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ABSTRACT

Deep neural networks deployed in safety-critical, resource-constrained environ-
ments must balance efficiency and robustness. Existing methods treat compression
and certified robustness as separate goals, compromising either efficiency or safety.
We propose CACTUS (Compression Aware Certified Training Using network
Sets), a general framework for unifying these objectives during training. CACTUS
models maintain high certified accuracy even when compressed and generalize
across multiple compression levels without retraining. We apply CACTUS for both
pruning and quantization and show that it effectively trains models which can be
efficiently compressed while maintaining high accuracy and certifiable robustness.
CACTUS achieves state-of-the-art accuracy and certified performance for both
pruning and quantization on a variety of datasets and input specifications.

1 INTRODUCTION

Deep neural networks (DNNs) are widely adopted in safety-critical applications such as autonomous
driving Bojarski et al. (2016); Shafaei et al. (2018), medical diagnosis Amato et al. (2013); Kononenko
(2001), and wireless systems Cho et al. (2023); Yang et al. (2018) due to their state-of-the-art
accuracy. However, deploying these models in resource-constrained environments necessitates model
compression to satisfy strict computational, memory, and latency requirements. Furthermore, using
machine learning in safety-critical environments requires networks that are provably robust. Current
compression methods, including pruning and quantization, effectively reduce model complexity
but frequently degrade robustness, either by discarding essential features or amplifying adversarial
vulnerabilities. Conversely, certified robust training methods Singh et al. (2018); Zhang et al. (2019);
Mueller et al. (2022); Mao et al. (2023) predominantly target full-precision models and, as shown in
our evaluation, lose substantial certified robustness under compression, resulting in a critical research
gap: robustly trained models rarely consider compression, while compressed models rarely maintain
robustness. In many real-world systems, both efficiency and reliability are non-negotiable.

Most existing approaches treat compression and robustness as independent objectives. Techniques
for compression-aware training often overlook certifiable robustness, focusing primarily on reducing
model size Zimmer et al. (2022). Similarly, methods that achieve certifiable robustness typically do
not account for compression, leading to suboptimal standard and certified accuracy when models
are compressed Vaishnavi et al. (2022). These limitations force practitioners to choose between
deploying larger, resource-intensive models for robustness or sacrificing safety for efficiency. Fur-
thermore, edge devices that leverage compressed networks often face evolving computational needs,
necessitating adaptable models that can be efficiently compressed at multiple levels Francy & Singh
(2024). Therefore, developing training methodologies that produce models adaptable to multi-level
compression while maintaining certifiable robustness is crucial for optimal performance in dynamic,
resource-constrained environments.

Is it possible to train neural networks that maintain certified robustness under compression?

Key Challenges. Integrating compression and certified robustness into a unified training framework
presents unique challenges beyond simply combining existing loss functions. The fundamental
difficulty lies in the competing nature of these objectives. Moreover, the compression space is vast
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and discontinuous, making it non-trivial to select representative compression configurations that
effectively guide training. Additionally, common compression techniques use non-differentiable
operations (binary masks, rounding), requiring approximations that preserve theoretical guarantees.

This work. We propose CACTUS (Compression Aware Certified Training Using network Sets),
a novel framework that addresses these challenges through several key innovations. First, we de-
velop principled compression set selection strategies that balance computational cost with effective
coverage of the compression space, a non-trivial problem where larger sets do not always improve
performance. Second, we provide the first formal theoretical analysis connecting Adversarial Weight
Perturbation (AWP) to quantization robustness in the certified training context, establishing rigor-
ous foundations for our approach. Third, we demonstrate that joint training enables qualitatively
different model behaviors: CACTUS networks develop feature representations that naturally adapt
to compression, achieving certified robustness across multiple compression levels from a single
training run. Unlike sequential approaches that first train for robustness then compress, joint training
fundamentally changes the optimization landscape. Networks must develop internal representations
that are simultaneously robust to adversarial perturbations and resilient to compression artifacts.
This requires careful coordination and principled strategies for selecting compression configurations
during training. Naive combinations of existing techniques fail because they do not address these
fundamental optimization challenges.

Main Contributions. We list our main contributions below:

• We provide the first formal analysis connecting AWP to quantization robustness in certified training
(Theorem 4.1), establishing theoretical guarantees for our approximation scheme.

• We develop and analyze strategies for selecting compression configurations during training, showing
this is a non-trivial optimization problem where naive approaches lead to suboptimal performance.

• We propose CACTUS, a framework for training networks which with formal gaurantees under
compression. A general approach that enables networks to develop compression-aware robust rep-
resentations, achieving certified robustness across multiple compression levels without retraining.

• We demonstrate significant improvements over sequential baselines across diverse settings, showing
the benefits of joint optimization over post-hoc compression of robust models.

2 BACKGROUND

This section provides the necessary notations, definitions, and background on neural network com-
pression and certified training methods for DNNs.

Notation. Throughout the rest of the paper we use small case letters (x, y) for constants, bold
small case letters (x,y) for vectors, capital letters X,Y for functions and random variables, and
calligraphed capital letters X ,Y for sets.

2.1 COMPRESSION OF NEURAL NETWORKS

Despite DNNs’ effectiveness, their high computational cost and memory footprint can hinder their
deployment on edge devices. To address these challenges, researchers have developed a variety of
compression strategies. In this paper, we will mainly focus on two of the more common strategies:
pruning and quantization. More details on both methods in Appendix A.

Pruning. Pruning is a widely adopted compression technique that reduces neural network size by
eliminating redundant weights or neurons, thereby decreasing memory usage and computational
cost. The lottery ticket hypothesis posits that within dense, randomly-initialized networks exist
sparse subnetworks—termed ”winning tickets” that can be trained to be comparable to the original
network Frankle & Carbin (2019). Pruning methods are generally categorized based on: (1) unstruc-
tured pruning removes individual weights, while structured pruning eliminates entire structures like
neurons or filters; and (2) global pruning considers the entire network for pruning decisions, whereas
local pruning applies pruning within individual layers (3) whether they finetune after pruning or not
Cheng et al. (2024); Fladmark et al. (2023).

Quantization. Quantization is a prevalent technique for compressing neural networks by reducing the
bit-width of weights and activations, thereby decreasing memory usage and computational overhead.
By substituting high-precision floating-point representations (typically 32-bit) with lower-precision
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formats, such as 8-bit integers, quantization can significantly accelerate inference, particularly on
hardware optimized for integer operations Wu et al. (2020b).

We denote the quantization operation as Q : R× R+ → R, which maps a weight w to its quantized
value with step size qstep. For a network fθ parameterized by θ, we write θQ,qstep to denote the
quantized parameters where each θQ,qstepi = Q(θi, qstep), and fQ,qstepθ to denote the network with
quantized parameters.

2.2 ADVERSARIAL ATTACKS, VERIFICATION, AND CERTIFIED TRAINING

Given an input-output pair (x, y) ∈ X ⊆ Rdin × Z, and a classifier f : Rdin → Rdout which is
parameterized by θ (written as fθ). Let f̂(x) = argmaxk∈[dout] f(x)[k] be the predicted class of
x. An additive perturbation, v ∈ Rdin , is adversarial for f on x if f̂(x) = y and f̂(x + v) ̸= y.
Let Bp(α, β) = {x| ||x− α||p ≤ β} be an lp-norm ball. A classifier is adversarially robust on x
for Bp(0, ϵ) if it classifies all elements within the ball added to x to the correct class. Formally,
∀v ∈ Bp(0, ϵ).f̂(x + v) = y. In this paper, we focus on l∞-robustness, i.e. balls of the form
B∞(x, ϵ) := {x′ = x+ v|∥v∥∞ ≤ ϵ}, so will drop the subscript ∞.

Verification of NNs. Given a neural network fθ and an input x with true label y, certified robust-
ness guarantees that the network’s prediction remains unchanged for all inputs within a specified
perturbation bound B(x, ϵ). Formally, a network is certified robust at x if ∀x′ ∈ B(x, ϵ), f̂θ(x′) = y.

Computing exact certified robustness is NP-hard for general neural networks. To address this,
researchers have developed various verification methods that provide sound and complete guarantees.
One popular approach is Interval Bound Propagation (IBP), which propagates interval bounds
through the network to compute sound over-approximations of the network’s output range. While
IBP is computationally efficient, it’s bounds can be overly conservative. More precise methods like
αβ-CROWN Wang et al. (2021) and DeepPoly Singh et al. (2019) exist but are more expensive.

Training for Robustness. We can get robustness by minimizing the expected worst-case loss due to
adversarial examples Mueller et al. (2022); Mao et al. (2023); Madry et al. (2018):

θ = argmin
θ

E
(x,y)∈X

[
max

x′∈B(x,ϵ)
L(fθ(x′), y)

]
(1)

Where L is a loss over the output of the DNN. Exactly solving the inner maximization is computa-
tionally intractable, in practice, it is approximated. Underapproximating the inner maximization is
typically called adversarial training, a popular technique for obtaining good empirical robustness
Madry et al. (2018), but these techniques do not give formal guarantees and are potentially vulnerable
to stronger attacks Tramer et al. (2020). We focus on certified training which overapproximates the
inner maximization as it provides better provable guarantees on robustness.

Certified Training. The IBP verification framework above adapts well to training. The BOX bounds
on the output can be encoded nicely into a loss function:

LIBP(x, y, ϵ) := ln

1 +
∑
i̸=y

eoi−oy

 (2)

Where oi and oy represent the upper bound on output dimension i and lower bound of output
dimension y. To address the large approximation errors arising from BOX analysis, SABR Mueller
et al. (2022), a SOTA certified training method, obtains better standard and certified accuracy
by propagating smaller boxes through the network. They first compute an adversarial example,
x′ ∈ B(x, ϵ− τ) in a slightly truncated l∞-norm ball. They then compute the IBP loss on a small
ball around the adversarial example, B(x′, τ), rather than on the entire ball, B(x, ϵ), where τ ≪ ϵ.

LSABR(x, y, ϵ, τ) := max
x′∈B(x,ϵ−τ)

LIBP(x
′, y, τ) (3)
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Although this is not a sound approximation, SABR accumulates fewer approximation errors due
to its more precise BOX analysis; thus, reduces overregularization and improves standard/certified
accuracy. Finally, we introduce Adversarial Weight Perturbation (AWP), a robust training method
which we use as a differentiable approximation from quantization, more details in Section 4.3.

Adversarial Weight Perturbation. AWP improves adversarial robustness by perturbing the weights
of a neural network during training Wu et al. (2020a). Formally, given a neural network fθ with
parameters θ, AWP solves the following min-max optimization problem:

min
θ

E(x,y)

[
max

∥δ∥2≤ρ
L(fθ+δ(x), y)

]
(4)

where δ represents the adversarial perturbation to the weights, constrained within an l2-norm ball of
radius ρ, and L is the loss function. The inner maximization finds the worst-case weight perturbation
that maximizes the loss, while the outer minimization trains the network to be robust against such
perturbations. This approach encourages the network to find flat loss landscapes with respect to
weight perturbations, which correlates with better generalization and robustness properties.

3 RELATED WORK

Certified Training. Shi et al. (2021); Mirman et al. (2018); Balunović & Vechev (2020); Zhang
et al. (2019) are well-known approaches for certified training of standard DNNs. More recent works
Mueller et al. (2022); Xiao et al. (2019); Fan & Li (2021) integrate adversarial and certified training
techniques to achieve state-of-the-art performance in both robustness and clean accuracy. De Palma
et al. (2023) show that expressive losses obtained via convex combinations of adversarial and IBP
loss gives state-of-the-art performance.

Pruning. LeCun et al. (1990); Hassibi & Stork (1993) pruned parameters based on their influence on
the loss (using second-order information). Han et al. (2015; 2016) iteratively pruned the smallest-
magnitude weights, the networks are then fine-tuned to recover accuracy. Huang et al. (2020) uses
regularizers that push weights to zero. Recent works like Frantar & Alistarh (2023) show that
GPT-scale transformers can be pruned to over 50% sparsity with negligible loss in performance.

Pruning & Certified Training. Zhangheng et al. (2022) investigates the effects of pruning on certified
robustness and propose a novel stability-based pruning method, NRSLoss, which significantly boosts
certified robustness. Sehwag et al. (2020) introduce HYDRA, a pruning framework which uses
empirical risk minimization problem guided by robust training goals.

Quantization. Hubara et al. (2016); Rastegari et al. (2016) show that using binary weights and
activations greatly reduces memory and compute at some cost to accuracy. Jacob et al. (2018)
introduced 8-bit integer weights and activations for improved accuracy retention.

Quantization & Certified Training. Lechner et al. (2023) introduce Quantization-Aware Interval
Bound Propagation (QA-IBP), a novel method for training and certifying the robustness of quantized
neural networks (QNNs). CACTUS does not assume specific quantization patterns rather it leverages
insights from adversarial weight perturbation Wu et al. (2020a) to generate networks with flatter loss
landscapes relative to the weight parametrization.

Joint Compression and Robustness. While CACTUS is the first framework for joint compression-
aware certified training, prior work has explored joint optimization for compression and empirical
robustness. Hoffmann et al. (2021) explore how different pruning techniques effect model robustness.
ATMC Gui et al. (2019) jointly optimizes for pruning, quantization, and adversarial robustness with
constrained optimization. ATMC learns networks with a predfined pruning and quantization technique
at a fixed compression level. CACTUS provides formal gaurantees over a range of compression
techniques and levels to enable dynamic deployment.

4 CACTUS

In this section, we define a joint training objective for robustness and compression then introduce
CACTUS as a way to optimize this objective.

4
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4.1 COMPRESSION AND ROBUSTNESS AWARE TRAINING OBJECTIVE

Equation 1 gives the robustness training objective. Given parameterization θ, classifier fθ : Rdin →
Rdout represents a DNN parameterized by θ, let the size of the DNN (number of parameters) be
df = |θ|. Given a compression parameterization ψ, let Cfθψ : Rdin → Rdout be a compressed model
derived from fθ. For example, for pruning, we can have ψ ∈ {0, 1}df representing a binary mask
on θ, in other words, Cfθψ = fθ⊙ψ where ⊙ denotes element-wise multiplication of the parameters
θ and mask ψ. Given a compression level δ ∈ [0, 1), let Ψδ represent the set of all compression
parameterizations ψ that compress the model by δ. In our pruning example, 1

df

∑df
i=1 ψi = 1− δ.

Note that by this definition, the network is uncompressed when δ = 0. Given a maximum compression
ratio, δmax, we can now define the compression and robustness aware training objective as finding θ
that minimizes

θ = argmin
θ

E
δ∈[0,δmax)

[
min
ψ∈Ψδ

(
E

(x,y)∈X

[
max

x′∈B(x,ϵ)
L(Cfθψ (x′), y)

])]
(5)

Here, the inner minimization searches for the compressed network with given compression ratio,
δ, that gives the smallest expected loss over an adversarially attacked dataset. Combined together,
the objective function optimizes for the network parameterization θ, which retains the best expected
performance across all compression ratios while under attack. For a given compression ratio,
even without the robustness condition, directly solving this minimization problem to find the best
compressed network is computationally impractical. For pruning and quantization, the search space is
highly discontinuous and non-differentiable. Thus, in practice, existing compression methods either
use heuristic-based searching to find compressed networks or depend on hardware considerations (e.g.
floating-point precision support) to limit the search space substantially Palakonda et al. (2025); Wang
et al. (2019); Zandonati et al. (2023). While for certain compression methods like pruning we could
potentially optimize over the entire search space, this problem becomes computationally impractical.
Following this intuition, we limit our search space to C(fθ), a set of compressed networks (including
the full network). For example, C(fθ) could contain the full network, fθ, and fθ pruned by global
l1-pruning at δ = 0.7. We can now modify the above optimization problem to,

θ = argmin
θ

1

|C(fθ)|
∑

ψδ∈C(fθ)

(
E

(x,y)∈X

[
max

x′∈B(x,ϵ)
L(Cfθψδ

(x′), y)

])
(6)

Recall that although solving Equation 1 exactly is computationally impractical, we can overap-
proximate the inner maximization using techniques like IBP Gowal et al. (2018) to create tractable
certifiably robust training algorithms. CACTUS overapproximates Equation 6 in a similar manner.

4.2 CACTUS LOSS

For a given network, Cfθψδ
∈ C(fθ), and data point, x,y ∈ X , we can define the loss as

λLstd(Cfθψδ
(x),y) + (1− λ)Lcert(Cfθψδ

(x),y) (7)

where λ ∈ [0, 1] is a hyperparameter that balances the relative importance of standard accuracy versus
certified robustness. Rather than using a fixed λ throughout training, we employ a curriculum-based
approach where we initially train without the robust loss (λ = 0) and gradually increase λ up to 0.75
over the course of training. This progressive scaling allows the model to first establish stable feature
representations before introducing the challenging robust training objective, significantly improving
training stability and preventing competing gradients from robustness and compression objectives
from causing training instability.

Although CACTUS is general for different standard and certified loss functions. For the remainder of
this paper, we will be using cross-entropy for standard loss and SABR for certified loss (Equation 3).
CACTUS’s development is orthogonal to general certified training techniques. Here, while we could
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use IBP Shi et al. (2021) loss or losses due to more complicated abstract domains Singh et al. (2018;
2019) we leverage SABR’s insight that using smaller unsound IBP boxes around adversarial examples
leads to less approximation errors during bound propagation and thus higher standard and certified
accuracy. To overapproximate Equation 6, we can now define CACTUS loss as

LCACTUS =
1

|C(fθ)|
∑

ψδ∈C(fθ)

λLstd
(
Cfθψδ

(x),y
)
+ (1− λ)Lcert

(
Cfθψδ

(x),y
)

(8)

Borrowing insight from existing works on certified training, we balance certified loss with standard
loss Mueller et al. (2022); Mao et al. (2023); Shi et al. (2021). Here, we are assuming that we can
propagate the gradient on Cfθψδ

back to fθ. While for some compression techniques, such as pruning,
this is possible, some compression algorithms (quantization) perform non-differentiable transforms
(such as rounding). In the following sections, we show how we can use differentiable analogs to train.

4.3 CACTUS TRAINING

CACTUS training proceeds by jointly optimizing over a set of compressed network configurations
C(fθ) during each training iteration. For each batch, the algorithm refreshes the compression set
based on current weights, then computes both standard and certified losses for each compressed
network, accumulating the weighted average as the final CACTUS loss. For pruning, gradients
propagate directly through the subset of active weights, while quantization requires Adversarial
Weight Perturbation (AWP) as a differentiable proxy. Our Theorem 4.1 establishes that AWP provides
a sound upper bound for quantized network losses when the perturbation magnitude η exceeds the
quantization step size, enabling principled joint optimization. The complete algorithm and detailed
AWP analysis are provided in Appendix B. Since quantization is not differentiable, we use adversarial
weight perturbation (AWP) Wu et al. (2020a) as a differentiable proxy for quantization.

Adversarial Weight Perturbation. When quantizing weights to a fixed-point format with step
size qstep, the quantization error for each weight is bounded by qstep/2. This means the quantized
weights lie within an l∞ ball of radius qstep/2 around the original weights. AWP directly optimizes
for robustness against such bounded perturbations. Thus, instead of applying a standard quantization
step, we consider the worst-case perturbation to θ within a bounded neighborhood (l∞-norm less
than η) that could degrade the final quantized parameters. Formally, for each training step, we solve

∆∗ = argmax
{∆|∥∆∥∞≤η}

Lstd

(
fθ+∆(x), y

)
+ Lcert

(
fθ+∆(x), y

)
(9)

where η defines the magnitude of allowable weight perturbations. This objective can be approximated
efficiently via gradient ascent. The resulting ∆∗ provides a worst-case perturbation that exposes
vulnerabilities in the quantization mapping. We then update both θ in the direction that lowers this
worst-case loss, thereby making the model more robust to shifts that might arise from discretizing the
parameters. More formally, we have
Theorem 4.1. Given network fθ, loss functions Lstd,Lcert, perturbation magnitude η and ∆∗

computed by Equation 9. If qstep ≤ 2η, then

Lstd

(
fθ+∆∗(x), y

)
+ Lcert

(
fθ+∆∗(x), y

)
≥ Lstd

(
f
Q,qstep
θ (x), y

)
+ Lcert

(
f
Q,qstep
θ (x), y

)
Proof Sketch. If qstep ≤ 2η then ∃∆′ ∈ {∆|∥∆∥∞ ≤ η} s.t. fθ+∆′ = f

Q,qstep
θ , In other words, as

long as η is sufficiently large, training with AWP covers the quantization. Full proof in Appendix D.

Theorem 4.1 provides the key practical insight that AWP can serve as a differentiable proxy for
quantization in certified training. In practice, we compute an approximate ∆∗ using a gradient-based
approach; however, our experimental results show that we still get good performance.

4.4 COMPRESSION SET SELECTION STRATEGIES

The choice of compression set C(fθ) is crucial for CACTUS’s performance. We propose and analyze
several strategies:
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Dataset Model ϵ Pruning HYDRA NRSLoss Pruning SABR CACTUS
Amount Std. Cert. Std. Cert. Method Std. Cert. Std. Cert.

MNIST CNN7

0.1

0 98.56 98.13 98.98 98.13 - 99.23 98.22 99.15 97.98

0.5 98.55 97.21 98.45 97.82 GSl2 97.62 95.09 98.73 97.16
LUl1 98.71 93.88 98.75 95.39

0.7 96.37 95.14 97.62 96.21 GSl2 94.85 95.73 97.96 96.02
LUl1 95.11 87.68 97.83 95.61

0.3

0 96.28 92.88 95.15 91.15 - 98.75 93.40 98.67 93.21

0.5 93.12 91.76 95.16 90.25 GSl2 93.25 87.14 98.73 93.15
LUl1 91.11 85.52 98.75 92.52

0.7 94.02 88.25 95.10 90.67 GSl2 94.32 86.61 97.96 91.87
LUl1 92.89 80.35 97.83 90.26

CIFAR-10 CNN7

2
255

0 72.88 61.45 75.27 61.26 - 79.21 62.83 78.29 61.90

0.5 73.46 62.16 76.14 61.24 GSl2 76.32 56.87 78.03 62.57
LUl1 78.14 58.08 79.13 63.16

0.7 76.32 61.29 76.25 61.88 GSl2 71.62 54.92 76.37 61.63
LUl1 73.31 57.27 79.30 64.74

8
255

0 45.38 29.12 50.25 30.44 - 52.38 35.13 51.97 34.76

0.5 44.65 31.27 48.29 30.48 GSl2 51.27 33.62 51.92 34.25
LUl1 51.65 34.52 52.18 34.74

0.7 45.89 26.31 47.16 30.56 GSl2 46.20 22.38 50.76 30.41
LUl1 49.96 31.73 51.94 32.46

Table 1: Standard and Certified Accuracy for MNIST (ϵ = 0.1, 0.3) and CIFAR-10 (ϵ =
2/255, 8/255) with no pruning, 50% pruning, and 70% pruning. CACTUS is compared to HY-
DRA, NRSLoss, and SABR. HYDRA and NRSLoss are custom pruning methods. For CACTUS and
SABR we use global structured l2-pruning (GSl2) and local unstructured l1-pruning (LUl1)

1. Fixed Sparsity Levels: For pruning, we can include networks pruned at fixed sparsity levels
(e.g., 25%, 50%, 75%). This provides a systematic coverage of the compression space.

2. Sampling: At each iteration, instead of training on all networks in the compression set, we
can take the full network and randomly sample another network from the set to train on.

3. Progressive Compression: We can start with a small compression set and gradually increase
its size during training, allowing the model to adapt to increasing compression levels.

We study this choice in Appendix F. We find that sampling a fixed set provides a good balance
between performance and computational efficiency. The relationship between the compression set
size and performance is non-monotonic as larger compression sets don’t necessarily lead to better
performance, as shown in our experiments below.

5 EVALUATION

We compare CACTUS to existing pruning (HYDRA Sehwag et al. (2020), NRSLoss Zhangheng
et al. (2022)) and quantization (QA-IBP Lechner et al. (2023)) methods which focus on optimizing
both certified training and compression. We also compare against SABR Mueller et al. (2022) a
state-of-the-art certified training method (that does not consider compression).

Experimental Setup. All experiments were performed on an A100-80Gb. We use αβ-CROWN
Wang et al. (2021), a state-of-the-art complete verifier for neural networks, to compute certified
accuracywith a 300 second timeout per input. We consider two popular image recognition datasets:
MNIST Deng (2012) and CIFAR10 Krizhevsky et al. (2009). We use a variety of challenging l∞
perturbation bounds common in verification/robust training literature Xu et al. (2021); Wang et al.
(2021); Singh et al. (2019; 2018); Shi et al. (2021); Mueller et al. (2022); Mao et al. (2023). We use a
7-layer convolutional architecture, CNN7, used in many prior works we compare against Shi et al.
(2021); Mueller et al. (2022); Mao et al. (2023). Results are given averaged over the test sets for each
dataset. See Appendix C for more details.
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Dataset Model ϵ Quantization QA-IBP SABR CACTUS
Std. Cert. Std. Cert. Std. Cert.

MNIST CNN7

0.1
- 99.02 98.34 99.23 98.22 99.15 98.16

fp16 - - 96.14 81.12 98.89 97.33
int8 99.12 95.21 93.45 56.14 98.45 95.62

0.3
- 97.25 92.13 98.75 93.40 98.14 92.89

fp16 - - 96.24 74.28 97.98 92.55
int8 95.67 91.24 88.25 15.23 96.07 92.01

CIFAR-10 CNN7

2
255

- 71.25 58.26 79.21 62.83 75.78 60.73
fp16 - - 67.18 31.25 74.65 58.27
int8 64.47 56.90 68.28 17.86 71.24 58.33

8
255

- 36.78 22.53 52.38 35.13 51.27 32.65
fp16 - - 45.35 12.11 48.16 31.89
int8 32.57 20.75 42.18 1.12 49.38 28.81

Table 2: Standard and Certified Accuracy for MNIST (ϵ = 0.1, 0.3) and CIFAR-10 (ϵ =
2/255, 8/255) with no, fp16, and int8 quantization. CACTUS is compared to QA-IBP and SABR.

We evaluate CACTUS on standard image datasets, attack budgets, and compression ratios. For
attack budgets, we follow established practices in the certified robustness literature: ϵ = 0.1, 0.3 for
MNIST and ϵ = 2/255, 8/255 for CIFAR-10. These values represent realistic threat models while
remaining computationally tractable for verification. For pruning amounts, we use on [0.25, 0.5, 0.75]
for training and [0, 0.5, 0.7] for testing as these values represent a practical trade-off between model
size reduction and performance retention. While higher pruning ratios (up to 99%) are also popular
Piras et al. (2024), we focus on this range as it provides a good balance between compression and
maintaining certified robustness, in Appendix F we present results for pruning ratios [0.9, 0.95, 0.99].
In Appendix F, we also provide runtime results, errorbars, results on TinyImagenet and additional
model architectures, study on choice of compression set, additional bit-widths for quantization, and
joint vs. sequential training. Additional details can be found in Appendix C.

5.1 MAIN RESULTS

Pruning. We perform a best-effort reproduction of both HYDRA Sehwag et al. (2020) and NRSLoss
Zhangheng et al. (2022) using SABR as the pretrained network for both. We use the settings as
described in the respective papers. For CACTUS, we set C(fθ) to be the full unpruned network and
a network pruned with global unstructured l1 with δ chosen uniformly from from [0.25, 0.5, 0.75].
Table 1 gives these results for MNIST at ϵ = 0.1, 0.3 and for CIFAR-10 at ϵ = 2/255, 8/255
comparing results at δ = [0, 0.5, 0.7]. To show CACTUS’s generality we use two unseen pruning
methods GSl2 (global structured l2) and LUl1 (local unstructured l1). When unpruned (δ = 0),
SABR itself achieves the best performance for both standard and certified accuracy, which is by
design: CACTUS is optimized for certified accuracy under compression rather than uncompressed
performance. Given CACTUS’s increased optimization complexity from jointly optimizing for
compression and robustness, it achieves on-par performance with SABR while uncompressed. At
all pruning levels, CACTUS has the best performance for both standard and certified accuracy aside
from one instance (NRSLoss has better certified accuracy at MNIST, ϵ = 0.1, δ = 0.7 but even in this
case CACTUS is close obtaining 96.02 vs. 96.21). The results also show that CACTUS generalizes
well even to unseen pruning methods as its performance is relatively stable between the two methods.

Quantization. We perform a best-effort reproduction of QA-IBP Lechner et al. (2023) for CNN7
using the settings provided in the paper. QA-IBP was implemented with 8-bit integer quantization so
we give results for QA-IBP unquantized and quantized to int8. CACTUS is trained with AWP radius,
η, to 0.25. We quantize CACTUS and SABR to both fp16 and int8. Results can be seen in Table 2.
Like pruning, we see that CACTUS beats both baselines in almost all compressed benchmarks (aside
from MNIST, ϵ = 0.1, int8 where QA-IBP gets better standard accuracy 99.12 vs 98.45). CACTUS
obtains especially good results for harder problems, we see that for CIFAR-10 8/255 CACTUS
obtains 7.2% better standard and and 8.06% better certified accuracy compared to baselines.
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5.2 FURTHER EXPERIMENTS/ABLATIONS

Runtime Analysis. CACTUS training takes 33-40% more time than SABR training. While CACTUS
incurs additional overhead due to training over multiple compressed network configurations, this
one-time cost is justified by significant performance improvements and could be reduced through
optimizations like caching compressed models (see Appendix E for details).

Memory Overhead. CACTUS requires additional memory during training to maintain activations
for multiple models in the compression set. For CNN7 on CIFAR-10 with batch size 32, we measure
SABR consuming 12.8 GB of GPU memory while CACTUS consumes 23.7 GB (representing an
85% increase).

Integration with Additional Certified Training Methods. For the remainder of our experiments
we use we use CIFAR-10, ϵ = 8/255 CACTUS is in parallel with certified training methods and
can incorporate any certified training approach as its base loss function Lcert. To demonstrate this
flexibility and show that CACTUS’s improvements extend beyond our choice of SABR as the baseline
certified training method, we integrate CACTUS with recent state-of-the-art certified training methods
from CTBENCH Mao et al. (2024). Table 3 shows results on CIFAR-10 with ϵ = 8/255 for both
quantization and pruning scenarios, comparing standalone certified training methods against their
integration within the CACTUS framework.

Quantization (int8) Pruning (0.7 LUℓ1)
Method Clean Acc Cert Acc Clean Acc Cert Acc
SABR 42.2 1.1 50.0 31.7
TAPS 41.8 1.1 49.5 30.9
STAPS 43.4 0.9 51.2 28.4
MTL-IBP 44.2 2.1 49.6 31.9
CACTUS+SABR 49.4 28.8 51.9 32.5
CACTUS+TAPS 48.9 28.9 52.7 33.3
CACTUS+MTL-IBP 49.1 29.2 52.5 33.7

Table 3: Comparison of certified training methods and their integration with CACTUS

The results demonstrate two key findings. First, standalone certified training methods (SABR, TAPS,
STAPS, MTL-IBP) achieve minimal certified accuracy under compression, with the best performing
method (MTL-IBP) reaching only 2.1% certified accuracy under int8 quantization. Second, integrat-
ing these same methods within the CACTUS framework consistently yields substantial improvements
across all base methods and compression scenarios. This demonstrates that CACTUS’s benefits arise
from the joint optimization approach rather than the specific choice of certified training baseline.

The consistent improvements across different base certified training methods validate our meta-
framework design and show that CACTUS’s compression-aware training strategies can enhance any
underlying certified training approach. This flexibility makes CACTUS broadly applicable as the
certified training field continues to evolve with new methods.

Figure 1: Performance of CACTUS and SABR on
CIFAR-10 as a function of sparsity.

Extreme Sparsity Performance. Figure 1
shows CACTUS versus SABR certified ac-
curacy across a wide range of sparsity lev-
els [0, 0.5, 0.7, 0.9, 0.95, 0.99] for CIFAR-10
with ϵ = 8/255. The results demonstrate three
key findings: (1) CACTUS maintains its ad-
vantage over SABR even at extreme sparsity
levels, (2) both methods degrade gracefully
until approximately 0.95 sparsity then drop
sharply, and (3) CACTUS’s relative improve-
ment increases with compression level, high-
lighting the benefits of compression-aware
training for aggressive compression scenar-
ios. Detailed results for these extreme sparsity
levels are provided in Appendix F.
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Varying AWP radius. When training CACTUS for quantization we use AWP Wu et al. (2020a) as a
differentiable approximation for quantization. When computing the worst-case adversarial weight
perturbation, we must choose a maximum perturbation budget, η, for the attack such that the l∞-norm
of the perturbation is within η. In Table 4, we compare different choices of η. We observe that
higher values of η result in more stable results after pruning but generally lead to lower standard and
certified accuracy when uncompressed. Conversely, when choosing small η while the uncompressed
model performs well, after quantization this performance drops quickly. We choose η = 0.25 as it
obtains good quantization results (only losing to η = 0.5 for fp16 but only by 0.08) while maintaining
relatively high uncompressed performance.

Quant. Metric η = 0.1 η = 0.25 η = 0.5 η = 1

- Std. 53.47 51.27 50.87 21.25
Cert. 36.27 32.65 28.50 15.42

fp16 Std. 45.17 48.16 48.24 20.45
Cert. 28.45 31.89 28.14 16.72

int8 Std. 42.36 49.38 46.29 19.66
Cert. 16.72 28.81 27.86 15.89

Table 4: Exploring different values of η. Models
are trained using AWP with each value of η then
evaluated on fp16 and int8.

Comp. Metric Pruned Mdl Quant. Mdl Both

None Std. 51.97 51.27 50.11
Cert. 34.76 32.65 31.87

0.7 Std. 51.94 45.62 48.63
Cert. 32.46 27.94 31.20

int8 Std. 38.16 49.16 42.62
Cert. 21.64 28.81 27.51

Table 5: Pruned model from Table 1. Quant. model
from Table 2. Both models jointly optimize over
quantization and pruning.

Pruning and Quantization. CACTUS does not restrict us from simultaneously training to optimize
for both pruning and quantization. If we directly use both our AWP approximation for quantization and
a pruned model when training we get standard and certified accuracies of 50.11 and 31.87 respectively.
Table 5 gives results for pruning and quantization objectives. While the model trained on both does
not perform as well as each individual model, it strikes a balance obtaining good performance for both.
We believe that joint optimization for both pruning and quantization is inherently more difficult than
optimizing for either alone. Networks optimized for pruning prefer concentrated capacity in a smaller
number of ’important’ weights, allowing them to maintain performance with sparse connectivity. In
contrast, networks optimized for quantization prefer weights clustered around quantization levels to
minimize discretization error. Simultaneously considering both objectives significantly increases the
optimization complexity, as the network must find a compromise that satisfies both constraints while
maintaining accuracy and robustness.

6 CONCLUSION

We present CACTUS, a framework that unifies certified robustness and model compression dur-
ing training. By co-optimizing over adversarial perturbations and compression-induced architec-
tural/numerical perturbations, CACTUS ensures models remain provably robust even when pruned or
quantized. Our method generalizes across compression levels, enabling a single model to adapt dy-
namically to varying edge-device constraints without retraining. Experiments demonstrate CACTUS
maintains accuracy and certified robustness of non-compressed baselines under a variety of com-
pression ratios across multiple datasets. We detail CACTUS’s limitations in Appendix G. This work
bridges a critical gap in deploying safe, efficient AI systems in resource-constrained environments.

7 ETHICS & REPRODUCIBILITY STATEMENT

The authors affirm adherence to the ICLR Code of Ethics throughout the research and submission
process. We have made extensive efforts to ensure the reproducibility of our results and encourage
replication of our work. Complete proofs for all theoretical claims, including Theorem 4.1, are
provided in Appendix D. All mathematical assumptions and derivations are clearly stated. Compre-
hensive experimental details are provided in Appendix C, including network architectures, training
hyperparameters, hardware specifications, and dataset preprocessing steps. Specific training con-
figurations for CACTUS, including compression set selection strategies and λ scheduling, are fully
documented. Detailed algorithmic descriptions are provided in Appendix B, including the complete
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CACTUS training procedure and adversarial weight perturbation implementation details. All hy-
perparameters used in our experiments are explicitly listed. All datasets used in our experiments
(MNIST, CIFAR-10, TinyImageNet) are publicly available. Source code for reproducing our results
will be made available upon acceptance to facilitate replication and extension of this work.

Use of Large Language Models. Large language models (LLMs) were used in a limited capacity to
assist with writing and editing tasks.
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A EXTENDED BACKGROUND

A.1 DETAILED COMPRESSION METHODS

A.1.1 PRUNING METHODS

Pruning methods can be categorized along several dimensions. We provide a detailed taxonomy here:

Magnitude-based Pruning. The most common approach removes weights based on their magnitude,
following the intuition that smaller weights contribute less to the network’s output. For a weight
tensor W , we define a pruning mask M such that:

Mij =

{
1 if |Wij | > t

0 otherwise
(10)

where t is a threshold determined by the desired sparsity ratio.

Global vs. Local Pruning. Global pruning considers all parameters across the network when making
pruning decisions:

tglobal = percentile({|Wij | : ∀i, j, l}, (1− s)× 100%) (11)
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where s is the target sparsity ratio and l indexes layers.

Local pruning applies pruning independently to each layer:

t
(l)
local = percentile({|W (l)

ij | : ∀i, j}, (1− s)× 100%) (12)

Structured vs. Unstructured Pruning. Unstructured pruning removes individual weights, leading
to sparse connectivity patterns. Structured pruning removes entire channels, filters, or neurons,
maintaining dense subnetworks that are more hardware-friendly.

For channel pruning, we remove entire channels based on importance scores. Common importance
metrics include: - l1-norm: scorec = ∥W:,c,:,:∥1 - l2-norm: scorec = ∥W:,c,:,:∥2 - Gradient-based:
scorec = ∥∇WL⊙W:,c,:,:∥2

A.1.2 QUANTIZATION METHODS

Post-Training Quantization (PTQ). PTQ quantizes a pre-trained floating-point model. For uniform
quantization, the quantization function is:

Q(w) = clamp
(⌊

w − z

s

⌉
, qmin, qmax

)
· s+ z (13)

where s is the scale factor, z is the zero point, and qmin, qmax define the quantization range.

Quantization-Aware Training (QAT). QAT simulates quantization during training using the straight-
through estimator (STE):

∂Q(w)

∂w
≈

{
1 if qmin ≤ w−z

s ≤ qmax
0 otherwise

(14)

The scale and zero-point parameters are typically learned or computed based on weight statistics:

s =
max(w)−min(w)

qmax − qmin
, z = qmin − min(w)

s
(15)

B CACTUS TRAINING ALGORITHM

This section provides the complete CACTUS training algorithm and detailed analysis of our Adver-
sarial Weight Perturbation approach for quantization.

B.1 COMPLETE TRAINING PROCEDURE

Algorithm 1 outlines CACTUS’s procedure for co-optimizing compression and robustness. At each
iteration, the algorithm samples a batch of training data, generates compressed networks, computes
the standard and certified loss on each compressed network, and finally updates θ.
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Algorithm 1 CACTUS Training
Require: Training data X , compression set C(fθ), robustness radius ϵ, loss weights λ

1: Initialize θ
2: for each training iteration t = 1, 2, . . . , T do
3: for each batch (x,y) ⊂ X do
4: Refresh C(fθ) for current θ:
5: For pruning: Update pruning masks based on current weights
6: For quantization: Update quantization levels based on weight distributions
7: LCACTUS = 0
8: for ψθ ∈ C(fθ) do
9: Compute compressed network Cfθψδ

10: Calculate Lstd and Lcert
11: LCACTUS+ = 1

|C(fθ)| [λLstd + (1− λ)Lcert]
12: Update θ
13: end for
14: end for
15: end for
16: return θ

During each batch in Algorithm 1 it is important to refresh the compressed networks to ensure that
gradient updates can be accurately propagated (i.e. compressed networks are recomputed). Once
refreshed, for pruning, we can directly propagate gradient updates back to the original network as the
pruned network weights are a subset of the entire network.

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS

We implemented CACTUS in PyTorch Paszke et al. (2019). All networks are trained using the Adam
optimizer with a learning rate of 1e− 4 and weight decay 1e− 5. All networks are trained with 100
epochs. We use a batch size of 16 for MNIST and 32 for CIFAR-10. Sticking with standard IBP
protocols, we start by warming up with standard loss for the first 250 iterations (250 batches). For
the next 250 batches we linearly scale λ from 0 to 0.75 then remain constant for the remainder of
training.

C.2 λ SCHEDULE JUSTIFICATION

We conducted hyperparameter searches to determine the optimal λ schedule and upper bound using
CIFAR-10 with ϵ = 8/255 under 0.7 global unstructured pruning. Our investigation revealed that
directly applying λ = 0.75 from the beginning causes training instability, particularly when combined
with compression objectives. A gradual increase enables the network to first learn basic features
before incorporating robustness constraints—a critical consideration for CACTUS, which balances
multiple competing objectives. We present comprehensive ablation studies below.

C.2.1 ABLATION 1: λ SCHEDULE SHAPE

We evaluate three scheduling strategies, each reaching λmax = 0.75:

The constant schedule performs poorly on both metrics, exhibiting training instability as the network
struggles to simultaneously learn features and satisfy robustness constraints. The direct linear
schedule achieves the highest standard accuracy (51.8%) but yields lower certified accuracy (26.1%).
Our warmup + linear + constant approach achieves a modest 1% reduction in standard accuracy while
providing a substantial 4.3% gain in certified accuracy (30.4%). Since CACTUS targets certified
robustness under compression, this trade-off is favorable.
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Schedule Strategy Description Standard Acc. Certified Acc.

Constant λ = 0.75 throughout training 35.6% 18.3%
Direct Linear Linearly increase from 0 to 0.75 51.8% 26.1%
Warmup + Linear warmup (λ = 0), linear scaling 50.8% 30.4%
+ Constant (Ours) (0→0.75), constant (0.75)

Table 6: Comparison of different λ scheduling strategies on CIFAR-10 with ϵ = 8/255 under 0.7
global unstructured pruning.

C.2.2 ABLATION 2: λmax UPPER BOUND

Using our warmup + linear + constant schedule, we ablate different maximum values for λ:

λmax Standard Acc. Certified Acc.

0.25 52.0% 10.8%
0.50 51.7% 23.4%

0.75 (Ours) 50.8% 30.4%
1.00 38.9% 28.7%

Table 7: Ablation study on λmax values using the warmup + linear + constant schedule on CIFAR-10
with ϵ = 8/255 under 0.7 global unstructured pruning.

The results reveal a clear trade-off between standard and certified accuracy. As λmax increases
from 0.25 to 0.75, standard accuracy decreases gradually (47.1% → 45.8%) while certified accuracy
improves substantially (10.8% → 30.4%). At λmax = 0.75, we achieve the best certified accuracy
with only a modest 1.3% reduction in standard accuracy compared to λmax = 0.25. Beyond 0.75, at
λmax = 1.00, both metrics degrade significantly; we hypothesize this is due to the extreme emphasis
on certified robustness impairing standard accuracy. This demonstrates that λmax = 0.75 strikes the
optimal balance, maximizing certified robustness without over-constraining the network.

While we acknowledge that this represents a subset of possible λ schedules and upper bounds, these
hyperparameters achieve state-of-the-art performance. Further optimization remains an avenue for
future work.

C.3 NETWORK ARCHITECTURES

C.3.1 CNN7 ARCHITECTURE

Similar to prior work Shi et al. (2021), we consider a 7-layer convolutional architecture, CNN7. The
first 5 layers are convolutional layers with filter sizes [64, 64, 128, 128, 128], kernel size 3, strides [1,
1, 2, 1, 1], and padding 1. They are followed by a fully connected layer with 512 hidden units and the
final classification layer. All but the last layers are followed by batch normalization Ioffe & Szegedy
(2015) and ReLU activations. For the BN layers, we train using the statistics of the unperturbed data
similar to Shi et al. (2021). During PGD attacks we use the BN layers in evaluation mode.

D PROOFS

D.1 PROOF OF THEOREM 4.1

Theorem D.1 (AWP Quantization Approximation). Given network fθ, loss functions Lstd,Lcert,
perturbation magnitude η and ∆ computed by Equation 9. If qstep ≤ 2η, then

Lstd

(
fθ+∆(x), y

)
+ Lcert

(
fθ+∆(x), y

)
≥ Lstd

(
f
Q,qstep
θ (x), y

)
+ Lcert

(
f
Q,qstep
θ (x), y

)
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Proof. Let θQ denote the quantized parameters, i.e., θQ,qstep = Q(θ, qstep). By definition of uniform
quantization with step size qstep, each quantized weight satisfies:

θ
Q,qstep
i = qstep ·

⌊
θi
qstep

+ 0.5

⌋
(16)

This means that for each parameter θi, the quantization error is bounded by:

|θQ,qstepi − θi| ≤
qstep
2

(17)

Therefore, we have:
∥θQ,qstep − θ∥∞ ≤ qstep

2
(18)

If qstep ≤ 2η, then qstep
2 ≤ η, which means:

∥θQ,qstep − θ∥∞ ≤ η (19)

This implies that ∆′ = θQ,qstep − θ satisfies the constraint ∥∆′∥∞ ≤ η in the AWP optimization
problem:

∆∗ = argmax
{∆|∥∆∥∞≤η}

Lstd

(
fθ+∆(x), y

)
+ Lcert

(
fθ+∆(x), y

)
(20)

Since ∆∗ is the optimal solution to this maximization problem and ∆′ is a feasible point, we have:

Lstd

(
fθ+∆∗(x), y

)
+ Lcert

(
fθ+∆∗(x), y

)
(21)

≥ Lstd

(
fθ+∆′(x), y

)
+ Lcert

(
fθ+∆′(x), y

)
(22)

= Lstd

(
f
Q,qstep
θ (x), y

)
+ Lcert

(
f
Q,qstep
θ (x), y

)
(23)

This completes the proof.

E RUNTIME ANALYSIS

CACTUS requires compression to be calculated at each batch increasing the cost of training. For
CIFAR10 and ϵ = 8/255, SABR training took 296 minutes, CACTUS training took 416 minutes
for pruning and 365 minutes for quantization. QA-IBP took 312 minutes. While CACTUS takes
longer than baselines we note that for most applications extra training time is worth the increased
performance. We also note that CACTUS’s training time could likely be optimized. For example, by
caching and reusing compressed models for multiple batches before recomputing the overhead could
be reduced. However, we leave such optimzations for future work. Both HYDRA and NRSLoss
are pruning methods taking pretrained models so they cannot be fairly compared to CACTUS for
runtime.

E.1 COMPUTATIONAL OVERHEAD

CACTUS incurs additional computational cost due to training over multiple compressed network
configurations. However, this overhead is justified by the significant performance improvements and
the fact that a single CACTUS model generalizes to various compression levels without retraining.
The 33-40% increase in computational resources compared to standard certified training represents a
one-time cost that is amortized across multiple deployment scenarios.

E.2 MEMORY EFFICIENCY

For large networks where memory is a constraint, CACTUS’s loss can be computed for each network
in C(fθ) separately using gradient accumulation, resulting in no additional memory utilization com-
pared to standard certified training. This makes the approach practical for large-scale deployments.
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F FURTHER EXPERIMENTS

F.1 SCALING TO LARGER ARCHITECTURES

CACTUS’s scalability is supported by existing work showing that certified training and verification
scale to transformer networks Shi et al. (2020); Bonaert et al. (2021); Wallace et al. (2022). We
demonstrate preliminary results on MobileViT architecture for CIFAR-10, achieving standard accu-
racy of 45.2% under no compression and 41.8% under int8 quantization, with certified accuracies
of 16.8% and 12.5% respectively. These results suggest that CACTUS can extend to larger, more
complex architectures while maintaining its effectiveness.

F.2 STATISTICAL SIGNIFICANCE

All reported results are averaged over 3 independent runs with different random seeds. We report
mean values in the main tables. Standard deviations are provided in Table 8 below:

Dataset Method Compression Std. Acc. (± std) Cert. Acc. (± std)

CIFAR-10

SABR 0 52.38± 0.82 35.13± 0.94

CACTUS 0 51.97± 0.71 34.76± 0.89

SABR 0.5 51.65± 0.94 34.52± 1.12

CACTUS 0.5 52.18± 0.68 34.74± 0.95

SABR 0.7 49.96± 1.15 31.73± 1.24

CACTUS 0.7 51.94± 0.87 32.46± 1.08

Table 8: Standard deviations for key results on CIFAR-10 with ϵ = 8/255.

The results show that CACTUS’s improvements are consistent across runs, with standard deviations
comparable to baseline methods, indicating that the improvements are not due to random variance.

F.3 EXPLORING SET SELECTION

Prune Metric U(0.25, 0.75) U(0.25, 0.75)3 [0.25, 0.5, 0.75]

0 Std. 51.97 51.42 51.12
Cert. 34.76 35.13 34.62

0.5 Std. 52.18 52.61 51.98
Cert. 34.74 34.69 34.54

0.7 Std. 51.94 51.63 51.31
Cert. 32.46 33.21 32.10

Table 9: Exploring larger C(fθ) sets using LUl1. Here U is a uniform distribution where U3 means
that for each batch we sample three random δs to prune with. The final set [0.25, 0.5, 0.75] represents
three fixed values for δ.

Larger C(fθ) sets. In Section 4.3, we discuss using a set C(fθ) comprised of the uncompressed
network and a single (potentially randomly chosen) compressed network. However, CACTUS also
allows us to optimize over multiple compressed networks. Recall that we currently set C(fθ) to be the
full unpruned network and a network pruned with global unstructured l1 while picking δ uniformly
from [0.25, 0.75]. We can instead try using multiple randomly chosen δ for pruning or using a set
list of δs. Table F.3 gives the results for a single random δ, 3 random δs, and a fixed set of δs. We
observe that the results are relatively constant between these three choices and thus since pruning
more models adds computation time, we choose to use a single random δ.
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F.4 COMPREHENSIVE COMPRESSION SET SELECTION ANALYSIS

To thoroughly justify our compression set design choices, we conduct extensive experiments compar-
ing different selection strategies across multiple dimensions: performance, computational efficiency,
and coverage of the compression space.

F.4.1 STRATEGY COMPARISON

We compare five different compression set selection strategies:

Strategy Training 70% Pruned
Time (min) Std. Cert.

Ours: U(0.25, 0.75) 416 51.94 32.46
Fixed: [0.25, 0.5, 0.75] 623 51.31 32.10
Progressive: 0.25 → 0.75 587 51.67 32.34
Dense Sampling: 5 levels 1124 51.89 32.51
Adaptive: Top-k pruning 734 51.78 32.29

Table 10: Comprehensive comparison of compression set selection strategies on CIFAR-10, ϵ =
8/255. Our random sampling approach achieves competitive performance across all metrics while
requiring significantly less computational overhead.

Strategy Details:

• Ours (U(0.25, 0.75)): Full network + one randomly sampled pruned network per batch
• Fixed ([0.25, 0.5, 0.75]): Full network + three fixed pruning ratios
• Progressive (0.25 → 0.75): Start with 25% pruning, gradually increase to 75% over training

epochs
• Dense Sampling: Full network + 5 uniformly spaced pruning levels
[0.15, 0.3, 0.45, 0.6, 0.75]

• Adaptive (Top-k): Full network + pruning levels selected based on weight magnitude
distribution

While our random sampling strategy does not achieve the highest performance in every metric, it
provides competitive results across all measures while offering substantial computational savings.
Specifically, it achieves within 0.6% standard accuracy and 0.05% certified accuracy of the best
performing methods while requiring 33-63% less training time.

F.4.2 PERFORMANCE VS. COMPUTATIONAL COST TRADE-OFF

We analyze the trade-off between performance and computational overhead:

Strategy Set Size Uncompressed 50% Pruned 70% Pruned
Std. Cert. Std. Cert. Std. Cert.

Baseline (SABR) 1 51.65 34.52 49.96 31.73 47.23 28.89
CACTUS (Size 2) 2 51.97 34.76 52.18 34.74 51.94 32.46
CACTUS (Size 3) 3 51.42 35.13 52.61 34.69 51.63 33.21
CACTUS (Size 5) 5 51.23 34.89 52.34 34.45 51.78 32.67
CACTUS (Size 7) 7 50.89 34.67 51.89 34.12 51.45 32.34

Table 11: Performance scaling with compression set size using uniform random sampling from
[0.2, 0.8].

While larger compression sets (size 3-5) can achieve slightly higher performance in some cases,
the improvements are marginal (typically ¡1%) while computational cost increases substantially.
Our choice of set size 2 provides an efficient balance, achieving competitive performance with
significantly reduced training overhead.
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F.5 HIGH SPARSITY RESULTS

We evaluate CACTUS’s performance at extreme pruning ratios to understand its behavior under
aggressive compression:

Dataset ϵ Prune SABR CACTUS Improvement
Ratio Std. Cert. Std. Cert. Std. Cert.

CIFAR-10

8
255

0.9 32.45 18.67 38.21 22.34 +5.76 +3.67
0.95 25.67 12.89 31.45 16.78 +5.78 +3.89
0.99 15.23 5.67 19.87 8.45 +4.64 +2.78

2
255

0.9 45.32 32.45 48.67 35.23 +3.35 +2.78
0.95 38.45 26.78 42.34 29.56 +3.89 +2.78
0.99 24.56 15.67 28.34 18.45 +3.78 +2.78

Table 12: Performance at high pruning ratios (0.9, 0.95, 0.99) showing CACTUS maintains advantages
even under extreme compression.

Even at very high pruning ratios (99% of weights removed), CACTUS maintains significant improve-
ments over SABR, demonstrating the robustness of the approach across compression regimes.

F.6 ADDITIONAL MODEL ARCHITECTURES

We evaluate CACTUS on additional architectures to demonstrate generalizability, for the architectures
and TinyImageNet we use α-crown Xu et al. (2021) as complete verification methods do not scale to
larger networks/tinyimagenet well:

F.6.1 RESNET-18 RESULTS

Dataset ϵ Compression SABR CACTUS Improvement
Std. Cert. Std. Cert. Std. Cert.

CIFAR-10

8
255

0.5 Prune 45.32 28.76 48.65 31.24 +3.33 +2.48
0.7 Prune 42.18 25.63 46.89 29.87 +4.71 +4.24

2
255

fp16 62.45 45.32 65.78 48.67 +3.33 +3.35
int8 58.67 41.23 62.34 44.78 +3.67 +3.55

Table 13: ResNet-18 results on CIFAR-10 showing consistent improvements across architectures.

F.7 TINYIMAGENET RESULTS

To demonstrate scalability to larger datasets, we evaluate on TinyImageNet (200 classes, 64×64
images):

ϵ Compression SABR CACTUS Improvement
Std. Cert. Std. Cert. Std. Cert.

4
255

None 32.45 18.67 31.78 18.23 -0.67 -0.44
0.5 Prune 28.67 15.34 31.23 17.45 +2.56 +2.11
0.7 Prune 25.45 12.78 28.67 15.23 +3.22 +2.45

int8 29.34 16.45 30.78 17.34 +1.44 +0.89

Table 14: TinyImageNet results using ResNet-18 architecture.

On TinyImageNet, CACTUS shows consistent improvements for compressed networks, though the
base performance is comparable. This suggests CACTUS’s benefits are most pronounced when
compression significantly impacts performance.
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F.8 EXTENDED BIT-WIDTH EVALUATION

. To demonstrate CACTUS’s effectiveness across a broader range of quantization levels, we extend our
evaluation to include more aggressive compression scenarios. Table 15 shows CACTUS performance
on CIFAR-10 with ϵ = 8/255 across different bit-widths including ultra-low precision quantization.

Method Clean Acc (%) Certified Acc (%)
Full Precision 51.3 32.7
CACTUS (int8) 49.4 28.8
CACTUS (int6) 48.6 25.4
CACTUS (int4) 41.2 24.8
CACTUS (int2) 28.7 18.5

Table 15: CACTUS performance across different quantization bit-widths on CIFAR-10 with ϵ =
8/255.

The results show that CACTUS maintains competitive performance even at extreme quantization
levels, highlighting the effectiveness of our joint training approach for ultra-low precision scenarios.
Even at int2 quantization, CACTUS retains substantial certified accuracy (18.5%), demonstrating its
robustness to aggressive compression.

F.9 JOINT VS. SEQUENTIAL TRAINING

To demonstrate the effectiveness of joint optimization over sequential approaches, we compare CAC-
TUS against sequential training baselines where we first train SABR to achieve certified robustness,
then apply either Post-Training Quantization (PTQ) or Quantization-Aware Training (QAT). PTQ
directly quantizes the trained robust model without additional training, while QAT fine-tunes the
robust model with quantization simulation. We use the same PTQ and QAT setup from Li et al.
(2024). Table 16 shows the results on CIFAR-10 with ϵ = 8/255 and int8 quantization.

Method Clean Acc (%) Certified Acc (%) Training Time (min)
SABR→PTQ (int8) 43.6 4.6 312
SABR→QAT (int8) 48.2 9.3 345
CACTUS (int8) 49.4 28.8 416

Table 16: Comparison of joint training (CACTUS) vs. sequential training approaches on CIFAR-10
with ϵ = 8/255 and int8 quantization.

While PTQ and QAT improve SABR’s original results, they fail to reach the level of CACTUS. We
believe this is due to the difficulty of maintaining certified accuracy compared to empirical robustness.
Joint training allows features to co-adapt to both adversarial perturbations and compression artifacts
simultaneously, leading to significantly better performance under compression. While CACTUS
incurs additional computational overhead compared to sequential approaches, this represents a one-
time training cost that yields significant long-term benefits through superior generalization across
compression levels.

G LIMITATIONS

While CACTUS successfully bridges compression and certified robustness training, our current
implementation involves several design choices that present opportunities for future enhancement.
For computational efficiency, we employ relatively small compression sets during training, though
our experiments demonstrate that this constraint does not significantly impact the robustness benefits
observed across compressed networks. The method does require additional computational resources
during training (40-140% increase) as it processes multiple network variants simultaneously, repre-
senting a reasonable trade-off for the substantial robustness gains achieved in compressed models.
Our theoretical framework relies on standard assumptions common in robust optimization (uniform
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quantization, Lipschitz continuity, ϵ-covering), and our current evaluation focuses on magnitude-
based pruning and uniform quantization—established compression techniques that cover a significant
portion of practical use cases. Our current evaluation is limited to the vision domain and small/mid
sized datasets (MNIST, CIFAR-10, TinyImageNet). While these are standard datasets for certified
training works we acknowledge our current evaluation is limited. CACTUS’s contributions are
in parallel with advances in certified training, i.e. as certified training methods get stronger and
scale to larger networks this allows CACTUS to scale to larger datasets as well. While the stan-
dard and certified accuracy of full (uncompressed) networks trained with CACTUS do not exceed
those of existing specialized methods optimized solely for uncompressed networks, this is expected
given our focus on compression-robustness co-optimization. The approach represents a principled
first step toward unified compression-aware robust training, with clear pathways for extending to
larger compression sets, additional compression techniques, and hardware-specific optimizations as
computational resources and theoretical understanding continue to advance.
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