
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CGD: MODIFYING THE LOSS LANDSCAPE BY GRADI-
ENT REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Line-search methods are commonly used to solve optimization problems. The
simplest line search method is the steepest descent where we always move in
the direction of the negative gradient. Newton’s method on the other hand is a
second-order method that uses the curvature information in the Hessian to pick
the descent direction. In this work, we propose a new line-search method called
Constrained Gradient Descent (CGD) that implicitly changes the landscape of the
objective function for efficient optimization. CGD is formulated as a solution to
the constrained version of the original problem where the constraint is on a func-
tion of the gradient. We optimize the corresponding Lagrangian function thereby
favourably changing the landscape of the objective function. This results in a line
search procedure where the Lagrangian penalty acts as a control over the descent
direction and can therefore be used to iterate over points that have smaller gradient
values, compared to iterates of vanilla steepest descent. We reinterpret and draw
parallels with the Explicit Gradient Regularization (EGR) method, discussing its
drawbacks and potential enhancements. Numerical experiments are conducted on
synthetic test functions to illustrate the performance of CGD and its variants.

1 INTRODUCTION

−4
−2

0
2

4
x1

−4

−2

0

2

4

x 2

50

100

150

200

250

y

Original Loss function f1

Steeper Loss function f2

−2.0 −1.5 −1.0 −0.5 0.0

x1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

x
2

1

2
3

4

5

5

6

7
8

9

10

1112

GD on f1(·)
GD on f2(·)

2

4

6

8

G
rad

ien
t

N
orm

Figure 1: (Left) Loss function f1(x) = x2
1 + 2x2

2 and a steeper loss function f2(x). (Right) GD
trajectories on functions f1(x) and f2(x). The two trajectories correspond to 5 iterations of GD on
functions f1(x) and f2(x) respectively for fixed step size α = 0.05. The contours and the gradient
norm heatmap are over the function f1(x).

Deep Neural Networks have been successful at a variety of tasks primarily due to their over-
parameterization. However, with such over-parameterization comes the problem of an uneven loss
landscape that contains many local maxima and minima with some providing better performance
than the others (Neyshabur et al., 2017; Li et al., 2018). As a result, optimizing over the param-
eter space has become incredibly relevant in the current times. To tackle this problem, one of the
approach that is used is to modify the loss/objective function in such a way that the new function
is easier to optimize. This is typically done by adding a regularization term that will make the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

loss landscape more smooth, and which would in turn reduce the chances of the optimizer reaching
sub-optimal minima, thereby improving generalizability. Considerable research in deep learning is
now focused on designing loss functions that have smoother landscapes and therefore are easier to
optimize (Du et al., 2022; Zhuang et al., 2022; Barrett & Dherin, 2022; Zhao et al., 2022; Karakida
et al., 2023).

In this work, we focus on this idea of modifying the objective function for effective numerical
optimization and propose an algorithmic paradigm to achieve it. To illustrate the key idea, consider
minimizing a loss function f1(·) over R2 as shown in Figure 1 (Left). Additionally consider a steeper
loss function f2(·) such that for every x ∈ R2 we have f1(x) ≤ f2(x). Note that the functions are
such that their minima coincides. Now perform gradient descent (GD) with a fixed step size on both
these functions. Their respective trajectories are plotted in Figure 1 (Right) on the contours of f1. It
is clear from the figure that the iterates of GD on f2 are much closer to the minima as compared to
iterates of GD on f1. We make this observation a focal point of this work and investigate if one can
achieve the latter iterates (iterates from GD on f2) on the former function (f1).

Towards this, we propose Constraint gradient descent (CGD), a variant of the GD algorithm which
achieves this by constraining the gradient norm to be appropriately small. Instead of solving this
constrained optimization problem, we consider the Lagrangian of this function and perform GD
on it. The Lagrangian parameter λ controls the penalty on gradient norm and thereby controls the
steepness of the modified function. It is on this modified function that we seek to apply GD to
possibly attain iterates that are much closer to the local minima as compared to GD iterates. From
Figure 1 (Right) we additionally see that compared to GD, the CGD iterates (which is nothing but
GD iterates on f2) have a lower gradient norm. Since the path to minima is over points with lower
gradient norm, this we believe is an attractive feature and even amounts to better generalization
properties for high dimensional functions such as loss landscapes of neural networks.

The idea of flat minima and their attractiveness goes long back to Hochreiter & Schmidhuber (1997):
An optimal minimum is considered “flat” if the test error changes less in its neighbourhood. Keskar
et al. (2017) and Chaudhari et al. (2017) observe better generalization results for neural networks
at flat minima. Gradient regularization on the other hand has only been recently studied from a
perspective of deep neural networks (DNNs) (Zhao et al., 2022; Karakida et al., 2023; Barrett &
Dherin, 2022; Smith et al., 2021) where the square of the L2 norm is penalized.

While the above methods only penaliize the squared L2-norm of the gradient, we propose a more
general approach where the penalty could be on any positive function of the gradient. This opens
doors to investigating potential applications where penalty functions beyond squared L2 norm might
prove more beneficial. A key aim of this work is to understand this gradient regularization from the
perspective of a numerical optimization algorithm and identify properties and features that may not
have been obvious earlier. We believe CGD and its variants discussed in this work have the ability
to find flatter minimas which may prove to be useful for training of neural networks.

We summarize our contributions below:

• We propose a new line-search procedure called Constraint Gradient Descent (CGD) that
performs gradient descent on a gradient regularized loss function.

• While CGD requires the Hessian information, we also propose a first-order variant of CGD
using finite-difference approximation of the Hessian called CGD-FD. We define appropri-
ate stopping criteria in CGD-FD for settings where gradient computation can be expensive.

• We conduct experiments over synthetic test functions to compare the performance of CGD
and its variants compared to standard line-search procedures.

• Our work also provides new insights to gradient regularization based methods. In fact, we
re-interpret and identify pitfalls in Explicit Gradient Regularization (EGR) Methods using
our formulation.

The rest of the paper is organized as follows. In the next section, we recall some preliminaries on
line-search methods. We then discuss the CGD algorithm and propose its variants. We then illustrate
the performance of our algorithm on several test functions and conclude with a discussion on future
directions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 NOTATION AND PRELIMINARIES

The set of real numbers and non-negative real numbers is denoted by R and R+ respectively. We
consider a vector x ∈ Rn as a column vector given by x = [x1 x2 . . . xn]

T . We use a
boldface letter to denote a vector and lowercase letters (with subscripts) to denote its components.
Lp-norm of a vector x is defined as ∥x∥p = (

∑
i |xi|p)1/p. Setting p = 2 gives us L2-norm:

∥x∥ ≜ ∥x∥2 =
√∑

i x
2
i =
√
xTx. In denotes the identity matrix of size n× n. All zero vector of

length n is denoted by 0n.

2.1 LINE-SEARCH METHODS

Let f(x) be a twice differential function with domain D ⊆ Rn and codomain R, i.e., f : D → R.
Let ∇f(xk) and H(xk) denote the gradient and Hessian of the function f(x) evaluated at point
xk ∈ D. For the sake of simplicity, we will also use the notation∇fk and Hk to denote∇f(xk) and
H(xk) respectively. For the given function f(x), we consider the problem of finding its minimizer,
i.e., we wish to find x∗ ∈ D such that

x∗ = argmin
x∈D

f(x). (1)

We focus on the situation where x∗ is obtained using an iterative line-search procedure (for details
refer Nocedal & Wright (2006, Ch. 3)). The steepest descent (gradient descent) method, Newton’s
method, and quasi-Newton’s method are some examples of line-search methods. In an iterative
algorithm, the key idea is to begin with an initial guess x0 for the minimizer and generate a sequence
of vectors x0,x1, . . . until convergence (or until desired level of accuracy is achieved). In such
algorithms, xk+1 is obtained using xk using a pre-defined update rule. For line-search methods, the
update rule can be written in a general form as follows,

xk+1 = xk + αpk (2)

where α ∈ R+ is the step size (or learning rate) and pk ∈ Rn corresponds to the direction in the k-th
iteration. For some line-search methods, we can express pk as pk = −Pk∇fk where Pk ∈ Rn×n.
For example, for steepest gradient descent method we have Pk = −In and for Newton’s method
Pk = −H−1

k . For pk to be a descent direction, the following condition must hold:

∇fT
k pk < 0. (3)

3 CONSTRAINED GRADIENT DESCENT

In this section, we propose an iterative line-search method to find a minimizer x∗ of the given
function f(x) (see Equation 1). We shall refer to our approach as Constrained Gradient Descent
(CGD) method. It is known that if x∗ is a local minimizer of the function f(x) then the gradient
at point x∗ is equal to zero (Nocedal & Wright, 2006, Ch. 2). The key idea in our approach is to
focus on the set of x ∈ D such that ∇f(x) is close to zero. For this consider a general constrained
optimization problem:

x∗ = argmin
x∈D

h(∇f(x))≤ϵ

f(x) (4)

where the constraint h(·) is defined on the gradient and ϵ is a small positive real number. The uncon-
strained optimization problem corresponding to Equation 4 is obtained by penalizing the gradient
constraint with a Lagrange multiplier λ > 0:

x⋆ = argmin
x∈D

[
f(x) + λ h (∇f(x))

]
(5)

Note that ϵ doesn’t affect the optimization and hence has been removed from the objective. Observe
that such a formulation provides us with a modified loss function to optimize over. Choosing a non-
negative constraint h(·) is preferred so that we do not introduce artificial minima points. In this case,
the modified loss function will become steeper and hence easier to descent on than the original loss
function. This can also be referred to by penalization or using a gradient penalty since the objective
is penalized at points which are not local minima depending on the gradients at these points.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We consider non-decreasing functions over the gradient-norm to be suitable choices for the con-
straint function h(·) since the above mentioned qualities are fulfilled by them.

Consider, two modified loss functions using Lp-norm gradient penalty:

gp(x) ≜ f(x) + λ∥∇f(x)∥p (Lp-norm) (6)

ĝp(x) ≜ f(x) + λ∥∇f(x)∥pp (Lp-norm to the power p) (7)

For ease of exposition, we use ĝ2(x) for most of our discussion and numerical results. We simplify
the notation further to denote g(x) ≜ ĝ2(x). More details on using functions gp(x) and ĝp(x) can
be found in Appendix A. Now consider the following optimization problem,

x⋆ = argmin
x∈D

g(x) (8)

where g(x) ≜ f(x) + λ∥∇f(x)∥2 = f(x) + λ
(
∇f(x)T∇f(x)

)
. We now apply steepest descent

iteration to the optimization problem in Equation 8, given as

xk+1 = xk − α∇gk
= xk − α (∇fk + 2λHk∇fk) (9)
= xk − αBk∇fk

where Bk ≜ In + 2λHk. From Equation 2 note that we have pk = −Bk∇fk and Pk = Bk which
is the matrix corresponding to the direction taken at the k-th iteration by our CGD method.

Revisiting the example in Figure 1, the function f1(x) = x2
1+2x2

2 was penalized with the square of
L2-norm of gradient as given in Equation 8. Thus, the modified loss function f2(x) = x2

1 + 2x2
2 +

λ
(
(2x1)

2 + (4x2)
2
)
= (1 + 4λ)x2

1 + 2(1 + 8λ)x2
2 where λ was chosen to be 0.4.

We now provide a lemma that investigates if the penalized objective function has stationary points
which are different from the original function and if so characterizes them.

Lemma 1. Let Sx̂ and Sx⋆ be the stationary points of f(x) and g(x) as defined in Equation 8.
Then, Sx̂ ⊆ Sx∗ . Furthermore, for any x∗ ∈ Sx∗ one of the following is true: (a) x∗ ∈ Sx̂ or (b)
∇f(x∗) is an eigenvector of H(x∗) with the eigenvalue − 1

2λ .

Proof. For any x̂ ∈ Sx̂ we have ∇f(x̂) = 0n and hence ∇g(x̂) = 0n from Equation 9. Thus,
Sx̂ ⊆ Sx∗ trivially holds. Now for any x∗ ∈ Sx∗ ,

∇g(x∗) = 0 =⇒ (In + 2λH(x∗))∇f(x∗) = 0

Therefore if ∇f(x∗) = 0, we have x∗ ∈ Sx̂. Otherwise, H(x∗)∇f(x∗) = − 1
2λ∇f(x∗).

The above lemma illustrates that additional stationary points could possibly be introduced and some
of these points could also be a local minima. The above lemma also characterizes conditions under
which this is true and therefore such points can easily be detected. A perturbation from the current λ
in that case results in the iterate to descend further, possibly moving towards a better local minima.

Within the current scheme, the nature of stationary points f(x) might change in g(x). Particularly,
the local maxima and saddle points of f(x) might become local minima in g(x) depending on the
coefficient λ. This, happens due to the fact that at the stationary points, the modified function takes
the value of the original function itself (since gradient is zero). But within the neighbourhood, the
function value increases (since we are adding gradient-norm at these points). Thus, for a particular
local maximum (or saddle point) y, the nature of the point changes to that of a local minimum when
λ > λ∗ where λ∗ represents a threshold for this behaviour. λ∗ depends on the function’s curvature
and gradient norm changes in the neighbourhood of the point y and hence, is different for different
local maxima and saddle points.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

−8.5 −8.0 −7.5 −7.0 −6.5 −6.0

x

4

6

8

10

12

14

16

y

−f ′(x)

−g′(x)

Loss Landscape f(x)

Penalized Landscape g(x)

Figure 2: For the given function, observe artificial stationary points being introduced after penaliza-
tion at x ≈ −6.5 and x ≈ −7.6. Both these stationary points turn out to be local maxima. Observe
how the local maximum at x ≈ −8.1 turns into a local minimum. We also plot the descent directions
−f ′(x) and −g′(x) at x = −7.7 (denoted by dotted line).

Thus within the current scheme, descent on the penalized function might actually cause ascent on the
original one (moving towards the local maxima turned into local minima). For example, in Figure 2
we observe that at x = −7.7, steepest descent along −∇g(x) direction would actually cause an
ascent over the original loss function.

To fix this behaviour, we ensure that we only move along the direction −∇g(x) when it is a descent
direction. Therefore Equation 3 requires that ∇f(x)T∇g(x) > 0 in order for us to move along
−∇g(x). If Equation 3 doesn’t hold i.e, ∇f(x)T∇g(x) ≥ 0 then we set λ = 0 at this point and
only move along −∇f(x) direction. Note that this simple check also helps us to avoid stopping at
artificially introduced stationary points. We summarize CGD in Algorithm 1.

Algorithm 1 Constrained Gradient Descent (CGD)
Input: Objective function f : D → R, initial point x0, max iterations T , step size α, regularization
coefficient λ.
Output: Final point xT .

1: for iteration k = 0, . . . , T − 1 do
2: pk ← − (In + 2λkHk)∇fk
3: if ∇fT

k pk < 0 then ▷ Check if pk is a Descent Direction
4: xk+1 ← xk + αpk

5: else
6: xk+1 ← xk − α∇fk
7: end if
8: end for
9: return xT

3.1 CGD-FD: FINITE DIFFERENCE APPROXIMATION OF THE HESSIAN

Note that CGD is a second-order optimization algorithm as it requires the Hessian information to
compute each iterate. We improve over this complexity by restricting CGD to be a first-order line
search method wherein the Hessian is approximated using a finite difference (Pearlmutter, 1994).
Using Taylor series, we know that

∇f(xk +∆x) = ∇fk +Hk∆x+O(∥∆x∥2).

Now let ∆x = rv where r is arbitrarily small. Then, we can rewrite the above expression as:

Hv =
∇f(xk + rv)−∇fk

r
+O(∥r∥).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Substituting v = ∇fk and using this approximation in Equation 9 gives us

∇g(xk) ≈ ∇fk + 2λ
∇f(xk + r∇fk)−∇fk

r
= (1− ν)∇fk + ν∇f(xk + r∇fk) (10)

where ν = 2λ/r. We call this version CGD with Finite Differences (CGD-FD).

Note now that we require two gradient calls in every iteration of CGD-FD which may be prohibitive.
Towards this it is only natural to consider a stopping criteria so as to revert back to using steepest
direction whenever the improvment through CGD-FD iterates is low. This is done to avoid the extra
gradient evaluations after the optimizer has moved to a sufficiently optimal point in the domain.
Such criteria are particularly helpful in loss functions where gradient evaluations are costly and
therefore, budgeted. This also gives us the freedom to play around with which direction to choose
(steepest or CGD-FD) and quantify when to switch to the other. For instance, we intially only move
in the directions suggested by CGD-FD and switch to steepest once we make good-enough drop in
the function value from the initial point.

In our experiments, we used a combination of the strategies explained above. We only use CGD-FD
for the first b iterations (out of the total budget T) to strive for a good-drop in function values initially.
While doing so, we also ensure that we only move in the direction pk (CGD-FD, Equation 10) if
it is a descent direction. Otherwise, we stop using CGD-FD updates henceforth and use steepest
direction from here onwards. We summarize our CGD-FD method in Algorithm 2.

Algorithm 2 Constrained Gradient Descent using Finite Differences (CGD-FD)
Input: Objective function f : D → R, initial point x0, max iterations T , step size α, regularization
coefficients λ, stopping threshold b.
Output: Final point xT .

1: ν ← 2λ/r
2: USE CGD← TRUE
3: Number of Gradient Evaluations c← 0 ▷ Can be interpreted as cost
4: for k = 0, . . . , T − 1 do
5: if c = T then return xk ▷ Budget Exhausted
6: end if
7: if USE CGD then
8: pk ← − [(1− ν)∇fk + ν∇f(xk + r∇fk)]
9: c← c+ 2

10: if ∇fT
k pk < 0 then ▷ Check if pk is a Descent Direction

11: xk+1 ← xk + αpk

12: else
13: xk+1 ← xk − α∇fk
14: USE CGD← FALSE ▷ Stop using CGD-FD iterates
15: end if
16: else
17: xk+1 ← xk − α∇fk
18: c← c+ 1
19: end if
20: if k ≥ b then
21: USE CGD← FALSE
22: end if
23: end for
24: return xT

4 NUMERICAL EXPERIMENTS

We test CGD-FD on synthetic test functions from Virtual Library of Simulation Experiments: Test
Functions and Datasets 1.

1http://www.sfu.ca/˜ssurjano

6

http://www.sfu.ca/~ssurjano

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For each function, we strive for an initial gain i.e., a good-drop in function value while using CGD-
FD iterates. We set the stopping threshold b as T/4 where T is the total budget. For our experiments
we chose T = 40.

For the hyperparameter λ, we empirically tested different schedules and strategies for different kinds
of functions. We observe that using constant λ works very well with convex functions. However,
in non-convex functions an increasing schedule might be useful. The intuition behind an increasing
schedule is that initially we want to penalize less and as we move to points with lower gradient norm,
we can start to penalize more. We denote this as Linear(a, b) which is an increasing linear schedule
of T values going from a to b. For the step-size α, a constant-value was found to be suitable in all
our experiments.

To measure the initial drop in function value, we compare the Improvement for the first step of
CGD-FD vs the first step of steepest descent. Improvement in the first step is defined as:

Improvement (in %) =
f(x0)− f(x1)

f(x0)
∗ 100

Table 1 summarizes the hyperparameter values chosen and Table 2 compares the intial improvement
across CGD-FD and steepest descent.

Table 1: Choices of α and λ for synthetic test functions (Budget T = 40, Stopping threshold
b = T/4).

Test Function (Dimensions=n) λ α

Quadratic function (n = 10) 0.4 0.01
Rotated hyper-ellipsoid function (n = 5) 0.5 0.01
Levy function (n = 2) Linear(0.01, 0.1) 0.05
Branin function (n = 2) 0.07 0.01
Griewank function (n = 2) 40.0 0.01
Matyas function (n = 2) 10.0 0.01

Table 2: Initial Improvement (in %) across CGD-FD and Steepest Descent (GD).
Test Function (Dimensions=n) GD CGD-FD
Quadratic function (n = 10) 18.89 97.91
Rotated hyper-ellipsoid function (n = 5) 15.94 82.76
Levy function (n = 2) 23.73 63.21
Branin function (n = 2) 37.53 87.07
Griewank function (n = 2) 0.01 0.08
Matyas function (n = 2) 1.83 34.40

We plot the function values vs gradient evaluations in Figure 3. Note, that the x-axis is not iterations
but gradient evaluations. We compare the trajectories across points where equal number of gradients
have been evaluated.

5 EXPLICIT GRADIENT REGULARIZATION (EGR)

Barrett & Dherin (2022) proposed Explicit Gradient Regularization (EGR) where the original loss
function is regularized with the square of L2-norm of the gradient. This regularized objective is then
optimized with the intention that the model’s parameters will converge to a flat-minima and thus, be
more generalizable. However, an understanding of why this happens is missing.

We explain EGR through the example visualized in Figure 4 (Left). Based on our formulation
explained in Section 3, we can interpret the gradient-regularized function as a more steeper version
of the orginal loss function wherein the minima remain same. Due to the gradient penalty, a steeper
minima (in the original loss function) would turn more steeper while the increase in steepeness

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35 40

Gradient Evaluations

0

500

1000

1500

2000

F
u

n
ct

io
n

V
a
lu

e
(f
−
f ∗

)

steepest

cgd fd

0 5 10 15 20 25 30 35 40

Gradient Evaluations

0

5000

10000

15000

20000

25000

F
u

n
ct

io
n

V
a
lu

e
(f
−
f ∗

)

steepest

cgd fd

0 5 10 15 20 25 30 35 40

Gradient Evaluations

10

20

30

40

50

F
u

n
ct

io
n

V
al

u
e

(f
−
f ∗

)

steepest

cgd fd

0 5 10 15 20 25 30 35 40

Gradient Evaluations

20

40

60

80

100

F
u

n
ct

io
n

V
al

u
e

(f
−
f ∗

)

steepest

cgd fd

0 5 10 15 20 25 30 35 40

Gradient Evaluations

83.95

84.00

84.05

84.10

84.15

84.20

84.25

84.30

F
u

n
ct

io
n

V
al

u
e

(f
−
f ∗

)

steepest

cgd fd

0 5 10 15 20 25 30 35 40

Gradient Evaluations

2

4

6

8

10

12

14

F
u

n
ct

io
n

V
al

u
e

(f
−
f ∗

)

steepest

cgd fd

Figure 3: Function value f(·) − f∗ (f∗ being the optimal function value) vs Gradient Evaluations.
In raster order (from top to bottom; left to right), the functions are: Quadratic function, Rotated
hyper-ellipsoid function, Levy function, Branin function, Griewank function and Matyas function
(see Appendix B). Note: The x-axis of each plot is not iterations but number of gradients evaluated.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

−3 −2 −1 0 1 2 3

x

−5

0

5

10

15

f
(x

)

Loss Landscape

Penalized Landscape

GD

CGD

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

5

10

15

20

25

y

Loss Landscape f(x)

Penalized Landscape g(x)

Figure 4: (Left) CGD is able to move to a better local minimum by moving along the negative
gradients over the modified loss function. (Right) Local maxima of the original loss function turning
into local minima of the penalized loss function.

wouldn’t be this high at a flatter minimum. Thus, at a constant step-size, the optimizer will likely
overshoot over the sharper minimum due to the extremely high gradient value, while still being able
to converge to the less-steeper and preferred flat minimum point. In Figure 4 (Left) we see how GD
gets stuck at a suboptimal point of the function while CGD (GD over the penalized loss function) is
able to avoid this point and converges to a better (more optimal) minimum point.

EGR has the drawbacks of having fictitious minima identified in Lemma 1. Since, the loss landscape
of neural networks is highly uneven (Li et al., 2018), it’s likely that artificial stationary points are
introduced and the optimizer might converge at local-maxima points since their nature changes
with regularization. For example, in Figure 4 (Right) we observe artificial stationary points being
introduced between local-minima and local-maxima of the original loss function while some local-
maxima also turn into local-minima of the penalized loss function. Therefore, one needs to ensure
that there are suitable fixes for these scenarios for better performance. Specifically, the direction
along of the penalized loss function, −∇g(·) should be a descent direction and that we shouldn’t
stop at points where∇g(·) = 0 but ∇f(·) ̸= 0 as discussed in Lemma 1.

Another downfall with EGR is that it requires hessian evaluation for each mini-batch while training.
This might become a costly operation for bigger models and hence some approximation of the
hessian should be used. Another thing we observe from the experimental results for CGD-FD, is
that the improvment through optimizing the regularized function is mostly only during the initial
steps. Hence, one should only use EGR for some initial steps to reach a good-enough starting point
while not exhausting the budget for gradient evaluations.

6 FUTURE WORKS

In this work, we considered a new line swarch method that penalizes the norm of the gradient and
provides iterates that have lower gradient norm compared to vanilla gradient descent. We identify
properties of this algorithm, provide a varient that does not require Hessian and illustrate connections
to the widely popular explicit gradient regularization literature.

There are several future directions arising from this work. We would like to investigate in greater
detail the role of different penalty functions and norms beyond L2. We would like to investigate
applications of this method in more diverse settings like reinforcement learning and even Bayesian
optimization. We hope this work sputters more discussions on gradient regularization helping in
neural network generalization.

REFERENCES

David G. T. Barrett and Benoit Dherin. Implicit gradient regularization, 2022. URL https:
//arxiv.org/abs/2009.11162.

9

https://arxiv.org/abs/2009.11162
https://arxiv.org/abs/2009.11162

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradi-
ent descent into wide valleys, April 2017. URL http://arxiv.org/abs/1611.01838.
arXiv:1611.01838 [cs, stat].

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 23439–23451. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/948b1c9d660d7286dd767cd07dabd487-Paper-Conference.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Flat Minima. Neural Computation, 9(1):1–42, 01
1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.1.1. URL https://doi.org/10.1162/
neco.1997.9.1.1.

Ryo Karakida, Tomoumi Takase, Tomohiro Hayase, and Kazuki Osawa. Understanding gradient
regularization in deep learning: Efficient finite-difference computation and implicit bias. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 15809–15827. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/karakida23a.html.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima, Febru-
ary 2017. URL http://arxiv.org/abs/1609.04836.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring general-
ization in deep learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf.

Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, 2nd edition, 2006.

Barak A. Pearlmutter. Fast Exact Multiplication by the Hessian. Neural Computation, 6(1):147–
160, 01 1994. ISSN 0899-7667. doi: 10.1162/neco.1994.6.1.147. URL https://doi.org/
10.1162/neco.1994.6.1.147.

Samuel L. Smith, Benoit Dherin, David G. T. Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent, 2021. URL https://arxiv.org/abs/2101.
12176.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving gener-
alization in deep learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 26982–26992. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/zhao22i.html.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training, 2022. URL https://arxiv.org/abs/2203.08065.

10

http://arxiv.org/abs/1611.01838
https://proceedings.neurips.cc/paper_files/paper/2022/file/948b1c9d660d7286dd767cd07dabd487-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/948b1c9d660d7286dd767cd07dabd487-Paper-Conference.pdf
https://doi.org/10.1162/neco.1997.9.1.1
https://doi.org/10.1162/neco.1997.9.1.1
https://proceedings.mlr.press/v202/karakida23a.html
http://arxiv.org/abs/1609.04836
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://arxiv.org/abs/2101.12176
https://arxiv.org/abs/2101.12176
https://proceedings.mlr.press/v162/zhao22i.html
https://arxiv.org/abs/2203.08065

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A Lp-NORM GRADIENT PENALTY

Lemma 2. For the modified functions gp(x) and ĝp(x) defined in Equations 6 and 7, the gradients
are given as follows:

∇gp(x) = ∇f(x) +
λ

∥∇f(x)∥p−1
p

H(x)
(
∇f(x)⊙ abs (∇f(x))p−2

)
∇ĝp(x) = ∇f(x) + λpH(x)

(
∇f(x)⊙ abs (∇f(x))p−2

)
where ⊙ is element-wise product of vectors and abs is element-wise absolute | · | of the vector.

Proof. We know that Lp-norm of x is ∥x∥p = (
∑

i |xi|p)1/p. We first find∇∥x∥p. For some xk:

∂∥x∥p
∂xk

=
1

p

(∑
i

|xi|p
) 1

p−1
∂

∂xk

{∑
i

|xi|p
}

=
1

p

(∑
i

|xi|p
) 1

p−1(∑
i

∂|xi|p
∂xk

)

=
1

p

(∑
i

|xi|p
) 1

p−1(∑
i

p|xi|p−1 ∂|xi|
∂xk

)

=

(∑
i

|xi|p
) 1

p−1(∑
i

|xi|p−1 xi

|xi|
∂xi

∂xk

)

=

(∑
i

|xi|p
) 1−p

p
(∑

i

xi|xi|p−2 ∂xi

∂xk

)

= ∥x∥1−p
p

(∑
i

xi|xi|p−2 ∂xi

∂xk

)
or

1

∥x∥p−1
p

(∑
i

xi|xi|p−2 ∂xi

∂xk

)

Using this result we can obtain∇∥∇f(x)∥p by chain rule. Note that∇f ≜ ∇f(x) in the following
expressions:

∇∥∇f∥p =
1

∥∇f∥p−1
p


∑

i
∂f
∂xi

∣∣∣ ∂f∂xi

∣∣∣p−2
∂2f

∂xi∂x1

...∑
i

∂f
∂xi

∣∣∣ ∂f∂xi

∣∣∣p−2
∂2f

∂xi∂xn



=
1

∥∇f∥p−1
p


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

...
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

. . . ∂2f
∂x2

n




∂f
∂x1

∣∣∣ ∂f
∂x1

∣∣∣p−2

...
∂f
∂xn

∣∣∣ ∂f
∂xn

∣∣∣p−2


=⇒ ∇∥∇f(x)∥p =

1

∥∇f∥p−1
p

H(x)
(
∇f(x)⊙ abs (∇f(x))p−2

)
(11)

We use the expression obtained in Equation 11 in computing derivative of gp(x) and ĝp(x) (through
chain-rule) as follows:

∇gp(x) = ∇f(x) + λ∇∥∇f(x)∥p, and

∇ĝp(x) = ∇f(x) + λp∥∇f(x)∥p−1
p ∇∥∇f(x)∥p.

which on expansion proves the lemma.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Corollary 1 (CGD with L1-norm). Consider modified loss functions g1(x) and ĝ1(x) (as stated in
Equations 6 and 7) that use L1-norm gradient penalty. Then,

∇g1(x) = ∇ĝ1(x) = ∇f(x) + λH(x) sign(∇f(x))
Corollary 2 (CGD with L2-norm). Similarly, g2(x) and ĝ2(x) with L2-norm gradient penalty have
the following gradients:

∇g2(x) = ∇f(x) +
λ

∥∇f(x)∥H(x)∇f(x)

∇ĝ2(x) = ∇f(x) + 2λH(x)∇f(x)

B EXPERIMENTAL RESULTS

The functions used for the experiments are given as follows:

• Quadratic Function (dimensions n)

f(x) =
1

2
xTAx− bTx+ c

where A is a positive-definite matrix, b is any vector. x∗ = A−1b and f∗ = f(x∗). In our
experiments, we generate A randomly as follows:

A =
1

2
(U + UT) + nIn

where U ∼ U [0, 1]n×n, a matrix where all values are uniformly sampled from the interval
[0, 1]. We take b = [1, 2, . . . , n]T and c = 0.5.

• Rotated hyper-ellipsoid Function (dimensions n)

f(x) =

n∑
i=1

i∑
j=1

x2
j

f∗ = 0 at x∗ = 0n.
• Matyas Function (dimensions n = 2)

f(x) = 0.26(x2
1 + x2

2)− 0.48x1x2

f∗ = 0 at x∗ = 0n.
• Branin Function (dimensions n = 2)

f(x) =

(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cosx1 + 10

f∗ = 0.397887 at x∗ = [−π, 12.275]T , [π, 2.275]T , [9.42478, 2.475]T .
• Levy Function (dimensions n)

f(x) = sin2(πw1) +

n−1∑
i=1

(wi − 1)2(1 + 10 sin2(πwi + 1)) + (wn − 1)2(1 + sin2(2πwn))

where wi = 1 + (xi − 1)/4 for all i. f∗ = 0 at x∗ = (1, . . . , 1).
• Griewank Function (dimensions n)

f(x) =

n∑
i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
+ 1

f∗ = 0 at x∗ = 0n.

12

	Introduction
	Notation and Preliminaries
	Line-Search Methods

	Constrained Gradient descent
	CGD-FD: Finite difference approximation of the Hessian

	Numerical Experiments
	Explicit Gradient Regularization (EGR)
	Future Works
	Lp-norm Gradient Penalty
	Experimental Results

