffusion embeddings17, uses local principal component analysis to locally estimate a78

connection on the tangent bundle of a data manifold, from which it constructs a lower-dimensional79
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embedding. While the primary goal of their work is to define a manifold learning method, rather than80

a technique for comparing such methods, their vector diffusion distance explicitly captures a variety81

of geometric and topological data invariants. These invariants could be used analogously to our use82

of persistent homology to compare dimensionality reductions of the same dataset. Similarly, Tyagi et83

al5 propose a set of tangent space estimation criteria for manifold sampling (as a function of manifold84

curvature and intrinsic dimension) that immediately suggest geometric routes of comparison between85

learned data manifolds. Finally, in more direct alignment with our goals, Sun and Machard propose a86

geometric theory of manifold learning, which comes equipped with an intrinsic metric18,19. Their87

approach is firmly grounded in classical information geometry20,21, comparing learned models via88

the pullback of the Fisher information metric on direct probabilistic encodings of reduced data. While89

this perspective diverges substantially from our own, our constructions are mutually translatable, and90

their approach could provide interesting comparison and/or validation.91

To the best of our knowledge, only two other studies2,3 have examined dimensionality reduction92

through the lens of persistent homology. Both works primarily consider the recovery quality of a93

known manifold and propose quality metrics derived from persistent homology. Paul and Chalup294

compare DR methods while varying manifold complexity, measuring performance by the similarity95

of pre- and post-DR Betti numbers as a function of sampling density. While their goals differ from96

ours, much of our comparison also hinges on counts of topological features; however, they did not97

have access to the topological bootstrap14,15 we employ in our study. Rieck and Leitte3 compute98

the Wasserstein distance between pre- and post-DR persistence diagrams as a metric of embedding99

quality. While their study is most similar to our own, there are several key differences. First, they100

operationalize persistent homology with a sublevel-set filtration of the local density function, whereas101

we use the Vietoris-Rips filtration on pairwise point dissimilarities. Second, they consider reduction102

of a surface embedded in D = 3 reduced to d = 2, whereas we consider data initially embedded in103

D ∼ 108 and reduced to dimensionalities ranging from d ∼ 102 to d ∼ 105. Most importantly, we104

are able to leverage the topological bootstrap14,15 in our work, which was not available at the time of105

their publication.106

Finally, we also contrast our analysis of persistence data with a prevalent paradigm in persistent107

homology applications. Many persistent homology analyses6,22−27 (including those above) oper-108

ationalize the assumption that most topological information lives in a diagram’s most persistent109

components, treating low-persistence generators as noise. Instead, we follow work in distributed110

persistence28,29 and examine the distributional properties of our persistence diagrams to parse their111

topological content.112

Our contributions in the present study are as follows: (1) A flexible framework for the statistical113

comparison of dimensionality reductions, applicable to any data and dissimilarity measure compatible114

with a Vietoris-Rips complex; (2) Robust statistical measurement of topological differences between115

dimension-reduced data; (3) Application to real neuroscience data over a diverse slice of widely used116

neuroimaging DR algorithms (“brain representation” or "BR").117

2 Methods118

2.1 Brain Data and Brain Representations119

The data for this study consists of pre-processed resting-state functional MRI data from N=1003120

Human Connectome Project young adult (HCP-YA)30 subjects. Each subject’s minimally pre-121

processed data consists of 91,282 spatial “grayordinates” by 1200 time points, giving an embedding122

dimension of D ∼ 108 in the initial space. We then chose six different brain representations that123

are both common within the field and showcase the methodological variability of widely adopted124

techniques. The brain representations we consider can roughly be grouped by their underlying models125

of brain function. We characterize the first group of methods as seeking to cluster neural activity126

into spatially contiguous cortical “parcels.” In the parcellation family, we have Yeo’s parcellated127

networks31, Glasser’s multimodal parcellation32, and Schaefer’s local-global parcellation33. We also128

sample from a family of low-rank matrix factorization methods that parse non-contiguous networks129

of functional activity. Independent component analysis (ICA)34, an extension and application130

refinement of PCA, underlies perhaps the most widely used brain representation in the field35 and131

thus is represented here. In addition, we consider PROFUMO36, which parses “functional modes” of132

brain activity from hierarchical Bayesian signal models. Finally, we include the “principal gradient”133
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(or “gradients”)37, a diffusion embedding method that organizes brain function through cortical134

geometry.135

From each brain representation, one or more feature types were computed to reflect the typical use of136

brain representations in the neuroimaging literature. The five feature types considered in this work137

are as follows: (1) “amplitude,” the average power of the time signal in a given spatial component; (2)138

“network matrix (netmat),” the matrix of pairwise Pearson similarities of time courses for each pair of139

spatial components; (3) “partial correlation,” the variance-normalized precision matrix; (4) “map,”140

the spatial membership weights of a given spatial component in grayordinate space; and (5) “spatial141

network matrix”, the matrix of pairwise Pearson similarities of maps for each spatial component.142

The decomposition rank, feature types, and number of features for each brain representation is143

summarized in Table 1. Note that since subject data are encoded in terms of features, it is the feature144

number and not the brain representation’s decomposition rank that denotes the dimension d of the145

target embedding space in the mapping φ̂ : Ŝ → Rd. We compare subject-space embeddings using146

the pairwise dissimilarities of their points, which we compute as described in the next section.147

Representation Name Decomposition
Rank(s) r Considered Feature Type(s) Feature Number(s) d

PROFUMO 33 maps, spatial network matrices 91282× 33,
(
33
2

)
Dual-regression

spatial ICA
15, 25, 50,

100, 200, 300
amplitudes, network matrices,

partial network matrices r,
(
r
2

)
,
(
r
2

)
Glasser parcellation 360 amplitudes, network matrices,

partial network matrices 360,
(
360
2

)
,
(
360
2

)
Schaefer parcellation 100, 200, 300, 600 amplitudes, network matrices,

partial network matrices r,
(
r
2

)
,
(
r
2

)
Yeo parcellation 17 amplitudes, network matrices,

partial network matrices 17,
(
17
2

)
,
(
17
2

)
Gradient

(diffusion embedding)
1, 15, 25, 50,
100, 200, 300 maps 91282× r

Table 1: The combinations of brain representation, decomposition rank parameters, and feature types
investigated in the present work.

2.2 Dissimilarity Measures148

For each brain representation method, decomposition rank within a given representation, and con-149

sidered feature type, we compute pairwise distances between all subjects. Each feature type under150

consideration is structured either as a vector (maps, amplitudes) or a symmetric positive semidefinite151

(SPSD) matrix (network matrices). This bifurcation of data types is echoed in our choice of measures152

when computing the dissimilarity between a pair of subjects. In both the vector case and the SPSD153

data case, we ran our analysis using one dissimilarity measure intrinsic to the data type and another154

derived from the Pearson correlation. We use Pearson-based dissimilarities in deference to the155

ubiquitous use of the Pearson correlation in neuroimaging analyses.156

We now define the dissimilarity measures we use on vector data. Suppose si and sj are data vectors157

in Rd, and let ρ(si, sj) denote their Pearson correlation. Let ⟨·, ·⟩ denote the usual inner product on158

Rd. We then define159

dv1(si, sj) = 1− ⟨si, sj⟩2 (1)

dv2(si, sj) = 1− ρ2(si, sj), (2)
assuming the matrix Dij = ⟨si, sj⟩ is scaled to have entries in [0, 1]. Note that we can interpret dv2160

as approximately the angular distance between the vectors si and sj after each has been centered. We161

refer to dv1 as the "inner product divergence" and dv2 as the "Pearson divergence".162

In the SPSD matrix case, we consider the geodesic distance between matrices on the Riemannian163

SPD cone38 alongside a (modified) Pearson divergence. The geodesic distance dpd1
on the symmetric164

positive definite cone39 is efficiently implemented via the approximate joint diagonalizer40, and we165

modify the Pearson divergence dv2 for the correlation matrix case by precomposing it with Fisher’s166

z-transformation41 (the inverse hyperbolic tangent function): we write167

dpd2
(Mi,Mj) = atanh∗ dv2(mi,mj), (3)
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where mi is the vector of upper-right triangle entries of the symmetric matrix Mi (diagonal excluded).168

This precomposition is necessary for correlation matrices, as it normalizes the correlation values169

before re-correlating them. In contrast to the vector case, there is no simple comparison to be made170

between these two dissimilarity measures.171

For each combination of brain representation, rank parameter, and feature type shown in Table 1,172

we compute pairwise dissimilarity according to both of whichever two measures are relevant. The173

subject-pairwise matrix of dissimilarities then forms the Gram matrix used to compute the persistent174

homology, as we describe in the next section.175

2.3 Persistent Homology176

We compute the Vietoris-Rips persistence13 of each Gram matrix (which is obtained as described177

above), and we now give a very brief background on Vietoris-Rips persistence. For a thorough178

treatment of persistent homology, see Dey and Wang’s text13; for a thorough treatment of algebraic179

topology preliminaries, see Hatcher’s text42.180

2.3.1 Brief background181

The topology of a space can be summarized by its homology groups, algebraic invariants that describe182

its structure. Persistent homology extends the constructions of homology to finite data, delivering a183

multiscale and threshold-free estimation of data topology. To compute the persistent homology of a184

dataset X , it must first be equipped with a simplicial structure: a simplicial complex K(X) is a set185

of subsets of X with the property that σ′ ∈ K whenever σ′ ⊂ σ for some σ ∈ K, and a filtration186

is a collection {Kt(X)} such that Ks ⊂ Kt when s < t. Homology groups Hk(Kt(X)) can be187

computed for each simplicial complex, and their persistence PHk(X) is described by the evolution of188

these groups across the filtration. A simple example of a simplicial complex on X is a graph G(X).189

If that graph G(X) is weighted, then the family {Gr(X)} of graphs obtained from G by thresholding190

its edges at weight r is a filtration on X . If G(X) is the graph on X with edge weights given by the191

distance between vertices, then the filtration we just described is the Vietoris-Rips filtration on X .192

Given any dissimilarity matrix dX , we can assume it is the Gram matrix of some graph G(X) and193

compute its Vietoris-Rips persistence PHk(X).194

2.3.2 Topological bootstrap195

Because it is possible (and, in fact, common) for multiple data elements to define the same homology196

generator, bootstrap re-sampling43 is less straightforward in persistent homology than in many other197

modes of analysis. However, Reani and Bobrowski recently demonstrated a "topological bootstrap"198

method14 that uses image persistence44 to register homology generators found in co-embeddable199

spaces. If X,Y can both be embedded into a shared space Z, then the inclusion maps X
ιX
↪−→ Z200

and Y
ιY
↪−→ Z induce homology maps ι∗X , ι∗Y with corresponding filtration maps ι∗r,X , ι∗r,Y (assuming201

compatible filtrations on each space). A pair of nontrivial elements in PHk(X) and PHk(Y ) is202

said to match via Z if ι∗r,X and ι∗r,Y map them to the same nontrivial element of PHk(Z) for some203

filtration value r. For a matched pair, the affinity score α of the match can be computed from ratios204

of lengths of intervals in each filtration for which elements in PHk(X) and PHk(Y ) are matched via205

Z. We assign α = 0 when no match is found and have α ∈ (0, 1] otherwise.206

This procedure simplifies substantially in the bootstrapping case; we then have Z = X and Y =207

X̂ ⊂ X , and we need only check nontrivial elements of PHk(X) for matches in PHk(X̂). In the208

bootstrap setting, Reani and Bobrowski measure the recurrence stability of a nontrivial generator209

η ∈ PHk(X) by its prevalence score210

ρ(η) :=
1

R

R∑
j=1

α(η, η̂j), (4)

where η̂j is the match of η in the jth bootstrap. This is just the average affinity (over all bootstraps)211

between η and its matches. In the present study, we compute prevalence scores for each generator in212

PH1(X) for a given subject dissimilarity matrix X .213

Our implementation45 of the topological bootstrap is a mild extension of Garcia-Redondo et al’s214

work15, which efficiently integrates cycle registration with Ripser46 and Ripser-image47, refines the215
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cycle affinity measures proposed by Reani and Bobrowski, and broadens the conditions under which216

topological bootstrapping may be applied.217

To satisfy the exchangeability criteria necessary for (any) bootstrapping, we also needed to account218

for family relationships between subjects in our bootstrap re-samples. Following the approach of219

Winkler et al.48, we excluded all bootstrap re-samples that placed individuals with the same mother220

on different sides of the inclusion/exclusion divide. We conducted cycle registration using R = 1000221

bootstraps per dataset at 90% re-sampling (without replacement), and we consider k = 1-dimensional222

cycle registration in this work.223

2.3.3 Prevalence-weighted Wasserstein-p distance224

The space of persistence diagrams is a metric space49 under the Wasserstein-p distance, which225

previous work3 has used to compare persistence diagrams of different low-dimensional embeddings.226

To include statistical information about the stability of homology generators in this comparison, we227

define the prevalence-weighted Wasserstein-p distance228

W (ρ)
p (d1, d2) :=

(
inf

γ∈Γ12

∑
x∈d1

∥x · ρ(x)− γ(x) · ρ(γ(x))∥p∞

) 1
p

. (5)

Here, d1 and d2 are persistence diagrams, Γ12 is the set of bijections between d1 and d2, and ρ(x) is229

the prevalence of the homology generator x given in 4. This is a simple re-weighting of the usual230

Wasserstein distance, modified to incorporate the prevalence score as a summary of per-cycle stability231

statistics.232

2.3.4 The "matched Betti number" β(matched)
k233

We also define the "first matched Betti number" β(matched)
k as the number of matched cycles (i.e.,234

matches with nonzero affinity scores) found in each bootstrapped re-sample. Intuitively, this is a count235

of the number of stable generators found in each bootstrap. The Betti numbers of a persistence module236

are typically summarized by curves, since each value of a filtration may induce a homology with237

a different set of Betti numbers. However, since the topological bootstrap already uses persistence238

interval information to find matched cycles and compute their affinity, we may consider β(matched)
k as239

having "collapsed" these curves via cycle registration. We consider the distribution of bootstrapped240

β(matched)
k values as a coarse summary of the distributed persistence28,29 of a given dissimilarity matrix241

dX .242

2.4 Study Design243

In Table 1, we lay out parameter and feature selections considered for each brain representation. For244

every representation, bootstrapped persistence is computed for all combinations of feature, parameter,245

and dissimilarity measure considered; this gives a total of 90 subject-pairwise dissimilarity matrices246

for which we compute R = 1000 topological bootstraps. We compute the prevalence-weighted247

Wasserstein-2 distance between all pairs of methods and the β(matched)
1 distributions for each method.248

This method-pairwise distance matrix then undergoes Ward hierarchical clustering50 to determine249

similarity. Our code is publicly available on github.250

2.4.1 Hypotheses251

Comparing across feature and metric choices, we expect the SPD matrix geodesic distance to exhibit252

less sensitivity to concentration of measure and thus provide greater distinction between brain253

representations. We expect that within-feature groupings for map and amplitude will differ very little254

between the considered vector dissimilarity measures (equations 1 and 2). For all comparisons, we255

expect feature number and type to be more important drivers of differences than decomposition rank.256

Finally, within the PROFUMO analysis, we expect that spatial network matrices will be further from257

null than spatial maps, where we expect the very high dimensions of the spatial maps to suffer from258

concentration of measure.259

Comparing across different brain representations, we expect to primarily see clustering according to260

(approximate) feature number and type, with secondary similarity clusters forming within each given261

6

https://github.com/tyo8/brain_representations


brain representation. We expect our analysis to align with previous results in the literature linking262

shared variance in brain representations51−54, the details of which we expand upon in the results263

below.264

3 Results265

3.1 Persistent homology and dimension reduction266

We first note several unexpected instances of trivial (or nearly trivial) persistence structure. First,267

full correlation matrices generated null H1 persistence at every decomposition rank in every brain268

representation. By contrast, the partial correlation matrices (which is similar by conjugation to269

the inverse of the full correlation matrix) have interesting persistence for nearly all feature types,270

decomposition ranks, and dissimilarity measures. Additionally, the inner product divergence (1)271

generated trivial or almost trivial homology in both maps and amplitudes, across all ranks and272

representations; this is not true of the Pearson divergence, which we incorrectly hypothesized would273

exhibit similar behavior. A complete list of all methods that exhibited trivial H1 persistence is given274

in Table S1.275

3.1.1 Effect of embedding dimension276

Our analysis saw that topological complexity (as measured by H1 persistence) generally decreased277

with the number of features considered (Fig S1). Under the geodesic distance, mean prevalence278

score increased with feature number; for all other dissimilarity measures, mean prevalence score279

was not correlated with feature number (Fig S2). Taken together, these observations suggest that280

embeddings in higher dimensions elicit a smaller number of nontrivial H1 generators which are also281

more robust. This runs counter to the consequences we might expect from concentration of measure282

in high dimensions, which pushes spaces towards the discrete topology (and thus a higher number of283

less stable generators). As expected, we also saw that feature number was a more important driver of284

persistence structure than the underlying rank of the decomposition (Fig S3).285

3.1.2 Persistence vs. prevalence286

We see evidence further corroborating Reani and Bobrowski’s observation that the most prevalent287

cycles are not always the most persistent ones14. Figure 1 shows a sample persistence diagram in288

H1 (colored by generator prevalence score) and a plot of all persistence-prevalence pairs observed289

in this experiment. Both plots demonstrate that cycles with low persistence can still have high290

prevalence, suggesting that the topological "noise" may carry meaningful structure in our data. In291

addition, we see a substantially richer difference structure between target embeddings when using the292

prevalence-weighted Wasserstein-2 distance instead of the classical Wasserstein-2 distance (Figure293

S4).294

Figure 1: (Left) A sample persistence diagram, with color weights given by prevalence score. (Right)
Persistence versus prevalence across all data collected, colored with a Gaussian kernel density
estimator.
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3.2 Persistence differences of brain representations295

Figure 2: Prevalence-weighted 2-Wasserstien distances between H1 persistence diagrams for all
pairs of methods combinations with nontrivial first homology. Ward hierarchical clustering gives
the dendrogram on the left side of the plot, which organizes labels into groups that maximally share
variance. Lighter colors denote smaller distances, while darker (blue) colors denote larger ones.

The prevalence-weighted Wasserstein distance makes its strongest distinction between amplitudes296

and network matrix/spatial map feature types, which form the two main diagonal blocks and highest297

dendrogram branches (Fig 2). As hypothesized, this implies that our method distinguishes more298

strongly between feature type (and number) than between brain representation type, which forms299

the next set of blocks and branches. This is still somewhat surprising, however, because brain300

representations differ substantially in terms of whether they are unilateral or bilateral, binary or301

weighted, and decomposition rank.302

We are also surprised to see PROFUMO spatial network matrices in the amplitude block. Both303

amplitudes55 and spatial network matrices12 have been shown to be highly sensitive to individual304

differences in behavior, but these feature types are interpreted very differently. Amplitudes may be305

linked to within-network synchronization56, within-network plasticity57, or within-network interneu-306

ron function58, whereas spatial network matrices are indicative of between-network shared brain307

regions that may play a role in cross-network integration12. Both amplitudes and spatial netmats have308

higher test-retest reliability (i.e., within-subject stability) than the features in the other block36,59.309

Given this context, the clustered blocks of the prevalence-weighted Wasserstein may constitute a310

segregation of trait-sensitive (amplitude and spatial network matrix) from state-sensitive (temporal311

network matrix) features. This observation highlights the need for an evaluation method that can312

detect which elements of the persistence module are shared across representations, rather than only313

being able to similar topologies of subject similarity.314
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3.3 Computational resources315

All other computations, including cycle registration, were negligible in cost compared to the com-316

putation of persistence modules for all bootstraps — roughly 270, 000 persistence modules were317

computed in total. Memory demands remained relatively low (≤ 50GB per homology computation).318

Our implementation was embarrassingly parallel on a queue-managed HPC cluster. We estimate that319

this experiment used approximately 80, 000 CPU hours over the course of a month. Computation of320

image-persistence was the most costly individual step, with each embedded persistence module taking321

1-3 hours to compute (compared to order of 10 minutes or less for other persistence computations).322

4 Discussion323

4.1 Conclusions324

Our method reveals interesting relationships between dimensionality reductions of resting-state fMRI325

data. The prevalence-weighted Wasserstein distance distinguishes much more strongly between326

feature type than dimensionality reduction, potentially segregating trait-sensitive from state-sensitive327

features. Notably, this distinction holds without regard to choice of dissimilarity measure.328

Without exception, full network matrices gave rise to trivial PH1 modules. Persistence modules329

generated from the inner product divergence (1) were (approximately) trivial as well, in sharp contrast330

to those generated from the Pearson divergence (2); this suggests that amplitude and spatial map331

features of brain representations tend to be "mean-dominated," in the sense that per-subject deviations332

from group-level structures are typically small.333

In addition, we saw a counterintuitive decrease in persistence "complexity" as a function of increasing334

embedding dimension, which highlights the difficulties of evaluating dimension reduction in high-335

dimensional target spaces. We also examined the relationship between persistence and prevalence,336

finding that the two are largely uncorrelated for our data. Coupled with the stronger distinctions real-337

ized by the prevalence-weighted Wasserstein-2 distance, we believe that persistence and prevalence338

may be somewhat complementary as measures of cycle importance.339

4.2 Limitations340

Because of the high cost of parameter exploration, dimensionality reduction computation, and341

topological bootstrapping, only a few dimensionality reduction methods were examined in this work.342

An extension of this analysis to a wider array of brain representations may be warranted, especially343

newer methods that derive an explicitly geometric basis for functional activity (e.g., Laplacian344

eigenvalues60).345

Another important limitation of our work is the very high dimension-to-sample-size ratio (N ≪ d)346

of our data. In this regime, it is difficult to ascertain what features we see because of structure in the347

data and what topological features are products of the curse of dimensionality. This could be partially348

ameliorated by conducting our analysis over adequately constructed null data and comparing the349

results, which is beyond the scope of this work.350

4.3 Future Directions351

In addition to addressing some of the limitations noted above, we offer several directions for follow-352

up work on this study. First, we propose a consideration of the per-bootstrap Wasserstein distance353

between methods; a distributional picture of differences in the endogenous metric of persistence354

modules could yield important insights. Second, it is possible to repurpose the topological bootstrap355

to track the addition/deletion of homology components by different brain representation; practically,356

this is primarily hindered by the lack of a suitable dissimilarity metric between pairs of points under357

different embeddings. Finding and validating such a metric would be a valuable direction of inquiry.358

Finally, we wish to suggest an investigation into the theoretical properties of the prevalence-weighted359

Wasserstein metric.360
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