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Abstract

We introduce a novel representation of monotone set functions called Extended Deep Sub-
modular functions (EDSFs), which are neural network-representable. EDSFs serve as an
extension of Deep Submodular Functions (DSFs), inheriting crucial properties from DSFs
while addressing innate limitations. It is known that DSFs can represent a limiting subset
of submodular functions. In contrast, we establish that EDSFs possess the capability to
represent all monotone submodular functions, a notable enhancement compared to DSFs.
Furthermore, our findings demonstrate that EDSFs can represent any monotone set function,
indicating the family of EDSFs is equivalent to the family of all monotone set functions.
Additionally, we prove that EDSFs maintain the concavity inherent in DSFs when the com-
ponents of the input vector are non-negative real numbers—an essential feature in certain
combinatorial optimization problems. Through extensive experiments, we demonstrate that
EDSFs exhibit significantly lower empirical generalization error in representing and learning
coverage and cut functions compared to existing baselines, such as DSFs, Deep Sets, and Set
Transformers.

1 Introduction

Submodular functions have found extensive applications in various fields of study, including modeling influence
in social networks Kempe et al. (2003), energy functions in probabilistic models Gillenwater et al. (2012),
and clustering Narasimhan et al. (2005). In particular in economics, a wide range of scenarios incorporate
the concept of diminishing marginal return, where acquiring more goods results in diminishing the overall
satisfaction or the so-called “utility” McLaughlin & Chernew (2001); Kimball et al. (2024).

There are several challenges associated with the widespread use of these functions in recent machine learning
applications. To improve the modeling of submodular functions in these applications, efforts have been made
to represent submodular functions using differentiable functions, such as neural networks. This representation
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enables the solution of key submodular optimization problems through the utilization of gradient-based
methods and convex optimization. To illustrate this, suppose we want to maximize a submodular function f
under certain constraints. In the exhaustive-search approach, we would have to check all 2n subsets, which is
exponential in the size of the ground set S. However, with a differentiable representation of f , we can utilize
first-order information of the function, such as gradients, and project onto the constraint set to solve the
optimization problem more efficiently.

There have been previous efforts to represent submodular functions using neural networks. For instance,
in Bilmes & Bai (2017), the authors introduced a neural network architecture called Deep Submodular
Functions (DSFs), consisting of feedforward layers with non-negative weights and normalized non-decreasing
concave activation functions. Functions in this class exhibit interesting properties, such as the concavity of
the function when the components of the input vector are all non-negative real numbers. By increasing the
number of layers in the DSFs architecture, the family expands, indicating that there are functions in DSFs
with n+ 1 layers that are not present in DSFs with n layers. However, as stated by the authors, DSFs cannot
represent all monotone submodular functions, which highly restricts their applicability to many machine
learning problems.

In this paper, we introduce a novel neural network architecture, called Extended Deep Submodular Functions
(EDSFs), which not only have the capability to represent any monotone submodular functions but can
also represent any monotone set functions. Moreover, same as in DSFs, when the components of the input
vector are all non-negative real numbers, EDSFs are concave, an important feature applicable in various
combinatorial optimization settings. In addition, our experiments demonstrate that EDSFs are able to learn
one of the most complicated monotone submodular functions, i.e., coverage functions, with significantly lower
empirical generalization error compared to DSFs. We define EDSFs as the minimum of r DSFs. Although in
our proofs, exponential number of DSFs are needed to represent any monotone submodular function, in our
experiments we observed that we can learn coverage functions and monotone cut functions using much fewer
DSFs1.

The rest of the paper is organized as follows: In Section 2, we formally define DSFs and state some of their
important properties. In Section 3, we introduce our augmented architecture to represent all monotone
(submodular) set functions and provide a proof. In Section 4, we demonstrate the superior performance of
EDSFs in learning coverage functions through numerical evaluations.

1.1 Related Works

The exploration of neural networks for modeling submodular functions is relatively sparse in the existing
literature. A notable contribution is the introduction of DSFs Bilmes & Bai (2017); Dolhansky & Bilmes
(2016). Building on this work, the authors in Bai et al. (2018) address the maximization of DSFs under
matroid constraints, using gradient-based methods to solve the optimization problem. Their work provides
theoretical guarantees, establishing a suitable approximation factor given the problem’s constraints. More
recently, a novel architectural approach has been proposed in De & Chakrabarti (2022), which not only
preserves submodularity but also extends its applicability to a more generalized form, accommodating
α-submodular functions. This signifies a notable advancement in the landscape of neural network-based
modeling of submodular functions, expanding the scope of potential applications and providing a platform
for exploring more nuanced and versatile representations within this domain. There are other works that
attempt to represent monotone set functions using neural networks. For example, in Weissteiner et al. (2021),
the authors introduce a neural network architecture that represents all monotone set functions and explore
their use in designing auctions.

Authors in Zaheer et al. (2017) introduces Deepsets, a method for learning permutation-invariant set functions,
offering a flexible architecture that can handle set-based tasks. While their work provides a powerful way to
model general set functions, they do not explicitly address the estimation of submodular functions, which
require handling the diminishing returns property. This limits its direct applicability to submodular function
estimation, as their focus is more on tasks like point cloud classification and set expansion rather than
optimizing or estimating submodular structures. Inspired by this work, Lee et al. (2019) introduces the Set

1All of the codes associated with experiments are available at https://github.com/semohosseini/comb-auction
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Transformer, an attention-based neural network architecture designed for processing set-structured data.
While the authors demonstrate its effectiveness on various set-input tasks, its performance was not specifically
evaluated on estimating set functions such as submodular functions. Wagstaff et al. (2019) talks more about
the theoretical side of works like Deepsets and Set Transformer, providing insights into the limitations of
representing permutation-invariant functions on sets. While their work doesn’t specifically address submodular
functions, it provides a general framework for understanding the representational power of neural networks
on set-structured data. However, their focus is primarily on theoretical limitations rather than practical
algorithms for learning specific classes of set functions, leaving open questions about how these insights
translate to the efficient learning of submodular functions in particular.

One of the works related to learning general submodular functions is Feldman & Vondrák (2016). The
authors prove tight bounds on approximating submodular functions by juntas, showing that any submodular
function can be ϵ-approximated by an O( 1

ϵ2 log 1
ϵ )-junta. Although their work gives a good insight into

learning submodular functions, it mainly focuses on the theoretical existence of these estimators and
doesn’t fully provide a practical way of learning them. The authors in Balcan & Harvey (2018) investigate
submodular functions from a learning theory perspective, developing algorithms for learning these functions
and establishing lower bounds on their learnability. Moreover, the authors in Feldman & Kothari (2014)
attempt to approximate and learn coverage functions in polynomial time.

There are some works that talk about the combinatorial and submodular optimization. For example, Sakaue
(2021) introduces a differentiable version of the greedy algorithm for monotone submodular maximization,
called Smoothed Greedy. One of the strengths of this work is that it maintains theoretical guarantees similar
to the original greedy algorithm Vondrak (2008) while enabling gradient-based learning. However, they work
doesn’t directly address the estimation of submodular functions and only focusing on maximizing a (given)
single submodular function. In our work we aim to estimate any given submodular function and use this
estimation for downstream tasks related to submodular maximization such as social welfare maximization. in
another work, Wilder et al. (2019) introduces a framework called ’decision-focused learning’ that aims to
bridge the gap between predictive models and combinatorial optimization. Their approach involves end-to-end
training of machine learning models to directly optimize decision quality, rather than prediction accuracy.
However, in their work, the target function can be described by an unknown parameter and the aim is to
perform optimization and learning together, whereas our work aims to learn the submodular function itself
from data.

Lin & Bilmes (2012) introduces the concept of submodular shell mixtures for learning submodular functions in
a structured prediction setting. While proposed method achieves strong results in document summarization,
it reliance on predefined shell and approximate inference may restrict the class of learnable functions. These
limitations highlight the ongoing challenges in developing versatile methods for learning submodular functions.

2 Background

For a ground set S, any function f : 2S → R is referred to as a set function. Below, we present the definitions
of essential concepts needed for the remainder of the discussion.
Definition 2.1. (Monotone Set Function) A set function f : 2S → R+ is called a monotone set function if
for any A ⊆ B ⊆ S we have,

f(A) ≤ f(B). (1)

Definition 2.2. (Normalized Set Function) A set function f : 2S → R+ is called a normalized set function if
we have,

f(∅) = 0. (2)

Definition 2.3. (Modular Function) A function m : 2S → R+ is called a modular function if we have,

∀A ⊆ S : m(A) =
∑
a∈A

m(a). (3)

Now, we can formally define submodular functions as follows.
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Definition 2.4. (Submodular Function) A function f : 2S → R, where S is a finite set, is submodular if for
any A ⊆ B ⊆ S and v /∈ B, we have,

f(A ∪ v) − f(A) ≥ f(B ∪ v) − f(B). (4)

In the remainder of the paper, without loss of generality, we will focus on normalized monotone set/submodular
functions. If the function is not normalized, we can simply subtract the value of f(∅) from the function so as
to make it normalized. Note that this transformation also maintains the submodularity of the function.
Definition 2.5. (Sum of Concave Composed with Modular Functions Bilmes & Bai (2017)) Assume a finite
set S (nodes or input features) with cardinality n. Given a set of m1,m2, . . . ,mk (mi : 2S → R+) modular
functions and ϕ1, ϕ2, . . . , ϕk (ϕi : R+ → R+) being their corresponding non-negative, non-decreasing,
normalized (i.e., ϕi(0) = 0,∀i), concave functions, and an arbitrary modular function m± : 2S → R, the
SCMM, g : 2S → R, derived by these functions is defined as,

g(A) =
k∑

i=1
ϕi(mi(A)) +m±(A). (5)

In the rest of the paper, since we only consider the monotone set functions, we pull our attention into “monotone”
SCMMs, which the range of modular functions is only the positive real values, namely, m± : 2S → R+.

Based upon recent developments, it has been discovered that the aforementioned functions given in Equation 5
exhibit inherent submodular characteristics Bilmes & Bai (2017). Looking ahead, we can view these functions
as a single-layer neural networks equipped with nonlinear activation functions that exhibit concavity properties,
similar to a linear mixture of inputs followed by a stepwise activation function such as ReLU (Rectified Linear
Unit) after computing the overall output values.

By employing this insight, we can expand the horizons of submodular functions by leveraging them across
multiple tiers. We now introduce a pivotal concept that facilitates the utilization of advanced artificial
intelligence tools, specifically deep learning.
Definition 2.6. (Deep Submodular Function Bilmes & Bai (2017)2) Assume we intend to define L (i.e.,
depth of the network) layer DSF. If L = 1 we use an SCMM (without last summation). Therefore, in
this case we have a single-layer n× k network (with non-negative weights) with submodular outputs. For
L = l > 1 we first assume the output of l − 1 layers as a given n× k DSF. Let’s denote the output nodes of
the given DSF by B = {φ1, φ2, . . . , φk}. Now we want to add one layer at the end of the given DSF. We
append a k×m fully connected layer with non-negative weights and corresponding normalized non-decreasing
concave functions ϕ1, ϕ2, . . . , ϕm for each newly added node. Then we define the outputs of the network as
C = {ψ1, ψ2, . . . , ψm}

∀v ∈ C : ψv = ϕv

 ∑
u∈[k]

wuvφu

 + bv, (6)

and bv ∈ R+ is a bias parameter of the node. In this scheme, we have new layer added to the DSF. Therefore,
we introduced a n×m DSF with L = l layers. As an example, a 3-layer DSF is shown in Figure 1.

With this understanding, one can guarantee that the outcome of this architecture forms a submodular
function, as it is shown in Bilmes & Bai (2017). An established finding regarding SCMMs states that any
SCMM employing an arbitrary activation function can be represented as a two-layer SCMM with only the
min activation function Bilmes & Bai (2017).

Despite these findings, there exist notable limitations when it comes to DSFs. While DSFs possess a range of
capabilities, they are unable to encompass all submodular functions. This implies that there will always be
submodular functions that cannot be represented using any number of layers in DSFs Bilmes & Bai (2017).
To address this limitation, in Section 3, we extend DSFs by adding a limited number of components in the
network architecture to represent all submodular functions.

2Here, we only focus on the monotone DSFs, so we have omitted the modular term in the original definition of DSFs.
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Figure 1: SCMM Architecture. Input vector of the network is a 0-1 vector representing the corresponding
subset of the ground set S.

Figure 2: Polymatroid corresponding to the example function with a ground set of size 2.

In the following, we point out certain fundamental concepts in combinatorial optimization that will be
employed throughout the remainder of the paper. We commence with an exploration of polymatroids.

Definition 2.7. (Polymatroid) Consider a finite set S with |S| = s and a submodular function f : 2S → R
defined on S. A polymatroid corresponding to f , denoted by Pf , is defined as,

Pf = {x ∈ Rs : ∀A ⊆ S : x(A) ≤ f(A),x ⪰ 0} , (7)

where x(A) :=
∑

i∈A xi.

Example 2.8. As an example of polymatroids, we can consider the set function f : 2{1,2} → R+ where
f({1}) = 10, f({2}) = 8, and f({1, 2}) = 12. which the corresponding polymatroid is shown in Figure 2.

The following lemma describes an important property of the polymatroids corresponding to submodular
functions.
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Figure 3: Example of coverage function with universe size 10, ground set of size 4, and with uniform weight
of 1.

Lemma 2.9. (Goemans et al. (2009)) For a polymatroid Pf corresponding to a monotone submodular
function f , we have

∀A ⊆ S : f(A) = sup
x∈Pf

x(A). (8)

We also define the following important submodular problem which we need later in our experiments.

Definition 2.10. (Submodular Welfare Maximization) For a collection of n users with v1, v2, . . . , vn : 2S → R
as their (estimated) submodular valuation functions on each subset of the finite set S with |S| = s, the
submodular welfare maximization problem aims to maximize the social welfare function, i.e., the sum of all
valuation functions when we partitioned set of items S and assigned to the users, and is formally defined as

max
Si,i=1,...n

n∑
i=1

vi(Si),

s.t. Si ⊆ S, (9)
n⋃

i=1
Si = S, ∀i, j : Si ∩ Sj = ∅.

Moreover, for any partition A = {S1, S2, . . . , Sn} of the ground set S to users, we define its efficiency as,

Eff(A) :=
∑

i vi(Si)∑
i vi(S∗

i ) (10)

where OPT := {S∗
1 , S

∗
2 , . . . , S

∗
n} is the optimal partition.

Furthermore, in our experimental results, we will employ Coverage Functions, defined as follows.

Definition 2.11. (Coverage Function) A function c : 2[n] → R+ is a coverage function, if there exists a
universe U with non-negative weights w(u) for each u ∈ U and subsets A1, A2, . . . , An of U such that for any
B ⊆ [n] we have c(B) =

∑
u∈∪i∈BAi

w(u).

Example 2.12. As an example of the coverage function, for a ground set of size 4, we illustrate the coverage
function with universe size 10 and with uniform weight of 1 for all of the elements in the Figure 3. In this
example we have f({1, 3}) = 7 and f{3, 4}) = 8.

Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunc-
tions. There are a natural subclass of submodular functions and arise in a number of applications Feldman &
Kothari (2014).
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3 Extended Deep Submodular Functions

3.1 Architecture Definition

Formally, we define Extended Deep Submodular Function as follows.
Definition 3.1. A set function h is an EDSF if it can be represented as the minimum of r Deep Submodular
Functions f1, f2, . . . , fr, where r is an arbitary number, namely,

h(A) = min {f1(A), f2(A), . . . , fr(A)} , ∀A ⊆ S. (11)

In the rest of this section, we aim to demonstrate that we can represent any monotone submodular function
f using some g ∈ EDSFs. The idea behind the proof is to leverage the relationship between the minimum of
submodular functions and the intersection of their polymatroids. The main result of this paper is summarized
in the following theorem.
Theorem 3.2. Family of monotone set functions is exactly equal to the family of Extended Deep Submodular
functions (EDSFs).

In the following, we will go to prove this result step by step. First, we assume that a submodular function
f : 2S → R is given. For convenience, we use these notations to simplify our discussion.
Definition 3.3. We define:

1. cA = f(A), and for all j ∈ S we denote cj = f({j}).

2. a polytope LA for all A ⊆ S as

LA = {x ∈ Rn : x ⪰ 0,x(A) ≤ cA,∀j /∈ A : xj ≤ cj} . (12)

3. for any A ⊆ S and B ⊆ S the submodular function

gA(B) = min

 ∑
j∈A∩B

wj , cA

 +
∑

k∈B\A

wk, (13)

where wj = cA for any j ∈ A and wj = cj for any j /∈ A, and wj represents the corresponding weight
of some neural network.

Using these definitions, in the first step, we will show that each gA can be represented using a simply two-layer
DSF.
Lemma 3.4. For any A ⊆ S, we can design a two-layer DSF that represents the gA function, therefore the
gA function is a submodular function.

Proof. To represent the function gA using a DSF, we have constructed a network architecture as illustrated
in Figure 4. This architecture comprises only two layers. The first layer contains two nodes, one of which
employs the minimum function as its activation layer. The second layer consists of a single output node
responsible for computing the sum of the inputs.

All edges connected to the lower node possess a weight of cA. Conversely, each edge linked to the upper node
bears a weight corresponding to the value cj , specifically f(j) according to the definition.

In this manner, we have introduced the network as a two-layer DSF

gA(B) = min

 ∑
j∈A∩B

wj , cA

 +
∑

k∈B\A

wk (14)

With this, we conclude our proof.

We next introduce a useful lemma.
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Figure 4: The simple architecture for the representation of gA as a DSF. The input of the network is a
0-1 vector corresponding to the subset B. The subset B could have non-empty intersection with subset
A = {a1, . . . , ak} and S \A = {j1, . . . , jn−k}.

Lemma 3.5. For any A ⊆ S, we have
PgA

= LA. (15)

Proof. To show the equality of two aforementioned sets, we first show PgA
⊆ LA, then we show LA ⊆ PgA

,
which completes the proof.

For the first part, for any x ∈ PgA
, we have for all B ⊆ S, x(B) ≤ gA(B), therefore, for any B ⊆ A, we have

x(B) ≤ cA, in fact in this scenario gA(B) = 0 or cA, that implies x(A) ≤ cA. Furthermore, for any j /∈ A
we have xj ≤ f(j) = cj . Therefore, each point in the polymatroid has the conditions to be in the LA, that
means, x ∈ LA.

For the reverse part, for any x ∈ LA, we have x(A) ≤ cA, which implies that ∀B ⊆ A,B ̸= ∅, x(B) ≤ cA =
gA(B). For any one-member subset of S, for example B = {j}, j /∈ A we have xj ≤ cj = gA(B). Furthermore,
for any arbitrary B ⊆ S, we could write B = (A ∩B) ∪ (B \A). We have two cases,

1. (A ∩B) = ∅

=⇒ x(B) =
∑

j∈B\A

xj ≤
∑

j∈B\A

cj = gA(B)

2. (A ∩B) ̸= ∅

=⇒ x(B) ≤ cA +
∑

j∈B\A

xj ≤ cA +
∑

j∈B\A

cj = gA(B).

It shows that for all B ⊆ S we have: x(B) ≤ gA(B) =⇒ x ∈ PgA
. Therefore, the second part is now obvious,

namely, LA ⊆ PgA
. Hence, {

PgA
⊆ LA

LA ⊆ PgA

=⇒ LA = PgA
, (16)

8



which completes the proof.

For the next step, we introduce the next lemma.

Lemma 3.6. For a given submodular function f , we have:⋂
A⊆S

LA = Pf . (17)

Proof. Similar to the proof of Lemma 3.5, we first show that
⋂

A⊆S LA ⊆ Pf , then we will prove Pf ⊆⋂
A⊆S LA.

For the first part, for any x ∈
⋂

A⊆S LA we have

∀A ⊆ S : x ∈ LA =⇒ x(A) ≤ cA =⇒ x ∈ Pf . (18)

Therefore, we have shown that
⋂

A⊆S LA ⊆ Pf . For the reverse direction, for any x ∈ Pf , we can write

∀A ⊆ S =⇒

{
x(A) ≤ f(A) = cA

∀j /∈ A : xj ≤ f({j}) = cj

=⇒ x ∈ LA. (19)

Therefore, we have shown that Pf ⊆
⋂

A⊆S LA. Combining these two parts completes our proof, namely, we
have shown that

⋂
A⊆S LA = Pf .

For the next step, we need to present the following lemma.

Lemma 3.7. For a given set f1, f2, . . . , fr of submodular functions, if the function h = min(f1, f2, . . . , fr) is
submodular, for the polymatroid of the function h, we have

Ph =
⋂

i=1,...,r

Pfi
. (20)

Proof. To prove the lemma we proceed as follows.

x ∈ Ph ⇐⇒ ∀A ⊆ S : x(A) ≤ h(A)
⇐⇒ ∀A ⊆ S : ∀i : x(A) ≤ fi(A)

⇐⇒ ∀i : x ∈ Pfi
⇐⇒ x ∈

⋂
i=1,...,r

Pfi
.

In the next step, we introduce a new component to the DSF architecture to maintain the polymatroid
corresponding to the output function to be the intersection of the polymatroids corresponding to the input
functions. The proposed component is called Min-Component, as defined below.

Definition 3.8. (Min-Component) A Min-Component in the neural network, is a component (node) in which
it brings the minimum of the inputs as the output of the node.

Incorporating this component into DSF, enhances its capability of representing submodular functions
effectively.

In general, note that the min operator does not maintain the submodularity of the input functions. However,
during the proof of the Theorem 3.9, we have used some techniques to assure that the output function would
be submodular, as it can be seen in the following.

Moving towards the last stage, we present an architecture that is built upon the provided submodular function.
In the initial layers, for any subset Ai ⊆ S, we have crafted the functions gAi

using the architecture outlined
in Figure 4. Subsequently, we applied a min-component to all of these constructed gAi functions, resulting in
a composite function denoted as g. Therefore, the corresponding EDSF is generated.

9



In the following theorem3, we establish that the function g can precisely represents the original submodular
function f .

Theorem 3.9. Let M = {A1, A2, . . . , A2n} = 2S represents all of the subsets of ground set S. The function
g = min{gA1 , gA2 , . . . , gA2n } exactly represents the function f . In other words

∀A ⊆ S : g(A) = f(A). (21)

Proof. Utilizing lemmas 3.5, 3.6, and 3.7, we can deduce that the polymatroid associated with the function g
is precisely identical to the polymatroid of the function f : Pg = Pf . However, it’s worth noting that the
function g may belong to a broader category of functions than just submodular functions.

Based on lemma 2.9, we know that there exists some x∗ such that x∗ = argmax
x∈Pf

x(A) and x∗(A) = f(A).

Now suppose that f(A) > g(A). We can write{
x∗ ∈ P = Pf = Pg

x∗(A) = f(A)
=⇒ x∗(A) = f(A) > g(A)

=⇒ x∗ /∈ Pg =⇒ x∗ /∈ Pf . (22)

That is a contradiction, so for any set A ⊆ S we have g(A) ≥ f(A).

Furthermore, we can write {
g(A) = minB⊆S {gB(A)}
gA(A) = cA = f(A)

=⇒ g(A) ≤ f(A). (23)

Combining these two results, it is clear that for any A ⊆ S we have g(A) = f(A).

Up to here, we have proved that all the monotone submodular functions can be represented by an EDSF
function. In the remaining of this section, we will prove that this result also holds for the family of all
monotone set functions.

Lemma 3.10. For any EDSF function f , f is monotone.

Proof. The proof is straightforward, as all the weights used in construction of any EDSF is non-negative (all
the constructing DSFs are monotone). All other functions that used in the construction of any EDSF such as
min function are all monotone functions.

Next we prove the final result.

Theorem 3.11. For any monotone set function f , there exists an EDSF g, such that f = g.

Proof. Consider any monotone set function f . For any B ⊆ S we define gB as follows

gB(A) = min

 ∑
j∈A∩B

f(B), f(B)

 +
∑

k∈A\B

w∗ (24)

where w∗ = f(S), which is the maximum value function f can take (because f is monotone). Now we define
function g as follows:

g(A) = min
B⊆S

{gB(A)} . (25)

3Refer to Remark 5.2 for more discussion about Theorem 3.9. Moreover, in the review process, a simpler proof was also
suggested by the anonymous reviewer, which for the sake of completeness have been presented in Appendix C.
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For any A ⊆ S we can see that gB(A) = f(A) if B = A. Now suppose B ≠ A. If A \B ̸= ∅, gB(A) ≥ f(S) ≥
f(A), because of monotonicity. On the other hand if A \B = ∅ we know that A ⊆ B. In this case we have
gB(A) = f(B) ≥ f(A) , because of monotonicity. Hence we can see that gA(A) ≤ gB(A) for any B ⊆ S.
Therefore, g(A) = f(A) for all A ⊆ S.

Based on the above results, we can conclude Theorem 3.2.

Although in our proofs we use exponential r (number of DSFs), we observe in our experiments that in practice
using much fewer DSFs is sufficient to learn coverage and monotone cut functions effectively.

3.2 Concavity of EDSFs

We can also show that any g ∈ EDSFs is concave, if the input vector components are all non-negative real
numbers, as stated in the following theorem.

Theorem 3.12. Given g ∈ EDSFs, g is a concave function with respect to the input vector, if the input
vector components are all non-negative real numbers.

Proof. Since all the DSF functions are concave in this setting Bai et al. (2018) (See Corollary 1), and g is
the minimum of a number of DSFs and we know that minimum of concave functions are concave, we can
conclude that g is also concave.

We can exploit the above-mentioned property to solve certain combinatorial optimization problems, such as
the social welfare maximization problem, using gradient-based methods in an efficient manner. This provides
a powerful tool to handle some combinatorial problems. Applications in this context are discussed in Section
44.

4 Experimental Results

In the following section, we showcase a series of experiments aimed to demonstrating the positive outcomes
and advantages derived from the application of Extended Deep Submodular Functions (EDSFs) in the
modeling of submodular functions. Additionally, we highlight their efficacy in efficiently addressing and
solving various combinatorial optimization problems. Through these experiments, we aim to provide a
clear and comprehensive understanding of how EDSFs contribute to improved outcomes in the domain of
submodular function modeling and the optimization of complex combinatorial scenarios.

4.1 Learning Coverage Functions

As outlined in Section 2, coverage functions constitute a crucial and intricate subset of monotone submodular
functions, posing challenges in accurate learning from their instances.

Our experimental findings indicate that, in contrast to Deep Submodular Functions (DSFs), Extended Deep
Submodular Functions (EDSFs) shown to be effective in efficiently learning these complex functions, exhibiting
much lower empirical generalization error, compared to DSFs.

To perform our experiments, from each coverage function (defined in Definition 2.11), we generate a random
dataset D = (Xi, yi)d

i=1 where Xi is a random subset from the ground set S, and yi is the value of the
coverage function. To create a coverage function for our experiments, we define the universe size, the number
of items (subsets), and the probability that each element in the universe independently belongs to each subset.
Additionally, the weights in the coverage function are kept constant with a value of 1. For each experiment
we generate a dataset, allocating 80% for training and 20% for testing.

The learning setup for all experiments in this section is the same. The optimizer used is Adam with a
learning rate of 0.01. Each model is trained on a dataset of 1024 samples for 10,000 epochs. The employed

4Note that in all the problems described later in the paper, a set function is involved where the input is determined by a
binary vector. Therefore, Theorem 3.12 can be applied.
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cost function is the L1-loss function. Additionally, the weights for all EDSF and DSF neural networks are
initialized using a Gaussian distribution with a mean of 0 and a variance of 0.01

In our first experiment, both an EDSF and DSF were trained to learn a coverage function with a universe
size of 100, 16 subsets (items), and probability of 0.2. The architectures of the EDSF and DSF are quite
similar, with the main difference being the min-component at the end of the EDSF. Each model consists
of three fully-connected layers with 64 neurons, using ϕ(x) = min(α, x) (a minimum linear unit) as the
activation function, where α = 95. Additionally, we compared the performance of EDSF against other
baselines, including the methods of Zaheer et al. (2017) and Lee et al. (2019), in learning the target coverage
function. The neural networks were trained using the setup described above. Table 1 presents the train and
test losses for each model, showing the mean and standard deviation across 20 runs. As shown, the EDSF
demonstrates a significant improvement over the other baselines.

Learning Coverage Function Experiment
EDSF DSF

Train Test Train Test
mean std mean std mean std mean std
1.239 0.162 1.344 0.192 34.108 0.786 34.252 1.156

Deep Sets Set Transformer
Train Test Train Test

mean std mean std mean std mean std
17.916 0.717 17.525 1.429 18.045 0.590 17.617 1.273

Table 1: Learning coverage function with universe size of 100, probability 0.2, and 16 items. The optimizer is
Adam and learning rate is 0.01, using L1-Loss function to optimize. Experiments conducted on EDSF, DSF,
Deep Sets, and Set Transformers. The value of L1-Loss function at the end of training and testing reported.

Additionally, the loss functions and outputs of the EDSFs and DSFs in learning coverage functions are
shown in Appendix A, Figures 5-10. As observed, the DSFs were unsuccessful in these scenarios, with
outputs remaining constant—likely due to the complexity of the coverage function. In contrast, the EDSFs
demonstrated robust generalization, closely following the pattern of the target coverage function with low
error, thus showcasing their superior performance in this experimental context.

Building on our first experiment, we tested various architectures for DSFs, and the training results were
significantly worse than the above EDSF’s results, as shown below:

1. 5 hidden layers with 64 neurons each, alpha set to 95: test loss is 84.3058

2. 4 hidden layers with 64 neurons each, alpha set to 125: test loss is 84.7727

3. 5 hidden layers with respectively 32, 64, 128, 64, and 32 neurons, alpha set to 400: test loss is 81.4188

These experimental results demonstrate the superiority of EDSF compared to DSF in learning the coverage
functions. Additional DSF architectures (including larger ones) were also tested, and the corresponding plots
are presented in Appendix A, Figures 11 and 12.

At the end of our first set of experiments, we conducted additional tests to examine the effects of various
activation functions on the performance of DSFs during training. We tested three activation functions:

1. a(x) = log(1 + x)

2. a(x) = tanh(x)

3. a(x) = σ(x) − 0.5

The resulting plots for the loss functions, training, and testing performance are provided in Appendix A,
Figures 13-15. As shown, none of these activation functions improved DSF performance in learning the
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coverage function. Additionally, as discussed in Section 5, Remark 5.4, the only effective activation function
for training EDSFs is MiLU, while none of these activation functions performed well when learning the
coverage function with EDSFs.

In our second experiment, we tested different values of r, the number of DSFs used before the min function, to
examine the effect of the EDSF network size on the generalization error of the training. The target function
is a coverage function with a universe size of 500, 16 items, and a probability of 0.2. All experimental setups
are the same as in our first experiment, with the only difference being the last layer, which now reflects the
value of r, meaning that our EDSF has 4 layers with 64, 64, 64, and r neurons, respectively. Table 2 presents
the test loss for various values of r, showing the mean and standard deviation across 20 runs.

Further details about all the experiments can be found in Appendix A.

r Test Loss
mean std

1 88.587 7.308
2 86.664 4.614
4 88.499 5.915
8 87.759 5.305
16 87.236 6.02
32 3.693 0.539
64 4.332 0.695
128 4.633 1.136
256 4.899 2.091
512 7.674 3.708
1024 10.291 6.826

Table 2: Experiments for various size of EDSF in learning coverage functions. Here, r is the number of DSF
functions used in constructing the EDSF. The ground truth is coverage function with universe size 500, 16
items, and probability 0.2. The architecure of this experiment is same as Table 1, with only a difference in
the last layer, showing value of r. The optimizer and learning rate used for each experience was, Adam and
0.01 respectively.

4.2 Learning Cut Functions

We conducted several experiments to learn modified graph cut functions (we choose modified version to
maintain the monotonicity), which is a well-known submodular function. Firstly, we generated the random
graph using Erdos-Renyi model (with probability 0.2 and 50 vertices), then, for any set of vertices X, we
considered the function f(X) = |cut(X)| +

∑
a∈X deg(a) which is a monotone submodular function.

The architecture used to train the EDSF on the data is identical to the one used for learning coverage
functions. It consists of three fully-connected layers with 64 neurons, each using ϕ(x) = min(α, x) (a minimum
linear unit) as the activation function, where α = 95. In the last layer, we incorporated a min-component
with r = 64.

Similar to the coverage function experiment, we employed DSF, Deep Sets, and Set Transformer to learn the
cut function and compare their performance with our proposed EDSF. The DSF used in this experiment is
identical to that used for learning coverage functions, consisting of three layers with 64 neurons each, except
for the alpha parameter, which is set to 450. For training our network, we used the Adam optimizer with a
learning rate of 0.01, employed the L1-loss function as our cost function, and trained each network for 10,000
epochs. Additionally, the weights for the neural networks were initialized using a Gaussian distribution with
a mean of 0 and a variance of 0.01. Table 3 presents the train and test losses for each model, showing the
mean and standard deviation across 20 runs

Further figures and details about the experiments can be found in Appendix B.
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Learning Cut Function Experiment
EDSF DSF

Train Test Train Test
mean std mean std mean std mean std
4.783 0.720 4.912 0.704 121.319 6.187 121.309 9.853

Deep Sets Set Transformer
Train Test Train Test

mean std mean std mean std mean std
121.352 6.191 121.123 9.888 142.616 64.956 157.843 109.829

Table 3: Learning a cut function generated by the Erdos-Renyi model with probability 0.2 and having 50
vertices. The optimizer is Adam and learning rate is 0.01, using L1-Loss function to optimize. Experiments
conducted on EDSF, DSF, Deep Sets, and Set Transformers. The value of L1-Loss function at the end of
training and testing reported.

4.3 Social Welfare Maximization

In these experiments, we leveraged the previously discussed concave property inherent in EDSFs to address
the widely recognized combinatorial optimization problem of maximizing social welfare, as delineated in
Section 2. In this specific context, each of the valuation functions, denoted as v1, v2, . . . , vn, is assumed to be
an EDSF or a DSF, acquired through learning from samples collected from users. Our optimization problem,
expressed in Equation 9, can be reformulated as follows,

max
a

SW (a) =∆
n∑

i=1
vi(ai),

s.t.

n∑
i=1

aij = 1, for all j ∈ S,

aij ∈ {0, 1}. (26)

where a is a n×m matrix, such that aij ∈ {0, 1} meaning if item j assigned to user i and ai represents the
i’th row of a, which is the items that were assigned to user i.

To solve this optimization problem, first we relax it to the following form,

max
a

SW (a) =
n∑

i=1
vi(ai),

s.t.

n∑
i=1

aij = 1, for all j ∈ S,

aij ∈ [0, 1]. (27)

As we mentioned, each of the vi’s are EDSF or DSF, so they are concave, hence, the relaxed problem is clearly
a convex problem, e.g., maximizing a concave function with convex constraints, and can be solved using
convex optimization techniques such as projected gradient ascent. The projection step consists of m distinct
projections on probability simplex for each item. The algorithm pseudo-code is shown in Algorithm 1.

In this set of experiments, we assume there are 3 users (bidders), each with a coverage function as their
true submodular valuation function. Subsequently, our network is trained to learn each bidder’s valuation
function. Based on these learned networks, gradient ascent is then used to find a semi-optimal allocation
that maximizes social welfare. Finally, the estimated social welfare is calculated based on this maximizing
allocation with the true valuation functions.

The learning setup for all the experiments in this section is the same. The optimizer is Adam with a learning
rate of 0.01. Each model is trained with a dataset of size 64 for 10,000 epochs. The employed cost function
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Algorithm 1 Gradient Ascent
Input: valuation functions v1, v2, . . . , vn, set of items S (|S| = s), learning rate η
Initialize a = (0)ij

Project each column of a on the probability simplex
repeat

Compute gradient of SW function in the point a = g ∈ ∂SW .
a = a+ η.g
Project each column of a on the probability simplex

until convergence
for i in S do

Select the user assigned to item i by sampling from i’th column of a (corresponding distribution for item
i).

end for

is the L1-loss function. Additionally, the weights for all neural networks are initialized with a Gaussian
distribution with a mean of 0 and a variance of 0.01. Finally, for the gradient ascent part, the learning rate
(η) is 0.001.

For our first experiment, we assume that the coverage function for each bidder has a universe size of 60 and
8 items. However, the coverage probabilities are 0.1, 0.3, and 0.5 for the three bidders, respectively. The
learning model is an EDSF with 4 layers of 64 neurons, using MiLU with α = 95 as its activation function.
Three neural networks are trained, one for each bidder, following the learning setup described above. Table 4
shows the predicted social welfare and the optimal social welfare (calculated using brute force on the true
valuation functions) for 10 different experiments.

Exp. Predicted Optimal Efficiency
No. Social Welfare Social Welfare %
1 124 127 97.6378
2 114 123 92.6829
3 84 129 65.1163
4 118 128 92.1875
5 114 127 89.7638
6 126 128 98.4375
7 110 122 90.1639
8 123 132 93.1818
9 123 128 96.0938
10 120 129 93.0233

Average 115.6 127.3 90.8288

Table 4: Experiments when value functions are coverage functions, with 60 universe size, and 8 items, with
coverage probabilities (p̃) 0.1, 0.3, and 0.5 for three bidders respectively, and the learning model is EDSF. In
the phase of learning EDSFs we have used the same setting as mentioned in the Table 1. The number of
bidders (n) is 3 and the learning rate for the gradient ascent (η) is 0.001.

The second experiment is the same as the first experiment, except that our learning model is a DSF with 3
layers of 64 neurons, using the MiLU activation function with α = 95. The corresponding results can be seen
in Table 5. As observed, the average efficiency in this experiment is significantly lower than in the experiment
with the EDSF model.

Furthermore, we conducted an experiment to compare the performance of vanilla neural networks versus
EDSFs in estimating the optimal allocation for maximizing social welfare. By "vanilla neural network," we
mean that weights can be negative, and activation functions may be non-concave. In this experiment, a
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Exp. Predicted Optimal Efficiency
No. Social Welfare Social Welfare %
1 98 127 77.1654
2 98 121 80.9917
3 63 130 48.4615
4 50 124 40.3226
5 94 120 78.3333
6 92 131 70.2290
7 92 126 73.0159
8 99 129 76.7442
9 94 127 74.0157
10 60 125 48.0000

Average 84 126 66.7279

Table 5: Experiments when value functions are coverage functions, with 60 universe size, and 8 items, with
coverage probabilities (p̃) 0.1, 0.3, and 0.5 for three bidders respectively, and the learning model is DSF.
In the phase of learning DSFs we have used the same setting as mentioned in the Table 1. The number of
bidders (n) is 3 and the learning rate for the gradient ascent (η) is 0.001.

fully-connected neural network with 3 layers, each having 64 neurons and using the ReLU activation function,
was employed to learn the bidders’ valuation functions. The networks were trained using the setup described
above, and the results are shown in Table 6. We observe that the mean efficiency is about 77%, which is
much lower than the EDSF efficiency of (90%).

Exp. Predicted Optimal Efficiency
No. Social Welfare Social Welfare %
1 56.0 98.0 57.14
2 79.0 101.0 78.28
3 89.0 93.0 95.70
4 81.0 94.0 86.17
5 70.0 99.0 70.71
6 52.0 94.0 55.32
7 84.0 100.0 84.00
8 62.0 101.0 61.39
9 88.0 99.0 88.89
10 81.0 96.0 84.37
11 77.0 93.0 82.80
12 92.0 108.0 85.19
13 77.0 104.0 74.04
14 85.0 99.0 85.86
15 69.0 94.0 73.40

Average 76.13 98.2 77.55

Table 6: Experiments when value functions are coverage functions, with 50 universe size, and 8 items,
with probablities 0.1, 0.3, and 0.5 for three bidders respectively, and the learning model is vanilla neural
network.The number of bidders (n) is 3 and the learning rate for the gradient ascent (η) is 0.001

Additionally, experiments with larger universe sizes of 500 and 1000 were conducted, and the corresponding
results, comparing the performance of EDSF and DSF in predicting optimal social welfare, are shown in
Tables 7 and 8, respectively. Other settings for these experiments are the same as those in Tables 4 and 5.
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Exp. EDSF Predicted DSF Predicted Optimal EDSF DSF
No. Social Welfare Social Welfare Social Welfare Eff. % Eff. %
1 892.0 653.0 902.0 98.89 72.39
2 907.0 634.0 917.0 98.91 69.14
3 887.0 636.0 892.0 99.44 71.30
4 882.0 500.0 900.0 98.00 55.56
5 909.0 670.0 913.0 99.56 73.38

Average 894.0 618.0 904.0 98.96 68.35

Table 7: Experiments comparing EDSF and DSF efficiency in the maximizing social welfare problem, with
coverage function as value function, 500 universe size, with probabilities 0.1, 0.3, and 0.5 for three bidders,
respectively. In the phase of learning EDSFs and DSF we have used the same setting as mentioned in the
Table 1. The number of bidders (n) is 3 and the learning rate for the gradient ascent (η) is 0.001

Exp. EDSF Predicted DSF Predicted Optimal EDSF DSF
No. Social Welfare Social Welfare Social Welfare Eff. % Eff. %
1 1737.0 1527.0 1782.0 97.47 85.69
2 1742.0 1730.0 1789.0 97.37 96.70
3 1744.0 1547.0 1778.0 98.09 87.01
4 1784.0 1739.0 1790.0 99.66 97.15
5 1755.0 1699.0 1776.0 98.82 95.66

Average 1752.4 1648.4 1783.0 98.2 92.60

Table 8: Experiments comparing EDSF and DSF efficiency in the maximizing social welfare problem, with
coverage function as value function, 1000 universe size, with probabilities 0.1, 0.3, and 0.5 for three bidders,
respectively. In the phase of learning EDSFs and DSF we have used the same setting as mentioned in the
Table 1. The number of bidders (n) is 3 and the learning rate for the gradient ascent (η) is 0.001.

Finally, we conducted a set of experiments to demonstrate the optimal learned social welfare based on the
trained EDSFs and DSFs. All details of this experiment are the same as in Tables 4 and 5, except for the
universe size, which is set to 1000. Results are presented in Table 9. As observed, the optimal learned social
welfare for EDSFs is close to the optimal social welfare, indicating a good estimation of the true valuation
functions. However, the optimal learned social welfare for DSFs is significantly lower than the optimal value.
Additionally, it is worth noting that the gradient ascent algorithm, when using EDSF networks, achieves
reasonably good performance and shows only a slight difference from the optimal learned social welfare for
EDSFs.

Observing the results, it becomes apparent that the utilization of Extended Deep Submodular Functions
(EDSFs) in the context of the social welfare maximization problem yields significantly higher efficiency when
compared to Deep Submodular Functions (DSFs) and also vanilla neural networks. This stark difference
in efficiency underscores the potential advantages and superior performance that our proposed framework,
leveraging EDSFs, can bring to the modeling of user valuations within the realm of this NP-hard combinatorial
optimization problem.

5 Discussion and Remarks

In this paper, we introduced an architecture to represent all monotone set/submodular functions using neural
networks. Here are some points about the proposed architecture that are worth-noting.
Remark 5.1 (Computational Efficiency). The most important shortcoming of this architecture is the exponen-
tial size of the network to represent all monotone set/submodular functions. However, we would like to note
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Exp. EDSF Predicted DSF Predicted Optimal Learned Optimal Learned Optimal EDSF DSF
No. SW SW EDSF SW DSF SW SW Eff. % Eff. %
1 2340.0 1965.0 2390.0 2159.0 2390.0 97.91 82.22
2 2274.0 2024.0 2373.0 2016.0 2373.0 95.83 85.29
3 2348.0 2239.0 2382.0 2059.0 2387.0 98.37 93.8
4 2306.0 2187.0 2392.0 2037.0 2392.0 96.4 91.43
5 2300.0 1464.0 2366.0 2130.0 2372.0 96.96 61.72
6 2369.0 2268.0 2372.0 2051.0 2383.0 99.41 95.17
7 2262.0 1771.0 2375.0 2050.0 2387.0 94.76 74.19
8 2306.0 1977.0 2344.0 2309.0 2363.0 97.59 83.66
9 2360.0 2087.0 2360.0 2024.0 2378.0 99.24 87.76
10 2321.0 2075.0 2370.0 2008.0 2383.0 97.4 87.08

Avg 2318.6 2005.7 2372.4 2084.3 2380.8 97.7 84.5

Table 9: Experiments comparing EDSF and DSF efficiency in the maximizing social welfare problem, with
coverage function as value function, 1000 universe size, with probabilities 0.1, 0.3, and 0.5 for three bidders,
respectively. In the phase of learning EDSFs and DSF we have used the same setting as mentioned in the
Table 1. The number of bidders (n) is 3 and the learning rate for the gradient ascent (η) is 0.001.

that the assumption on the exponentiality of the number of DSFs is just used as a sufficient condition for our
proofs. In our experiments, esspecialy in Table 2 with different numbers of DSFs tested, we observed that
using much fewer number of DSFs than exponential order is enough to attain good generalization in practice.
For example, in the problem of learning coverage functions, we used 64 DSFs to represent a function with
16 and 50 items as input (note that 64 ≪ 216 and 64 ≪ 250). We have also used 64 DSFs in learning cut
functions of graphs with 50 vertices (64 ≪ 250).
Remark 5.2. Regarding Theorem 3.9, we would like to note that the architecture of EDSFs was derived through
an analysis of polymatroids, which also forms the basis of proving Theorem 3.9. We believe that including
Theorem 3.9, along with its proof based on polymatroid theory, is essential for a deeper understanding of
EDSFs. Additionally, during the review process, a simpler proof of Theorem 3.9 was suggested by one of the
reviewers, which we have included in Appendix C for completeness.
Remark 5.3. There exists some approximation algorithm to find the near-optimal social welfare in the problem
setting mentioned above, like the one proposed in Vondrak (2008), namely, Continuous Greedy. We have
conducted multiple experiments in order to compare the Continuous Greedy and Gradient Ascent algorithm
as shown in Table 10.

As can be seen from the results, the “average” performance of both methods (Gradient Ascent and Continuous
Greedy) is very similar, leading us to conclude that there may be a shared intuition underlying both algorithms.
The intuition behind the continuous greedy algorithm is that the current distribution will shift towards the
most increasing direction to find the optimal distribution for sampling. This concept is reminiscent of moving
in the direction of the gradient in concave functions to maximize them. Overall, it appears that the Gradient
Ascent algorithm closely resembles the continuous dual of the continuous greedy algorithm. Exploring the
theoretical connection between Gradient Ascent and Continuous Greedy can be an interesting direction for
future work.

However, in the following, we would like to mention that the continuous greedy algorithm has a major
limitation.

As it can be seen in the Table 10, the running time of the Continuous Greedy algorithm is much larger than
the Gradient Ascent in practice. It seems the reason behind this large difference is that the CG algorithm
requires to sample from the function in order of O((mn)5) times to estimate the expectations in the algorithm.
It makes it so computationally complex in practice. However, since the size of the neural network for the
proposed method in practice is much smaller than the theoretical requirements, using GA is much faster than
the CG algorithm, as it can be seen in the Table 10.
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Universe Size
Continuous Greedy Gradient Ascent Continuous Greedy Gradeint Ascent

Social Welfare Social Welfare Wall-Clock Time (s) Wall-Clock Time(s)
mean std mean std mean std mean std

200 599.666 0.471 598. 1.632 585.943 1.857 99.404 0.076
500 1499. 0.816 1500. 0.000 601.558 0.425 101.290 0.060
1000 2998. 1.788 2997.8 1.326 625.598 3.089 103.320 0.446

Table 10: Experiments comparing Continuous Greedy and Gradient Ascent algorithms to maximize social
welfare after training EDSFs on coverage function with different universe sizes. It shows that the CG algorithm
in practice is much slower than the GA algorithm.

It is also worth noting that, there are some algorithms based on continuous greedy idea to find the maximizing
input for submodular functions under different kinds of constraints Mokhtari et al. (2020); Badanidiyuru &
Vondrák (2014) which are much faster than the original version of the algorithm in Vondrak (2008). But note
that while these methods are faster than continuous greedy, their approximation factor is bounded by 1 − 1

e .
However, we know that the approximation factor for maximizing monotone DSFs with a matroid constraint
of rank k using gradient ascent is max0<δ<1

(
1 − ϵ− δ − e−δ2Ω(k)

)
Bai et al. (2018), which is significantly

better than 1 − 1
e for large k. Note that the proof of the approximation factor for maximizing DSFs using

gradient ascent (including pipage rounding as the last step) is exactly applicable to EDSFs. The intuition is
that since for each input x ∈ [0, 1]n, only one of the DSFs is active, then for functions that can be represented
by an EDSF using the minimum over a finite number of DSFs, we can achieve a better approximation factor
than 1− 1

e . Note that this is only interesting for EDSFs that we can represent using minimum over polynomial
number of DSFs.
Remark 5.4. As shown in Appendix A, 5-7, the loss function for EDSF exhibits significant fluctuations and
spikes when learning coverage functions. We hypothesized that this was due to the MiLU activation function,
which has sharp edges that could complicate backpropagation and hinder the learning process. To test this
conjecture, we conducted additional experiments with EDSF using different, smoother activation functions,
such as log(1 + x). As seen in Figures 16-18, these loss functions became much smoother, with no visible
fluctuations. However, these smoother activation functions did not generalize as effectively as MiLU and were
unable to learn the coverage function as well.
Remark 5.5. Finally, we conclude our discussion by analyzing why DSFs produce constant outputs after
training, particularly when learning coverage functions, as shown in Figures 9-10. To test the expressive power
of DSFs, especially for coverage functions, we ran additional experiments with much larger DSFs. The results,
presented in Figures 11-12, indicate that DSFs still output constant values. We hypothesize that this issue
arises when neurons in a layer reach the saturation point of their activation function—a limitation observed
across common concave activation functions. Beyond this saturation point, DSFs produce a constant output.
Using larger DSFs exacerbates this issue, while smaller DSFs, as seen in Figure 8, can sometimes avoid it.

6 Conclusions

In this research, we introduce a novel concept called Extended Deep Submodular Functions (EDSFs), building
upon the foundation of Deep Submodular Functions (DSFs). DSFs, a subset of monotone submodular
functions, provide a structured framework for representing specific types (a subset) of submodular functions.
However, the scope of DSFs is limited to a strict subset of monotone submodular functions. EDSFs, on
the other hand, serve as a natural extension, expanding the family of DSFs to encompass all monotone
set/submodular functions. Our proofs are rooted in the properties of polymatroids, offering insights into
the relationship between polymatroids and submodular functions. Additionally, we highlight the concave
nature of EDSFs, a characteristic that is proved to be valuable in addressing and efficiently solving various
combinatorial optimization problems. To validate the efficacy of EDSFs, we conducted experiments in three
distinct settings, namely, learning coverage functions, learning modified cut functions, and maximizing social
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welfare. The results consistently demonstrated the superior performance of EDSFs compared to DSFs in
these experimental scenarios. In conclusion, our findings suggest that EDSFs provide a more comprehensive
and effective solution for modeling monotone set/submodular functions using neural networks. The extended
scope and enhanced performance make EDSFs a promising direction for further exploration in various machine
learning and optimization domains.

Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. There aren’t many straight
potential societal consequences of our work, none which we feel must be specifically highlighted here.
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To set the hyperparameters—such as the number of layers, neurons, and the value of alpha—we performed
an exhaustive search across a defined parameter space. The search space included varying the number of
layers from 2 to 6, the number of neurons per layer from 32 to 2048 (in powers of 2), and testing different
values of alpha, starting from small values around 5 up to larger values in the order of 1000. While many
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and EDSF networks across all experiments in the paper, we used a Gaussian distribution with a mean of 0
and a variance of 0.1.

For our first experiment (see Table 1), the architecture for the Deep Set model consists of three layers with 64
neurons each for ϕ and three layers with 64 neurons each for ρ. The architecture used for the Set Transformer
model includes 4 attention heads and a hidden dimension of 128.

To demonstrate the loss function and outputs of EDSFs and DSFs in learning coverage functions, we tested
three different coverage functions with probabilities of 0.1, 0.3, and 0.5. All three coverage functions had a
universe size of 100 and 16 items. The DSF and EDSF used for these experiments had the same architecture
as described in Table 1. For each experiment, our network was trained for 10,000 epochs using the Adam
optimizer with a learning rate of 0.01. The employed cost function, consistent with all other experiments,
was the L1-loss function. As shown in Figures 5-10, the DSF fails to learn the patterns of the target coverage
functions and outputs a constant value. In contrast, the EDSF can closely follow the patterns of the target
functions.

To demonstrate the expressive power of DSFs, we employed larger architectures for DSFs in learning the
coverage function. The DSFs used in these experiments had 4 and 6 layers, each with 2048 neurons, and
utilized the MiLU activation function with α = 95. The target function was a coverage function with a
universe size of 100, 16 items, and a probability of 0.5. Consistent with all other experiments, the network
was trained for 10,000 epochs using the Adam optimizer with a learning rate of 0.01 and the L1-loss function
as the cost function. As shown in Figures 11 and 12, the DSF still failed to learn the target coverage function,
producing a constant output instead. Additional experiments using various concave activation functions for
DSFs were also conducted to learn the aforementioned coverage function, with results presented in Figures
13-15. The learning setup for these experiments was consistent with the other experiments. Moreover, the
DSF used for these experiments had 3 layers with 64 neurons each.

Finally, to test our conjecture described in Remark 5.4 regarding the loss function for EDSFs when learning
coverage functions with many spikes and fluctuations, we experimented with smoother concave activation
functions. As shown in the corresponding plots in Figures 16-18, the loss functions exhibit no visible spikes
or fluctuations. For these experiments, the target coverage function had a universe size of 100, 31 items,
and probability of 0.2. Moreover, The EDSF used for these experiments had 4 layers with 64 neurons each,
similar to Table 1, and learning setup was consistent with other experiments.

B Details of Experiments on Learning Cut Functions

For setting hyperparameters in learning the cut function, similar to learning the coverage function, we
conducted an exhaustive search and tried different values for the number of layers, neurons, and values of
alpha. The search space for these parameters was the same as that used in learning coverage functions,
as mentioned in Appendix A. Many different candidates for the DSF encountered the same problem of
outputting a constant value; however, a few of them could approximately identify the pattern of the target
cut function. It is worth mentioning that they could not learn the cut function as well as the EDSF, and
most of the hyperparameters worked well for the EDSF.

For our first experiment in Section 4.2 (see Table 3), the architecture for the Deep Set model consists of three
layers with 64 neurons each for ϕ and three layers with 64 neurons each for ρ. The architecture used for the
Set Transformer model includes 4 attention heads and a hidden dimension of 128.

We can observe the loss function and the true vs. predicted values for the train and test samples for the
EDSF and DSF in Figures 19 and 20, respectively. The setup for these experiments is the same as the setup
described in Section 4.2, Table 3.

C Alternative proof for the main result of the paper
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Figure 5: Learning coverage function with probability 0.1, universe size 100, and 16 items. We have used
EDSF and shown Training loss, Truth vs. Predicted values for train and test samples. Other settings are
same as Section 4.1 Table 1.

There is another much simpler proof to establish the main result of the paper without using polymatroid
analysis. 5 If we define the function gA(B) as:

gA(B) =
{∑

j∈B f(j) ifA ∩B = ∅
f(A) +

∑
j∈B f(j) ifA ∩B ̸= ∅

, (28)

hence, we can conclude that f(B) ≤ minA gA(B) Fisher et al. (1978). Then, since we have gB(B) = f(B),
we conclude that f(B) = minA gA(B) for all B ⊆ S. This proof is much simpler than the provided proof in

5This proof provided kindly by one of the reviewers during the review process.
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the paper, however, without using the analysis of polymatroids there is no intuition at hand about how we
constructed the architecture of the EDSFs to respresent all of the monotone submodular functions, which
makes is possible to generalize the architecture to all monotone set functions as a more powerful result.
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Figure 6: Learning coverage function with probability 0.3, universe size 100, and 16 items. We have used
EDSF and shown Training loss, Truth vs. Predicted values for train and test samples. Other settings are
same as Section 4.1 Table 1.
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Figure 7: Learning coverage function with probability 0.5, universe size 100, and 16 items. We have used
EDSF and shown Training loss, Truth vs. Predicted values for train and test samples. Other settings are
same as Section 4.1 Table 1.
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Figure 8: Learning coverage function with probability 0.1, universe size 100, and 16 items. We have used
DSF and shown Training loss, Truth vs. Predicted values for train and test samples. Other settings are same
as Section 4.1 Table 1.
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Figure 9: Learning coverage function with probability 0.3, universe size 100, and 16 items. We have used
DSF and shown Training loss, Truth vs. Predicted values for train and test samples. Other settings are same
as Section 4.1 Table 1.
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Figure 10: Learning coverage function with probability 0.5, universe size 100, and 16 items. We have used
DSF and shown Training loss, Truth vs. Predicted values for train and test samples. Other settings are same
as Section 4.1 Table 1.
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Figure 11: Learning coverage function with DSF having more number of neurons. The used DSF has 4 layers
each having 2048 neurons and MiLU activation function with α = 95. we can see that it still outputs constant
when learning coverage function with universe size of 100 and probability of 0.5.
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Figure 12: Learning coverage function with DSF having more number of neurons. The used DSF has 6 layers
each having 2048 neurons and MiLU activation function with α = 95. we can see that it still outputs constant
when learning coverage function with universe size of 100 and probability of 0.5.
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Figure 13: Learning coverage function with DSF having log(1 + x) as activation function. The used DSF
has 3 layers each having 64 neurons and log(1 + x) as activation function. We can see that it still outputs
constant when learning coverage function with universe size of 100 and probability of 0.5.
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Figure 14: Learning coverage function with DSF having tanh(x) as activation function. The used DSF has 3
layers each having 64 neurons and tanh(x) as activation function. We can see that it still outputs constant
when learning coverage function with universe size of 100 and probability of 0.5.
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Figure 15: Learning coverage function with DSF having σ(x) − 0.5 as activation function. The used DSF
has 3 layers each having 64 neurons and σ(x) − 0.5 as activation function. We can see that it still outputs
constant when learning coverage function with universe size of 100 and probability of 0.5.
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Figure 16: Loss function of EDSF with log(1 + x) as activation function. The target functions is a coverage
function with 100 universe size, probability of 0.2, and 31 items.
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Figure 17: Loss function of EDSF with tanh(x) as activation function. The target functions is a coverage
function with 100 universe size, probability of 0.2, and 31 items.
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Figure 18: Loss function of EDSF with σ(x) − 0.5 as activation function. The target functions is a coverage
function with 100 universe size, probability of 0.2, and 31 items.
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Figure 19: Learning a cut function generated by the Erdos-Renyi model with probability 0.2 and having 50
vertices, using the EDSF architecture same as Table 3, showing Training loss, Truth vs. Predicted values for
train and test samples.
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Figure 20: Learning a cut function generated by the Erdos-Renyi model with probability 0.2 and having 50
vertices, using the DSF architecture same as Table 3, showing Training loss, Truth vs. Predicted values for
train and test samples.
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